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Abstract

In this paper, we introduce a numerical method for approximating the dispersive

Serre–Green–Naghdi equations with topography using continuous finite elements. The

method is an extension of the hyperbolic relaxation technique introduced in Guermond

et al. (J Comput Phys 450:110809, 2022). It is explicit, second-order accurate in space,

third-order accurate in time, and is invariant-domain preserving. It is also well bal-

anced and parameter free. Special attention is given to the convex limiting technique

when physical source terms are added in the equations. The method is verified with

academic benchmarks and validated by comparison with laboratory experimental data.

Keywords Shallow water · Serre · Serre–Green–Naghdi · Well-balanced

approximation · Invariant domain · Second-order accuracy · Finite-element method ·
Positivity-preserving · Entropy viscosity · Convex limiting
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1 Introduction

The objective of this paper is to present an approximation technique for the dispersive

Serre–Green–Naghdi equations (also known as just the Serre equations, Green–Naghdi

equations or fully non-linear Boussinesq equations; see [13, 14, 30, 38, 39]) with topog-

raphy using continuous finite elements and explicit time stepping. In addition to the
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topography source terms, we consider external physical source terms in the equations

relevant for applications in coastal hydrodynamics. The idea is to construct a method

that is at least second-order accurate in space, third order accurate in time, well bal-

anced and invariant-domain preserving (i.e., robust with respect to dry states). The

starting point of this present paper is the hyperbolic relaxation technique introduced in

[12] and further expanded in [23] for solving the dispersive Serre–Green–Naghdi equa-

tions with topography effects. The approach reformulates the Serre–Green–Naghdi

equations as a first-order hyperbolic system which allows for explicit time stepping.

The hyperbolic relaxed model is shown to converge to the original Serre–Green–

Naghdi model with respect to a small relaxation parameter. The goal of this paper is to

augment this hyperbolic relaxation technique with a finite-element approximation that

is second-order accurate in space, invariant-domain preserving, and well balanced. We

build on the work seen in [21] where a similar approximation technique is shown for a

partial Serre model with incomplete topography effects. A major departure from [21]

that we consider here is the construction of the numerical artificial viscosity. The way

the artificial viscosity is defined in [21] makes the accuracy of the method limited to

second-order at best with a loss of accuracy at extrema in the water height: it is second

order on the water height in the L1-norm but only first order in the L∞-norm when

approximating smooth solutions supported by the model such as a solitary waves and

periodic waves. The goal of the present work is to go beyond the method described in

[21] and include the full topography effects considered in [23]. More specifically, we

make the proposed method higher order in space by adapting the commutator-based

entropy-viscosity methodology introduced in [19]. In addition, the high-order method

is made invariant-domain preserving (i.e., positivity-preserving) via a convex limiting

process as seen [15, 20]. One question we address in this paper is how to handle source

terms in the limiting process.

The paper is organized as follows. In Sect. 2, we introduce the Serre equations

and the hyperbolic relaxation model as formulated in [23]. In this section, we discuss

the properties of the hyperbolic system along with the mathematical treatment of the

external source terms. The finite-element setting is introduced in Sect. 3. Then, in

Sect. 4, we describe the low-order space/time approximation of the hyperbolic Serre

model (2.3) which is an extension of the scheme introduced in [21] along with the

numerical treatment of the external source terms. The key results regarding positivity-

preserving and well-balanced properties of the low-order scheme are summarized in

Proposition 4.4. In Sect. 5, we introduce a provisional higher order method using the

entropy-viscosity technology that is possibly invariant-domain preserving violating.

Then, in Sect. 6, we introduce the convex limiting technique that is used to make

the provisional high-order method positivity-preserving with an emphasis on how to

handle the source terms. The key results which show that the final limited update is

invariant-domain preserving and well balanced are summarized in Theorem 6.6 and

Proposition 6.8. The implementation details of the numerical method are discussed

in Sect. 7.1. To verify reproducibility, the method is implemented with three different

codes. The first code does not use any particular software and is written in Fortran

95/2003. The second code uses the Proteus toolkit (see [27]). Both codes use con-

tinuous P1 Lagrange elements. The third code, called Ryujin, is a high-performance

finite-element solver based on the deal.II library and uses continuous Q1 elements
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(see, e.g., [1, 33]). In Sect. 7.2, we verify the convergence rate of the numerical method

using analytical solutions of the original Serre model (2.1). In Sect. 7.3, we verify that

the method is numerically well balanced up to machine precision with a series of

synthetic tests involving topography. Then, in Sect. 7.4, we consider an academic

benchmark involving a friction source term and compare the results of the hyperbolic

Serre model to the typical Saint-Venant shallow water equations. Finally, in Sect. 7.5,

we validate the numerical results with data from several laboratory experiments.

2 Preliminaries

In this section, we recall the Serre equations with topography effects and the hyperbolic

relaxation model introduced in [12, 23]. We also recall important properties of the

hyperbolic system.

2.1 The Dispersive Serre–Green–Naghdi Model with Topography

Let D be a polygonal domain in Rd , d ∈ {1, 2}, occupied by a body of water evolving

in time under the action of gravity. Let u = (h, q)T be the dependent variable, where h

is the water height and q the momentum vector (also known as the flow discharge). The

Serre model as first introduced in [39], and extended in [13, 38] to include topography

effects, can be written as follows:

∂th + ∇·(hv) = 0, (2.1a)

∂t q + ∇·(v⊗q + p(u)Id) = −r(u)∇z. (2.1b)

Here, the given topography map (also known as the bathymetry) is represented by

z(x) and the pressure p(u) and source r(u) are defined by

p(u) := 1
2

gh2 + h
2
(

1
3
ḧ + 1

2
k̇

)
, ḣ := ∂th + v·∇h, ḧ := ∂t ḣ + v·∇ḣ, (2.2a)

r(u) = gh + h

(
1
2
ḧ + k̇

)
, k̇ := ∂t (v·∇z) + v·∇(v·∇z). (2.2b)

Here, v is the velocity vector field and is defined such that q := hv. For brevity, we

interchange the Serre–Green–Naghdi convention with just the Serre model.

Remark 2.1 (Saint-Venant shallow water equations) The Saint-Venant shallow water

equations can be recovered from (2.1) to (2.2) by removing the dispersive effects

from the definition of the pressure and from the topography source term; that is, when

p(u) = 1
2

gh2 and r(u) = gh. ⊓⊔

Remark 2.2 (Admissible set) The Serre model admits the important physical property

that the water height h stays positive for t ≥ 0. We define the set of admissible states

for the Serre model by: A = {u := (h, q)T ∈ Rd+1 | h > 0}. Numerical methods

that preserve such admissible sets are known to be positivity-preserving and can be

classified as a subset of invariant-domain preserving schemes (see for example [17]).⊓⊔
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Remark 2.3 (Lake-at-rest property) When the fluid is at rest, i.e., when there is no flow

discharge (q ≡ 0), the Serre equations (2.1) and (2.2) reduce to the following partial

differential equation: gh∇(h + z) = 0. This is the well-known lake-at-rest steady-

state problem. Preserving solutions to this partial differential equation is essential for

constructing numerical methods that are well balanced. ⊓⊔

It is well known that the non-hydrostatic pressure (2.2a) leads to a dispersive time

step restriction when discretizing the equations in space in time. More specifically, any

approximation technique that is explicit in time would require the time step τ to behave

like O(h3)V −1L−2, where h is the mesh size, V is a character wave speed scale and

L a characteristic length scale. There are two popular methodologies in the literature

for addressing this setback. The first method is based on splitting techniques (such as

Strang’s operator splitting) that combine both explicit and implicit time stepping (see

[6, 10, 37]). The second method consists of reinterpreting the Serre equations as a

constrained first-order system and then relaxing the constraints to obtain a hyperbolic

system (see [4, 11, 12]). For the rest of the paper, we consider the hyperbolic relaxed

system of the Serre model derived in [23].

2.2 The Hyperbolic RelaxationModel

Denoting u := (h, q, q1, q2, q3)
T as the new conserved variable, we consider the

hyperbolic relaxation of the Serre equations with topography effects introduced in

[23]:

∂th + ∇·(vh) = 0, (2.3a)

∂t q + ∇·(v ⊗ q) + ∇ p(u) = −r(u)∇z, (2.3b)

∂t q1 + ∇·(vq1) = q2 − 3
2

q·∇z, (2.3c)

∂t q2 + ∇·(vq2) = −s(u), (2.3d)

∂t q3 + ∇·(vq3) = s̃(u), (2.3e)

p(u) := 1
2

gh2 + p̃(u), p̃(u) := − 1
3

λg
ǫ
h

2
(
ηŴ′( η

h
) − 2hŴ(

η
h
)
)
, (2.3f)

r(u) := gh − 1
2

s(u) + 1
4

s̃(u), (2.3g)

s(u) := λg h
2

ǫ
Ŵ′( η

h
), s̃(u) := λgh0

h
ǫ
�(

v·∇z−β√
gh0

). (2.3h)

for a.e. (x ∈ D), t ∈ R+

h(x, 0) = h0(x), q(x, 0) = q0(x), q1(x, 0) = h0(x)2, (2.4a)

q3(x, 0) = q0(x)·∇z, q2(x, 0) = −h
2
0(x)∇·v0(x) + 3

2
q3(x, 0). (2.4b)

The dependent (or conserved) variables, are the water height h, the discharge q, and

the auxiliary variables q1, q2, q3. We recall that q1 is an ansatz for h2, q3 an ansatz

for q·∇z, and q2 an ansatz for hḣ + 3
2
q3 (or equivalently −h

2∇·v + 3
2
q3). Here, Id

is the d×d identity matrix, and the mapping z : D ∋ x 
→ z(x) ∈ R is the bottom
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Fig. 1 A representation of the physical accuracy of the model (2.3) compared to the Saint-Venant, Boussi-

nesq and Serre–Green–Naghdi model. Here ǫ is the relaxation parameter of the model

topography which we assume to be given. We adopt the same notation as in [23] and

introduce the following primitive quantities q1 := hη, q2 := hω, q3 := hβ where η

is thought of as ansatz for h, ω an ansatz for ḣ + 3
2
β and β an ansatz for v·∇z.

The quantity ǫ is a small length scale and is the relaxation parameter introduced

in [23]. It is shown in [23, Cor. (3.9)] that as ǫ → 0, the relaxed model (2.3) is

a consistent approximation of Serre–Green–Naghdi model. This result is rigorously

proved in [9] in the absence of topography; see Remark 1.6 therein. More precisely,

it is established in [9] that, under reasonable assumptions, the difference between the

solutions of the original system (2.1) and the perturbed system (2.3) goes to zero as

fast as the non-dimensional quantity 1

λ

ǫ
h0

. When the model is approximated in space

in Sect. 3.1, the relaxation parameter ǫ will be replaced by the local mesh-size so that

ǫ → 0 is analogous to the mesh-size decreasing. The symbol λ in (2.3f)–(2.3h) is a

non-dimensional number of order one and is set to λ = 1 for the rest of the paper. The

function Ŵ ∈ C2(R; [0,∞)) is a smooth non-negative function with the constraints

Ŵ(1) = 0 and Ŵ′(1) = 0. Here, � ∈ C0(R; R) is a function such that ξ�(ξ) ≥ 0 for

all ξ ∈ R. In the applications reported at the end of the paper, we take �(ξ) = ξ . In

Fig. 1, we show a comparison of the physical accuracy of the relaxed model (2.3) with

other common models. We now recall results for the system (2.3) established in [23]

which will be used in Sect. 5.2 (this result is also established in [9, Sect. 2.3]).

Proposition 2.4 (Hyperbolicity) Let k(u) be the conservative flux of the system (2.3).

For any unit vector n ∈ Rd , the d + 4 eigenvalues of the Jacobian matrix of the flux

k(u)n are µk = v·n, k ∈ {2:d + 3} and

µ1 = v·n −
√

gh + ∂h p̃(h, η), µd+4 = v·n +
√

gh + ∂h p̃(h, η). (2.5)

The system (2.3) is hyperbolic iff the following holds for all η ∈ R and all h ≥ 0:

gh

(
1 +

1

3

λ

ǫ
η

(
x3∂xx (x−2Ŵ(x))

)
|x=ηh−1

)
≥ 0. (2.6)

Lemma 2.5 (Energy results) Let u be a smooth solution to (2.3). Then, the following

holds true: ∂t E(u) + ∇·(F(u)) = 1
4

s̃(u)(β − v·∇z) ≤ 0, with

E(u) := 1
2

gh2 + gzh + 1
2
hv

2 + 1
6
hω2 + 1

8
hβ2 + λg

3ǫ
h

3Ŵ(
η
h
), (2.7a)

F(u) := v(E(u) + p(u)). (2.7b)
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If the topography is flat, the following holds true: ∂t Eflat + ∇·(Fflat) = 0, with

Eflat(u) := 1
2

gh2 + 1
2
hv

2 + 1
6
hω2 + λg

3ǫ
h

3Ŵ(
η
h
), (2.8a)

Fflat(u) := v(Eflat(u) + p(u)). (2.8b)

Remark 2.6 (Definition of Ŵ(x) function) For the rest of the paper, we take the function

Ŵ(x) to be

Ŵ(x) :=
{

3(1 − x)2 if x ≤ 1,

(1 + 2x)(1 − x)2 if 1 ≤ x .
(2.9)

⊓⊔

Remark 2.7 (Saint-Venant from (2.3)) Note that when λ = 0, p̃(u) = 0 in (2.3f). This

decouples the mass and momentum equations in (2.3) from the evolution equations

for q1, q2, q3. This yields the classical Saint-Venant model. ⊓⊔

2.3 Physical Sources

In this section, we describe the mathematical formulation of the external physical

sources that will be considered in this paper. For notation purposes, consider the

condensed form of the system (2.3):

∂t u + ∇·f(u) = R(u,∇z) + S(u).

Here, R(u,∇z) :=
(
0,−r(u)∇z, q2 − 3

2
q·∇z,−s, s̃

)T
is henceforth referred to as the

PDE source. The quantity S(u) represents the accumulation of the external physical

sources described below. This term is henceforth referred to as the external source.

2.3.1 Gauckler–Manning Friction

We account for loss of discharge due to friction effects by adopting the Gauckler–

Manning’s friction law. The friction source is defined as follows:

SF(u) :=
(

0,−gn2
h

−γ q‖v‖ℓ2 , 0, 0, 0
)T

. (2.10)

The parameter n is the Gauckler–Manning’s roughness coefficient and has units

( m
γ−2
2 s). We take γ = 4

3
in the computations reported below in Sect. 7.

2.3.2 Wave Generation and Absorption

In applications that involve the propagation of periodic waves, a common technique

in the literature is to introduce relaxation zones in a numerical wave tank to smoothly
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generate and absorb waves (see: [32, 43] and references therein). These generation

and absorption zones are introduced as source terms in the equations.

For simplicity, let us assume we have a rectangular computational domain D.

Assume that we want to generate uni-directional waves perpendicular to the inflow

boundary so that wave profiles only depend on the x-direction (by convention x is the

first Cartesian coordinate of the position vector x). Let uwave(x, t) denote the theo-

retical wave profiles for each conserved variable. Denoting by hwave and q1,wave the

h and q1 components of uwave, we assume that hwave(x, t) ≥ 0 and q1,wave(x, t) ≥ 0

for all x ∈ D and all t > 0. To generate periodic waves through a relaxation zone, we

introduce the following source:

SG(u) := −
√

gH0

ǫ
(u − uwave(x, t))G( x−xmin

Lgen
), (2.11)

where H0 is the still water depth and G(ξ) is a non-dimensional relaxation function

defined as follows:

G(ξ) :=
{

exp
(
−| log(α)|ξ2

)
−α

1−α
if ξ < 1,

0 otherwise.

Here, Lgen is the length of the generation zone. In this paper, we take α := 0.005.

We follow a similar methodology as above to absorb waves in a relaxation zone at

the outflow boundary. The absorption zone is enforced via the following source term:

SA(u) :=
(

0,−
√

gH0

ǫ
G( xmax−x

Labs
)q, 0,−

√
gH0

ǫ
G( xmax−x

Labs
)q2, 0

)T

. (2.12)

Note that now, instead of enforcing a theoretical wave profile, we are enforcing the

zero value on q and q2 to dissipate the waves.

3 Finite-Element Setting

In this section, we introduce the continuous finite-element setting used for the approx-

imation of the hyperbolic Serre model (2.3). Note that the techniques shown here can

be also be adapted using discontinuous finite elements and finite volumes as discussed

in [20].

Let (Th)h>0 be a shape-regular family of matching meshes where h can be thought

of as the typical mesh-size. Given some mesh Th , we consider a scalar-valued finite-

element space P(Th) with global shape functions {ϕi }i∈V associated with the Lagrange

nodes {ai }i∈V . Note that dim(P(Th)) := card(V). The approximation in space of the

conserved variable u := (h, q, q1, q2, q3)
T is done in the space of Rd+4-valued finite

elements P(Th) := [P(Th)]d+4. The bottom topography z is approximated in P(Th).

For every i ∈ V , we call the stencil of the shape function, ϕi , the index set

I(i) := { j ∈ V | supp(ϕi ) ∩ supp(ϕ j ) �= ∅}.
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We also define I∗(i) := I(i)\{i}. The following mesh-dependent quantities play an

important role for the space and time approximation:

mi j :=
∫

D

ϕi (x)ϕ j (x) dx, mi :=
∫

D

ϕi (x) dx, (3.1a)

ci j :=
∫

D

ϕi∇ϕ j dx, ni j :=
ci j

‖ci j‖ℓ2

, (3.1b)

where i ∈ V and j ∈ I(i). Here, mi j are the entries of the consistent mass matrix

and mi the entries of the lumped mass matrix. By the partition of unity property

(
∑

i∈V ϕi = 1), we have that mi =
∑

j∈I(i) mi j . The following three properties are

essential to establish conservation: (1)
∑

j∈V ci j = 0 (partition of unity property); (2)

ci j = −c j i if either ϕi or ϕ j is zero on ∂ D (integration by parts); (3)
∑

i∈V ci j = 0

if ϕ j is zero on ∂ D (partition of unity property).

3.1 Finite-Element Representations

The finite-element approximation of the conserved variable at time t is denoted

uh(t) := (hh, qh, q1,h, q2,h, q3,h)T and represented as follows uh(t) =
∑

i∈V Ui (t)ϕi

in P(Th), where

Ui (t) := (Hi (t),Qi (t),Q1,i (t),Q2,i (t),Q3,i (t))
T.

Here, hh :=
∑

i∈V Hiϕi is the approximation of the water height, qh :=∑
i∈V Qiϕi is approximation of the discharge, and q1,h :=

∑
i∈V Q1,iϕi , q2,h :=∑

i∈V Q2,iϕi , q3,h :=
∑

i∈V Q3,iϕi are the approximations of the three auxiliary vari-

ables. We denote by zh :=
∑

i∈V Ziϕi ∈ P(Th) the approximate bottom topography.

Let H0,max be some reference scale for the water height. For instance we can take

H0,max := ess supx∈D h0(x), where h0 is the initial water height. The approximate

velocity vh and the approximate auxiliary quantities ηh, ωh, βh are defined by regu-

larization as follows for all i ∈ V:

Vi :=
Qi

Hδ
i

, Ni :=
Q1,i

Hδ
i

, Wi :=
Q2,i

Hδ
i

, Bi :=
Q3,i

Hδ
i

, (3.2)

with

H
δ
i :=

(
2Hi

H2
i + max(Hi , δH0,max)2

)−1

(3.3)

where δ is a small dimensionless parameter. We take δ = 10−5 in the simulations

reported at the end of the paper. We note that it is possible to take δ to be smaller,

but in our experience this requires the CFL number to be smaller. Notice that the

regularization is active only when dry state occurs, for example: Vi := 1
Hi
Qi if Hi ≥
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δH0,max. The reader is referred to [29, Eq. (2.17)], [8, Eq. (3.10)], and [3, 19, §5.1],

where this technique is also adopted.

The relaxation parameter ǫ is chosen to be proportional to the local mesh size.

Recalling that mi :=
∫

D
ϕi dx is proportional to the volume of the support of the

shape function ϕi , we set ǫh :=
∑

i∈V Eiϕi with Ei := m
1
d

i (recall that d ∈ {1, 2} is

the space dimension).

4 The Low-Order Method

We now describe the low-order approximation of the hyperbolic Serre model (2.3)

using the finite-element setting shown above. The method is formally first-order accu-

rate in space and is presented with forward Euler time stepping. Higher order accuracy

in time is achieved using any explicit strong stability preserving Runge–Kutta method.

4.1 Numerical Flux, PDE Source, Star States

Let u0
h :=

∑
i∈V U0

i ϕi ∈ P(Th) be some reasonable approximation of the initial data

u0 (see (2.4)) at time t0. Let tn , n ∈ N, be the current time, and let un
h :=

∑
i∈V Un

i ϕi ∈
P(Th) be the current admissible approximation of u.

For all i ∈ V and all j ∈ I(i), we define the numerical flux as follows:

Fn
i j := Un

j (V
n
j ·ci j ) +

(
0,

(̃
P(Un

j ) + gHn
i (Hn

j + Z j )
)
ci j , 0, 0, 0

)T
, (4.1a)

P̃(U) := −
λg

3E
×

{
6H(Q1 − H2), if Q1 ≤ H2

2 (Q1−H2)

Hδ (N2 + Q1 + H2), if H2 < Q1.
(4.1b)

Note that the hydrostatic pressure and the Saint-Venant topography source term are

discretized as: ∇ 1
2

gh2 + gh∇z = gh∇(h + z) to ensure well balancing.

To approximate the PDE source term R(u,∇z) in (2.3), we introduce the following

quantities:

R1(U,∇Z) := Q2 − 3
2
Q · ∇Z , (4.2a)

R2(U) :=
λg

E
×

{
6(Q1 − H2), if Q1 ≤ H2

6N (Q1−H2)

Hδ , if H2 < Q1,
(4.2b)

R3(U,∇Z) :=
λ

E

√
gH0,max(Q · ∇Z − Q3). (4.2c)

For all i ∈ V and all j ∈ I(i), let (∇Z)i :=
∑

j∈I(i) Z j ci j denote the approximate

gradient of the topography map. Then, the discrete PDE source is defined by

Rn
i :=

(
0,

(
1
2
R2(U

n
i ) − 1

4
R3(U

n
i , 1

mi
(∇Z)i )

)
1

mi
(∇Z)i ,
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R1(U
n
i , 1

mi
(∇Z)i ),−R2(U

n
i ), R3(U

n
i , 1

mi
(∇Z)i )

)T

. (4.3)

We define the following hydrostatic reconstructed star states U
∗, j,n
i and U

∗,i,n
j for

all i ∈ V and all j ∈ I(i):

U
∗, j,n
i :=

H
∗, j
i

Hδ
i

(
Hi ,Qi ,

H
∗, j
i

Hδ
i

Q1,i ,Q2,i ,Q3,i

)T

, (4.4a)

H
∗, j
i := max(0,Hi + Zi − max(Zi ,Z j )), (4.4b)

which are essential for well balancing (see [2, 21]). The star states U
∗, j,n

i and U
∗,i,n
j

are used in the definition of the artificial viscosity terms (see (4.11)).

4.2 External Source

We discretize the Gauckler–Manning friction source term (2.10) by setting

SF(Un
i ) :=

−2gn2Qn
i ‖Vi‖ℓ2

(Hn
i )γ + max((Hn

i )γ , 2gn2τn‖Vi‖ℓ2)
. (4.5)

Note that we introduced a regularization for the term h
−γ to avoid division by 0. This

expression has been shown in [19] to be stable under the usual hyperbolic CFL time

step restriction, i.e., no iterations or semi-implicit time stepping is needed to advance

in time with this definition.

We discretize the wave generation source (2.11) as follows:

SG(Un
i ) := −

√
gH0

Ei

(Un
i − uwave(ai , tn))G(

ai −xmin

Lgen
), (4.6)

The absorption zone source term (2.12) is approximated similarly.

4.3 GraphViscosity and Time Step

We now define the low-order graph-viscosity coefficients that make the method posi-

tive. Just as in [21], we avoid solving the Riemann problem associated with the system

(2.3) (since it is quite complicated) and set

µ
L,n
i j := max(|V n

i ·ni j |‖ci j‖ℓ2 , |V n
j ·n j i |‖c j i‖ℓ2), (4.7)

d
L,n
i j := max(µ

L,n
i j , max(λn

i j‖ci j‖ℓ2 , λn
ji‖c j i‖ℓ2)), (4.8)

where

λn
i j = max(|V n

i ·ni j − (gHn
i + θn

i )
1
2 |, |V n

j ·ni j + (gHn
j + θn

j )
1
2 |) (4.9)
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with θn
i := ∂h p̃(Hn

i ,Nn
i )

(
Ei

max(Ei ,H
n
i )

)2
. Note that by definition: d

L,n
i j = d

L,n
ji , µ

L,n
i j =

µ
L,n
ji , d

L,n
i j ≥ µ

L,n
i j ≥ 0, i �= j .

We define the time step in the following way:

τn := CFL × max
i∈V

(
mi∑

j∈I∗(i) d
L,n
i j

)
, (4.10)

where CFL is a user-defined positive constant.

4.4 Low-Order Update

Let us set tn+1 := tn + τn . Let un+1
h :=

∑
i∈V Un+1

i ϕi be the update of u at tn+1.

Let Sn
i denote the total contribution of the external sources at time tn , i.e., Sn

i :=
SF(Un

i ) + χ SG(Un
i ) + SA(Un

i ). Here, χ := 1 if the wave generation source term

is active and χ := 0 otherwise. Then, the low-order update Un+1
i for all i ∈ V is

computed as follows:

mi

τn

(U
L,n+1
i − Un

i ) = mi (Rn
i + Sn

i ) +
∑

j∈I(i)

−Fn
i j

+
∑

j∈I∗(i)

(
(d

L,n
i j − µ

L,n
i j )

(
U

∗,i,n
j − U

∗, j,n
i

)
+ µ

L,n
i j

(
Un

j − Un
i

))
. (4.11)

4.5 Well Balancing, Positivity, Conservation

We now show that the algorithm (4.11) is well balanced, positivity-preserving and

conservative (up to the contribution of sources). We begin by recalling the precise

definitions of the respective properties.

Definition 4.1 (Exact rest) A numerical state (hh, qh, q1,h, q2,h, q3,h)T is said to be

exactly at rest if qh = 0, q2,h = 0, q3,h = 0, Q1,i = H2
i , for all i ∈ V , and if

the approximate water height hh and the approximate bathymetry map zh satisfy

the following alternative for all i ∈ V: for all j ∈ I(i), either H j = Hi = 0 or

H j + Z j = Hi + Zi .

Definition 4.2 (Exactly well balanced) A mapping T : P(Th) → P(Th) is said to be

an exactly well-balanced scheme if T (uh) = uh when uh is an exact rest state.

Definition 4.3 (Positivity-preserving) Let us denote hh(uh) =
∑

i∈V Hi (uh)ϕi the

water height of uh for any uh ∈ P(Th). A mapping T : P(Th) → P(Th) is said to be

a positivity-preserving scheme ifHi (uh) ≥ 0, for all i ∈ V , implies thatHi (T (uh)) ≥ 0

for all i ∈ V .

Proposition 4.4 Let T : uh
h 
→ T (un

h) := un+1
h be the scheme defined by (4.11).

(i) If Sn
i = SF(Un

i ) is just the contribution of the Gauckler–Manning friction source,

the scheme is exactly well balanced;
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(ii) The scheme is positivity-preserving if the time step satisfies the following restriction

τn(χ
√

gH0

Ei
+ 1

mi

∑
j∈I∗(i) dn

i j ) ≤ 1.

Proof (i) Since un
h is exactly at rest, µ

L,n
i j = 0 for all i ∈ V and j ∈ I(i). We

also have that U
∗, j,n

i = U
∗,i,n
j as a consequence of the definition (4.4) (note that

Q
∗, j
1,i :=

(
H

∗, j,n
i

Hδ
i

)2

Q1,i needs to be defined as such for this to hold). Then, since

qh = 0 and q2,h = 0, we have that Sn
i = 0, R1(Ui , (∇Z)i ) = R3(Ui , (∇Z)i ) = 0 for

all i ∈ V . Note that R2(Ui ) = 0 since Qn
1,i = (Hn

i )2. Thus, we have that Rn
i = 0 for

all i ∈ V . The rest of the proof is exactly the same as [21, Prop. 4.4].

(ii) Referring to (2.11), we recall that Sn
h

= −
√

gH0

Ei
(Hn

i −hwave(ai , tn))G(
ai −xmin

Lgen
)

is the source in the mass balance equation, where hwave(x, t) ≥ 0 for all t and all

x ∈ D, and G ∈ [0, 1]. Fixing i ∈ V and assuming Hn
j ≥ 0 for all j ∈ I(i), the water

height update in (4.11) can be arranged as follows:

H
L,n+1
i ≥ H

n
i − χ

τn

√
gH0

Ei

H
n
i −

1

mi

∑

j∈I∗(i)

(
µ

L,n
i j H

n
i + (d

L,n
i j − µ

L,n
i j )H

∗, j,n
i

)

+
1

mi

∑

j∈I∗(i)

(
(µ

L,n
i j − Vn

j ·ci j )H
n
j + (d

L,n
i j − µ

L,n
i j )H

∗,i,n
j

)

Since by definition d
L,n
i j −µ

L,n
i j ≥ 0, µ

L,n
i j ≥ 0,Hn

i ≥ H
∗, j,n
i ≥ 0,H

∗,i,n
j ≥ 0, we have

the following inequality

H
L,n+1
i ≥ H

n
i

(
1 − χ

τn

√
gH0

Ei

−
τn

mi

∑

j∈I∗(i)

d
L,n
i j

)
+

∑

j∈I∗(i)

(
(µ

L,n
i j − Vn

j ·ci j )H
n
j

)
.

The conclusion follows from the condition on τn and the definition (4.7). ⊓⊔

We now discuss the conservative properties of the scheme (4.11). Notice that when

the topography is flat and there is no contribution of external sources (i.e., Sn
i ≡ 0),

there is still a contribution of the PDE source Rn
i in the update (4.11). More specifically,

when the topography is flat we see that:

Rn
i =

(
0, 0, R1(U

n
i , 0),−R2(U

n
i ), R3(U

n
i , 0)

)
.

This fact motivates the following definition.

Definition 4.5 (Conservation with sources) A mapping T : P(Th) → P(Th) is said

to be a conservative approximation of the system (2.3) if

∑

i∈V

mi T (U) =
∑

i∈V

mi

(
U + τ Ri (U)

)
.
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Proposition 4.6 Let T : uh
h 
→ T (un

h) := un+1
h be the scheme defined by (4.11). Then,

if the topography map is flat (i.e., z(x) ≡ z0 ∈ R) and there is no contribution of

external forces (i.e., Sn
i ≡ 0), then T is conservative.

Proof Recalling that
∑

j∈V ci j = 0 by the partition of unity property, the low-order

update (4.11) can be written as follows:

mi

(
U

L,n+1
i − Un

i

)

τn

= mi Rn
i +

∑

j∈I(i)

Fi j , (4.12)

where

Fi j = Un
j (V

n
j ·ci j ) + Un

i (Vn
i ·ci j ) +

(
0,

(̃
P(Un

j ) + P̃(Un
i ) + gHn

i H
n
j

)
ci j , 0, 0, 0

)T

+
(
(d

L,n
i j − µ

L,n
i j )

(
U

∗,i,n
j − U

∗, j,n

i

)
+ µ

L,n
i j (Un

j − Un
i )

)
.

Since ci j = −ci j if ϕi or ϕ j are zero on ∂ D and by definition d
L,n
i j = d

L,n
ji ,µ

L,n
i j =

µ
L,n
ji , then Fi j = −F j i . Summing (4.12) over i ∈ V gives that the scheme (4.11) is

conservative up to the contribution of sources. ⊓⊔

4.6 Local Auxiliary States and Bounds

We now define auxiliary states and extract exact local bounds that will be useful

when limiting the yet to be defined high-order solution which might not be positivity-

preserving.

The key idea behind defining the exact local bounds is noticing that the low-order

update (4.11) can be rewritten as a convex combination of auxiliary states. This is

summarized in the following lemma.

Lemma 4.7 (Convex combination) Let W
L,n+1
i := U

L,n+1
i − τnR̃

n
i , with the modified

source given by

R̃n
i := Rn

i + Sn
i +

(
0,

∑

j∈I(i)

g
(
−H

n
i Z j + 1

2
(Hn

j − H
n
i )2

)
ci j , 0, 0, 0

)T

. (4.13)

Assume 1 − 2τn

mi

∑
j∈I∗(i) d

L,n
i j ≥ 0. (i) Then, the following convex combination holds

true:

W
L,n+1
i = U

n
i

(
1 −

τn

mi

∑

j∈I∗(i)

2d
L,n
i j

)
+

τn

mi

∑

j∈I∗(i)

2d
L,n
i j

(
U

n
i j + Ũ

n
i j

)
. (4.14)
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with the auxiliary states defined by

U
n
i j = −

ci j

2d
L,n
i j

·(f(Un
j ) − f(Un

i )) +
1

2
(Un

j + U
n
i ), (4.15a)

Ũ
n
i j =

d
L,n
i j − µ

L,n
i j

2d
L,n
i j

(U
∗,i,n
j − U

n
j − (U

∗, j,n
i − U

n
i )). (4.15b)

(ii) Furthermore, Hn
i j + H̃

n
i j ≥ 0 for all j ∈ I(i).

Notice that the quantity W
L,n+1
i is an update corresponding to solving the hyperbolic

system without sources. The “source removing” concept is used in Sect. 6 to perform

the convex limiting.

We now define the bounds that we use to limit the provisional higher order solution.

The strategy that we propose consists of enforcing bounds that are naturally satisfied

by the low-order update (4.14). More precisely, let us set

h
n,min
i := min

j∈I(i)
(Hn

i j + H̃n
i j ), h

n,max
i := max

j∈I(i)
(Hn

i j + H̃n
i j ), (4.16a)

q
n,min
1,i := min

j∈I(i)
(Qn

1,i j + Q̃n
1,i j ), q

n,max
1,i := max

j∈I(i)
(Qn

1,i j + Q̃n
1,i j ), (4.16b)

K
n,max
i := max

j∈I(i)
ψ(Un

i j + Ũn
i j ). (4.16c)

Here, the functional ψ(u) := 1
2

1
h(u)

‖q(u)‖2
ℓ2 is the kinetic energy. Notice that the

bounds are defined to be local in space and time.

Let us expand on the relationship between the bounds (4.16) and the update (4.14)

with an example. We denote the components of the low-order solutions without

sources, WL, as follows:

(H(WL),Q(WL),Q1(W
L),Q2(W

L),Q3(W
L))T.

We can extract the following inequality on the water height update H(W
L,n+1
i ) as a

direct consequence of the convex combination (4.14):

h
n,min
i ≤ H(W

L,n+1
i ) ≤ h

n,max
i ,

or equivalently:

min
j∈I(i)

(Hn
i j + H̃n

i j ) ≤ H
L,n+1
i − τn Sn

h
≤ max

j∈I(i)
(Hn

i j + H̃n
i j ).

More precise statements are made in Sect. 6.1.
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5 Provisional High-Order Method

We introduce in this section a provisional higher order method (second-order accurate

in space) that may violate the invariant-domain preserving property. The two key ideas

are as follows: (i) we reduce numerical dispersive errors induced by the lumped mass

matrix; (ii) we define higher order graph viscosities d
H,n
i j , µ

H,n
i j via the estimation of

an entropy residual/commutator.

5.1 Wave Generation

If active, the wave generation mechanism must be tempered in the high-order method

since this source can potentially create dry states if the amplitude of the wave is too

large. We formalize this by settinghmin
wave := minx∈D,t>0 hwave(x, t) and by introducing

the cutoff function χ ∈ C(R; [0, 1]) defined by χ(ξ) = 1 if ξ ≤ 1
2

, χ(ξ) := 4(ξ −
1)2(4ξ − 1) if 1

2
≤ ξ ≤ 1, and χ(ξ) = 0 otherwise. We then redefine the source term

Sn
i used in the low-order approximation (4.11) by setting

Sn
i := SF(Un

i ) + χ

(
h

i,max
i −h

i,min
i

h
min
wave

)
SG(Un

i ) + SA(Un
i ). (5.1)

We also use this definition for the high-order update (see (5.8)). For most realistic

applications, the amplitude of the incoming waves is of reasonable size and h
n,max
i −

h
n,min
i is a priori small compared to h

min
wave and the cutoff is therefore inactive. In

particular, it is never active in the simulations reported below. Notice though that the

cutoff is necessary for theoretical purposes (see Theorem 6.6).

5.2 Commutator-Based EntropyViscosity

We present the definition of the higher order artificial viscosity coefficients d
H,n
i j , µ

H,n
i j

following the method introduced in [19]. The key idea consists of measuring the

smoothness of an entropy by measuring how well the chain rule is satisfied by the

discretization described above.

Let (E(u), F(u)) be the pair defined in (2.7a). Recall that by definition this pair

satisfies the following relation:

∇·(F(u)) = (∇E(u))T∇·(f(u)), (5.2)

where f(u) is the flux for the hyperbolic Serre model (2.3). We want to estimate the

entropy production by inserting the approximate solution in (5.2). For all i ∈ V we

define the entropy commutator as follows:

Cn
i :=

∑

j∈I(i)

ci j ·
(

F(Un
j ) − (∇E(Un

i ))Tf(Un
j )

)
. (5.3)
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This quantity measures how well the finite-element approximation satisfies the chain

rule (5.2). Notice that when the approximate solution un
h is smooth, the quantity Cn

i is

as small as the truncation error provided by the finite-element setting. For piecewise

linear elements on unstructured meshes Cn
i scales like O(h) where h is the mesh-size.

We define the normalized entropy residual/commutator to be

Rn
i :=

∣∣Cn
i

∣∣
Dn

i

, (5.4a)

Dn
i :=

∣∣∣
∑

i∈I(i)

ci j ·F(Un
j )

∣∣∣ +
∣∣∣

∑

i∈I(i)

ci j ·((∇E(Un
i ))Tf(Un

j ))

∣∣∣, (5.4b)

where Dn
i is the rescaling factor. We then define the higher order graph viscosity (or

entropy viscosity) as follows:

d
H,n
i j = d

L,n
i j max(Rn

i , Rn
j ), d

H,n
ii := −

∑

j∈I∗(i)

d
H,n
i j (5.5)

µ
H,n
i j = µ

L,n
i j max(Rn

i , Rn
j ), µ

H,n
ii := −

∑

j∈I∗(i)

µ
H,n
i j . (5.6)

Notice that Rn
i ∈ [0, 1]. Denoting by diam(D) the diameter of D, it is argued in [15]

that Rn
i = O(h/diam(D)) when the solution is smooth. Thus, by making the high-

order graph viscosities proportional to the entropy production, (5.5) and (5.6), we have

d
H,n
i j ∼ d

L,n
i j when the entropy production is large, for instance in shock regions, and

d
H,n
i j ∼ O

(
h

diam(D)

)
d

L,n
i j in regions where the approximate solution is smooth.

Remark 5.1 (Alternative options for entropy pair) We note that the choice of entropy

pair for the above process is not unique. Actually, any entropy pair that satisfies a

chain rule relation like (5.2) suffices. For instance, we also use the entropy pair for the

Saint-Venant shallow water equations in some of the numerical illustrations reported

below. More precisely, letting uSV := (h, q)T, the following pair

ESV(u) :=
1

2
gh2 +

1

2
hv

2, (5.7a)

FSV(u) := v

(
ESV(u) +

1

2
gh2

)
, (5.7b)

satisfies the chain rule ∇·(FSV(uSV)) = (∇ESV(uSV))T∇·(fSV(uSV)) where

fSV(uSV) is Saint-Venant flux in (5.2). In Sect. 7.2, we show that the conver-

gence behavior of the numerical method with either entropy pair, (2.8) or (5.7), is

similar. ⊓⊔
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5.3 Consistent Mass Matrix

Numerical dispersion errors can be significantly reduced using the consistent mass

matrix for the discretization of the time derivative (at least for piecewise linear approx-

imation). For more details on this, we refer the reader to [16] and the references therein.

We now replace the lumped mass matrix in (4.11) with the consistent mass matrix

defined in (3.1) and the low-order graph viscosities in (4.11) with the entropy-viscosity

coefficients (5.5) and (5.6). Then, the provisional higher order update is given as

follows:

∑

j∈I(i)

mi j

Ũ
H,n+1
j − Un

j

τn

= mi (Rn
i + Sn

i ) +
∑

j∈I(i)

−Fn
i j

+
∑

j∈I∗(i)

(
(d

H,n
i j − µ

H,n
i j )

(
U

∗,i,n
j − U

∗, j,n
i

)
+ µ

H,n
i j

(
Un

j − Un
i

))
. (5.8)

Finding Ũ
H,n+1

in (5.8) requires the inversion of the consistent mass matrix at

every time step. Since this may be computationally costly, we follow the ideas of [16]

and [33, Sec. (3.4)], and approximate the inverse of the mass matrix with a Neumann

series. We do this as follows. We denote by S̃
n

i the right-hand side in (5.8) and rewrite

(5.8) as

∑

j∈I(i)

mi j

m j

m j

τn

(Ũ
H,n+1
j − Un

j ) = S̃
n

i . (5.9)

We then approximate the inverse (
mi j

m j
)−1 with the first-order approximation of its

Neumann series representation:

(
mi j

m j

)−1 =
(

δi j − (δi j −
mi j

m j

)

)−1

≈ δi j + (δi j −
mi j

m j

) = δi j + bi j .

Then, using that
∑

j∈I(i) b j i = 0, we infer the following new expression for the

provisional higher order update UH,n+1: mi

τn
(U

H,n+1
i −Un

i ) = S̃
n

i +
∑

j∈I(i)(bi j S̃
n

j −
b j i S̃

n

i ). Replacing the definition of S̃
n

i therein gives

mi

τn

(U
H,n+1
i − Un

i ) = mi (Rn
i + Sn

i ) +
∑

j∈I(i)

−Fn
i j

+
∑

j∈I∗(i)

(
bi j S̃

n

j − b j i S̃
n

i + (d
H,n
i j − µ

H,n
i j )

(
U

∗,i,n
j − U

∗, j,n
i

)
+ µ

H,n
i j

(
Un

j − Un
i

))
.

(5.10)
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5.4 Loss of Positivity

It is proved in [18, Theorm 3.2] that the presence of the consistent mass matrix in any

scheme that uses continuous finite elements based on artificial viscosity and explicit

time stepping violates the maximum principle for scalar conservation laws. A conse-

quence of this result is that the scheme (5.8) is non-positivity-preserving regardless

of the definition of the artificial viscosity coefficients. It is also observed numerically

in [19] that the use of the higher order entropy-viscosity coefficients (5.5) and (5.6)

in (4.11) can cause the scheme to be non-positivity-preserving as well. We correct the

loss of positivity in the following section.

6 Convex Limiting with Sources

In this section, we describe the convex limiting technique that is used to make the

higher order methods described above positivity-preserving. Building on the ideas

presented in [15, 19, 20], we give an emphasis on how to apply the convex limiting

methodology to a hyperbolic system with source terms since it not well documented

in the literature.

6.1 Quasiconcave Functionals and Bounds

We now give some definitions and results that will illustrate the notion of convex

limiting.

Definition 6.1 (Quasiconcavity) Given a convex set B ⊂ Rd+4, we say that a function

� : B → R is quasiconcave if every upper level set of � is convex; that is, the set

Lλ(�) := {u ∈ B | �(u) ≥ λ} is convex for any λ ∈ R.

Lemma 6.2 Let B := {u ∈ Rd+4 | h > 0} ⊂ Rd+4. Let � : B → R and assume that

the product h� is concave. Then, the function � is quasiconcave.

Proof This is a special case of the result in [20, Lem. 7.4]. ⊓⊔

Recall that the conserved variable for the system (2.3) is u := (h, q, q1, q2, q3)
T

where h is the water height, q the momentum, q1, q2, q3 the auxiliary variables

which are thought of ansatz to h
2, hḣ + 3

2
q3 and q·∇z, respectively. The func-

tional �1 : Rd+4 ∋ (h, q, q1, q2, q3)
T 
→ h ∈ R is linear, hence concave,

hence quasiconcave; this functional is also well defined over Rd+4. The functional

�2 : Rd+4 ∋ (h, q, q1, q2, q3)
T 
→ q1 ∈ R is also linear, hence quasiconcave. Let us

set

A := {u ∈ Rd+4 | h > 0}. (6.1)

Observe that A is convex. Then, another important example is the (negative) kinetic

energy �3 : A ∋ (h, q, q1, q2, q3)
T 
→ − 1

2h
‖q‖2

ℓ2 . Since the function h�3 :=
− 1

2
‖q‖2

ℓ2 is concave, using Lemma 6.2 we conclude the (negative) kinetic energy
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is quasiconcave. We are going to use the above functionals and bounds defined in

(4.16) to enforce positivity of the water height, positivity of the auxiliary variable q1,

and a local maximum principle on the kinetic energy.

The key idea behind the convex limiting technique is to correct (i.e., limit) the

high-order update so that it satisfies the same quasiconcave constraints as the low-

order solution. Letting L := {1:5} and A := {u ∈ Rd+4 | h > 0} ⊂ Rd+4, we are

going to work with the family of quasiconcave functionals {� i,n
l }l∈L, �

i,n
l : A → R

defined as follows:

�
i,n
1 (u) = h − h

n,min
i , �

i,n
2 (u) = h

n,max
i − h, (6.2a)

�
i,n
3 (u) = q1 − q

n,min
1,i , �

i,n
4 (u) = qmax

1,i − q1, (6.2b)

�
i,n
5 (u) = K

n,max
i −

1

2h
‖q‖2

ℓ2 . (6.2c)

The following result is essential for the rest of the convex limiting argumentation.

Lemma 6.3 Let n ≥ 0, i ∈ V, and assume that 2τn

mi

∑
j∈I∗(i) d

L,n
i j ≤ 1. Then, the low-

order updateW
L,n+1
i computed by (4.14) is in A and satisfies the following constraints

for all l ∈ L:

�
i,n
l (W

L,n+1
i ) ≥ 0. (6.3)

Proof Under the assumption 1 − 2τn

mi

∑
j∈I∗(i) d

L,n
i j ≥ 0, W

L,n+1
i is a convex com-

bination of the auxiliary states (4.15a) and (4.15b); thus, by Lemma 4.7, the update

W
L,n+1
i is in A. The constraints �

i,n
l (W

L,n+1
i ) ≥ 0 are a consequence of the convex

combination (4.14), the definitions of the bounds in (4.16), and quasiconcavity. ⊓⊔

The limiting is done sequentially: First we limit W
H,n+1
i with respect to �

i,n
1 and

construct a W
1,n+1
i so that �

i,n
1 (W

1,n+1
i ) ≥ 0. This guarantees positivity of the water

height and must be computed before limiting with respect to the other quantities

(�
i,n
l )l>1. This is explained in more detail below.

6.2 Limiting Process

We discuss in this section the proposed convex limiting methodology. The idea going

forward is that we apply the limiting process to the solution without sources Wn and

then “put back” the sources after enforcing the quasiconcave constraints.

LetWH,n+1 := UH,n+1−τn(Rn
i +Sn

i ) be the provisional high-order update without

sources. Our goal is to construct the final update Un+1
i so that Wn+1

i := Un+1
i −

τn(Rn
i + Sn

i ) satisfies all the constraints �
i,n
l (Wn+1

i ) ≥ 0, l ∈ L, defined in (6.2).

For this purpose, we also define the low-order update without sources, WL,n+1 :=
UL,n+1 − τn(Rn

i + Sn
i ). Proceeding as in the Flux-Corrected-Transport methodology,

we now compute the difference WH,n+1 − WL,n+1 by subtracting (4.11) from (5.10).
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This gives

mi (W
H,n+1
i − W

L,n+1
i ) =

∑

j∈I∗(i)

An
i j , (6.4)

with the Rd+4-valued coefficients An
i j defined by

An
i j := τn

[
bi j S̃

n

j − b j i S̃
n

i +
(
(d

H,n
i j − µ

H,n
i j ) − (d

L,n
i j − µ

L,n
i j )

)
(U

∗,i,n
j − U

∗, j,n
i )

+(µ
H,n
i j − µ

L,n
i j )(Un

j − Un
i )

]
. (6.5)

Notice that An
i j = −An

ji , which implies global mass conservation
∑

i∈V miW
H,n+1
i =

∑
i∈V miW

L,n+1
i (i.e.,

∑
i∈V miU

H,n+1
i =

∑
i∈V miU

L,n+1
i ); that is to say, the high-

order solution and low-order solution have the same mass whether the source term is

present or not.

Using (6.4), we introduce the final limited update as follows:

Wn+1
i =

∑

j∈I∗(i)

θ j

(
W

L,n+1
i + ℓi jP

n
i j

)
, with Pn

i j :=
1

miθ j

An
i j , (6.6)

where {θ j } j∈I∗(i) is any set of strictly positive coefficients adding up to 1. In the

computations reported below, we take θ j := 1
card(I(i))−1

. The parameter ℓi j ∈ [0, 1],
which we call the limiter, is defined to be symmetric ℓi j = ℓ j i to preserve the mass

conservation property mentioned above. Note that Wn+1
i = W

L,n+1
i if ℓi j = 0 (i.e.,

Un+1
i = U

L,n+1
i ) and Wn+1

i = W
H,n+1
i if ℓi j = 1. The key idea is to find a set of

limiters ℓi j ∈ [0, 1] as large as possible so that �
l,n
l (Wn+1

i ) ≥ 0 for all l ∈ L. Notice

that this optimization program is possible since ℓi j = 0 is in the feasible set owing

to Lemma 6.3. The following lemma proved in [15, Lem. 4.4] is paramount for the

convex limiting technique and sums up how to efficiently find the limiting parameters

ℓi j .

Lemma 6.4 Let A ⊂ Rd+4 and � ∈ C0(A; R) be such that {u ∈ A | �(u) ≥ 0}
is convex. Let i ∈ V and j ∈ I(i). Assume that W

L,n+1
i ∈ A, �(W

L,n+1
i ) ≥ 0, and

�(W
L,n+1
i + P

n
i j ) < 0 (otherwise there is nothing to limit), then

(i) There is a unique ℓi
j ∈ [0, 1] such that

�(W
L,n+1
i + ℓi

jP
n
i j ) = 0, (6.7)

�(W
L,n+1
i + ℓPn

i j ) ≥ 0 for all ℓ ∈ [0, ℓi
j ], and �(W

L,n+1
i + ℓPn

i j ) < 0 for all

ℓ ∈ (ℓi
j , 1].

(ii) Setting ℓi j = min(ℓi
j , ℓ

j
i ), we have �(W

L,n+1
i + ℓi jP

n
i j ) ≥ 0 and ℓi j = ℓ j i .
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(iii) Let Wn+1
i be defined by (6.6), then �(Wn+1

i ) ≥ 0.

6.3 Application to the System (2.3)

We now illustrate Lemma 6.4 with � := �
i,n
l , l ∈ L, defined in (6.2) and A := {u ∈

Rd+4 | h > 0}. The limiting is implemented by traversing L from the smallest index

to the largest one.

We begin with the limiting of the water height. To avoid divisions by zero, we

introduce the small parameter δh
n,max
i where δ := 10−14 for all i ∈ V . Let us denote

the h-component of Pi j by Phi j . Then, we set:

ℓ
i,h
j =





min

( ∣∣∣hn,min
i −H(W

L,n+1
i )

∣∣∣
∣∣∣Phi j

∣∣∣+δh
n,max
i

, 1

)
, if H(W

L,n+1
i ) + Phi j < h

n,min
i ,

1, h
n,min
i ≤ H(W

L,n+1
i ) + Phi j ≤ h

n,max
i ,

min

( ∣∣∣hn,max
i −H(W

L,n+1
i )

∣∣∣
∣∣∣Phi j

∣∣∣+δh
n,max
i

, 1

)
, if h

n,max
i < H(W

L,n+1
i ) + Phi j .

(6.8)

This guarantees that �1(W
L,n+1
i + ℓPi j ) ≥ 0 and �2(W

L,n+1
i + ℓPi j ) ≥ 0 for all

ℓ ∈ [0, ℓ
i,h
j ]. This enforces a local minimum principle and a local maximum principle

on the water height. As a corollary this also enforces positivity of the water height

H
n+1
i .

We proceed similarly to limit q1 since the functionals �3 and �4 are linear. Denoting

the q1-component of Pi j by P
q1

i j , for ℓ
i,q1

j ∈ [0, ℓ
i,h
j ], we set

ℓ
i,q1

j =





min

( ∣∣∣qn,min
1,i −Q1(W

L,n+1
i )

∣∣∣
∣∣∣Pq1

i j

∣∣∣+δq
n,max
1,i

, 1

)
, if Q1(W

L,n+1
i ) + P

q1

i j < q
n,min
1,i ,

1, q
n,min
1,i ≤ Q1(W

L,n+1
i ) + P

q1

i j ≤ q
n,max
1,i ,

min

( ∣∣∣qn,max
1,i −Q1(W

L,n+1
i )

∣∣∣
∣∣∣Pq1

i j

∣∣∣+δq
n,max
1,i

, 1

)
, if q

n,max
1,i < Q1(W

L,n+1
i ) + P

q1

i j .

(6.9)

This guarantees that �3(W
L,n+1
i + ℓPi j ) ≥ 0 and �4(W

L,n+1
i + ℓPi j ) ≥ 0 for all

ℓ ∈ [0, ℓ
i,q1

j ]. This enforces a local minimum principle and a local maximum principle

on q1. As a corollary this also enforces positivity of Qn+1
1,i .

Remark 6.5 (FCT limiting on linear functionals) It is also possible to use the FCT

methodology for limiting the linear functionals �1, . . . , �4. We refer the reader to

[19] where this is shown for the shallow water equations. ⊓⊔

We now move on to the kinetic energy functional �
i,n
5 . We seek an ℓ

i,K
j ∈ [0, ℓ

i,q1

j ]
such that �

i,n
5 (W

L,n+1
i + ℓPi j ) ≥ 0 for all ℓ ∈ [0, ℓ

i,K
j ]. Let us define the functional:

�(U) := H�
i,n
5 (U) = HK

n,max
i − 1

2
‖Q‖2

ℓ2 . Notice that �
i,n
5 (U) ≥ 0 iff �(U) ≥ 0
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provided H > 0. Hence, assuming that �
i,n
5 (W

L,n+1
i + Pi j ) < 0 (otherwise there is

nothing to optimize), our optimization problem consists of finding the unique ℓ ∈ [0, 1)

such that �(W
L,n+1
i + ℓPi j ) = 0. But �(W

L,n+1
i + ℓPi j ) is a quadratic functional

with respect to ℓ: �(W
L,n+1
i + ℓPi j ) = aℓ2 + bℓ + c, where

a = −
1

2
‖Pq

i j‖
2
ℓ2 , (6.10a)

b = K
n,max
i P

h
i j − Q(W

L,n+1
i ) · Pq

i j , (6.10b)

c = H(W
L,n+1
i )K

n,max
i −

1

2
‖Q(W

L,n+1
i )‖2

ℓ2 . (6.10c)

Let t0 be the smallest positive root of the equation at2+bt+c = 0, with the convention

that t0 = 1 if the equation has no positive root. Then, we choose ℓ
i,K
j to be such that

ℓ
i,K
j = min(t0, ℓ

i,q1

j ). (6.11)

It is proved in [15] that the definition (6.11) guarantees that �
i,n
5 (W

L,n+1
i + ℓPi j ) ≥ 0

for all ℓ ∈ [0, ℓ
i,K
j ]. This enforces a local maximum principle on the kinetic energy.

Finally, we set

ℓi j = min(ℓ
i,K
j , ℓ

j,K
i ). (6.12)

Then, with the above definition and by Lemma 6.4, the updateWn+1
i computed by (6.6)

satisfies the following constraints �
i,n
l (Wn+1

i ) ≥ 0 for all l ∈ L. We now “put back”

the sources to compute the final limited update Un+1
i

Un+1
i = τn(Rn

i + Sn
i ) +

∑

j∈I∗(i)

θ j

(
W

L,n+1
i + ℓi jP

n
i j

)
. (6.13)

Theorem 6.6 Let i ∈ V and n ≥ 0. Assume that U
n
j ∈ A := {u ∈ Rd+4 |

h > 0} for all j ∈ I(i). Suppose that the time step τn is small enough so that

τn max
(

2
mi

∑
j∈I∗(i) d

L,n
i j ,

√
gH0

Ei

)
≤ 1. Let Wn+1

i be defined by (6.6) with the limiter

ℓi j given by (6.12). Then, Wn+1
i ∈ A. Consequently, the full update U

n+1
i defined

by (6.13) is in A as well.

Proof By construction, the definition (6.12) along with Lemma 6.4 gives

H(Wn+1
i ) := H

( ∑

j∈I∗(i)

θ j

(
W

L,n+1
i + ℓi jP

n
i j

))
≥ h

n,min
i ,

for all i ∈ V and all j ∈ I(i). The goal is to show that the limited water height update

H
n+1
i stays positive with the contribution of the source τn(Rn

i + Sn
i ). For i ∈ V ,

consider the update for Hn+1
i :
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H
n+1
i = τnχ

(
h

i,max
i −h

i,min
i

h
min
wave

) (√
gH0

Ei

(
hwave(ai , tn) − H

n
i

)
G(

ai −xmin

Lgen
)

)
+ H(Wn+1

i ),

≥ τn

√
gH0

Ei

χ
(
h

i,max
i −h

i,min
i

h
min
wave

)
G(

ai −xmin

Lgen
)
(
h

min
wave − h

n,max
i

)
+ h

n,min
i ,

where we used the fact that h
n,max
i ≥ Hn

i . If the cutoff function χ is active (i.e., when

h
n,max
i − h

n,min
i ≥ h

min
wave), then χ = 0 and H

n+1
i ≥ h

n,min
i and thus positive. If the

cutoff function χ is not active (i.e., when h
n,max
i − h

n,min
i < h

min
wave), then

H
n+1
i ≥ τn

√
gH0

Ei

χ
(
h

i,max
i −h

i,min
i

h
min
wave

)
G(

ai −xmin

Lgen
)
(
h

min
wave − h

n,max
i

)
+ h

n,min
i

≥ τn

√
gH0

Ei

χ
(
h

i,max
i −h

i,min
i

h
min
wave

)
G(

ai −xmin

Lgen
)
(
−h

n,min
i

)
+ h

n,min
i

= h
n,min
i

(
1 − τn

√
gH0

Ei

χ
(
h

i,max
i −h

i,min
i

h
min
wave

)
G(

ai −xmin

Lgen
))

)

≥ h
n,min
i

(
1 − τn

√
gH0

Ei

)
.

Thus, Hn+1
i is positive under the CFL condition. ⊓⊔

Remark 6.7 (Iterative limiting) We note here that the limiting process described above

can be iterated multiple times by observing from (6.4) that

W
H,n+1
i = W

L,n+1
i +

1

mi

∑

j∈I(i)

ℓi jA
n
i j +

1

mi

∑

j∈I(i)

(1 − ℓi j )A
n
i j .

⊓⊔

Then, by setting W(0) := W
L,n+1
i and A

(0)
i j = An

i j , the iterative limiting process

is shown in Algorithm 1. In the numerical simulations reported in Sect. 7, we take

kmax = 2.

Algorithm 1 Iterative limiting with sources

Input: WL,n+1, An
i j

, kmax

Output: Un+1

Set W(0) := W
L,n+1
i

and A
(0)
i j

= An
i j

for k = 0 to kmax − 1 do

Compute limiter ℓ(k)

Update W(k+1) = W(k) + 1
mi

∑
j∈I(i) ℓ

(k)
i j

A
(k)
i j

Update A
(k+1)
i j

= (1 − ℓ
(k)
i j

)A
(k)
i j

end

Un+1 = W(kmax) + τn(Rn + Sn)
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Proposition 6.8 (Well balancing) Let T : uh
h 
→ T (un

h) := un+1
h be the high-order

scheme defined by (6.13). This scheme is exactly well balanced if SG ≡ 0.

Proof Assume that un
h is exactly at rest, then one can verify that Pi j = 0 for all i ∈ V

and all j ∈ I∗(i). Hence, un+1
h is equal to the low-order update. We conclude by

invoking Proposition 4.4. ⊓⊔

6.4 Relaxation of the Bounds

The methodology described above leads to second-order accuracy in the L1-norm,

but the bounds defined in (4.16) are too tight to make the method higher order or

even second-order in the L∞-norm in the presence of smooth extrema. This is very

important for the system (2.1) and (2.2) since we want to model smooth solitary waves

and periodic waves. To recover the full accuracy in the L∞-norm, one should relax

the bounds (4.16) for smooth solutions. This has been observed in [28] and explained

in [15, Sec. 4.7]. We refer the reader to [20, Sec. 7.6] where this is discussed in detail.

All the numerical results reported in Sect. 7 are done using the relaxation technique

from [15, 20].

7 Numerical Illustrations

In this section, we illustrate the performance of the proposed method. We first verify

the convergence of the scheme (6.13) and then verify that it is well balanced. We then

reproduce several laboratory experiments that validate the proposed model.

7.1 Implementation Details

The simulations reported in the paper are done in Rd with d = {1, 2} using continuous,

linear finite elements. When d = 1, we use a uniform grid. Some two-dimensional

tests are done with continuous P1 finite elements on unstructured Delaunay meshes,

and some tests are done using continuous Q1 finite elements on quadrangular meshes.

In all the tests, we set λ = 1 and set the approximate relaxation parameter to Ei :=
m

1
d

i = (
∫

D
ϕi dx)

1
d for all i ∈ V .

For the numerical tests in R2, three different codes implementing the method

described in the paper have been written to ensure reproducibility. The first code,

henceforth referred to as TAMU, does not use any particular software and is written in

Fortran 95/2003. The second code has been written at the US Army Engineer Research

and Development Center using the Proteus toolkit (the reader is referred to [27]).

Both codes use continuous P1 Lagrange elements on triangles and unstructured, non-

nested, Delaunay meshes. The third code is Ryujin [22, 33], a high-performance

finite-element solver based on the deal.II library [1] and uses continuous Q1 ele-

ments. The time stepping in all three codes is done with the third-order, three stage,

strong stability preserving Runge–Kutta method, SSP RK(3,3).
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Table 1 Convergence table using ‖h − hh‖L1/‖h‖L1 for solitary wave solution of Serre model (2.1).

T = 50 s, CFL= 0.075

Galerkin EV with (2.8) EV with (5.7)

100 2.80E−04 Rate 2.48E−04 Rate 2.53E−04 Rate

200 4.24E−05 2.72 5.54E−05 2.16 5.64E−05 2.17

400 3.02E−05 0.49 3.74E−05 0.57 3.74E−05 0.59

800 2.32E−05 0.38 2.48E−05 0.59 2.48E−05 0.59

1600 1.39E−05 0.74 1.43E−05 0.79 1.43E−05 0.79

3200 7.67E−06 0.85 7.89E−06 0.86 7.89E−06 0.86

6400 3.84E−06 1.00 4.08E−06 0.95 4.08E−06 0.95

Remark 7.1 (Choosing the CFL value) When the relaxation parameter is chosen to

be proportional to the local mesh size h, the algorithm performs optimally when the

CFL value is proportional to
√

h
H0,max

. For more details on this, we refer the reader

to [21, Sec. 5.6]. ⊓⊔

7.2 Convergence Tests

We now verify the convergence rate of the method defined by (6.13). For the sake

brevity, we only use the TAMU code for these tests.

7.2.1 Solitary Wave over a Flat Bottom

The Serre model (2.1) admits an exact solution in the form of a solitary wave propa-

gating over a flat bottom. We note here that the hyperbolic relaxed model (2.3) does

not support exact solitary waves; more on this is discussed in Sect. 7.2.2.

Let h̃(x, t) and ũ(x, t) be the water height and velocity of an exact solitary wave:

h̃(x, t) = h0 +
α

(cosh(r(x − x0 − ct)))2
, ũ(x, t) = c

h̃(x, t) − h0

h̃(x, t)
, (7.1)

with wave speed c =
√

g(h0 + α) and width r =
√

3α

4h2
0(h0+α)

. We initialize the water

height and discharge by setting

h(x, 0) = max{h̃(x, 0) − z(x), 0}, q(x, 0) = ũ(x, 0)h(x, 0). (7.2)

We consider a 1D uniform grid on the domain D = (0, 1000 m). We set h0 = 10 m

and α = 1 m. The solitary wave is initiated at x0 = 200 m. The final time is T = 50 s.

In Table 1, we compare the quantity ‖h− hh‖L1/‖h‖L1 using (i) the Galerkin method

(i.e., no artificial viscosity); (ii) the method (6.13) using the Shallow Water Equations

entropy pair (5.7); (iii) the method (6.13) using the hyperbolic Serre entropy pair (2.8).

We observe that the method converges to the solution of the Serre model (2.1) with
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Table 2 Convergence rates using manufactured solution. T = 50 s, CFL = 0.05

E1 E2 E∞

100 1.76E−04 Rate 4.50E−04 Rate 1.35E−03 Rate

200 4.98E−05 1.82 1.23E−04 1.86 5.30E−04 1.35

400 1.61E−05 1.63 3.92E−05 1.66 1.77E−04 1.58

800 4.30E−06 1.90 1.03E−05 1.93 4.68E−05 1.92

1600 1.11E−06 1.95 2.60E−06 1.99 1.19E−05 1.97

3200 3.10E−07 1.84 6.65E−07 1.97 3.05E−06 1.97

first-order rate with respect to the mesh-size. The first-order rate is a consequence of

the relaxation parameter in the relaxed system (2.3) being proportional to the local

mesh size.

7.2.2 Method of Manufactured Solutions Using Solitary Wave Profile

We now verify that the numerical method (6.13) is indeed second-order accurate

when considering solutions to the hyperbolic relaxed system (2.3). Since finding exact

solutions for (2.3) is a highly non-trivial task, we use here the method of manufactured

solutions.

Let h̃(x, t) and ũ(x, t) be the same profiles defined by (7.1). To find the respective

source term needed for the method of manufactured solutions, we seth(x, t) = h̃(x, t),

q(x, t) = h̃(x, t)ũ(x, t), q1(x, t) = h̃
2
(x, t), q2(x, t) = −h̃

2
(x, t)∂x (ũ(x, t)). Sub-

stituting these profiles into (2.3) yields a source term in the form of Sman(x, t) =(
0, qman(x, t), 0, q2,man(x, t), 0

)T
where qman(x, t) and q2,man(x, t) are the residual

functions for the equations for q and q2. We refer the reader to [41] where the exact

expressions are shown.

We use the same setup as in Sect. 7.2.1 for running the computations. We show in

Table 2 the numerical results obtained at T = 50 s. The number of grid points is shown

in the leftmost column. The relative errors on the water height measured in the L1-

norm, E1 := ‖h− hh‖L1/‖h‖L1 , L2-norm, E2 := ‖h− hh‖L2/‖h‖L2 , and L∞-norm,

E∞ := ‖h − hh‖L∞/‖h‖L∞ , are shown in the second, third and fourth columns. We

observe that all the quantities converge with second-order rate with respect to the mesh

size, thereby confirming that the proposed approximation technique is second-order

accurate in space and time. (It is actually third-order accurate in time.)

7.3 Well-Balancing Tests

In this section, we verify that the scheme is well balanced. To quantify the concept of

well balancing, we define the following error indicator:
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(a)
(b)

(c)

Fig. 2 Tables and figure for well-balancing tests

δ∞(t) :=
‖hh(t) − h0‖L∞(D)

H0
+

‖qh(t) − q0‖L∞(D)

H0

√
gH0

+
‖Q1,h(t) − Q1,0‖L∞(D)

H2
0

+
‖Q2,h(t) − Q2,0‖L∞(D)

H0

√
gH0

+
‖Q3,h(t) − Q3,0‖L∞(D)

H0

√
gH0

,

(7.3)

where H0 is some reference water depth, h0, q0,Q1,0,Q2,0,Q3,0 are the initial states,

and hh(t), qh(t),Q1,h(t),Q2,h(t),Q3,h(t) are the finite-element approximations at

time t for the respective conserved variables. We show that this quantity stays close to

roundoff error for our numerical tests. All the computations are done with CFL = 0.5.

For these tests, we consider the set up of the 1995 experiments by [7] where the

bathymetry is defined by a conical island. The experimental domain is given by D =
(0, 25 m) × (0, 30 m). The experimental bathymetry is defined by

z(x) =
{

min (0.625, 0.9 − r(x)/4) , r(x) < 3.6

0, otherwise,

where r(x) is the radius from the center of the island located at (12.96 m, 13.80 m).

We first consider the case where the initial profile is a complete wet state. The

reference water depth is set to H0 = 1 m (above the island) and we define the initial

water height to be h0(x) = H0 −z(x) and initial flow rate q0 = 0 m/s. The simulations

are run until T = 50 s. In Fig. 2a, we report the well-balancing quantity (7.3) for two

different meshes and observe that indeed the values are near machine precision.

We now consider the case where the initial state is a wet-dry state. We set the

reference depth to be H0 = 0.32 m so that the water elevation intersects the cone at

r(x) = 2.32 m. To initiate this problem properly, we begin exactly at rest with respect

to the mesh. That is to say, the mesh is aligned with the initial data in regions where

h + z is constant. We show this refinement in Fig. 2b. In Fig. 2c, we report the well-

balancing quantity (7.3) for two different meshes and see that it also stays close to

machine precision.

7.4 Dam Break with Friction

We now consider the test case of a dam break over a dry bottom with three con-

ical obstacles introduced by [25] (and reproduced by others: [21, 24], etc.). This
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Fig. 3 Dam break with bumps—surface plot of the water elevation h + z at t = {0, 1, 7.8, 10, 15, 20}

Fig. 4 Dam break with bumps—comparison with Serre’s model (top) and SWEs (bottom) at t = {1, 7.8, 15}

benchmark tests the complex wetting/drying process and the method’s ability to han-

dle the Gauckler–Manning friction source. Here, the Mannings coefficient is set to

n = 0.02 m-1/3 s.

The domain is set to D = [0, 75 m]×[0, 30 m]. The bathymetry consisting of three

conical obstacles is defined by z(x) := max{0, z1(x), z2(x), z3(x)} where

z1(x) = 1 − 1
8

√
(x − 30)2 + (y − 6)2, (7.4a)

z2(x) = 1 − 1
8

√
(x − 30)2 + (y − 24)2, (7.4b)

z3(x) = 3 − 3
10

√
(x − 47.5)2 + (y − 15)2. (7.4c)

are the three obstacles. The initial state is set to

h0(x) =
{

1.875, x ≤ 16

0, otherwise,
q0(x) = 0.

For these computations, we use the Ryujin code described above. The mesh is

composed of rectangular elements with 2, 307, 361 Q1 DOFS. The final time is set to

T = 20 s with CFL 0.125. In Fig. 3, we show the computational free surface elevation

h + z at several time snapshots. Then, in Fig. 4, we show the comparison of the

computations with the hyperbolic Serre model (2.3) and the Saint-Venant shallow water

equations. We observe that more realistic structures are produced by the dispersive

Serre model. The computations for this benchmark were performed on the 32-node

Whistler cluster at Texas A&M University. More specifically, 288 MPI ranks with
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two threads per core were used for each model. The total computation time for the

hyperbolic dispersive Serre model was approximately 74 min and the computation

time for the Saint-Venant model was approximately 51 min.

7.5 Laboratory Experiments

We continue the numerical illustrations by reproducing several laboratory experiments

that have been documented in the literature. We focus on two experiments involving

the propagation of periodic waves over varying topographies and one involving the

propagation of solitary waves.

7.5.1 Experiment 1: Propagation of Periodic Waves over an Elliptic Shoal

We consider the 1982 experiments of [5] conducted to study the propagation of

monochromatic waves over an elliptic shoal. The goal of the experiments were to

model the refraction and diffraction of waves when propagating over a varying bottom.

These experiment have become a benchmark for validating dispersive wave models

(see: [10, 34]).

The experimental basin is composed of a 1
50

sloping bottom which forms a 20◦

angle with the y-axis and an elliptic-shaped shoal built on the ramp. We reproduce

this bathymetry as follows. We first define the rotated coordinates x 
→ xr (x):

xr := x cos(20◦) − y sin(20◦), yr := x sin(20◦) + y cos(20◦).

Then, we define the sloping bottom and elliptic shoal profiles as

zramp(x) :=





1
50

(xr (x) + 5.82), −5.82 ≤ xr (x) ≤ 14

0.3964, 14 ≤ xr (x)

0, otherwise,

zshoal(x) :=
{

−0.3 + 1
2

√
1 − (

xr (x)
3.75

)2 − (
yr (x)

5
)2, (

xr (x)
3.75

)2 + (
yr (x)

5
)2 ≤ 1

0, otherwise.

The full bathymetry is defined as z(x) := zramp(xr (x))+ zshoal(xr (x)). Note that this

bathymetry is slightly modified from that proposed in [5] to include a flat portion at

the right-end of the basin.

The reference water depth is set to H0 = 0.45 m. We initialize the water height

with h0(x) = H0 − z(x) and discharge q0(x) = 0. For the simulation of the

experiments, we use the Ryujin code. The computational domain is set to be

D = (−14, 18 m)×(−10, 10 m). We generate the periodic waves via the genera-

tion zone methodology described in Sect. 2.3.2 with the profiles:

h(x, t) = h0 + a sin(kx − σ t), u(x, t) =
a

h0

σ

k
sin(kx − σ t).



J.-L. Guermond et al.

Fig. 5 Experiment 1—Elliptic shoal experiments. Left: Free surface elevation and topography; mesh refine-

ment 1. Right: Normalized view of wave heights; mesh refinement 1

The amplitude is set to a = 0.0232 m and the period to Tp = 1 s. The wave frequency

is given by σ = 2π
Tp

and k is found using the dispersion relation for the full Serre model:

k2 = 3σ 2/(3gh0 − h
2
0σ

2). The generation zone length and absorption zone length

are set to 4 m, i.e., Lgen = Labs := 4 m, and we set xmin := −14 and xmax := 18.

We run the computations until the final time T = 60 s to allow the waves to reach a

steady state. To verify our results, we run the computations on three different meshes

composed of 657,025, 2,624,769 and 10,492,417 Q1 nodes labeled refinement 1, 2,

and 3 respectively. The finest simulation was done using 640 MPI ranks with two

threads per core. The wall clock time was 17h. In Fig. 5, we show a snapshot of the

free surface elevation and topography at time T = 60 s and a normalized view of the

generated wave heights (i.e., h+z(x)−H0

a
).

In the experiments, the water elevation is measured at eight sections throughout the

basin. These sections are

section 1 : {x = 1 m,−5 m ≤ y ≤ 5 m}, section 2 : {x = 3 m,−5 m ≤ y ≤ 5 m},
section 3 : {x = 5 m,−5 m ≤ y ≤ 5 m}, section 4 : {x = 7 m,−5 m ≤ y ≤ 5 m},
section 5 : {x = 9 m,−5 m ≤ y ≤ 5 m}, section 6 : {y = -2 m, 0 m ≤ x ≤ 11 m},
section 7 : {y = 0 m, 0 m ≤ x ≤ 11 m}, section 8 : {y = 2 m, 0 m ≤ x ≤ 11 m}.

To properly compare our numerical results with the experimental data, we do the fol-

lowing: we extract the data over the temporal window t ∈ [40 s, T ] of the reference

water elevation h+ z −H0; we then take the maximum of this data over every period

in the temporal interval. We then normalize the wave heights with the incoming wave

amplitude a = 0.0232 m. In Fig. 6, we show the comparison with the computational

results for the three different meshes. We see that the approximate solutions con-

verge and we observe that the computational results compare reasonably well with the

experimental data.

7.5.2 Experiment 2: Propagation of Periodic Waves over Semi-circular Shoal

We now consider the 1971 experiments of [42] performed at the U.S. Army Engineer

Waterways Experiment Station (now the U.S. Army Engineer Research and Develop-
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Fig. 6 Experiment 1—Comparison of numerical results (3 mesh refinements) with the experimental data

along the eight sections. Experimental data: red triangles

ment Center) in Vicksburg, Mississippi. The goal of the experiments is to study the

refraction and diffraction of periodic waves propagating over a semi-circular shoal. In

particular, we reproduce the experiments conducted where the wave period is T = 2 s

and amplitude a = 0.0075 m (see [42, Fig. 68]).

The experimental basin is designed to be 25.603 m in length and 6.096 m wide and

the still water elevation is set to 0.4572 m. We reproduce these experiments with the

Ryujin code. We define the computational domain as (−10, 33 m) × (0, 6.096 m).

The lengths of the generation and relaxation zones are defined to be Lgen = Labs = 8 m

(which is roughly 2 wave lengths) with xmin = −10 and xmax = 33. The bathymetry

is reproduced as follows: Defining G(y) :=
√

y(6.096 − y), we set

z(x) =





0, 0 ≤ x ≤ 10.67 − G(y),

−0.04(10.67 − G(y) − x), 10.67 − G(y) ≤ x ≤ 18.297 − G(y)

0.3048, 18.297 − G(y) ≤ x .

The computational domain is composed of a quadrilateral mesh with 265,761 Q1 dofs.

We run the numerical simulations until the time T = 60 s to allow the waves to reach

a steady state. The CFL number is set to 0.125.

In [42], the authors perform the harmonic analysis of the wave elevation data at the

centerline of the basin over one period. This is done to study the non-linear transfer of

energy from lower to higher frequency components as the waves propagate and focus

over the topography. We numerically reproduce this harmonic analysis as follows: We
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(a)

(b)

Fig. 7 Experiment 2—Whalin semi-circular shoal results

interpolate the centerline y = 3.048 m with roughly 1400 points along the x-axis at

every 0.001 s in the interval t ∈ [58, 60 s]. We then perform the discrete Fourier Trans-

form of the time-series wave elevation data at each point along centerline. In Fig. 7,

we show (a) the computational free surface elevation at T = 60 s; (b) the comparison

of the amplitude spectrum with the numerical first, second and third harmonics (sold

lines) and the experimental data of Whalin (black geometric shapes). The amplitude

spectrum of the waves in the numerical simulations is very close to the experimental

one. Note that the experimental data was extracted directly from [42, Fig. 68] using

the software WebPlotDigitzer [36].

7.5.3 Experiment 3: Propagation over a Solitary Wave over a Triangular Shelf with

Conical Island

We now reproduce the experiments of [31, 40] performed at the O.H. Hinsdale Wave

Research Laboratory of Oregon State University. The experiments were conducted to

study specific phenomena that are known to occur when solitary waves propagate over

irregular bathymetry such as shoaling, refraction, breaking, etc. Several others (see:

[10, 26, 35]) have used these experiments for validation.

We reproduce the bathymetry of the experiments as follows: Let r = 3, hcone =
0.45, d(y) := 1−min (1, |y| /13.25) , ax (y) := 12.5+12.4999(1−d(y)), az(y) :=
0.7+0.05(1−d(y)). We define separately the cone, base and triangular shelf portions

of the bathymetry:

cone(x, y) =:= max

(
hcone −

√
(x − 17)2 + y2

( 3
0.45

)2
, 0

)
,
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(a)

(b)

Fig. 8 Experiment 3—a Coordinates of the wave gauges and ADVs in meters; b overview of their respective

locations on the bathymetry

base(x, y) :=





0, x < 10.2,
0.5−0.0

17.5−10.2
(x − 10.2), 10.2 ≤ x ≤ 17.5,

1 + 1−0.5
32.5−17.5

(x − 32.5), 17.5 ≤ x ≤ 32.5,

1, otherwise,

shelf(x, y) :=





0, x < 10.2,
az(y)

ax (y)−10.2
(x − 10.2), 10.2 ≤ x ≤ ax (y),

0.75 + az(y)−0.75
ax (y)−25

(x − 25), ax (y) ≤ x ≤ 25,

1 + 1−0.5
32.5−17.5

(x − 32.5), 25 ≤ x ≤ 32.5,

1, otherwise.

Then, the full bathymetry is defined by

z(x, y) := cone(x, y) + max(base(x, y), shelf(x, y)).

The setup of this complex bathymetry can be seen in Fig. 8a.

The computations are done in the domain (0, 48.8 m)×(−13.25, 13.25 m). The

solitary wave is initiated at x0 = 5 m with reference water depth h0 = 0.78 m and

amplitude α = 0.39 m using (7.1). We run the computations until T = 40 s with a

CFL number of 0.25. We note that for this particular problem, it is our experience that

no friction is needed to reproduce correctly the experiment. In Fig. 11, we show the

surface plots of the free surface elevation h + z on a mesh composed of 57,854 P1

nodes at various times using the TAMU code.

In the experiments, nine wave gauges (WGs) are placed along the basin to capture

the free surface elevation along with three Acoustic Doppler Velocimeters (ADVs) that
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(a)

(b)

Fig. 9 Experiment 3—a Temporal series over the period t ∈ [0, 40 s] of the free surface elevation h + z

compared to the experimental data (red dashed). The TAMU code results are in blue (solid) and Proteus

code results in black (solid). b Temporal series over the period t ∈ [0, 40 s] of velocity v (blue solid) and

experimental ADVs (red dashed)

measure the velocity. In Fig. 8, we show on the left panel the coordinates of the wave

gauges and ADVs, and their respective locations on the bathymetry in the right panel

of the figure. We show in Fig. 9a, the comparison between the free surface elevation

values of the numerical simulation and the experimental data over the temporal period

t ∈ [0, 40 s] using both codes. In Fig. 9b, we show the comparison between the

numerical velocities and the experimental data from the ADVs. For both the free

surface and velocities, our results compare exceptionally well with the experimental

data. We also see that the results of the TAMU and Proteus codes agree very closely

and are almost indistinguishable. The Proteus computations were done on a mesh

composed of 57,188 P1 nodes and CFL number of 0.25. Notice that one observes

wave breaking in this experiment. This phenomenon is naturally accounted for by the

model (2.3) which is hyperbolic and therefore permits shocks and energy dissipation.

For completeness, we show the results for WG1 and ADV1 up to the final time t = 80 s

using the TAMU code (Figs. 10 and 11).

8 Conclusion

In this work, we propose a new numerical method for solving the dispersive Serre–

Green–Naghdi equations with full topography effects and sources using continuous

finite elements. The method is based on a hyperbolic relaxation technique introduced
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Fig. 10 Experiment 3—Results for WG1 and ADV1 for final time T = 80 s

Fig. 11 Experiment 3—Surface plot of the water elevation h + z at several times

in [23]. The method is well balanced, positivity-preserving and explicit in time. The

method extends the work in [21] by introducing physical source terms which are treated

explicitly. The novelties of the method are the introduction of high-order artificial

viscosity coefficients based on the entropy commutator and a local convex limiting

technique that preserves positivity of the water height. The convex limiting follows

the general framework from [20] but the treatment of the source terms is radically

different. The method is numerically illustrated with various benchmarks seen in the

literature and compared to experimental results. The robustness of the method is also

illustrated by comparing three separate implementations.
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