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Abstract

This paper describes in detail the implementation of a finite element technique for solving the compressible Navier–Stokes
quations that is provably robust and demonstrates excellent performance on modern computer hardware. The method is second-
rder accurate in time and space. Robustness here means that the method is proved to be invariant domain preserving under the
yperbolic CFL time step restriction, and the method delivers results that are reproducible. The proposed technique is shown
o be accurate on challenging 2D and 3D realistic benchmarks.
c 2021 Elsevier B.V. All rights reserved.

SC: 35L65; 65M60; 65M12; 65N30
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1. Introduction

The objective of the paper is to describe in detail a robust and efficient massively parallel finite element technique
or solving the compressible Navier–Stokes equations. This paper is the second part of a research project described
n Guermond et al. [1]. The principles of the method have been introduced in [1], but in order to guarantee
eproducibility (following the guidelines described in LeVeque et al. [2]), we here describe the implementation
etails regarding the algorithm per se and identify the ingredients that enable efficient execution on large-scale

parallel machines. We also explain the implementation of non-reflecting boundary conditions and show that these
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conditions are robust, invariant-domain preserving, and accurate. Based on these ingredients, the accuracy of the
method is demonstrated on well-documented (i.e., reproducible) non-trivial benchmarks. The robustness of the
method and its capability to scale well on large parallel architectures are also demonstrated.

As there is currently a regain of interest for supersonic and hypersonic flight of aircrafts and other devices, there
s also a renewed interest for provably robust numerical methods that can solve the compressible Navier–Stokes
quations. Here we say that a numerical method is provably robust if it can be unambiguously proved to be invariant
omain preserving, i.e., among other things, it ensures positivity of the density, positivity of the internal energy, and
reserves a meaningful entropy-dissipation property. There are many papers in the literature addressing this question,
ut invariant domain properties are available only for very few methods. One notable result in this direction can be
ound in Grapsas et al. [3] where a first-order staggered approximation using velocity-based upwinding is developed
see Eq. (3.1) therein), and positivity of the density and the internal energy is established (Lem. 4.4 therein).
nconditional stability is obtained by using an implicit time-stepping coupling the mass conservation equation

nd the internal energy equation. This method is robust, including in the low Mach regime. A similar technique
olving the compressible barotropic Navier–Stokes equation is proposed in [4, §3.6]. In the discontinuous Galerkin
iterature, robustness is established in Zhang [5] for the approximation of the compressible Navier–Stokes equations.
he time stepping is explicit though, and this entails a parabolic restriction on the time step that unfortunately makes

he method ill-suited for realistic large-scale applications (i.e., τ ≲ O(h2)/µ, where µ is some reference viscosity
scale, τ is the time step size and h is the mesh size).

The approximation technique described in the present paper draws robustness from an operator-splitting strategy
that uncouples the hyperbolic and the parabolic phenomena. We do not claim originality for this “divide and
conquer” strategy since the operator-splitting idea has been successfully used in the CFD literature numerous times
in the past. Among the references that inspired the present work in one way or another, we refer the reader to Beam
and Warming [6], Bristeau et al. [7], Demkowicz et al. [8]. The key novelties of the paper are as follows: (i) The
paper describes an exhaustive and unambiguous (thereby reproducible) robust algorithm for solving the compressible
Navier–Stokes using finite elements. Algorithm 1 gives a flow chart that minimizes the complexity of the hyperbolic
step; (ii) The implementation of various boundary condition is fully and unambiguously described. In particular,
non-reflecting boundary conditions are discussed. Unambiguous, fully discrete, finite-element based algorithms are
proposed. These boundary conditions are explicit and are proved to be invariant-domain preserving and to maintain
conservation; (iii) The parabolic substep of the algorithm is also fully described and important details regarding its
matrix-free implementation are given; (iv) The algorithm is verified against analytical solutions and validated against
two challenging benchmarks (one is two-dimensional, the other is three-dimensional). In particular, we provide a
reference solution for the benchmark proposed in Daru and Tenaud [9], Daru and Tenaud [10] with an accuracy
that has never been matched before (see Table 2 and Fig. 6).

The paper is organized as follows. The problem along with the finite element setting and the principles of the time
stepping that are used for the approximation is described in Section 2. As the time stepping is based on Strang’s
splitting using a hyperbolic substep and a parabolic substep, we describe in Section 3 the full approximation of
the hyperbolic step. All the details that are necessary to guarantee reproducibility are given. Key results regarding
admissibility and conservation after limiting are collected in Lemma 3.2. Important details regarding the treatment
of boundary conditions for the hyperbolic step are reported in Section 4. Key original results regarding admissibility
and conservation after boundary postprocessing are collected in Lemmas 4.2 and 4.5, and Corollary 4.4. The full
approximation of the parabolic substep is described in Section 5. Here again, all the details that are necessary
to guarantee reproducibility are given. The key results of this section regarding admissibility and conservation
are stated in Lemma 5.1. The method has been implemented using the finite element library deal.II [11,12] and

apped continuous Q1 finite elements. Our implementation is freely available online2 [13] under a permissible open
ource license.3 The method and its implementation are verified and validated in Section 6. In addition to standard
ode verifications using analytical solutions (see Section 6.1) and tests on non-reflecting boundary conditions (see
ection 6.2), we revisit two benchmarks problems. First, we solve in Section 6.3 a two-dimensional shocktube
roblem proposed by Daru and Tenaud [9], Daru and Tenaud [10] and demonstrate grid convergence. Following
he initiative of [14] and to facilitate rigorous quantitative comparisons with other research codes, we provide very
ccurate computations of the skin friction coefficient for this problem; these results are freely available at [15]. To

2 https://github.com/conservation-laws/ryujin
3 https://spdx.org/licenses/MIT.html
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the best of our knowledge, the level of accuracy we achieved for this benchmark has never been matched before.
We also demonstrate in Section 6.4 that the proposed method can reliably predict pressure coefficients on the
well-studied supercritical airfoil Onera OAT15a in the supercritical regime at Mach 0.73 in three dimensions and
at Reynolds number 3×106 (see [16], Deck and Renard [17], Nguyen et al. [18]). Finally, a series of synthetic
benchmarks are presented in Section 6.5 to assess the performance of the compute kernels by investigating the
strong and weak scalability of our implementation. Technical details are reported in Appendix A.

2. Problem description, finite element setting, time splitting

We briefly introduce relevant notation, recall the compressible Navier–Stokes equations, discuss the finite element
setting for the proposed algorithm, and introduce the operator-splitting technique that is used to make the method
invariant domain preserving under a standard hyperbolic CFL time step restriction. We follow in large parts the
notation introduced in [1].

2.1. The model

Given a bounded, polyhedral domain D in Rd , an initial time t0, and initial data u0 := (ρ0,m0, E0), we look for
u : D×[t0,+∞)→ R+×Rd

×R+ solving the compressible Navier–Stokes system in some weak sense:

∂tρ +∇·(vρ) = 0, (2.1a)

∂t m +∇·
(
v ⊗ m + p(u)I− s(v)

)
= f , (2.1b)

∂t E +∇·
(
v(E + p(u))− s(v)v + k(u)

)
= f ·v. (2.1c)

ere ρ is the density, m is the momentum, E is the total energy, p(u) is the pressure, I ∈ Rd×d is the identity
atrix, f is an external force, s(v) is the viscous stress tensor and k(u) is the heat-flux. The quantity v := ρ−1m

s called velocity and e(u) := ρ−1 E − 1
2∥ρ

−1m∥2
ℓ2 is called specific internal energy. Given a state u ∈ Rd+2, ρ(u)

denotes the first coordinate (i.e., density), m(u) denotes the Rd -valued vector whose components are the 2-nd up
to the (d + 1)-th coordinates of u (i.e., the momentum), and E(u) is the last coordinate of u (i.e., the total energy).
Boundary conditions for (2.1) and the implementation of these condition are discussed in detail in Section 4.

To simplify the notation later on, we introduce the flux f(u) := (m, v ⊗ m + p(u)Id , v(E + p))T
∈ R(d+2)×d ,

where Id is the d×d identity matrix. Although it is often convenient to assume that the pressure p(u) is derived
from a complete equation of state, most of what is said here holds true by only assuming that the pressure is given
by an oracle (see, e.g., Clayton et al. [19]). In the applications reported at the end of the paper, though, we use the
ideal gas law p(u) = (γ − 1)ρe(u).

The fluid is assumed to be Newtonian and the heat-flux is assumed to follow Fourier’s law:

s(v) := 2µe(v)+ (λ− 2
3µ)∇·vI, e(v) := ∇sv := 1

2

(
∇v + (∇v)T), (2.2)

k(u) := −c−1
v κ∇e, (2.3)

where µ > 0 and λ ≥ 0 are the shear and the bulk viscosities, respectively, κ is the thermal conductivity, and cv is
the heat capacity at constant volume. For the sake of simplicity, we assume that µ, λ, κ , and cv are constant.

Important properties we want to maintain at the discrete level are the positivity of the density and the positivity
of the specific internal energy. We formalize these constraints by introducing the set of admissible states:

A := {u := (ρ,m, E)T
∈ Rd+2

|ρ > 0, e(u) > 0}. (2.4)

We also want that in the inviscid regime limit (i.e., λ → 0, µ → 0, κ → 0), the algorithm satisfies the local
minimum principle of the specific entropy at each time step.

2.2. Finite element setting

Although, as claimed in [20], the proposed approximation technique is discretization agnostic and can be
implemented with finite volumes and with discontinuous or continuous finite elements, we restrict ourselves here to
continuous finite elements since it greatly simplifies the approximation of the second-order differential operators.
3
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Let (Th)h∈H be a sequence of shape-regular meshes covering D exactly. Here H is the index set of the mesh
equence, and h is the typical mesh-size. Given some mesh Th , we denote by P(Th) a scalar-valued finite element
pace with global shape functions {ϕi }i∈V . Here, the index i is abusively called a degree of freedom, and since
e restrict the presentation to continuous Lagrange elements, degrees of freedom are also called nodes. The

pproximation of the state u := (ρ,m, E) will be done in the vector-valued space P(Th) := (P(Th))d+2. We
efine the stencil at i by

I(i) :=
{

j ∈ V
⏐⏐⏐ |supp(ϕ j ) ∩ supp(ϕi )| ̸= 0

}
, and we set I∗(i) := I(i)\{i}.

e assume that the shape functions are non-negative, i.e., ϕi ≥ 0 for all i ∈ V on all of D, and satisfy the partition
f unity property

∑
i∈V ϕi = 1.

The concrete implementation used in the verification and benchmark section Section 6 is based on the finite
lement library deal.II [11,12] and uses continuous mapped Q1 elements. The code called ryujin is available
nline (https://github.com/conservation-laws/ryujin and documented in Maier et al. [13]). We denote by V∂ the
et of the degrees of freedom whose shape functions are supported on the boundary ∂D. The set V◦ := V\V∂ is
omposed of the degrees of freedom whose shape functions are supported in the interior of D. They are henceforth
alled interior degrees of freedom.

The hyperbolic part of the algorithm depends on four mesh-dependent quantities, mi , mi j , ci j , and ni j defined
s follows for all i ∈ V and all j ∈ (I):

mi :=

∫
D
ϕi dx, mi j :=

∫
D
ϕiϕ j dx, ci j :=

∫
D
ϕi∇ϕ j dx, ni j :=

ci j

∥ci j∥ℓ2
. (2.5)

Here mi and mi j are the entries of the lumped mass matrix and consistent mass matrix, respectively. The partition
of unity property implies the identities mi =

∑
j∈I(i) mi j and

∑
j∈I(i) ci j = 0. The second identity is essential

o establish conservation. Using the lumped mass matrix introduces undesirable dispersive errors, whereas using
he consistent mass matrix may require global matrix inversions. The present contribution uses the following
pproximate inverse of the mass matrix with entries defined by

1
mi

(δi j + bi j ), where the coefficients bi j := δi j −
mi j
m j

satisfy
∑

i∈I( j)bi j = 0. (2.6)

Using this approximate inverse bypasses the need to invert the mass matrix. These ideas were originally documented
in Guermond and Pasquetti [21] and [22, §3.3]. It is also shown therein that this approximate inverse preserves
the conservation properties of the scheme. After extensive benchmarking, it is observed in [23, §3.2] that the
best parallel performance is achieved by pre-computing and storing on each MPI rank the coefficients {mi }i∈V
and the matrices {mi j }i∈V, j∈I(i), {ci j }i∈V, j∈I(i). The coefficients of the matrices {bi j }i∈V, j∈I(i), {b j i } j∈V,i∈I( j) and
{ni j }i∈V, j∈I(i) can be recomputed on the fly from {mi j }i∈V, j∈I(i), {ci j }i∈V, j∈I(i) in each time step. For later reference,
ML , M, and B denote: the lumped mass matrix, the consistent mass matrix, and the matrix with entries {bi j }i∈V, j∈I(i)
espectively.

emark 2.1 (Space Discretization). The focus of the paper is on continuous Lagrange elements since the discretiza-
ion of both the hyperbolic and the diffusion operators is relatively natural with these elements. Discontinuous
lements can also be used at the expense of additional overhead in the assembly of the diffusion terms [24].
nother space discretization enjoying a straightforward implementation of the diffusion terms is rational barycentric

oordinates on arbitrary polygons/polyhedrons. Rational barycentric coordinates satisfy the partition of unity
roperty and can be made globally continuous (i.e., H 1-conforming), see Floater [25] and references therein. All
he developments presented in this manuscript are directly applicable in that context too.

.3. Strang splitting

The key idea for the time approximation of (2.1) is to use Strang’s splitting. As routinely done in the literature,
e separate the hyperbolic part and the parabolic parts of the problem (see e.g., Demkowicz et al. [8], we also refer

he reader to Beam and Warming [6], [7, §11.2] where other operator-splittings are considered). The hyperbolic
art of the problem consists of solving the Euler equations:

∂ ρ +∇·(vρ) = 0, (2.7a)
t

4
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∂t m +∇·(v ⊗ m + p(u)I) = 0, (2.7b)

∂t E +∇·(v(E + p(u))) = 0, (2.7c)

hich is formally equivalent to considering the limit for µ, λ, κ → 0 in (2.1). The missing dissipative terms in
(2.7) compose the parabolic part of the problem:

∂tρ = 0, (2.8a)

∂t (ρv)−∇·(s(v)) = f , (2.8b)

∂t (ρe)− c−1
v κ∆e = s(v):e(v). (2.8c)

his decomposition is the cornerstone of the operator-splitting scheme considered in this paper. For any admissible
tate u0 ∈ A at time t0 and any time t ≥ t0, we denote by SH(t, t0)(u(t0)) = u(t) the solution map of the hyperbolic
ystem (2.7); that is, u(t) solves (2.7) with appropriate boundary conditions and u(t0) = u0. The subscript H is meant
o remind us that SH solves the hyperbolic problem. Similarly, letting u0 ∈ A be some admissible state at some
ime t0, and letting f be some source term, we denote by SP(t, t0)(u0, f ) = u(t) the solution map of the parabolic
ystem (2.8). Then, given an admissible state u0 ∈ A at time t0 and given some time step τ , we approximate the
olution to the full Navier–Stokes system (2.1) at t0 + 2τ by using Strang’s splitting technique:

u(t0 + 2τ ) ≈
(
SH(t0 + 2τ, t0 + τ ) ◦ SP(t0 + 2τ, t0)( . , f ) ◦ SH(t0 + τ, t0)

)
(u0). (2.9)

n other words, we first perform an explicit hyperbolic update of u0 with step size τ . Then, using this update as
nitial state at t0 and the source term f , we solve the parabolic problem from t0 to t0 + 2τ . Using in turn this
olution as initial state at t0 + τ , we compute the final update by solving (2.7) from t0 + τ to t0 + 2τ .

. Discretization of SH

In this section we describe the space and time approximation of the hyperbolic operator SH and summarize
mportant implementation details that make the algorithm efficient and highly scalable. The time approximation is
one by using the explicit strong stability preserving Runge–Kutta method SSPRK(3,3), see [26, Eq. (2.18)] and
27, Thm. 9.4]. This method requires three calls to the forward-Euler update discussed in this section. The forward-
uler scheme itself requires the computation of a low-order solution, a provisional high-order solution (possibly
onstraint violating), and the final flux-limited solution to be returned. The various steps described in Sections 3.1–
.3 are summarized in Algorithm 1 in Appendix B. The implementation of the boundary conditions for SH is
xplained in Section 4.

.1. Low-order step

Let tn be the current time and let un
h =

∑
i∈V Un

i ϕi be the current approximation which we assume to be
dmissible, i.e., Un

i ∈ A for all i ∈ V . For all i ∈ V and for all j ∈ I∗(i), we consider the Riemann problem with
eft state Un

i , right state Un
j , and flux f(w)ni j . We denote by λmax(Un

i ,U
n
j , ni j ) any upper bound on the maximum

avespeed in this Riemann problem. Iterative techniques to compute the maximum wavespeed are described in
olella and Glaz [28], Toro [29]. In this manuscript we use the inexpensive non-iterative guaranteed upper-bound

horoughly described in [19,30]. With this estimate, we define the graph viscosity coefficient:

dL,n
i j = max

(
λmax(Un

i ,U
n
j , ni j )∥ci j∥ℓ2 , λ

max(Un
j ,U

n
i , n j i )∥c j i∥ℓ2

)
. (3.1)

oticing that ci j = −c j i if i is an internal node (because ϕi |∂D = 0 if i ∈ V◦), we infer that λmax(Un
i ,U

n
j , ni j )∥ci j∥ℓ2

λmax(Un
j ,U

n
i , n j i )∥c j i∥ℓ2 for all i ∈ V◦. This property allows for some computation savings in the construction

f dL,n . For all i ∈ V◦ and all i < j ∈ I(i), one computes dL,n
i j = λ

max(Un
i ,U

n
j , ni j )∥ci j∥ℓ2 , and for all i ∈ V∂ and

ll i < j ∈ I(i), one computes dL,n
i j = max(λmax(Un

i ,U
n
j , ni j )∥ci j∥ℓ2 , λmax(Un

j ,U
n
i , n j i )∥c j i∥ℓ2 ). Finally one sets

L,n
i j ← max(dL,n

i j , (dL,n)T
i j ) for all j ∈ I∗(i), where (dL,n)T is the transpose of dL,n . The diagonal entries in dL,n

re obtained by setting dL,n
ii := −

∑
j∈I∗(i) dL,n

i j . This technique saves almost half the computing time for dL,n
i j [23,

5.2.1]. Once dL,n is known, the time-step size is defined by

τn := ccfl×min
(
−

mi
L,n

)
, (3.2)
i∈V 2di i

5
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where 0 < ccfl ≤ 1 is a user-defined constant. The condition ccfl ≤ 1 is shown in [31] to be sufficient to guarantee
that the low-order method is invariant domain preserving. The time-step size is computed at the first forward-Euler
step of the SSPRK(3,3) algorithm, and this time-step size is used for the three stages of the hyperbolic update.
Then according to the Strang splitting algorithm (2.9), the time-step size used in the parabolic update is 2τn , and
the time-step size used in the last hyperbolic update is again τn . At the end of the entire process the new time level
is tn
+ 2τn .

The low-order update produced by the forward-Euler step as defined in [31] is

mi (UL,n+1
i − Un

i ) = τn

∑
j∈I(i)

FL
i j , FL

i j := −f(Un
j )ci j + dL,n

i j (Un
j − Un

i ). (3.3)

he CFL condition ccfl ≤ 1 guarantees that UL,n+1 remains inside the invariant domain. Consequently, for our choice
f Lagrange elements (see Section 2.2) the invariant domain property holds true for the finite element function uL,n+1

h
31, Corollary 4.3].

emark 3.1. [High aspect-ratio meshes] The time-step size τn determined by the theoretical estimate (3.2) decreases
ignificantly as the aspect ratio of the cells increases. This may be problematic when using meshes with high aspect-
atio cells to resolve thin boundary layers (see Section 6.4); in this case the aspect ratios can reach values up to
0:1 or more. For these configurations we have found that a better way to estimate τn is to adaptively increase the
alue of ccfl in (3.2) beyond the limit of 1. This requires to additionally check whether the low-order solution UL,n+1

till remains in the admissible set, and if not to restart the time step with a smaller ccfl number. While this makes
ach time step slightly more expensive, the significant increase of the CFL number compensates for the otherwise
ncreased cost of using a high aspect-ratio cells.

To save arithmetic operations and prepare the ground for the limiting step, we introduce the auxiliary states U
n
i j

nd rewrite (3.3) as follows:

U
n
i j :=

1
2

(Un
i + Un

j )−
1

2dL,n
i j

(f(Un
j )− f(Un

i ))ci j , ∀ j ∈ I(i), (3.4)

UL,n+1
i = Un

i +
2τn

mi

∑
j∈I(i)

dL,n
i j U

n
i j . (3.5)

The auxiliary states U
n
i j are essential to define the bounds that must be guaranteed after limiting. In particular,

if one wants to limit some quasi-concave functional Ψ , one has to compute the local lower bound Ψmin
i :=

in j∈I(i) Ψ (U
n
i j ). In the numerical illustrations reported in the paper, limiting is done with the following two

unctionals: Ψ♭(U) = ϱ and Ψ♯(U) = −ϱ (where recalling the notation introduced in Section 2.1 we have set
:= ρ(U)). One uses Ψ♭ to enforce a local minimum principle on the density and one uses Ψ♯ to enforce a local

maximum principle. Additional limiting has to be done to ensure that the specific internal energy is positive. This is
done in the case of a γ -law equation of state by controlling the exponential of the specific entropy, Φ(U) = ε(U)ϱ−γ

here ε(U) := E− |m|
2

2ρ is the internal energy. For theoretical reasons explained in [32, §3.2], the local lower bound
or this functional uses the states Un

j instead of the auxiliary states U
n
i j , i.e., one defines Φmin

i := min j∈I(i) Φ(Un
j ).

3.2. High-order step

The computation of the provisional high-order update proceeds as for the low-order update with two exceptions:
(i) the graph viscosity is reduced; (ii) the lumped mass matrix is replaced by an approximation of the consistent
mass matrix to correct third-order dispersive effects. More precisely the high-order viscosity is defined as follows:
dH,n

i j = ( αi+α j
2 )dL,n

i j , where 0 ≤ αi ≤ 1 is an entropy-production indicator (see [32, §3.4] and Maier and Kronbichler
[23] for some possible implementations). The key idea is that αi + α j is small in regions where the solution is
smooth and there is no entropy production. We introduce FH to be the vector of the high-order fluxes whose entries
are (d + 2)-valued and defined for every i ∈ V by

FH
i :=

∑
FH

i j where FH
i j := −f(Un

j )ci j + dH,n
i j (Un

j − Un
i ). (3.6)
j∈I(i)

6
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Recalling that M−1
≈M−1

L (I+ B), the high-order update is obtained by setting

ML (UH,n+1
− Un) := τn(I+ B)FH. (3.7)

Instead of using this expression, we proceed as in [22, §3.4] to prepare the ground for limiting. Recalling that
bi i = −

∑
j∈I∗(i) b j i , we rewrite the high-order update (3.7) as follows:

mi (UH,n+1
i − Un

i ) = τnFH
i + τn

∑
j∈I∗(i)

bi j FH
j − b j i FH

i . (3.8)

Now we subtract (3.3) from (3.8) and obtain

mi UH,n+1
i = mi UL,n

i + τn

∑
j∈I∗(i)

bi j FH
j − b j i FH

i + (dH,n
i j − dL,n

i j )(Un
j − Un

i ). (3.9)

The state UH,n+1 is a high-order approximation of u(tn+1) if the viscosity dH,n
i j is indeed small, but it may not

e admissible. To save arithmetic operations, one does not compute UH,n+1 since the actual high-order update is
btained after limiting as explained in the next subsection.

.3. Limiting

Recall that, as discussed at the end of Section 3.1, we want the high-order update to satisfy Ψ♭(Un+1
i ) ≥ Ψmin

♭,i ,
♯(Un+1

i ) ≥ Ψmin
♯,i , and Φ(Un+1

i ) ≥ Φmin
i for all i ∈ V . For this purpose we rewrite (3.9) as follows:

UH,n+1
i =

∑
j∈I∗(i)

λi (UL,n
i + Pn

i j ), (3.10)

with Pn
i j :=

τn

miλi

(
bi j FH

j − b j i FH
i + (dH,n

i j − dL,n
i j )(Un

j − Un
i )
)
, (3.11)

where λi := (card(I(i))− 1)−1. This motivates computing the final (flux-limited) solution as

Un+1
i = UL,n+1

i +

∑
j∈I∗(i)

λiℓi j Pn
i j , (3.12)

where ℓi j ∈ [0, 1] for all {i, j} are the limiters. Observe that if ℓi j = 1 for all j ∈ I∗(i) then Un+1
i = UH,n+1

i , and if
i j = 0 for all j ∈ I∗(i) then Un+1

i = UL,n+1
i . For every j ∈ I∗(i), we define ℓi

j to be the largest number in [0, 1]
hat is such that

Ψ♭(UL,n
i + ℓ

i
j Pi j ) ≥ Ψmin

♭,i , Ψ♯(UL,n
i + ℓ

i
j Pi j ) ≥ Ψmin

♯,i , Φ(UL,n
i + ℓ

i
j Pi j ) ≥ Φmin

i . (3.13)

his number always exists since by construction ℓi
j = 0 satisfies the above three constraints. Finding this number

or a very close lower estimate thereof) is quite simple and explained in [20,23]. Then, in order to maintain
ass conservation, ℓi j is defined by setting ℓi j = min(ℓi

j , ℓ
j
i ). This symmetry property, together with the identity

iλi P i j = −m jλ j P j i , ensures that the mass of the high-order update is unchanged by limiting, i.e.,∑
i∈V

mi Un+1
i =

∑
i∈V

mi UL,n+1
i . (3.14)

eplacing ℓi
j by min(ℓi

j , ℓ
j
i ) does not violate the invariant domain properties since A is convex, [20].

Since Un+1
i =

∑
j∈I∗(i) λi (UL,n+1

i + ℓi j Pn
i j ) +

∑
j∈I∗(i) λi (1 − ℓi j )Pn

i j , and
∑

j∈I∗(i) λi (UL,n+1
i + ℓi j Pn

i j ) satisfies
ll the bounds, one can repeat the above process and compute a new set of limiters by replacing UL,n+1

i by

j∈I∗(i) λi (UL,n+1
i + ℓi j Pn

i j ) and Pn
i j by (1 − ℓi j )Pn

i j . We have observed that this iterative limiting process must
e applied at least two times to reach optimal convergence. All the simulations reported in the paper are done with
wo passes of limiting.

Let n denote the outward unit normal vector field on ∂D. To properly formulate the conservation properties of
he method after limiting, we define an approximation of the normal vector and boundary mass at every boundary
ode i ∈ V∂ by setting

ni :=

∫
∂D ϕi n ds

mi
∂

, mi
∂
:=

 ∫
∂D
ϕi n ds


ℓ2
. (3.15)
7
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Lemma 3.2 (Balance of Mass and Admissibility After Limiting).

(i) For all uh :=
∑

i∈V Uiϕ ∈ P(Th), the following holds true:
∫

D uh dx =
∑

i∈V mi Ui .
(ii) Let Un be a collection of admissible states. Let Un+1 be the update after one forward-Euler step and after

limiting. Then Un+1 is admissible under the condition ccfl ≤ 1 and∑
i∈V

mi Un+1
i + τn

∑
i∈V∂

m∂
i f(Un

i )ni =
∑
i∈V

mi Un
i , (3.16)

roof. See A.1 in Appendix A.

emark 3.3 (Literature). The convex limiting technique is a generalization of the Flux Corrected Transport that
ccommodates quasi-concave constraints. (Recall that FCT is by design adapted to affine constraints; see e.g., Boris
nd Book [33], Zalesak [34], Kuzmin et al. [35].) Convex limiting has been introduced in [32], Guermond et al.
20] for the Euler equations and general hyperbolic systems. We refer to Maier and Kronbichler [23], Maier and
omas [36] for a detailed discussion of a high performance implementation of the hyperbolic solver part of the
ystem.

. Euler boundary conditions

In this section we describe how boundary conditions are enforced in the hyperbolic step. To the best of our
nowledge, the implementation details of the various boundary conditions considered in this section for continuous
nite elements, and the associated theoretical results regarding conservation and admissibility are original.

.1. Overview

Since the time stepping is explicit, the boundary conditions are enforced by post-processing the approximation
roduced at the end of each stage of the SSPRK(3,3) algorithm. The Butcher tableau of the explicit SSPRK(3,3)
lgorithm is given in the left panel of (4.1). Given some ODE system ∂t u = L(t, u) and un

:= u(tn), the steps to
pproximate the solution to ∂t u = L(t, u) at tn+1 are shown in the right panel of (4.1).

0 0
1 1 0
1
2

1
4

1
4 0

1
6

1
6

2
3

w(1)
:= un

+ τn L(tn, un),

w(2)
:=

3
4 un
+

1
4 (w(1)

+ τn L
(
tn + τn, w

(1))
)
,

un+1
:=

1
3 un
+

2
3 (w(2)

+ τn L
(
tn + 1

2τn, w
(2))
)
.

(4.1)

The intermediate stages w(1), w(2) and the final stage un+1 approximate u at tn+1
= tn
+τn , tn

+
1
2τn , and tn

+τn ,
respectively. Hence, the time-dependent boundary conditions have to be enforced on the intermediate stages w(1),
w(2) and the final step un+1 (using the corresponding collocation times).

We consider two types of boundary conditions: (i) Slip condition, also called “reflecting”: v·n = 0; (ii) Non-
reflecting condition. Let ∂Ds ⊂ ∂D be the boundary where one wants to enforce the slip condition, and let ∂Dnr
denote the complement of ∂Ds in ∂D, i.e., ∂D\∂Ds. The index nr reminds us that is a non-reflecting boundary
(either an inflow or an outflow boundary). Let V∂s ⊂ V∂ be the collection of all the boundary degrees of freedom

such that ϕi |∂Ds ̸≡ 0. Similarly, V∂nr ⊂ V∂ is the collection of all the boundary degrees of freedom i such that
ϕi |∂Dnr ̸≡ 0. We now define the normal vectors associated with the degrees of freedom in V∂s and V∂nr:

ns
i :=

∫
∂Ds

ϕi n ds

∥
∫
∂Ds

ϕi n ds∥ℓ2
, nnr

i :=

∫
∂Dnr

ϕi n ds

∥
∫
∂Dnr

ϕi n ds∥ℓ2
. (4.2)

Notice that although ∂Ds ∩ ∂Dnr = ∅, the two index sets V∂s and V∂nr may not be disjoint. Hence, there may
exists two notions of the normal vector at the nodes sitting at the interface between ∂Ds and ∂Dnr. Let us set
mi

s
:= ∥

∫
∂Ds

ϕi n ds∥ℓ2 and mnr
i := ∥

∫
∂Dnr

ϕi n ds∥ℓ2 . Then (3.15) and (4.2) imply that mi
∂ni = mi

sni
s
+ mnr

i nnr
i .

In the following subsections, the symbol U denotes the state obtained at the end of one forward-Euler step. This
state has to be postprocessed to account for the boundary conditions. It could be any one of the three states W(1),

(2) n+1 P
W , or U . The postprocessed state is denoted U .

8
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4.2. Slip boundary condition

We start with the slip boundary condition. Let i ∈ V∂s and let Ui = (ϱi ,Mi ,Ei )T, i.e., ϱi := ρ(Ui ), Mi := m(Ui ),
and Ei = E(Ui ). We enforce the slip boundary condition at i by setting

UP
i := (ϱi ,Mi − (Mi ·ni

s)ni
s,Ei )T. (4.3)

4.3. Non-reflecting boundary condition

We now consider non-reflecting boundary conditions at i ∈ V∂nr. To simplify the notation, we omit the node
index i since no argument regarding conservation properties is made. We also write n instead of nnr

i . We propose
two post-processing techniques: (i) one based on Godunov’s method; (ii) the other uses the characteristic variables
(or proxies thereof).

4.3.1. Godunov’s method
We assume that on the outer side of the boundary we are given some ideal, admissible state UD

i = (ϱD,MD,ED)
related to the far-field conditions, which we call Dirichlet state. Then we consider the Riemann problem ∂tv +

∂x (f(v)n) = 0 with left data U and right data UD. Let G(n,U,UD) denote the value of the solution of the Riemann
problem at x = 0. The post-processing then consists of setting

UP
= G(n,U,UD). (4.4)

Notice that UP is automatically admissible. Since this operation may be expensive, we propose an alternative
approach in the next section.

4.3.2. Characteristic variables
We now assume that the equation of state is described by the γ -law and propose a technique based on

characteristic variable. The method is loosely based on [37, §3] and has some similarities with [8, §2.6], but instead
of working on increments as in [8] we directly work on the characteristic variables. The key results of this section
are (4.9)–(4.12)–(4.14)–(4.15).

We define ϱ := ρ(U), M := m(U), P := p(U) = (γ − 1)ϱe(U), S(U) := ϱ−γP, and set

V := ϱ−1M, Vn := V·n, V⊥ := V− (V·n)n, a :=
√
γPϱ−1, (4.5)

e start by recalling that, although characteristic variables do not exist in general for the one-dimensional system
tv + ∂x (f(v)n) = 0, characteristic variables and characteristic speeds do exist under the assumption that the flow
s locally isentropic. Making this assumption, we obtain{

λ1(U, n) := Vn − a,
C1(U, n) := Vn −

2a
γ−1  

mutiplicity 1

{
λ2(U, n) := Vn,

S(U), V⊥  
mutiplicity d

{
λ3(U, n) := Vn + a,
C3(U, n) := Vn +

2a
γ−1 .  

mutiplicity 1

(4.6)

Since the eigenvalues are ordered, we distinguish four different cases:

(i) supersonic inflow Vn < 0 and a < |Vn| λ1(U, n) ≤ λ2(U, n) ≤ λ3(U, n) < 0
(ii) subsonic inflow Vn < 0 and |Vn| ≤ a λ1(U, n) ≤ λ2(U, n) < 0 ≤ λ3(U, n)

(iii) subsonic outflow 0 ≤ Vn and |Vn| < a λ1(U, n) < 0 ≤ λ2(U, n) ≤ λ3(U, n)
(iii) supersonic outflow 0 ≤ Vn and a ≤ |Vn| 0 ≤ λ1(U, n) ≤ λ2(U, n) ≤ λ3(U, n).

We assume that on the outer side of the boundary we are given some Dirichlet state UD
:= (ϱD,MD,ED). We

re going to postprocess U such that the characteristic variables of the post-processed state UP associated with
n-coming eigenvalues match those of the prescribed Dirichlet state, while leaving the out-going characteristics
nchanged. More precisely, the proposed strategy consists of seeking UP so that the following holds true:

Cl(UP )=

{
Cl(UD) if λl(U, nnr) < 0,

nr l ∈ {1, 3}, (4.7)

Cl(U) if 0 ≤ λl(U, n ),

9
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S(UP )=

{
S(UD) if λ2(U, nnr) < 0,
S(U) if 0 ≤ λ2(U, nnr),

(VP )⊥=

{
(VD)⊥ if λ2(U, nnr) < 0,
V⊥ if 0 ≤ λ2(U, nnr).

(4.8)

Note that the condition λ2(U, nnr) < 0 is equivalent to |λ1(U, nnr)| > |λ3(U, nnr)|.) Recalling that we assumed
hat the evolution of the flow field is locally isentropic, we now solve the above system in the four cases identified
bove.

upersonic inflow condition. Assume that λ1(U, n) ≤ λ2(U, n) ≤ λ3(U, n) < 0. Since all the characteristics enter
he computational domain, the post-processing consists of replacing U by UD:

UP
= UD. (4.9)

ubsonic inflow boundary. Assume that λ1(U, n) ≤ λ2(U, n) < 0 ≤ λ3(U, n). Then, UP is obtained by solving the
ystem

C1(UP ) = C1(UD), S(UP ) = S(UD), (VP )⊥ = (VD)⊥, C3(UP ) = C3(U). (4.10)

otice that, as expected, d + 1 Dirichlet conditions are enforced. This gives VP
n =

1
2 (C1(UD) + C3(U)), PP

=

S(UD)(ϱP )γ , and

aP
=

γ−1
4 (C3(U)− C1(UD)) = γ−1

4 Vn +
a
2
−

γ−1
4 VD

n +
aD

2 . (4.11)

Notice that 0 < aP if γ ≤ 3 and γ−1
2 VD

n ≤ aD, which is always the case for realistic γ -laws. (Here γ−1
2 VD

n ≤ aD

is an admissibility condition on the Dirichlet data.) Using (aP )2
= γPP (ϱP )−1 with PP

= S(UD)(ϱP )γ , the
post-processing for a subsonic inflow boundary condition consists of setting:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρP =

(
1

γ S(UD)

(
γ − 1

4

(
C3(U)− C1(UD)

))2
) 1
γ−1

,

MP
= ρP

(
(VD)⊥ + VP

n n
)
, with VP

n =
1
2

(
C1(UD)+ C3(U)

)
,

EP
=

1
γ − 1

PP
+

1
2

∥MP
∥

2
ℓ2

ϱP
, with PP

= S(UD)(ϱP )γ .

(4.12)

Subsonic outflow boundary. Assume that λ1(U, n) < 0 ≤ λ2(U, n) ≤ λ3(U, n). Then, UP is obtained by solving
he system

C1(UP ) = C1(UD), (VP )⊥ = V⊥, S(UP ) = S(U), C3(UP ) = C3(U). (4.13)

otice that, as expected, only one Dirichlet condition is enforced. This gives VP
n =

1
2 (C1(UD) + C3(U)), PP

=

S(U)(ϱP )γ , and

aP
=
γ − 1

4
(C3(U)− C1(UD)) =

γ − 1
4

Vn +
a
2
−
γ − 1

4
VD

n +
aD

2
.

Here again we have 0 < aP if γ ≤ 3 and if the admissibility condition γ−1
2 VD

n ≤ aD holds true.
Using (aP )2

= γPP (ϱP )−1 with PP
= S(U)(ϱP )γ , the post-processing consists of setting:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρP =

(
1

γ S(U)

(
γ − 1

4

(
C3(U)− C1(UD)

))2
) 1
γ−1

,

MP
= ρP

(
V⊥ + VP

n n
)
, with VP

n =
1
2

(
C1(UD

+ C3(U))
)
,

EP
=

1
γ − 1

PP
+

1
2

∥MP
∥

2
ℓ2

ϱP
, with PP

= S(U)(ϱP )γ .

(4.14)

upersonic outflow boundary condition. Assume that 0 ≤ λ1(U, n) ≤ λ2(U, n) ≤ λ3(U, n). Since all the
haracteristics exit the domain, the post-processing consists of not doing anything:

UP
= U. (4.15)
10
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Remark 4.1 (Literature). It is established in [37, §3] that appropriate non-reflecting boundary conditions for the one-
imensional Riemann problem ∂tv + ∂n(f(v)n) = 0 are ∂t C1(U)+ a

γ−1∂t s(U) = 0 in the subsonic outflow situation

nd ∂t C1(U) = 0 plus ∂t s(U) = 0 (and ∂tV⊥ = 0) in the subsonic inflow situation, where s(U) = log(e(U)
1

γ−1 ϱ−1)
s the specific entropy. Assuming that the Dirichlet data are time-independent, these conditions can be rewritten
t (C3(U) − C3(UD)) + a

γ−1∂t (s(U) − s(UD)) = 0 and so on. Then, under the assumption that the flow is locally
sentropic at the boundary, these conditions exactly coincide with what is proposed above (notice that in this case
= (γ−1)es). Indeed, by setting C1(U)|t=0 = C1(UD), S(U)|t=0 = S(UD), (and V⊥(U)|t=0 = V⊥(UD)), the condition

t C1(U) = 0 yields C3(UP ) = C3(UD) for the subsonic outflow situation (see (4.14)) and it yields C1(UP ) = C1(UD),
(UP ) = S(UD), (and V⊥(UP )|t=0 = V⊥(UD)) for the subsonic inflow situation (see (4.12)).

No claim is made here about the optimality of the proposed artificial boundary conditions, in particular in regards
o their absorbing properties. We refer the reader to Fosso et al. [38] and the abundant literature cited therein for
ther approaches used in the finite difference context.

.3.3. Conservation and admissibility
We collect in this subsection conservation and admissibility properties of the post-processing method proposed

bove.

emma 4.2 (Slip Condition). Let i ∈ V∂s , let Ui ∈ A, and let UP
i as defined in (4.3).

(i) Then UP
i is also admissible, meaning UP

i ∈ A.
(ii) Assume also that the equation of state derives from an entropy s. Then s(UP

i ) ≥ s(Ui ).
(iii) For all i ∈ V∂s \V∂nr, the mass flux and the total energy flux of the postprocessed solution at i is zero (i.e.,

ρ(f(UP
i )ni ) = 0 and E(f(UP

i )ni ) = 0).

roof. See Lemma A.2 in Appendix A.

emma 4.3 (Non-reflecting Condition). Let i ∈ V∂nr and let Ui ∈ A. Let UP
i be defined either by (4.4) or by one

he conditions (4.9), (4.12), (4.14), (4.15) (with the γ -law assumption, γ ∈ (1, 3], and the admissibility condition
n the Dirichlet data γ−1

2 VD
≤ aD). Then UP

i ∈ A.

roof. Direct consequence of the definitions (4.9), (4.12), (4.14), (4.15).

We obtain the following result by combining Lemmas 4.2 and 4.3.

orollary 4.4 (Admissibility). The solution obtained at the end the RKSSP(3,3) algorithm after limiting and
ost-processing is admissible.

emma 4.5 (Global Conservation). Assume that V s
∂
= V∂ and Un satisfies the slip boundary condition (i.e.,

Mn
i ·ni = 0 for all i ∈ V∂ ). Then the solution obtained at the end the RKSSP(3,3) algorithm after limiting and

post-processing, say Un+1, satisfies
∑

j∈V m jϱ
n+1
j =

∑
j∈V m jϱ j

n and
∑

j∈V m j En+1
j =

∑
j∈V m j E j

n .

Proof. See Lemma A.3 in Appendix A.

5. Discretization of the parabolic problem

We describe in this section key details involved in the approximation of the parabolic operator SP (see (2.8)).
Given an admissible field un

h =
∑

i∈V Un
i ϕi at some time tn and given some time step size τn , we want to construct

an approximation of the solution to (2.8) at tn+1
:= tn

+ τn , say un+1
h =

∑
i∈V Un+1

i ϕi . Referring to (2.9), we recall
hat the time step used in the parabolic problem is twice that used in the hyperbolic step, but to simplify the notation
e still call the time step size τn in this entire section. The important point here is that positivity of the internal

nergy and conservation must be guaranteed. The steps described in Sections 5.1–5.2 are summarized in Algorithm

in Appendix C.

11
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5.1. Density, velocity, and momentum update

Recalling that in (2.8) the density does not change in time, we set

ϱn+1
i = ϱn

i , ∀i ∈ V. (5.1)

We use the Crank–Nicolson technique for the time stepping in (2.8b). The approximation in space is done by
sing the Galerkin technique with the lumped mass matrix. Let {ek}k∈{1:d} denote the canonical Cartesian basis of
d , and for all X ∈ Rd , let {Xk}k∈{1:d} denote the Cartesian coordinates of X. The discrete problem then consists

f seeking v
n+ 1

2
h :=

∑
i∈V V

n+ 1
2

i,k ϕi ek so that

ϱn
i mi V

n+ 1
2

i,k +
1
2τna(v

n+ 1
2

h , ϕi ek) = mi Mn
i,k +

1
2τnmi F

n+ 1
2

i,k , ∀i ∈ V, ∀k ∈ {1:d}, (5.2)

with a(v,w) :=
∫

D s(v):e(w) dx , and F
n+ 1

2
i,k :=

∫
D ϕi (x)ek · f (x, tn+ 1

2 ) dx . We consider three types of boundary
conditions on the velocity: (i) the no-slip condition v|∂D = 0; (ii) the slip condition v·n = 0 and n×(s(v)n) = 0;
(iii) and the homogeneous Neumann boundary condition s(v)n|∂D = 0. The assembling is done in two steps: (1) one
first assembles the system with homogeneous Neumann boundary conditions; (2) the correct boundary conditions
are implemented by post-processing the linear system. After the essential boundary conditions are enforced, and
once this linear system is solved (see Section 5.3), the velocity and the momentum are updated as follows:

Vn+1
i := 2V

n+ 1
2

i − Vn
i , Mn+1

i := ϱn+1
i Vn+1

i , ∀i ∈ V. (5.3)

5.2. Internal energy and total energy update

The second step of the parabolic solve consists of computing the specific internal energy (or temperature) and
updating the total energy. Before going into the details, we discuss the boundary condition. We consider two types
of boundary conditions: (i) Dirichlet: T|∂D = T ∂ ; (ii) homogeneous Neumann: ∂nT = 0. The assembling is done in
wo steps: (1) one first assembles the system with homogeneous Neumann boundary conditions; (2) the Dirichlet
oundary conditions are implemented by post-processing the linear system.

Here again we use the Crank–Nicolson technique for the time stepping in (2.8c), and the approximation in space
s done by using the Galerkin technique with the lumped mass matrix. First, we compute the rate of specific internal
nergy production caused by the viscous stress

K
n+ 1

2
i :=

1
mi

∫
D
s(v

n+ 1
2

h ):e(v
n+ 1

2
h )ϕi dx, ∀i ∈ V. (5.4)

Second, we compute the specific internal energy of un
h by setting set en

i := (ϱn
i )−1En

i −
1
2∥V

n
i ∥

2
ℓ2 for all i ∈ V .

Note that en
i > 0 since we assumed that un

h is admissible. Then, we seek the specific internal energy, e
n+ 1

2
h =∑

i∈V e
n+ 1

2
i ϕi , such that the following holds:

miϱ
n
i (e

n+ 1
2

i − en
i )+ 1

2τnb(e
n+ 1

2
h , ϕi ) = 1

2τnmi K
n+ 1

2
i , ∀i ∈ V, (5.5)

with b(e, w) := c−1
v κ

∫
D ∇e·∇w dx . Finally, we update the internal energy and the total energy:

en+1
i = 2e

n+ 1
2

i − en
i , En+1

i = ϱn+1
i en+1

i +
1
2ϱ

n
i ∥V

n+1
i ∥

2
ℓ2 , ∀i ∈ V. (5.6)

The algorithm is second-order accurate in time, but there is no guarantee that the internal energy stays positive
ecause the Crank–Nicolson scheme is not positivity preserving. If it happens that mini∈V en+1

i < 0, then limiting
ust be applied. This is done as described in [1, §5.3]. We briefly recall the technique. We compute a first-order,

nvariant-domain-preserving (i.e., positive) update of the internal energy by seeking eL,n+1
h =

∑
i∈V eL,n+1ϕi so that

he following holds:

n L,n+1 n L,n+1 1τ m K
n+ 1

2 , ∀i ∈ V. (5.7)
miϱi (ei − ei )+ τnb(eh , ϕi ) = 2 n i i

12
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Let eH,n+1
h :=

∑
i∈V eH,n+1ϕi be the solution to (5.5). Subtracting (5.7) from (5.5) yields

miϱ
n
i (eH,n+1

i − eL,n+1
i ) =

∑
j∈I∗(i)

Ai j , (5.8)

Ai j := −
1
2τnb(ϕ j , ϕi )(eH,n+1

j + en
j − 2eL,n+1

j − eH,n+1
i − en

i + 2eL,n+1
i ). (5.9)

he standard FCT limiting can be applied by setting miϱ
n
i (eH,n+1

i − eL,n+1
i ) =

∑
j∈I∗(i) ℓi j Ai j , see e.g., [33–35].

he reader is referred to [1, §5.3] for the computation of ℓi j . Once the internal energy is updated, the total energy
an also be updated by setting

En+1
i = ϱn+1

i en+1
i +

1
2ϱ

n
i ∥V

n+1
i ∥

2
ℓ2 , ∀i ∈ V. (5.10)

The main properties of the method presented here are collected in the following statement.

emma 5.1 (Positivity and Conservation). Let Un be an admissible state. Let Un+1 be the state constructed in the
arabolic substep. Then, Un+1 is an admissible state, i.e., Un+1

i ∈ A for all i ∈ V and all τn , and the following
olds for all i ∈ V and all τn:

ϱn+1
i = ϱn

i > 0, min
j∈V

en+1
j ≥ min

j∈V
en

j > 0, ∀i ∈ V, (5.11)

ssume that the slip or the no-slip boundary condition is enforced on the velocity everywhere on ∂D. Assume that
he homogeneous Neumann boundary condition is enforced on the internal energy everywhere on ∂D. Then the
ollowing holds true for all τn:∑

i∈V

mi En+1
i =

∑
i∈V

mi En
i +

∑
i∈V

τmi F
n+ 1

2
i ·V

n+ 1
2

i . (5.12)

Proof. See [1, Thm. 5.5].

5.3. Matrix-free geometric multigrid

For the deal.II-based finite element implementation discussed in Section 6 (see [13]), the linear systems (5.2)
and (5.5) are solved iteratively using matrix-free operator evaluations [39]. The action of the matrix on a vector
is implemented by redundantly computing the information contained in the stencil on the fly through the finite
element integrals. On modern hardware, computations are less expensive than data movement [24,40], making a
matrix-free evaluation several times faster than a sparse-matrix vector product due to the reduced memory traffic.
This is especially relevant for the vector-valued velocity: the block-structured matrix–vector multiplication couples
the velocity components, whereas the cell-wise integrals in the matrix-free evaluation only couple these components
at the quadrature-point level without additional data transfer. Besides yielding faster matrix–vector products, the
matrix-free approach also avoids the cost of matrix assembly. The higher arithmetic intensity in the matrix-free
evaluation is leveraged by cross-element SIMD vectorization of the relevant operations [39,41].

Regarding the selection of the iterative solvers, we choose among two options. When the cell-based Reynolds
number using the diameter of the cells as length scale is above one, the mass matrix contribution in (2.8b) dominates
due to the limit imposed by the hyperbolic problem on the time step. This argument also holds for the internal
energy equation provided the Prandtl number is not too large. In that case, the diagonal mass matrix is an optimal
preconditioner for the conjugate gradient algorithm, giving iteration counts below 10. If the mesh becomes very
fine for a given viscosity level, the elliptic contributions become dominant instead. Then, we equip the conjugate
gradient solver with a geometric multigrid preconditioner that steps into successively coarser levels l ∈ {1:L} where
= 1 refers to the coarsest mesh and l = L refers to the finest mesh, see Kronbichler and Wall [24], Clevenger
t al. [42] for details on the parallel scaling and performance. A Chebyshev iteration of degree three (i.e., three
atrix–vector products) around the point-Jacobi method is used for pre- and post-smoothing, using parameters to

moothen in a range [0.08λ̂max, 1.2λ̂max] with the maximal eigenvalue estimate λ̂max computed every four time steps
by a Lanczos iteration with 12 iterations. In order to improve parallel scaling of the V-cycle, we limit the coarsening
to the mesh levels l ∈ {Lmin :L}, with Lmin such that the cell-based Reynolds number exceeds unity. On the coarse
level, a few iterations suffice to solve the system accurately, which is done by a Chebyshev iteration aiming to
reduce the residual by a factor of 103 according to the a-priori error estimate. The multigrid solver typically takes
3 to 5 iterations to converge. To increase the throughput, the multigrid V-cycle is run in single precision [43,44].
13
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Table 1
Convergence study of the approximation of the Becker solution [45] on a mesh
sequence H of successively refined uniform meshes with CFL = 0.3. The columns
labeled “δp” show the L p-norm of the consolidated error [1, Eq. (7.4)].

gridpoints δ1 rate δ2 rate δ∞ rate

4225 4.68× 10−3 – 5.96× 10−3 – 1.29× 10−2 –
16641 3.88× 10−4 3.59 9.34× 10−5 2.68 2.89× 10−3 2.16
66049 8.73× 10−5 2.15 2.35× 10−5 1.99 8.02× 10−4 1.85

263169 2.17× 10−5 2.01 5.90× 10−5 1.99 2.10× 10−4 1.93

6. Verification, validation and benchmarks

The method described above has been implemented in a code called ryujin which is freely available online4

13] under a permissible open source license.5 This code is based on the finite element library deal.II [11,12]
nd uses mapped continuous Q1 finite elements. We discuss in this section a number of verification and benchmark
onfigurations to demonstrate that the algorithm described herein is robust, accurate and scalable. In particular, we
se a 2D shocktube configuration proposed by Daru and Tenaud [9], Daru and Tenaud [10] to demonstrate grid
onvergence; see Section 6.3. Following [14] and to allow for rigorous quantitative comparisons with other research
odes, test vectors obtained from our computation of extrema of the skin friction coefficient are made freely available
15]. We then demonstrate that the method can reliably predict pressure coefficients on the well-studied supercritical
irfoil Onera OAT15a [16] in the supercritical regime at Mach 0.73 in three-dimensions; see Section 6.4. Finally, a
eries of synthetic benchmarks are presented to assess the performance of the compute-kernel and the strong and
eak scalability of our implementation (Section 6.5).

.1. Verification

The hyperbolic kernel and the parabolic kernel of ryujin have been verified on various analytical solutions
o ensure the correctness of the implementation; see e.g., [23,36]. We now demonstrate the correctness of the full
lgorithm in 2D on a viscous shockwave problem that has an exact solution described in Becker [45], see also
1, §7.2] and Johnson [46]. With the parameters given in [1, §7.2; Eqs. (7.1)–(7.4)], we approximate the Becker
olution on a mesh sequence H of successively refined uniform meshes. The computational domain is the unit
quare with Dirichlet boundary conditions on the left and right boundaries, and periodic boundary conditions on
he upper and lower boundaries. We slightly deviate from [1] by choosing the velocity of the Galilean frame to be
∞ = 0.125 and choosing the CFL number 0.3. The source code and the parameter files are archived on the online
latform Zenodo; see [13,15]. As evidenced in Table 1, we observe second-order convergence in space and time in
he maximum norm.

.2. Non-reflecting conditions

We now evaluate the performance of the non-reflecting boundary conditions described in Section 4.3 by using
series of tests proposed in Fosso et al. [38]. We solve the Euler equations in the domain D := [−1, 1]2 with the

nitial data

ρ0(x) = ρ∞, (6.1)

v0(x) = v∞ + v∞r−1
0 ψ(∥x − x0∥ℓ2 )A(x − x0), (6.2)

p0(x) = p∞ − 1
2ρ∞v

2
∞
ψ2(∥x − x0∥ℓ2 ), (6.3)

with v∞ = (v∞, 0)T, ψ(r ) := e
1
2 (1− r2

r2
0

)
and A :=

(
0 −1
1 0

)
. We take v∞ = 1 and ρ∞ = 1. We use the velocity

perturbation v∞ and the Mach number M∞ as parameters. The pressure p∞ is defined to be ρ∞
γ

a2
∞

where a∞ := v∞
M∞

4 https://github.com/conservation-laws/ryujin.
5 https://spdx.org/licenses/MIT.html.
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Fig. 1. Tests on the non-reflecting boundary conditions.

is the sound speed. Four cases are considered: (i) M∞ = 0.5, v∞ = 0.75; (ii) M∞ = 0.5, v∞ = 0.25; (iii)
M∞ = 0.05, v∞ = 0.75; (iv) M∞ = 0.05, v∞ = 0.25. The simulations are done on a 80×80 mesh. We enforce the
non-reflecting boundary condition on the four sides of the domain. We test the Riemann solution technique described
in Section 4.3.1 and the method based on the characteristic variables described in Section 4.3.2. All the tests are
done with CFL = 0.75. We show in Fig. 1 the quantities δ1(t) :=

∥v(·,t)−v∞∥L∞(D)
∥v∞∥L∞(D)

and δ2(t) :=
∥∇×v(·,t)∥L∞(D)
∥∇×v0∥L∞(D)

as
functions of time over the time interval [0, 4]. The label “Riemann S.” refers to the method from Section 4.3.1 and
the label “Charac. V.” refers to the method from Section 4.3.2. Since the center of the vortex crosses the outflow
boundary at t = 1, the faster δ1 and δ2 go to zero as t grows, the better the non-reflecting properties of the boundary
condition are. We observe that the method using the exact solution to a Riemann problem is slightly more efficient
than that using the characteristics variables when the velocity perturbation is large (M∞ = 0.5, v∞ = 0.75). The
method using the characteristic variables performs as well as the method using the Riemann solution in the cases
(ii)–(iii)–(iv). Overall the Riemann solution method has properties similar to the method labeled “OC2” in Fosso
et al. [38].

6.3. 2D shocktube benchmark

We now illustrate the accuracy of the proposed algorithm by testing it against a challenging two-dimensional
benchmark problem introduced in the literature by Daru and Tenaud [9], Daru and Tenaud [10]. The configuration
is a shocktube problem in a square cavity D := (0, 1)2 where a shock interacts with a viscous boundary layer. A
lambda shock is formed as a result of this interaction; see Fig. 2(a). The fluid is initially at rest at t = 0. There
are two different states separated by a diaphragm at {x = 1

2 }. The density, velocity and pressure on the left-hand
side of the diaphragm are ρL = 120, vL = 0, pL = ρL/γ . The states on the right-hand side are ρR = 1.2, vR = 0,
pR = ρR/γ . A shock, a contact discontinuity and an expansion wave are created after the diaphragm is broken.
he viscous shock and the contact wave move to the right, whereas the expansion wave moves to the left. A thin
iscous boundary layer is created on the bottom wall of the cavity as the shock and the contact waves progress
oward the right wall. The shock reaches the right wall at approximately t ≈ 0.2, is reflected, and moves back to

the left thereafter. The contact discontinuity remains stationary close to the right wall after it interacted with the
15
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Fig. 2. The 2D shocktube benchmark: (a) zoom ([0.5, 1]× [0, 0.5]) of a schlieren plot at t = 1.00 showing the interactions of the reflected
hock wave with the viscous boundary layer. (b) postprocessed skin friction coefficient C f at time t = 1.00. The continuous green line is
he numerical result with the finest level L14. The extrema are computed by means of extrapolation.

hock. A lambda shock is created as the shock interacts with the viscous boundary layer. The various mechanisms
t play in this problem are described in [9, §6] and [10, §5 & §6].

The equation of state is p = (γ −1)ρe with γ = 1.4. The dynamics viscosity is µ = 10−3 and the bulk viscosity
s set to 0. The Prandtl number is Pr = µcp

κ
= 0.73, where cp =

γ

γ−1 . The no-slip boundary condition is enforced
on the velocity. The homogeneous Neumann boundary condition is enforced on the internal energy, i.e., the tube is
thermally insulated. Due to symmetry, the computation is done in the half domain (0, 1)×(0, 1

2 ), and the boundary
conditions v·n = 0, (e(u)n)·τ = 0 are enforced at {y = 1

2 }, where τ is one of the two tangent unit vectors along the
boundary {y = 1

2 }. Denoting the vertical component of the velocity by vy , the above boundary condition amounts
to enforcing vy = 0 and ∂yvy = 0.

As in [9,10], we compute the skin friction coefficient on the bottom wall [0, 1]×{0}. We estimate this quantity
for all the degrees of freedom i ∈ V∂s by using the following expression:

C f(xi ) :=
1

1
2ρ∞∥v∞∥

2
l2

( 1
m̃∂

i

∫
∂Ds

ϕi τ ·(s(vh)n) ds
)
ν
, m̃∂

i :=

∫
∂Ds

ϕi ds. (6.4)

ur goal is to observe the convergence of this quantity as the meshes are refined. To this end, we compute the
ocal maxima and minima of C f for a mesh sequence composed of successively refined structured quadrilateral

eshes ranging from refinement level L 11 (8 M grid points) to L 14 (512 M grid points). The meshes are graded
y transforming a uniform mesh in y-direction subject to the mapping y ↦→ 1 − (1 − y)1/5. The results for all

these grids are shown in Fig. 6 in Appendix D. Convergence is observed as the mesh size goes to zero. The results
obtained on the finest mesh level L 14 are shown in Fig. 2(b). The values of the local minima and local maxima of

f obtained on the grids L 11, L 12, L 13, and L 14 are reported in Table 2 and identified with symbols in Fig. 6
in Appendix D. We also show in this table the extrapolated values of C f that have been obtained by using the open
source software gnuplot (see http://www.gnuplot.info/). This is done by fitting the four values of C f obtained on
the grids L 11, L 12, L 13, and L 14 with the linear function a + b h using the nonlinear Levenberg–Marquardt
east squares technique. The 12th and 13th extrema (global maximum and minimum) have been extrapolated with
onvergence orders that are slightly higher, i.e., a+ b h1.5 and a+ b h1.2, respectively. We report the fit value a and
he asymptotic standard error in the column labeled “extrapolated” in Table 2 in Appendix D. The results suggest
hat the computation is indeed in the asymptotic regime with the normalized asymptotic standard error ∆C f

∆Cf,norm
maller than 0.2% where ∆Cf,norm := max C f(extrap.) − min C f(extrap.). We also give in this table the values of

f reported in [10,14]. These results have been obtained with a 7th-order method called OSMP7 on a 2000×4000
uniform grid. The relative deviation reported in the last column of Table 2 is defined to be C f(OSMP7)−C f(extrap.)

∆Cf,norm
.

e report generally good agreement with the OSMP7 results with a relative deviation that is generally less below
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1%. There are some noticeable differences though on the 13th, 15th, and 17th extrema where the deviations are
−2.77%, 2.86%, and 3.99%, respectively. We conjecture however that the results reported here are probably slightly
more accurate than those from [10] since our finest grid is significantly finer that those used therein. Following
the initiative of [14] and to facilitate rigorous quantitative comparisons with other research codes, we provide more
detailed test vectors of the skin friction coefficient at [15]. We also reiterate the suggestion made in [10] that this
problem is an interesting benchmark that should be used more systematically in the literature to test compressible
Navier–Stokes codes.

6.4. Onera OAT15a airfoil

The Onera OAT15a airfoil has been extensively studied in the literature. Experimental results for the supercritical
ow regime at Mach 0.73 and at Reynolds number 3×106 have been published in Jacquin et al. [47], Jacquin et al.

[48]. Various numerical simulations of this configuration are also available in the literature, see e.g., Deck [16],
Deck and Renard [17], Nguyen et al. [18]. We are interested in predicting the pressure coefficient Cp

Cp(x) :=
⟨p(x, t)⟩t − p∞

1
2ρ∞v

2
∞

,

at Mach 0.73 with an angle of attack of 3.5◦ (deg). The symbol ⟨·⟩t denotes the time average. Here, ρ∞, v∞ and
p∞ are the free-stream density, velocity and pressure values. We take ρ∞ = 1.225 kg/m3, v∞ = 248.42 m/s,
p∞ = 1.013 × 105 N/m2 in our computation. The ideal gas equation of state is used with γ = 1.401. We set the
hear viscosity to µ = 1.789 × 10−5Ns/m2 and the bulk viscosity to λ = 0. The thermal conductivity is set to
−1
v κ = 3.616× 10−5Ns/m2.

The airfoil is shown in Fig. 3. The chord length is 23 cm as in the experiment [47,48]. In order to resolve the
oundary layer, a graded mesh is constructed using a “manifold” mapping [49]. As our primary objective is to
ompute the pressure coefficient, a moderate grading using x ↦→ x2 is chosen. This yields a 2D mesh with about

0.5 million quadrilaterals. The near wall resolution for this mesh is approximately ∆x ≈ 250 µm, ∆y ≈ 50 µm.
he 2D mesh is then extruded with 513 repetitions resulting in a 3D mesh composed of about 274 million grid
oints. The resolution in the z-direction is ∆z ≈ 90 µm. The ratio of the extension of the foil in the transversal
irection to the chord length is 0.20.

The no-slip boundary condition is enforced on the airfoil. The slip boundary condition is enforced on the two
ertical planes bounding the computational domain in the z-direction. The non-reflecting boundary condition using
he characteristics variables and described in Section 4.3.2 is used for the outer boundary. The fluid is assumed
o be thermally insulated on all the boundaries. Notice that deviating from the experimental setup [48, §2] and
ther numerical configurations [18, Fig. 2], we do not enforce a boundary-layer transition at x/c = 0.07 with a
numerical) trip wire.

The Cp profile reported in Fig. 3 is computed by averaging over 900 temporal snapshots sampled from the
omputation every ∆t = 1.0×10−4 and by eventually averaging the results in the z-direction. The experimental
esults have been provided to us by Prof. J. Peraire and have been extracted from [48, Fig. 7] using the online tool
ttps://automeris.io/WebPlotDigitizer. We observe that the agreement with the experimental results is quite good.

.5. Compute-kernel benchmark and 3D strong scaling results

In this section, we report tests assessing the strong and weak scalability of ryujin. All the experiments are
performed on the supercomputer SuperMUC-NG,6 using up to 2,048 nodes of 2 Intel Xeon Platinum 8174 CPUs
(24 cores each). The CPU cores are operated at a fixed clock frequency of 2.3 GHz. The C++ implementation is
compiled with the GNU compiler, using the option -march=skylake-avx512 -O3 -funroll-loops to target the
specific machine with AVX-512 vectorization. The theoretical peak performance of a node is 3.5 TFlop/s, and the
memory bandwidth of a node is 205 GB/s according to the STREAM benchmark. The detailed node-level analysis
of Maier and Kronbichler [23] has shown that the memory bandwidth and evaluations of transcendental functions
are the dominating costs. In the following experiments, we show that the fast node-level performance comes

6 https://top500.org/system/179566/, retrieved on April 15, 2021.
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Fig. 3. The Onera OAT15a airfoil depicted with a graded mesh used in our computations. The actual hexahedral 3D mesh is created by
xtruding the quadrilateral 2D mesh in the z-direction by a set number of repetition.

Fig. 4. Scaling analysis of the 3D Onera OAT15a airfoil on up to 2,048 nodes (i.e., 98,304 cores) of SuperMUC-NG. In the left panel,
he strong and weak scaling of five different problem sizes is assessed, involving up to 17.4 billion grid points (Qdofs) (i.e., 85 billion
nknowns). In the right panel, the time per time step for the case with 34.5 million grid points is broken down to show the contributions
f the hyperbolic and parabolic parts.

long with optimal scalability to large node counts, where the simulation is partitioned among the participating
rocesses with Morton space filling curves using the p4est library by Burstedde et al. [50] wrapped into deal.II

[51]. Parallelization is based on MPI, using the Intel Omni-Path protocol of SuperMUC-NG for the inter-node
communication.

In a first series of tests, we assess the strong scalability performance of ryujin on the Onera OAT15a airfoil
studied in Section 6.4. The left panel in Fig. 4 shows the time spent per time step versus the number of cores for five
different problem sizes ranging from 4.4 million to 17.4 billion grid points (recall that there are 48 cores per node).
In order to represent the steady-state performance, the reported time per time step is obtained from an experiment
that measures the run time to complete 1000 time steps and then divides this time by the number of time steps. The
case with 4.36 million grid points runs into communication latency for 1024 nodes (49k cores). At this point, the
number of grid points per node is about 4,257, and the number of grid points per core is about 89. For larger problem
sizes per node, the scaling is almost ideal, with a slight loss in efficiency as the share of SIMD-vectorized work
in the algorithm by Maier and Kronbichler [23] is reduced near the interfaces between different parallel processes,
and by some slight load imbalance in the dynamic steps of the computation as the number of cores increases.

The performance achieved is nevertheless excellent. For example, the computation with 274 million grid points

18
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Fig. 5. Analysis of strong scaling of 2D shocktube test with 134 million grid points and multigrid solvers for velocity and energy.

n 98k cores achieves a parallel efficiency of 63% when using the computation on 1,536 cores as baseline; the
urnaround time is then almost one million time steps per day. The case with 2.2 billion grid points on 98k cores
chieves an efficiency of 85% against the computation on 12,288 cores. Note in passing that this series of tests also
emonstrates excellent weak scalability. For instance, counting from the top of the panel, the first red square, the
rst brown circle, the first black star, and the unique blue diamond are perfectly aligned along the horizontal dotted

ine. This means that the run time per time step remains constant as the number of grid point and the number of
ores are both multiplied by 8.

We show in the right panel of Fig. 4 the time per time step for the parabolic step and for the hyperbolic step using
he mesh composed of 34.5 millions grid points. This breakdown of the timings reveals that the hyperbolic stage
ominates the run time in this case. This is because the Reynolds number in this 3D benchmark is so large that the
onjugate gradient solver with a simple inverse mass matrix preconditioner as described in Section 5.3 is efficient.
ven for the largest case with 17 billion points, we observe that the velocity solver converges in 2 iterations and

he energy solver takes 3 iterations.
Fig. 5 shows a strong scaling experiment done on the 2D shocktube discussed in Section 6.3. The simulations are

one on the mesh refinement level L13 with 134 million grid points. Here, the flow is locally dominated by viscous
ffects, and therefore the geometric multigrid solver described in Section 5.3 is used for optimal performance. While
he contribution to the run time per time step of the viscous step is significantly higher when the multigrid solver
s activated than when using the plain conjugate gradient solver, the parallel scaling is still excellent in this case.

e observe that the strong scaling still holds after multiplying the initial core count by 28
= 256. With 192×28

cores, the number of grid points per node is about 131,000. The performance deteriorates though when the initial
core count is multiplied by 29

= 512. The excellent strong scaling performance is due to the algorithms developed
in Kronbichler and Wall [24], Clevenger et al. [42].

In summary, the above scaling experiments confirm that the proposed algorithms have good node-level
performance. They are suitable to solve large-scale problems on large-scale computers in various application
scenarios.
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Appendix A. Boundary fluxes and boundary conditions

We collect in this appendix proofs of results stated in the body of the paper. The statements are repeated for
clarity.

Lemma A.1 (Balance After Limiting).

(i) For all uh :=
∑

i∈V Uiϕ ∈ P(Th), the following holds true:
∫

D uh dx =
∑

i∈V mi Ui .
(ii) Let Un be a collection of admissible states. Let Un+1 be the update after one forward-Euler step and after

limiting. Then the following balance identity holds:∑
i∈V

mi Un+1
i + τn

∑
i∈V∂

m∂
i f(Un

i )ni =
∑
i∈V

mi Un
i . (A.1)

roof. (i) Using the definition mi :=
∫

D ϕi dx , we have∫
D

uh dx =
∑
i∈V

Ui

∫
D
ϕi dx =

∑
i∈V

mi Ui .

ii) Recall that the definition of UL implies that∑
i∈V

mi UL,n+1
i + τn

∑
i∈V

∑
j∈I(i)

f(Un
j )
∫

D
ϕi∇ϕ j dx − τn

∑
i∈V

∑
j∈I(i)

dL,n+1
i j (Un

j − Un
i )  

= 0

=

∑
i∈V

mi Un
i .

Using that limiting conserves the total mass,
∑

i∈V mi Ui
n
=
∑

i∈V mi UL,n+1
i , see (3.14), the partition of unity

property
∑

i∈V ϕi = 1, and the definition of {m j
∂
} j∈V∂ and {n j } j∈V∂ yields∑

i∈V

mi Un
i =

∑
i∈V

mi Un+1
i + τn

∑
j∈V

f(Un
j )
∫

D
∇ϕ j dx

=

∑
i∈V

mi Un+1
i + τn

∑
j∈V

f(Un
j )
∫
∂D
ϕ j n ds

=

∑
i∈V

mi Un+1
i + τn

∑
j∈V

m j
∂f(Un

j )n j .
he assertion is proved.
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Table 2
Computed extrema of the skin friction coefficient C f for the 2D shocktube configuration for refinement levels L 11 (8 M grid points) through
L 14 (512 M grid points). The extrapolated values are computed by fitting the linear function a+b h to the four values obtained on the grids
L 11 to L 14. We report the coefficient a and the asymptotic standard error in the column labeled “extrapolated”. Values for the OSMP7 scheme
are taken from [10,14]. The relative deviation reported in the last column is computed by

(
C f(OSMP7) − C f(extrap.)

)
/
(
max C f(extrap.) −

min C f(extrap.)
)
.

L 11 L 12 L 13 L 14 extrapolated OSMP7

1 1.204,09× 10−1 1.203,77× 10−1 1.204,23× 10−1 1.204,34× 10−1 1.204,24× 10−1
±2.36× 10−5 1.226,43× 10−1 ( 0.06%)

2 −7.824,60× 10−1
−8.194,50× 10−1

−8.408,38× 10−1
−8.495,07× 10−1

−8.592,32× 10−1
±9.43× 10−4

−8.125,68× 10−1 ( 1.21%)

3 −2.495,33× 10−1
−2.490,42× 10−1

−2.471,06× 10−1
−2.456,95× 10−1

−2.459,30× 10−1
±8.50× 10−4

−2.597,57× 10−1 (-0.36%)

4 −4.821,52× 10−1
−4.956,18× 10−1

−4.991,40× 10−1
−5.007,07× 10−1

−5.044,98× 10−1
±1.42× 10−3

−5.069,26× 10−1 (-0.06%)

5 4.153,41× 10−2 5.224,13× 10−2 5.802,62× 10−2 6.231,59× 10−2 6.439,90× 10−2
±7.24× 10−4 3.578,58× 10−2 (-0.74%)

6 −1.644,34× 10−1
−1.653,37× 10−1

−1.621,51× 10−1
−1.619,35× 10−1

−1.620,17× 10−1
±1.25× 10−3

−1.694,43× 10−1 (-0.19%)

7 2.075,32× 10−1 2.115,29× 10−1 2.095,87× 10−1 2.082,51× 10−1 2.098,21× 10−1
±1.78× 10−3 2.329,12× 10−1 ( 0.60%)

8 5.194,67× 10−2 4.774,62× 10−2 6.444,45× 10−2 6.914,07× 10−2 6.747,67× 10−2
±7.08× 10−3 3.179,41× 10−2 (-0.93%)

9 1.965,33× 10−1 1.946,37× 10−1 2.012,83× 10−1 2.083,07× 10−1 2.055,60× 10−1
±4.40× 10−3 1.275,39× 10−1 (-2.03%)

0 −1.874,67× 10−1
−1.873,52× 10−1

−1.944,32× 10−1
−2.012,64× 10−1

−1.991,71× 10−1
±4.07× 10−3

−1.520,68× 10−1 ( 1.22%)

11 −9.167,85× 10−2
−8.558,52× 10−2

−9.308,21× 10−2
−9.827,96× 10−2

−9.504,32× 10−2
±4.89× 10−3

−6.992,61× 10−2 ( 0.65%)

12 −2.470,24× 10+0
−2.636,96× 10+0

−2.699,77× 10+0
−2.721,51× 10+0

−2.735,29× 10+0
±1.31× 10−3

−2.730,00× 10+0 ( 0.14%)

13 9.794,93× 10−1 1.056,81× 10+0 1.085,12× 10+0 1.104,35× 10+0 1.114,16× 10+0
±7.63× 10−3 1.007,53× 10+0 (-2.77%)

14 −3.904,79× 10−1
−4.270,88× 10−1

−4.541,09× 10−1
−4.638,49× 10−1

−4.735,29× 10−1
±2.94× 10−3

−4.207,98× 10−1 ( 1.37%)

15 −2.528,96× 10−1
−2.567,42× 10−1

−2.656,22× 10−1
−2.744,44× 10−1

−2.729,34× 10−1
±4.38× 10−3

−1.627,05× 10−1 ( 2.86%)

16 −6.917,56× 10−1
−7.172,27× 10−1

−7.353,32× 10−1
−7.448,41× 10−1

−7.504,46× 10−1
±2.41× 10−3

−7.409,48× 10−1 ( 0.25%)

17 6.055,57× 10−1 6.154,61× 10−1 6.069,03× 10−1 6.018,52× 10−1 6.060,99× 10−1
±5.95× 10−3 7.598,63× 10−1 ( 3.99%)

18 −2.105,79× 10−1
−2.272,79× 10−1

−2.421,78× 10−1
−2.467,45× 10−1

−2.513,36× 10−1
±2.20× 10−3

−2.417,54× 10−1 ( 0.25%)

19 1.175,73× 10−1 1.129,28× 10−1 1.067,24× 10−1 1.051,38× 10−1 1.038,06× 10−1
±1.33× 10−3 1.159,62× 10−1 ( 0.32%)

20 1.015,99× 10−1 9.454,46× 10−2 8.634,67× 10−2 8.398,69× 10−2 8.205,06× 10−2
±1.61× 10−3 1.016,45× 10−1 ( 0.51%)

21 1.717,33× 10−1 1.789,69× 10−1 1.794,82× 10−1 1.796,35× 10−1 1.818,22× 10−1
±1.35× 10−3 1.895,60× 10−1 ( 0.20%)

22 −1.017,07× 10+0
−1.059,88× 10+0

−1.078,40× 10+0
−1.083,24× 10+0

−1.095,98× 10+0
±2.82× 10−3

−1.128,85× 10+0 (-0.85%)

23 5.402,66× 10−1 5.372,50× 10−1 5.477,85× 10−1 5.561,51× 10−1 5.528,75× 10−1
±6.04× 10−3 5.869,23× 10−1 ( 0.88%)

24 3.970,91× 10−1 3.945,69× 10−1 3.963,79× 10−1 3.952,94× 10−1 3.951,08× 10−1
±9.98× 10−4 3.923,67× 10−1 (-0.07%)

25 4.929,19× 10−1 5.046,19× 10−1 5.050,90× 10−1 5.098,68× 10−1 5.116,00× 10−1
±1.81× 10−3 5.076,83× 10−1 (-0.10%)

26 −5.703,46× 10−2
−6.101,85× 10−2

−7.030,93× 10−2
−7.318,03× 10−2

−7.407,72× 10−2
±2.68× 10−3

−5.893,86× 10−2 ( 0.39%)

27 −3.290,90× 10−2
−3.100,79× 10−2

−3.301,65× 10−2
−3.365,60× 10−2

−3.300,18× 10−2
±1.16× 10−3

−3.250,20× 10−2 ( 0.01%)

28 −6.500,36× 10−2
−6.827,21× 10−2

−6.938,65× 10−2
−6.957,24× 10−2

−7.059,13× 10−2
±3.44× 10−4

−7.872,77× 10−2 (-0.21%)

29 5.788,78× 10−2 5.682,06× 10−2 5.519,81× 10−2 5.571,25× 10−2 5.504,54× 10−2
±4.42× 10−4 4.684,84× 10−2 (-0.21%)

30 −1.746,15× 10−1
−1.915,37× 10−1

−1.957,48× 10−1
−1.972,36× 10−1

−2.021,70× 10−1
±1.98× 10−3

−2.064,24× 10−1 (-0.11%)

31 1.563,19× 10−1 1.781,50× 10−1 1.859,10× 10−1 1.890,11× 10−1 1.951,16× 10−1
±1.57× 10−3 2.072,32× 10−1 ( 0.31%)

Lemma A.2 (Slip Condition). Let i ∈ V∂s , let Ui ∈ A, and let UP
i as defined in (4.3).

(i) Then UP
i is also admissible, meaning UP

i ∈ A.
(ii) Assume also that the equation of state derives from an entropy s. Then s(UP

i ) ≥ s(Ui ).
(iii) For all i ∈ V∂s \V∂nr, the mass flux and the total energy flux of the postprocessed solution at i is zero (i.e.,

ρ(f(UP
i )ni ) = 0 and E(f(UP

i )ni ) = 0).

roof. (i) Let UP
i =: (ϱ

P
i ,M

P
i ,E

P
i ). Then ϱPi = ϱi , which implies that ϱPi > 0 since Ui ∈ A. We also have

ε(UP
i ) = EP

i −
1

2ϱPi
(MP

i )2
= Ei −

1
2ϱi

((Mi )2
− (Mi ·ni )2) ≥ Ei −

1
2ϱi

(Mi )2
= ε(Ui ).

hat is ε(UP
i ) ≥ ε(Ui ) > 0 because Ui ∈ A. Since ρ(UP

i ) = ρ(Ui ) and, as proved above, the internal energy ε(U)
stays positive, we infer that the specific internal energy e(U) = ε(U)/ρ remains positive too. This proves the first
ssertion.

(ii) Let us make the change of variable σ (ρ(U), e(U)) := s(U). Using fundamental theorem of calculus

s(UP
i ) = σ (ϱi , e(UP )) = σ (ϱi , e(U))+

∫ e(UP )

e(U)
∂eσ (ϱi , e) de.

ut, in order for σ to be physically realistic it has to satisfy ∂eσ (ρ, e) > 0. Hence s(UP
i ) ≥ σ (ϱi , e(U)) :=

(U ).
i

21
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V

L
(
l
m

Fig. 6. The 2D shocktube benchmark: detailed plot of the skin friction coefficient C f at time t = 1.00. The continuous lines are for the
finest level (L 14) of our computation and the OSMP7 scheme as reported in [10,14]. The two insets show the convergence behavior in the
global maximum and minimum, respectively.

(iii) Let i ∈ V∂s \V∂nr, then ni
s
= ni . Recall from (A.1) that the boundary flux induced by UP

i is mi
∂f(UP

i )ni .
Let VP

i be the velocity of the post-processed state UP
i . By definition, ρ(f(UP

i )ni ) = ϱPi VP
i ·ni , E(f(UP

i )ni ) =
P
i ·ni (EP

i + PP
i ) and VP

i ·ni = VP
i ·ni

s
= 0, whence the assertion.

emma A.3 (Global Conservation). Assume that V s
∂
= V∂ and Un satisfies the slip boundary condition

i.e., Mn
i ·ni = 0 for all i ∈ V∂ ). Then the solution obtained at the end the RKSSP(3,3) algorithm after

imiting and post-processing, say Un+1, satisfies
∑

j∈V m jϱ
n+1
j =

∑
j∈V m jϱ j

n and
∑

j∈V m j En+1
j =

∑
j∈V

j E j
n .
22
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s
S

i
o

i

o

Proof. Let us assume now that V s
∂
= V∂ and Un satisfies the slip boundary condition at every boundary node.

Referring to (4.1) for the notation, let us denote w
(1)
h :=

∑
i∈V W(1)

i the update obtained after the first forward-Euler
tep (high-order plus limiting). Then using the identity (A.1), we infer that

∑
i∈V miρ(W(1)

i ) =
∑

i∈V miρ(Un
i ).

imilarly, after post-processing w
(1)
h , the update w

(2)
h satisfies∑

i∈V

miρ(W(2)
i ) = 3

4

∑
i∈V

miρ(Un
i )+ 1

4

∑
i∈V

miρ((W(1)
i )P ) = 3

4

∑
i∈V

miρ(Un
i )+ 1

4

∑
i∈V

miρ(W(1)
i ),

.e.,
∑

i∈V miρ(W(2)
i ) =

∑
i∈V miρ(Un

i ). w
(3)
h be update obtained at the final stage. After post-processing w

(2)
h we

btain∑
i∈V

miρ(W(3)
i ) = 1

3

∑
i∈V

miρ(Un
i )+ 2

3

∑
i∈V

miρ((W(2)
i )P ) = 1

3

∑
i∈V

miρ(Un
i )+ 2

3

∑
i∈V

miρ(W(2)
i ),

.e.,
∑

i∈V miρ(W(3)
i ) =

∑
i∈V miρ(Un

i ). Let un+1
h :=

∑
i Un+1

i ϕi be the final update after post-processing, i.e.,
un+1

h = P(w(3)
h ). Then,

∑
i∈V miρ(Un+1

i ) =
∑

i∈V miρ(W(3)
i ) =

∑
i∈V miρ(Un

i ). The argument for the conservation
f the total energy is identical. Actually, the argument holds for any explicit SSPRK technique.
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Appendix B. Hyperbolic step

// Step 1: compute off-diagonal dL,n
i j and αi

for i ∈ V◦ do
compute indicator αi

for j ∈ I(i), j > i do
dL,n

i j ← λmax(ni j ,Un
i ,U

n
j ) ∥ci j∥ℓ2

for i ∈ V∂ do
compute indicator αi

for j ∈ I(i), j > i do
dL,n

i j ← max
(
λmax(ni j ,Un

i ,U
n
j ) ∥ci j∥ℓ2 , λmax(n j i ,Un

j ,U
n
i ) ∥c j i∥ℓ2

)
// Step 2: fill lower-diagonal part and compute dL,n

ii and τn

τn ← +∞

for i = 1, . . . , N do
for j ∈ I(i), j < i do

dL,n
i j ← dL,n

ji

dL,n
ii ← −

∑
j∈I(i), j ̸=i dL,n

i j ; τn ← min
(
τn,−ccfl

mi
2d L ,n

ii

)
// Step 3: low-order update, compute FH

i and accumulate limiter bounds

for i ∈ V do
Un+1

i ← Un
i , FH

i ← 0
for j ∈ I(i) do

dH,n
i j ← dL,n

i j
αn

i +α
n
j

2 ; FH
i ← FH

i − f j ·ci j + dH,n
i j

(
Un

j − Un
i

)
U

n
i j ←

1
2

(
Un

i + Un
j

)
−

1
2 dL,n

i j

(
f j − fi

)
·ci j

Un+1
i ← Un+1

i +
2 τn
mi

dL,n
i j U

n
i j

accumulate local bounds from U
n
i j

// Step 4: compute Pi j and ℓi j:

for i ∈ V do
for j ∈ I(i) do

Pi j ←
τn
λi mi

((
dH,n

i j − dH,n
i j

)(
Un

j − Un
i

)
+ bi j FH

j − b j i FH
i

)
compute li j from Un+1

i , Pi j and local bounds

ℓ ← min(ℓ, ℓT)
for pass = 1, . . . , number of limiter passes do

// Step 5, 6, ...: high-order update and recompute li j:

for i ∈ V do
for j ∈ I(i) do

Un+1
i ← Un+1

i + λiℓi j Pn
i j

if last round then
break

for i ∈ V do
for j ∈ I(i) do

Pi j ←
(
1− ℓi j

)
Pi j

compute li j from Un+1
i , Pi j and local bounds

Algorithm 1: High-order forward Euler step.
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Appendix C. Parabolic step

// Step 1: momentum update

assemble right-hand side in (5.2)

solve (5.2)

update momentum, (5.3)

// Step 2: internal energy and total energy update

assemble Kn+ 1
2 , (5.4)

solve (5.5)

update internal energy, (5.10)

// Step 3: check bounds and limit if bounds are violated

if mini∈V en+1
i < 0 then

solve for low-order solution eL,n+1
h , (5.7)

compute limiting matrix Ai j, (5.9)

Compute limiters ℓi j using FCT

update total energy, (5.10)

return
Algorithm 2: High-order parabolic step.

Appendix D. 2D shocktube benchmark

See Fig. 6 and Table 2.
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