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ABSTRACT Entanglement is a unique quantum information processing feature. With the help of 
entanglement we can build quantum sensors whose sensitivity is better than that of  classical sensors. In this 
paper we are concerned with the entanglement assisted (EA) bistatic quantum radar applications. By 
employing the optical phase conjugation (OPC) on transmitter side and classical coherent detection on 
receiver side we show that the detection probability of the proposed EA target detection scheme is 
significantly better than that of corresponding classical and coherent states-based quantum detection schemes. 
The proposed EA target detection scheme is evaluated by modelling the radar return channel as the lossy and 
noisy Bosonic channel and assuming imperfect distribution of entanglement over the idler channel. 

INDEX TERMS Entanglement, Radars, Quantum sensing, Quantum radars, Entanglement assisted quantum 
radars. 

I. INTRODUCTION 

The entanglement is a unique quantum information processing 
(QIP) attribute [1]-[4]. With the help of entanglement we can: 
(1) beat the sensitivity of classical sensors [1],[5],[6], (2) 
enable communication networks with unconditional security 
[1],[2],[4],[7], and (3) communicate at rates above the 
classical channel capacity [8]-[10]. By distributing the 
entanglement at a distance, we can interconnect various 
quantum devices and modules thus enabling secure distributed 
quantum computing [11] and distributed quantum sensing 
[1],[5].  

The key motivation behind the quantum radar studies is to 
beat the quantum limit of classical sensors [12]. The potential 
advantages of quantum radars compared to the classical radars 
can be summarized as follows: better receiver sensitivity, 
better target detection probability in a low signal-to-noise ratio 
(SNR) regime, improved penetration through clouds and fog 
when microwave photons are used, better resilience to 
jamming, improved synthetic-aperture radar imaging quality, 
the quantum radar signals are more difficult to detect 
compared to classical counterparts, and quantum radars have 
higher cross-section (as shown in [12]), to mention few. 
Unfortunately, they are significantly more challenging to 
implement. Two popular quantum radar designs are: (i) 
interferometric quantum radar, with the concept being very 

similar to the quantum interferometry, and (ii) the quantum 
radar employing the quantum illumination sensing concept 
proposed by Lloyd [13]-[21]. For classification of different 
quantum radar techniques an interested reader is referred to 
[16],[18]. For additional details on quantum illumination we 
refer the reader to a tutorial paper by Shapiro [14]. The 
quantum illumination concept at microwave frequencies was 
experimentally demonstrated in [21]. 

In this paper, we are concerned with the entanglement 
assisted  (EA) bistatic quantum radar detection, whose 
operational principle is illustrated in Fig. 1.  

 
FIGURE 1. Illustration of the EA bistatic quantum radar concept. 
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The entangled source generates an entangled pair of 
photons, the signal and idler photons. The idler photon is kept 
in the quantum memory of the receiver, while the signal 
photon is transmitted over noisy, lossy, and atmospheric 
turbulent channel towards the target. The reflected photon is 
detected by the radar and quantum correlation is exploited to 
improve the target detection probability.  

To improve the target detection probability we propose to 
employ the optical phase conjugation (OPC) on transmitter 
side and classical coherent detection on receiver side. We 
show that the proposed EA target detection scheme 
significantly outperforms coherent states-based quantum 
detection and classical counterparts. We evaluate the proposed 
EA target detection scheme by modelling the transmitter-
target-receiver (main) channel as the lossy and noisy Bosonic 
channel and assuming that the distribution of entanglement 
over the idler channel is imperfect.  

In the rest of this section the organization of the paper is 
provided. The EA radar concept is introduced in Sec. II. Both 
signal and idler channels are modeled as lossy and noisy 
Bosonic channels. The proposed EA radar scheme, 
employing the OPC on transmitter side and coherent 
detection on receiver side, is described in Sec. III. In Sec. IV 
we evaluate the detection probability performances of the 
proposed EA target detection scheme and compare it against 
coherent states-based quantum detection schemes. The 
concluding remarks are provided in the last section (Sec. V). 

II. ENTANGLEMENT ASSISTED QUANTUM RADARS 

In this section, we describe the entanglement assisted 
target detection by employing the Gaussian states generated 
through the continuous-wave spontaneous parametric down 
conversion (SPDC) process. The SPDC-based entangled 
source is broadband source containing D=TmeasB i.i.d. signal-
idler photon pairs, where Tmeas is the measurement interval 
and B is the phase-matching SPDC bandwidth. Each signal-
idler photons pair, with corresponding signal and idler 
creation operators denoted by †ˆsa  and †ˆia , respectively, is in 

fact a two-mode squeezed vacuum (TMSV) state whose 
representation in Fock basis is given by: 
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where † †ˆ ˆ ˆ ˆs s s i iN a a a a   denotes the mean photon 

number per mode. The signal-idler entanglement is specified 
by the phase-sensitive cross-correlation (PSCC)  coefficient

ˆ ˆ ( 1)s i s sa a N N  , which can be interpreted as the 

quantum limit.  The TMSV state is a pure maximally 
entangled zero-mean Gaussian state with the following 
Wigner covariance matrix: 
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where Z=diag(1,1) denotes the Pauli Z-matrix and 1 
denotes the identity matrix. Evidently, in the low-brightness 
regime Ns<<1, the PSCC is ˆ ˆs i sa a N  that is much larger 

than the corresponding classical limit Ns. As described 
earlier, by going back to Fig. 1, the entangled source is used 
on transmitter side to generate quantum correlated signal 
photon (probe) and idler photon (local reference). The signal 
photon is transmitted over noisy, lossy, and atmospheric 
turbulent channel towards the target. The reflected photon 
(also known as the radar return) is detected by the radar’s 
receiver, and quantum correlation between radar return and 
retained reference (idler photon) is exploited to improve the 
receiver sensitivity. The interaction between the probe 
(signal) photon and the target can be described by a beam 
splitter of transmissivity T. Therefore, we can model the 
radar transmitter-target-radar receiver (main) channel as a 
lossy thermal Bosonic channel  

 Rxˆ ˆ ˆ1 ,j
s ba Te a T a                   (3) 

where ˆba  is a background (thermal) state with the mean 

photon number being   †ˆ ˆ1 b b bT a a N  . With  we 

denoted signal-mode phase shift introduced by the target and 
channel. The idler-mode channel is assumed to be imperfect 
and can also be described by the lossy and noisy Bosonic 
channel  

Rx, idlerˆ ˆ ˆ1 ,i i i bia T a T a                   (4) 

where Ti is transmissivity of the idler channel and ˆbia  is the 

annihilation operator of the background (thermal) mode of 
the idler channel with the mean photon number being 

  †ˆ ˆ1 i bi bi biT a a N  . The radar returned probe and retained 

reference (stored idler) can be described by the following 
covariance matrix: 
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(5) 
where , ( )s i s bi bN T N N T N   . We use t to denote the target 

indicator, wherein the absence of the target is denoted by t=0 
and in this case the return signal does not contain the probe, 
just the background noise, and the covariance matrix is 
diagonal. The presence of the target is denoted by t=1 and 
antidiagonal terms, representing the quantum correlation 
between the signal and idler, are non-zero in this case.   

 
FIGURE 2. The operation principle of the optical-parametric amplifier 
(OPA)-based receiver. 
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The joint measurement receiver may use the optical 
parametric amplifier (OPA), shown in Fig.2, with a low gain 
G1= <<1, to obtain: 

   †
Rx, idler Rxˆ ˆ ˆ1a G a G a                (6) 

for each signal-idler pair of a given mode. The direct 
detection of the OPA has the following mean photon number 

     †ˆ ˆN a a   . The authors have shown in [23] that 

with the help of OPA, the entanglement assisted receiver for 
ideal distribution of the idler (Ti=1) provides maximum 3dB 
improvement over corresponding classical receiver. 
However, in the presence of experimental imperfections the 
improvement was reduced down to 1 dB.  

Given that the OPC receiver has better sensitivity than 
the OPA receiver as shown in [5],[9],[10], here we study an 
EA target detection scheme employing the OPC. Moreover, 
the EA communication employing the OPC-based receiver 
has been experimentally demonstrated in [22]. The key 
difference of our target detection scheme is that the OPC 
operation is performed on transmitter side, rather than 
receiver side in [5],[22], while classical coherent detection is 
applied on receiver side, with details provided in incoming 
section. Furthermore, the performances in [5] were evaluated 
in terms of probability of error not the detection probability 
that is more relevant in radar applications. Additionally, the 
closed-form expression for the detection probability is 
derived here. Finally, we assume that the distribution of 
entanglement is not perfect.  By moving the OPC operation 
to transmitter side we can: (i) extend the transmission 
distance because the low-brightness regime can be redefined 
as TNs<<1, (ii) integrate the EA transmitter with modulator 
on the same chip, and (iii) reduce the complexity for 
multistatic radar applications because the OPC will be 
performed only once on transmitter side as opposed to 
performing the OPC on receiver side given that each receiver 
will need the nonlinear device to perform the OPC. In 
principle, the maximum entangled states are not needed to 
achieve the quantum advantage as shown in [17]. Various 
coherent states-based quantum detection schemes 
outperform the classical target detection as shown in Sec. IV. 
However, by using the entangled sates additional 
improvements are possible. Given that the TMSV states can 
straightforwardly be generated through the SPDC process 
and corresponding theory is well developed, we prefer to use 
the TMSV states in the EA target detection scheme studied 
here.  

III.  ENTANGLEMENT ASSISTED RADAR DETECTION 
WITH TRANSMITTER SIDE OPTICAL PHASE 
CONJUGATION AND COHERENT DETECTION 

In this section we describe our proposed entanglement 
assisted radar detection concept, which is inspired by our 
recently proposed entanglement assisted communication 
system [10]. The integrated entanglement assisted 
transmitter, based on LiNbO3 technology, performing optical 
phase conjugation on transmitter side, is shown in Fig. 3. The 

phase or I/Q modulator is optional. In Figure 3 we use s to 
denote a signal constellation point imposed by either phase 
modulator or I/Q modulator. For instance, for M-ary PSK we 
have that s=exp(jm).  

To perform the OPC through the difference frequency 
generation (DFG) we employ the periodically poled LiNbO3 
(PPLN) waveguide. The SPDC concept is employed in the 
first PPLN waveguide to generate signal-idler photon pairs, 
which get separated by Y-junction. The DFG interaction of 
the pump photon p and signal photon s takes place in the 
second PPLN to generate the phase-conjugated photon at 
OPC=ps. As an illustrative example, assuming that the 
strong pump laser diode at p=780 nm is used, through the 
SPDC process the following signal-idler pair can be 
generated: the signal photon at wavelength s=1585.8nm 
and the idler photon at wavelength i=1535nm. In the OPC 
PPLN waveguide the signal photon get interacted with the 
pump photon through the DFG process to obtain the phase-
conjugated (PC) signal photon at wavelength 
s,PC=1/(1/p1/s)=1530nm, which is the same as the idler 
photon wavelength.  

Therefore, by performing the OPC on transmitter side, 
conventional-classical balanced coherent detection receiver 
is applicable on receiver side, with one such receiver 
provided in Fig. 4. Clearly, the OPC radar return probe and 
idler modes are mixed on balanced beam splitter, followed 
by two photodetectors. The idler mode serves as a local laser 
signal for homodyne coherent detection. 

For the transmit side OPC, the main channel model 
becomes 

  †
Rxˆ ˆ ˆ1 ,j

s ba Te a Ta                   (7.1) 

wherein the overall phase  is composed of three 
components: 

,m                            (7.2) 

where m is the modulation phase (when M-ary PSK is used), 
while   denotes the phase-shift introduced by the target and 
assuming that transmitter and receiver are in close proximity 
it is related to the distance d from the target by 2kd  , 
with k being the wave number related to the wavelength  by 
k=2/. Finally,  is the random phase shift introduced by 
the channel. The sequence encoded on transmitter side is 
used as a pilot sequence for estimation and cancelation of the 
random phase shift.  

The operation principle of the entanglement assisted 
bistatic radar, provided in Fig. 1, is already described in 
previous section.  

 
FIGURE 3.  LiNbO3 technology-based integrated entanglement assisted 
transmitter with OPC implemented on transmitter side. PDC: parametric 
down conversion, OPC: optical phase-conjugation, PPLN: periodically 
poled LiNbO3 waveguide. 
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FIGURE 4.  Entanglement assisted homodyne balanced detection 
receiver. The phase modulator is used to detect either in-phase or 
quadrature component of the OPC signal. Photodiode responsivity is set 
to 1 A/W. 

The balanced detector (BD) photocurrent operator 
(assuming that the photodiode responsivity is 1 A/W) is 
given by: 

† †
Rx,idler Rx,idler

ˆ ˆ ˆ ˆ ˆ .BD Rx Rxi a a a a                     (8) 

For the receive side phase modulator shift of =0 rad (see 
Fig. 4), in the presence of the target, we obtain the following 
BD photocurrent operator expectation: 

 ˆ 2 1 cos ,BD i s si TTN N             (9) 

On the other hand, for the receive side phase modulator shift 
of =/2 rad, in the presence of target, we obtain the 
following BD photocurrent operator expectation: 

 ˆ 2 1 sin .BD i s si TTN N                 (10) 

Both in-phase and quadrature component are needed if we 
want to determine the exact phase-shift and the target range.  

For the receive side phase modulator shift of =0 rad, 
the variance of the BD photocurrent operator, defined as 

  22ˆ ˆ ˆVar BD BD BDi i i  , will be: 
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where , ( )s i s bi bN T N N T N   .  

In the absence of the target, the BD photocurrent operator 
expectation is zero, while the corresponding variance is:  
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where we used the fact that Ni=Ns.  
Given that in the target detection problem a priori 

probabilities are not known we apply the Neyman-Pearson 
criterion [24],[25], in which we set the maximum tolerable 
false alarm probability and maximize the detection 
probability.  

For the proposed EA target detection scheme, the false 
alarm (FA) probability is given by: 

1
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where tsh is the threshold determined from the tolerable FA 
probability. The complementary error function is defined by 

2erfc( ) (2 / ) exp( )
x

x u du


  . 

On the other hand, the detection probability is given by: 
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IV.  ILLUSTRATIVE NUMERICAL RESULTS  

The referent case will be the case in which a coherent state 
is used to illuminate the target, in the presence of background 
(thermal) radiation. The density operator, in the presence of 
thermal radiation, has the following P-representation [1]-
[4],[24]: 
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wherein in the absence of the target (t=0) we have that 0=0, 
while in the presence of the target (t=1) 1=. As before, Nb 
denotes the average number of thermal (background) 
photons. The coherent state | can be expressed in terms of 

number states as follows 
2

/ 2 ( / !)n

n
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after substitution in (15) we obtain:                                
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In the presence of target, the corresponding density 
matrix can be described as [24]: 
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where | is the state used to illuminate the target. In (17), we 
use ( )o

dL   to denote the associated Laguerre polynomials with 

subscript d and superscript o denoting the degree and order, 
respectively. Finding optimum strategy for the Neyman-
Pearson criterion would be to determine the eigenvalues k 
and eigenkets 

k  of the operator 
1 0   using the 

following eigenvalue equation: 

 1 0 ,k k k                  (18) 

wherein the parameter  is determined from the maximum 
tolerable FA probability. This problem has been solved 
numerically. 

To reduce complexity, the Helstrom threshold detector 
can be used [24], with the corresponding detection operator  
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   1 †
. . ˆ ˆ0.5H t bN a a

               (19) 

being related to the in-phase operator.  
By setting T=Ti=1, in Fig. 5 we compare the proposed EA 

target detection scheme against various coherent states-
based schemes, in terms of detection probability vs. signal-
to-noise ratio (SNR), for the average number of background 
photons being Nb=0.1 [Fig. 5(a)], Nb=1 [Fig. 5(b)], and 
Nb=10 [Fig. 5(c)], wherein the false alarm probability that 
can be tolerated is set to QFA=106.  

 
(a) 

 
(b) 

 
(c) 

FIGURE 5.  Detection probability vs. SNR [dB] for different radar 
detection schemes for average number of thermal photons being: (a) 
Nb=0.1, (b) Nb=1, and (c) Nb=10. The maximum tolerable FA probability is 
set to QFA=106. The idler channel is assumed to be ideal (Ti=1 and Nbi=0). 

The classical Albersheim’s equation-based plot is provided 
as well for the number of samples being N=1 and 8 (see refs. 
[26] and [27] for details related to the Albersheim’s 

equation). The SNR for non-classical target detection 
schemes is defined by Ns/(2Nb+1). The following three 
coherent states-based detection schemes are considered: 
optimum quantum detector, quantum receiver (Rx) in which 
the phase is random, and Helstrom threshold receiver. 
Clearly, the proposed EA target detection scheme 
outperforms various coherent states-based detections 
schemes and significantly outperforms the classical target 
detection. As the average number of thermal photons 
increases, it appears that Helstrom threshold detection 
scheme performs comparable to the optimum quantum 
detection scheme, see for instance Fig. 5(b). Another 
interesting observation is that for Nb=0.1 the Helstrom 
threshold detector performs worse than quantum receiver 
with random phase, while for Nb=1 and 10 it performs better. 
For Nb=10 we also provided both quantum  and classical 
Bhattacharyya bounds, assuming that M=1 TMSV state is 
used, which are strictly speaking tight bounds only in a high-
SNR regime. 

Given that the SPDC-based entangled source is 
broadband source in Fig. 5(c) we study the improvement 
when the number of bosonic modes is increased to D=8. The 
proposed EA target detection scheme significantly 
outperforms the Helstrom threshold receiver with D=8 and 
classical radar detector for N=8. For the detection probability 
of QD=0.95 (and false alarm probability of QFA=106), the 
EA target detection scheme for D=8 Bosonic modes 
outperforms Helstrom detection scheme (also with D=8) by 
3.12dB, while at the same time outperforming the 
corresponding classical scheme with N=8 samples by even 
8.03dB. 

In Figure 6 we evaluate the EA scheme’s detection 
probability vs. SNR by observing now the Bosonic main 
(signal) channel model, described by Eq. (7.1).  Here we 
assume the ideal distribution of entanglement over the idler 
channel (Ti=1 and Nbi=0), while the main channel is 
considered noisy with parameter Nb being set to 10. Clearly, 
for low transmissivities of the main channel, the use of single 
Bosonic mode is not sufficient because the required SNR to 
achieve high target detection probability is way too high. On 
the other hand, when eight Bosonic modes are employed, 
high target detection probabilities are possible even for 
moderate SNRs when the channel transmissivity is very low. 

In Figure 7 we evaluate the proposed EA scheme’s 
detection probability vs. SNR by fixing main (signal) 
channel transmissivity to T=0.05 and varying the 
transmissivity of the idler channel, with corresponding 
channel model being described by Eq. (4). Both main 
(signal)  and idler bosonic channels are considered noisy 
with corresponding parameters being Nb=10 and Nbi=2, 
respectively. Clearly, when the idler channel is noisy and 
lossy the same detection probability is achieved for higher 
SNR values, compared to the case with ideal entanglement 
distribution. To compensate for this problem, we can 
increase the number of bosonic modes, which is 
straightforward to implement thanks to the wideband nature 
of the SPDC process. 
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FIGURE 6.  Detection probability vs. SNR [dB] for EA OPC scheme for 
different main bosonic channel transmissivities. The maximum tolerable 
false alarm probability is set to QFA=106. The idler channel is assumed to 
be ideal (Ti=1 and Nbi=0).   

 
FIGURE 7.  Detection probability vs. SNR [dB] for EA OPC scheme for 
different idler channel transmissivities. The main (signal) channel 
transmissivity is set to T=0.05. The maximum tolerable false alarm 
probability is set to QFA=106. 

V. CONCLUDING REMARKS 

In this paper we have been concerned with the 
entanglement assisted bistatic quantum radar detection. We 
have proposed the EA radar detection scheme employing the 
optical phase conjugation on transmitter side and classical 
coherent detection on receiver side.  

The proposed EA target detection scheme has been 
evaluated against the coherent states-based quantum 
detection schemes. We have shown that the detection 
probability of the proposed EA target detection scheme has 
been significantly better than that of corresponding coherent 
states-based quantum detection schemes as well as the 
classical detection. The proposed scheme has been also 
evaluated by assuming the imperfect distribution of 
entanglement and by modeling the radar return channel as 
the lossy and noisy Bosonic channel. 
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