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Abstract: The hydrodynamic forces on an oscillating circular cylinder are predicted using neural
networks under flow conditions where Vortex-Induced Vibrations (VIV) are known to occur. The
derived neural network approximators are then incorporated in a dynamical model that allows
prediction of the cylinder motion given flow conditions and initial conditions. Using experimental
data, a minimum-least-squares compensator is tuned that includes linear stiffness and damping
su-perimposed with a constant force offset. The compensator is decoupled, i.e., with equations
in-dependent for each degree of freedom. By applying the neural network approximators and the
derived compensator simulated experiments can be performed. These simulated experiments show
that the compensator which cancels the linear components and any bias in the hydrody-namic forces
effectively stabilizes the VIV motion. To support this time-domain analysis is per-formed along with
phase-plane investigations. Maximum Lyapunov exponent analysis is also shown.

Keywords: VIV; two degree of freedom (DOF); forced vibration; neural networks; energy harvesting;
Lyapunov exponent; stabilization; decoupled linear feedback

1. Introduction

In many engineering applications, vortex-induced vibrations (VIV) constitute a dy-
namic, non-linear fluid-structure interaction (e.g., offshore structures, towed cables, moor-
ing systems, ship appendages, buildings, bridges, power wires, pipelines, antennae, heat
exchangers, etc.). This phenomenon has been widely observed, with multiple reviews
devoted to the subject and extensive literature review about one and two degree of freedom
VIV can be found within these articles [1-6]. Vortices occur in the wake of a bluff object,
such as a round cylinder, when fluid flows across it. When the shedding frequency of these
vortices approaches the natural frequency of the structure, significant amplitude move-
ments occur, which push the structure to vibrate more, resulting in a changed wake that
forces the structure differently, and so on if the item is flexible or elastically attached. The
acceleration of the surrounding dense fluid, such as water, adds greatly to the time-varying
frequency properties of the vibrations, resulting in wide-band, large-amplitude vibrations.
The prediction of these vibrations is crucial in thin ocean structure applications, notably
for towing cables, risers, floating structures, and mooring systems, to minimize structural
failure, wear, noise generation, and operational downtime.

New renewable offshore technologies, such as floating offshore wind turbines and
in-stream energy, are being developed. Therefore, the phenomena has lately been extended
as a possible energy production strategy [7]. The vibration of elastically placed circular
cylinders in a current that are confined to cross-flow motion or motion perpendicular to
the direction of the current has received a lot of attention in energy harvesting applications.
Allowing the cylinder to move with mixed in-line and cross-flow motion relative to the
direction of the fluid has the capacity to boost the amplitude responsiveness of the system,
improving power output, in order to improve power output in energy harvesting. As a
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result, in order to create control techniques for VIV-based energy harvesters, dynamical
models that can anticipate the forcing and behavior of this sort of system are required.

Previous research has shown that combining in-line and cross-flow motion improves
both the cross-flow amplitude response and the lift direction harmonic forcing of a circular
cylinder experiencing VIV [8,9]. Because of the greater amplitude vibrations, this can cause
to increase fatigue in structures subjected to this fluid—structure interaction in standard
designed systems [10]; however, in energy harvesting systems, these larger amplitude
motions can be regulated to maximize energy harvesting capabilities. These larger am-
plitude vibrations might, however, be controlled in energy harvesting devices to boost
energy gathering potential. It is challenging to construct simple fluid force models that can
anticipate the fluid—structure coupling because the connection between motion and fluid
forces is related non-linearly through the time-dependent shedding of vortices. When used
with a structural model, semi-empirical approaches have enhanced efforts for modeling
fluid forces by employing empirically-generated data from free vibration or forced motion
studies to predict fluid forces.

Due to the direct use of real measured forces in the coupling prediction, semi-empirical
prediction approaches that apply simple structural models mixed with an empirical
database acquired from forced motion experiments have been found to be better predictors
of cross-flow motion VIV [11-14]. However, extending these semi-empirical methods to
include combined cross-flow and in-line motion can be difficult due to the large number
of experiments required to generate a well-resolved database of force measurements, as
in-line motion significantly increases the number of variables describing body motion. This
semi-empirical approach was created to improve prediction skills in energy harvesting
applications [15], but it has not yet been applied to systems that have both in-line and
cross-flow motion. Furthermore, time-varying hydrodynamic coefficient models have been
investigated in order to predict VIV in these types of applications [16,17].

Previous forced motion experiments investigating combined in-line and cross-flow
motion over a sparse parameter space, including variations in cross-flow amplitude, in-line
amplitude, reduced velocity, and phase between in-line and cross-flow motion, have not
yet been successfully implemented in predictive tools for VIV [18]. This dataset has been
extended to study the use of the dataset for semi-empirical prediction by resolving the lower
amplitude parameter space. However, these investigations have resulted in a restricted
examination of the resulting forces from combined in-line and cross-flow motions [19].
The use of a unique automated experimental apparatus to construct a database of forced
combined in-line and cross-flow motions at a specific Reynolds number has resulted in a
more resolved database [20-22], providing a rich source of hydrodynamic force data that
can be used to develop artificial intelligence-based predictive force models.

In summary, references [1-6] provide a thorough account of VIV in one and two
di-mensions while [7] explores the energy production potential of VIV. To expand on this
potential, [8,9] investigate the coupling dynamics, while [10] investigates the impact of VIV
on structures. Various approaches of phenomenological modeling of VIV are de-veloped
in [11-17]. Finally, [18-22] define the requirements of data gathering cam-paigns toward
development of VIV models. In this end, as part of our present study, we are going to use a
comprehensive force database [20] to develop decoupled feed-back systems for stabilization
of neural network models of one dimensional (1D) and two dimensional (2D) VIV force
data. Previously, Artificial Neural Network force models were built based on several tests
in order to provide a time-dependent forecast of the force on the body based on position and
velocity inputs [23]. In order to improve the neural network model using autoregressive
techniques, an error estimation model was constructed for the existing neural network
hydrodynamic force model. The time dependent neural network prediction model was
improved as a result of this [24]. We are going to develop a decoupled, linear feedback
system which is used to stabilize neural network models of VIV force data. In order to
achieve this, we are going to use one neural network model from our in-house database to
show how the dynamics of the entire system work.
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2. Methods and Applications
2.1. Experimental Details

In the experimental fluid mechanics laboratory at the University of Rhode Island
(URI), automated forced two-degree-of-freedom experiments were carried out. Figure 1
depicts the experiment setup. A towing tank, automated linear actuators, a control box,
and a data acquisition (DAQ) system make up the experiment setup. A 4.3 m by 0.9 m by
0.8 m glass tank with tow carriage serves as motion control tank. The tow carriage is fitted
with an X-Y linear actuator system as well as a Z rotational motor. A six-axis force sensor
placed on the tow point provides force measurement. The system is entirely automated
thanks to a MATLAB control interface between control box and DAQ system that allows
for automated experiment control by control box based on the decision-making algorithm.
A primary carriage is mounted on top of the water tank and can travel with constant speed.
Linear actuators conduct prescribed figure-eight and crescent driven motions of a text
cylinder attached to the carriage. While combined cross-flow and in-line VIV often results
in figure-eight and crescent-shaped cylinder motions in a carriage-fixed reference frame,
the nonlinear interaction of the structural system with the fluid does not guarantee that the
motions are sinusoidal in each direction. For simplicity, the motion of the body is assumed
to be sinusoidal for both cross-flow and in-line directions [25], such that these motions
are only characterized by a single amplitude and single frequency. In addition, in-line
motions are assumed to have double the frequency of cross-flow motions allowing for a
single frequency parameter to represent the circular cylinder’s motion. This reduces the
number of variables to consider while defining cylinder motion. Thus, forced motions are
defined as

y(t) = Aysin(wt) 1)

x(t) = Axsin(2wt +0) ()

9555 runs;

(a) (b)

Figure 1. The automated experimental test setup is shown in pictures (a,b).

The orbital motion of the cylinder in the carriage fixed reference frame is defined
by the phase difference between in-line and cross-flow motions, 6. Based on the non-
dimensional amplitudes, the cylinder’s motion can be characterized non-dimensionally for
both direction; non dimensional cross flow motion amplitude, A, /D, non dimensional in-
line motion amplitude, Ay /D and also a single cross-flow reduced velocity can be defined
based on carriage speed, motion frequency and the diameter of cylinder:

_U2r

V.= ——
r wD

®G)

The in-line amplitude was varied from 0.1 to 0.5 in increments of 0.1, the cross-flow
amplitude from 0.1 to 1.6 in increments of 0.25, the non-dimensional speed parameter, the
reduced velocity from 4 to 8 in increments of 0.2, and the phase between in-line and cross-
flow motions from —180 degrees to 180 degrees in increments of 30 degrees. As a result, the
experimental database for the single Reynolds number of 7620 has 9555 ex-periments. Each
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run was carried out using an automated system, which ensured that the experiment was
always reset to the same starting point and that the following ex-periment was carried out
after an interval of 8.5 minutes. ATI Gamma SI-65-10 and SI-130-10 six-axis force sensors
were used to measure hydrodynamic forces.

The lift and drag forces, F, and Fy, can be approximated as sinusoidal functions with
dominant frequencies equal to the motion frequencies up to first order:

F, = F sin(wt + ¢1) 4)

Fy = Fysin(2wt + ¢») ®)

The phase angles between motion and force are ¢; and ¢, respectively according to
the equation. Depending on the sign of the power transfer, the component of the force in
phase with the velocity of the cylinder motion may either excite or dampen the motion
of a freely vibrating system. This power transfer is a function of forces in both lift and
drag for a system oscillating with combined in-line and cross-flow motion. The power is
normalized to obtain an average power coefficient, C,p,, that represents the excitation of the
structure. A system with a positive power coefficient has net energy transmitted from the
fluid to the body, indicating positive structure excitation. A freely vibrating system may
experience this form of motion. A negative power coefficient implies a net energy transfer
from the structure to the fluid, which occurs exclusively in forced motions. As a result,
we may define an average power transfer coefficientas follows: Positive power transfer
denotes excitation and energy transfer from the fluid to the body, whereas negative power
transfer denotes damping and energy transfer from the body to the fluid:

1 Jo (Fyy + Fex)dt
IoUPDL

Cap = (6)

Varying in cross-flow motion amplitude and reduced velocity for fixed phase between
in-line and cross-flow motion are shown in Figure 2 on contour plots to show the aver-
age power coefficient for fixed phase between in-line and cross-flow motion, § = 0°, and
Ax/D = 0.1 for fixed in-line amplitude. The white region where the average power coeffi-
cient is positive represents the free vibration region. In prior work, cylinder movements
corresponding to this free vibration zone were used to generate the predicted force model
using neural nets. Based on the full measured forces, 26 experimental runs were chosen for
creating neural network estimators for lift force and a drag force [23,24].
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Figure 2. The contours of the average power coefficient with variables A, /D and V/ at fixed phase
between motions, § = 0° and fixed in-line motion amplitude, Ay/D =0.1.
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2.2. Feedback Stabilization

A decoupled, linear feedback law is used to stabilize the dynamics of VIV motion
with neural network approximators for the hydrodynamic forces driving the process. The
time series of lift and drag forces were previously approximated using Artificial Neural
Networks (ANN) with position and velocity signals as inputs and lift and drag force time
series as output. A feedforward ANN is used to create nonlinear force approximators from
experimental data sets. The ANN is a closed form mathematical equation, with weights
defined by the ANN's training. [23,24,26,27]. The cylinder motions (in-line and cross-flow
position and velocity) are defined as inputs to the ANN model, while the force time series
in x and y are defined as outputs:

FnEF(t:nTs):f(a) @)

a= [xyxy] T 8)

a is the input vector with position and velocity for in-line and cross-flow motions, and
F is the force estimates from the ANN. The sampling time is Ts = 0.001 s, as determined by
the tank measurements in the experimental database, F.

A total of 52 neural nets were trained as part of past work to encompass the results
of 26 forced vibration experiments. For each experiment, one neural network was trained
as approximator of time-dependent lift and one net for drag force. The neural nets for
lift and drag forces have a three-layer structure. Feedforward systems, such as neural
nets, require an input vector as well as hidden and output layers. The input and output
layers of all 52 nets are both linear. Each neural net of the 52 ones has four input variables:
The instantaneous position in cross-flow direction, instantaneous position in in-line direc-
tion, instantaneous velocity in cross-flow direction, and instantaneous velocity in in-line
direction. Each input was transmitted to the hidden layer by a dedicated neuron in the
input layer. The 26 lift force neural approximators have 7 neurons in the hidden layer. The
26 drag force neural approximators have 11 neurons in the hidden layer. MATLAB's neural
network toolbox was used to create all 52 ANNs. The transfer function (also known as
activation function) of all nodes in the hidden layers of all 52 nets was the nonlinear tangent
sigmoid, while the output layer, as previously stated, was linear. Because the sampling rate
of the experiments was quite high, the experimental data have good temporal resolution,
with a significant number of data points for each run.

In conclusion, for the lift and drag force, the approximator F has the following form.

R
F=Wyg (w-E’ + b) + by )

where W is the hidden weight values matrix, a is a vector holding the input values, b is the
hidden bias values column vector, Wj is the row vector encompassing output weight values

and by is the output bias value. Finally, §> is a column vector with the same dimension as

—
vector (W:{ +b ) ; E is holding the values the activation function assumes when applied

5
to each scalar component of vector W-a+b ) . In our case, the activation function is the

tangent sigmoid function (tanh) defined as follows.

eX—e X 1—e % 2

glx) =tanh(x) = o T e T 1iem (10)

To avoid overtraining, for each experimental run, 40% of the data points in the recorded
time history were chosen at random to be utilized as training data for calibrating the weights
and biases of the net. The maximum number of epochs allowed for training the nets was
1000. The training of the neural nets was completed at a specific epoch number when the
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best validation performance was achieved based on the mean squared error. The number of
epochs required for the lift force neural nets to meet the training objective of mean square
error less or equal to 0.015 was about 120; for the drag force neural nets, the number of
epochs to meet the training objective of mean square error less or equal to 0.00145 was
about 250, 40% of data points were used to train the ANN model. In this paper, we are using
the neural network approximators for lift and drag force from a single certain experiment
to investigate stabilization of the dynamics using decoupled linear feedback as explained
in the methodology below. The weight and bias values obtained after training the neural
nets toward lift force and drag force approximation for the typical case examined in the
remainder of this text are shown in the Appendix A.

The starting point is the equations of motion, which will be employed in virtual (i.e.,
simulated) experiments of the two degree of freedom system at hand. The cross-flow (lift)
direction is represented by the y axis, while the in-line (drag) direction is represented by
the x axis.

fy+mi+byy +kyy =Fy (11)
fo +mx + byx + kyx = Fy (12)

In the above, m is the structural mass of the oscillating body in the experiments and
equal to 0.268 kg, f, and f, are constant offset forces along the lift and drag direction,
respectively (since per the experiment the hydrodynamic forces were generally biased,
i.e., not zero mean); cross-flow and in-line direction structural damping coefficients are
represented by by, and by, respectively. The cross-flow and drag direction spring constants
are ky and ky, respectively. First, system parameters such as structural damping, stiffness
coefficients, and force offsets are found based on minimum least-squares optimization
method, shown in Table 1, in order to develop a dynamical simulation model to predict
position and velocity from the equations of motion above.

Table 1. Optimized system parameters.

k (N/m) b (kg/s) Offset Force, f (N)
186.01 9.25 0.007
X 188.84 —0.35 0.72

These system parameters are used in the dynamical simulation models developed
for the oscillating body’s position and velocity. Two distinct cases are investigated in
form of virtual (i.e., simulated on computer) experiments: full 2D case and 1D case with
motion along the x-axis suppressed. In order to check stability, the Lyapunov exponent is
calculated for each simulation. Given some initial variables, a9, we consider a neighboring
point, ag + 6Zy, with distance 5Z sufficiently small. We assume that 6Zy is going to be
the distance after N iterations. Therefore, |6Zy|~|6Zo|e* N°* and A is called (maximum)
Lyapunov exponent. A signature of chaos is a positive Lyapunov exponent [28,29]. The
maximum Lyapunov exponent can be estimated as follows by performing two runs starting
from random yet sufficiently close initial conditions and iterating the dynamical model
N times

1 67N

A= lim —In| A (13)

N—oo N Ot

We first describe the procedure for the 2D (i.e., both lift and drag directions considered)

simulated experiment since it is more general. The dynamics along the x-axis and y-axis

for each one of these simulated experiments are governed by the following equations
of motion.

. B —byy—kyy—
=t vy —kyy — fy (14)

m
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o Bobd—ka—f 5)
m

where f, and f, are the force offsets and m is the mass of the cylinder equal to 0.268 kg.
After acceleration is calculated for each time step, as shown in Figure 3, velocity and
position are generated using numerical integration twice with sufficiently small time step.

Random initial ‘ |
values ‘

'
[xo ¥o ¥o Yol

v

Acceleration

'
Velocity

)

Position

!

Start, t=0

—
-—

W g™

Evaluate S
velocity and 4~< End, t=end
position

Figure 3. Flow chart for feedback stabilization.

For each simulated experiment, two runs, Runl and Run2, are performed starting from
neighboring initial conditions. For Runl, the initial conditions for position and velocity
along the x- and y-axis are the measured values at a randomly selected point in time from
the time series collected during experiments. For Run2, the initial conditions are a random
perturbation of those in Run1; specifically

x(t=0) x(t=0) x(0)

(t=0) (t=0) _ a4 (0)
Z(t —0) — Z(t —0) = diag(e1, €2, €3,€4) Z(O) (16)
y(t = 0) Run2 y(t = 0) Runl y(O) Runl

In the above, factors €1, . . ., £4 on the main diagonal of the diagonal matrix on the right-
hand side are independent random variables following the Normal (Gaussian) Distribution
with zero mean and standard deviation equal to 5% (i.e., 1/20).

For the 1D simulated experiments only the lift direction was considered. Initial condi-
tions for the y-axis position and velocity were chosen randomly from the measurements,
same as in the 2D case described above, but for the x-axis they were set to zero. In order
to investigate stability, each simulated experiment consists of two runs with neighboring
initial conditions related as follows.

x(t=0) 0 x(0)
ZE; Z 8; — y(oo) = diag(el, &€2,€3, 84) Zggg (17)
y(t = 0) Run2 ]/ 0) Runl ]/(0) Runl

In the above, factors ¢y, ...,&4 on the main diagonal of the diagonal matrix on the
right-hand side are independent random variables following the Normal Distribution with
zero mean and standard deviation equal to 10%. Note that in the 1D (lift direction) case,
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x-axis position, x-axis velocity, and x-axis acceleration are identically zero in every run of
every simulated experiment so that motion along the x-axis is suppressed; this is the major
difference from the 2D case.

Eight simulated experiments were performed for each case (1D and 2D), and each
simulated experiment consisted of two runs with different yet neighboring random initial
conditions. As explained above, Runl corresponds to the reference initial conditions
(picked at random from the measured time series) and Run2 corresponds to the perturbed
random initial conditions. Simulations were performed without considering in-line (x-axis)
direction and with considering in-line direction. Therefore, we are going to show eight
simulated experiments with two runs each (totally 16 runs) corresponding to different yet
neighboring random initial conditions.

3. Results

The major purpose of this work is to demonstrate that the hydrodynamic forces operat-
ing on an oscillating cylinder in free stream as predicted by neural network approximators
can be compensated by applying a simple biased, linear mechanism, which in effect stabi-
lizes the motion of the cylinder. Forced vibration experiments were used to train neural
network approximators as shown earlier. In effect, the findings are significant because they
may be utilized to anticipate free vibration experiments using a measurement database
constructed from forced vibration experiments. For a given vector of kinematic conditions,
a neural network provides an approximation of force values. Currently, the approach
employs highly repeatable forces that are compatible with the ANN and simulation model.
However, once models are established, they can be used to generalize and develop pre-
diction methods. Finally, it is noted that multiple wake conditions may exist for specific
situations where a more complex depiction of the fluid force is required.

The results obtained when employing the measured data series from the forced VIV
experiment with settings % =01, % =0.1,V, =5, 8 = 0 are shown in Figure 4. As can
be seen, the ANN approximators (the weight and bias values of which are shown in the
Appendix A) closely follow the measured data even though training occurred with only a
40% fraction of the data series available presented to the ANN. Any minor discrepancies
are probably due to measurement noise, and the ANN predictions are more reliable to use
since this noise component has been filtered out. Notice that, as expected by theory, the
ANN for drag rarely, if ever, gives negative estimates, while several measured data points
were in the negative terrain.

For each data point, the tuned compensator force is also shown. As explained earlier,
the tuned compensator consists of a linear spring and linear damping as well as an offset
preload in the form of a constant, bias force. The aim of the minimum least-squares tuning
of the compensator is to stabilize the dynamics of the VIV system by canceling the bias and
linear component of the hydrodynamic forces.

Tables 2 and 3 show the random reference and perturbed initial conditions for each
simulated experiment. Table 2 shows the initial values for position and velocity in the 1D
case experiments (cross-flow direction only) and Table 3 shows the initial values for the 2D
case (both in-line and cross-flow directions considered). These initial conditions are chosen
randomly in order to start simulations for each experiment.

Table 2. Random initial conditions for position and velocity in 1D simulated experiments: Run;
shows reference initial conditions and Run, shows perturbed initial conditions.

Initial Experiment 1D-1 Experiment 1D-2 Experiment 1D-3 Experiment 1D-4

Values Run; Run, Run; Run, Rung Run, Runy Run,
x (m) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
y (m) 0.0019 0.0015 0.0039 0.0041 —0.0030 —0.0032 —0.0034 —0.0039

vx (m/s) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
vy (m/s)  —0.0205 —0.0211 —0.0032 —0.0041 0.0140 0.0150 —0.0070 —0.0080
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Table 3. Random conditions for position and velocity in 2D simulated experiments: Run; shows
reference initial conditions and Run; shows perturbed initial conditions.

Initial Experiment D-1 Experiment 2D-2 Experiment D-3 Experiment 2D-4
Values Runy Run, Runq Run, Run; Run, Run; Run,
X (m) —0.0031 —0.0029 —0.0033 —0.0034 —0.0031 —0.0029 0.0035 0.0035
y (m) —0.0030 —0.0031 —0.0030 —0.0030 0.0030 0.0029 —0.0031 —0.0032
vx (m/s) —0.0254 —0.0275 —0.0126 —0.0128 —0.0233 —0.0224 —0.0209 —0.0213
vy (m/s) 0.0132 0.0136 0.0141 0.0135 —0.0044 —0.0038 —0.0124 —0.0118
Lift force
2
Linear spring-damper
Measurement
Neural net il

£y, [N]

YWY

E,, [N]

71 | 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
data points

Figure 4. Lift force (top) and drag force (bottom) data series: Measured (black), ANN approximators
(red), and biased compensator with linear spring and damper (blue); forced VIV experiment settings:
M =014 =0LV,=50=0
D — YYD — VY- Vr— - .

Figures 5-8 show the position and velocity response for the 1D simulated experiments
where only the cross-flow direction is considered (x-axis motion suppressed). Each plot
shows the results for each simulation, which include Run1 and Run2. Runl is the simulation
that starts from the reference initial condition and Run? is the simulation that starts from
the perturbed initial conditions. As we see from the figures, the position and velocity time
series for the two runs of each simulated experiment not only remain close to each other
but actually converge and settle to a constant value. This shows that the compensator
mechanism achieves stabilization of the VIV system when the motion in the in-line direction
is suppressed.

Figures 9-12 show the phase plane portraits for both Runl and Run2 of the 1D
simulated experiments. Both runs in all four simulated experiments converge to the same
point (position approx. —0.017m and velocity 0). This is a strong indicator that this point
is an attractor for the system. These figures also show the maximum Lyapunov exponent
estimates. As can be seen from the plots, the result approaches a negative value, which, as
expected, means that the system is asymptotically stable.
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in Simulated Experiment 1D-1:% =0.1, % =01,V,=50=0".
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Figure 6. Position (top) and velocity (bottom) for cross-flow motion (in-line motion is forced to zero)
in Simulated Experiment 1D-2: % =0.1, % =0.1,V,=5,0=0".
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Figure 7. Position (top) and velocity (bottom) for cross-flow motion (in-line motion is forced to zero)
in Simulated Experiment 1D-3: % =0.1, % =0.1,V,=5,0=0".
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Figure 8. Position (top) and velocity (bottom) for cross-flow motion (in-line motion is forced to zero)
in Simulated Experiment 1D-4: % =0.1, % =01,V,=50=0".
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Figure 9. Phase plane portraits (top) and Lyapunov exponent (bottom) for cross-flow motion (in-line
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motion is forced to zero) in Simulated Experiment 1D-1: - = 0.1, 74 =0.1,V, =5, 0 = 0.
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Figure 10. Phase plane portraits (top) and Lyapunov exponent (bottom) for cross-flow motion (in-line

motion is forced to zero) in Simulated Experiment 1D-2: 7 = 0.1, % =01V, =5,0=0".
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Figure 11. Phase plane portraits (top) and Lyapunov exponent (bottom) for cross-flow motion (in-line

motion is forced to zero) in Simulated Experiment 1D-3:
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Figure 12. Phase plane portraits (top) and Lyapunov exponent (bottom) for cross-flow motion (in-line

A Ay

motion is forced to zero) in Simulated Experiment 1D-4: - = 0.1, 74 = 0.1,V, =5, 0 = 0.

Figures 13-16 show the position and velocity response for the 2D simulated experi-
ments where motions in cross-flow and in-line directions are coupled and free to occur. By
using decoupled (i.e., independent in each direction and degree of freedom) linear feedback
in the form of the compensator mechanism, we obtain (near) periodic sustained oscillations.
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This is a strong indication that in the coupled 2D case, linear, biased feedback makes the
system critically stable since the responses do not converge or diverge. Moreover, corre-
sponding maximum Lyapunov exponent estimates can be seen in Figures 17-20. In each
plot, the maximum Lyapunov exponent approaches zero from positive values. This further
illustrates that the system with the linear, biased compensator is critically stable.

In —line position
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<1073 Cross — flow posztzon

In —line wvelocity

time, [s]

Figure 13. Position (top) and velocity (bottom) for coupled cross-flow and in-line motion in Simulated
Experiment 2D-1: 4% = 0.1, 45 =0.1,V, =5, 6 = 0"
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Figure 14. Position and velocity for coupled cross-flow and in-line motion in Simulated Experiment
2D-2: 4 =01,4% =01,V,=50=0"
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Figure 15. Position and velocity for coupled cross-flow and in-line motion in Simulated Experiment
2D-3: = 01,4 =01,V,=5,60=0"
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Figure 16. Position and velocity for coupled cross-flow and in-line motion in Simulated Experiment
2d-4: 4 = 01,4 =01,V, =5 6=0"
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Figure 17. Lyapunov exponent for coupled cross-flow and in-line motion in Simulated Experiment
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Figure 18. Lyapunov exponent for coupled cross-flow and in-line motion in Simulated Experiment
2D-2: ¥ = 01,4 =01,V,=560=0".
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Figure 20. Lyapunov exponent for coupled cross-flow and in-line motion in Simulated Experiment
2D-4: =014 =01,V,=5,60=0"

4. Discussion

Development of the ANN force approximators was achieved by using a fraction of
the experimental data that are collected as force measurements from VIV experiments
with parametrically prescribed motion. It is worth noting that the VIV regime investigated
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comprises forces that are extremely repeatable across time. As a result, it allows for
straightforward development of either neural network approximations or biased linear
feedback application. On the other hand, in some circumstances, multiple wake patterns
have been observed for a single body motion, implying that a more complicated description
of the fluid force may be required.

The stabilizing compensation of a VIV system with dynamics driven by neural network
approximations of the hydrodynamic forces is achieved using decoupled linear feedback
augmented with offset. This contributes in the prediction of free vibration oscillations from
forced motion tests. As seen, the in-line and cross-flow spring stiffness are approximately
the same. In contrast, damping for the drag force is negative, while for the lift force it is
positive. This is in accordance with the fact that the offset value for the lift force is very close
to zero (as expected theoretically), while that for drag is significantly nonzero. Note that
negative damping means that the “damping” force becomes a velocity-dependent thrust
force, which, in concert with the bias, drags the cylinder downstream, as is intuitively
known. On the other hand, along the cross-flow axis, the cylinder motion resembles that of
a linear damped oscillator.

Finally, note that in both the 1D and 2D cases the nonlinear part of the forces (which is
the difference between the prediction of the ANN minus that of the tuned compensator)
does not cause instability to the cylinder motion. However, whereas in the 1D case an
attractor and asymptotic stability tends to arise, in the 2D case a (near) periodic pattern is
established, indicating critical stability. Further investigation to establish these observations
in a more general setting will be pursued as part of future work.

5. Conclusions

This work shows how a circular cylinder undergoing forced combined in-line and
cross-flow motion in a free stream may be stabilized using a method that combines ex-
perimental results and ANNSs. In particular, ANNs are first trained to provide reliable
estimates of the lift and drag force developing on the cylinder when undergoing forced
motion. The ANNSs are then used to build analytical dynamical models of 1D and 2D
motion in order to perform virtual experiments. Finally, using the 1D and 2D models
to simulate the dynamics of the cylinder undergoing VIV, a decoupled linear feedback
law augmented with a bias offset is designed to act as a stabilization compensator. We
finally performed virtual experiments for validation and verification. In total, 16 separate
simulations sufficiently demonstrated feedback stabilization for 1D (only cross-flow motion
allowed) and 2D (joint cross-flow and in-line motion allowed). As a result, the forced
motion experiments can be utilized to enable free vibration studies using this paradigm.
By further work and adaptation, the proposed methodology model can be used for future
control development as well as energy harvesting applications.
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Appendix A

The neural network approximators for the experimentally measured lift and drag force
on a cylinder undergoing forced VIV are of the form below with the activation function g
being hyperbolic tangent (tanh) as explained in the main text.

N —
F= w0-§<W~E’+ b) + b

In the case examined in the main text, the weight and bias values of the neural
approximator for the lift force (cross-flow direction, y-axis) are given in Table A1 below.

Table Al. Neural net approximator for Lift force—Weight and bias values.

—40835  —20.00 —14.58 11.85
263.15 17477  —121.83 58.67
—41543  —11.93 —14.41 15.41
W= 59.09 225.15 —52.05 151.70
601.33 —29.76 —420 —28.36
—206.66  —355.86  —10.24 73.79
—48388 32753  —17.44 15.33
Wo = —2.63 0.65 2.93 0.57 —0.54 —0.70 —0.61
BT = 131 —6.63 1.73 0.14 0.84 0.59 —3.44
by = —0.51

This neural network has one output, three layers, and four inputs. The input layer has
four linear nodes that propagate the inputs to the hidden layer nodes. The hidden layer
has seven nonlinear nodes with four weights and a bias each applied to the four inputs.
Finally, the outputs of the seven hidden layer nodes are forming a weighed sum with an

output bias superimposed to produce the estimate of the lift force.
In the case examined in the main text, the weight and bias values of the neural
approximator for the drag force (in-line direction, y-axis) are given in Table A2 below.

Table A2. Weights and biases for drag force.

—689.54 —27.06 —10.79 —4.42

108452 —349.18 111.62  103.74

—99847 31231 —21.76 149.14

—41445 10555 14144  11.39

907.02 131.82 2028  —144.25
W= 233112 —1081.89 —12.68 —241.50

113492 53928 12141  51.80

397.76  —1282.72 —61.90 —106.97

609.99 89126 —161.93 —15.21

302009 58458 12647 —48.11

—590.76 22195 —29.37 105.45
Wo= —071 —040 —468 —034 —472 —022 031 029 -033 033 024
pT= 117 —181 564  —322 —556 —332 —3.66 —450 546 9.16 —3.11
bp=  1.04

The neural net for drag force has one output, three layers, and four inputs. The input

layer has four linear nodes that propagate the inputs to the hidden layer nodes. The hidden
layer has 11 nonlinear nodes with four weights and a bias each applied to the four inputs.
Finally, the outputs of the 11 hidden layer nodes are forming a weighed sum with an output
bias superimposed to produce the estimate of drag.
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