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Abstract—COVID-19 is an air-borne viral infection, which infects 

the respiratory system in the human body, and it became a global 

pandemic in early March 2020. The damage caused by the 

COVID-19 disease in a human lung region can be identified using 

Computed Tomography (CT) scans. We present a novel approach 

in classifying COVID-19 infection and normal patients using a 

Random Forest (RF) model to train on a combination of Deep 

Learning (DL) features and Radiomic texture features extracted 

from CT scans of patient's lungs. We developed and trained DL 

models using CNN architectures for extracting DL features.  The 

Radiomic texture features are calculated using CT scans and its 

associated infection masks. In this work, we claim that the RFs 

classification using the DL features in conjunction with Radiomic 

texture features enhances prediction performance. The 

experiment results show that our proposed models achieve a 

higher True Positive rate with the average Area Under the 

Receiver Curve (AUC) of 0.9768, 95% Confidence Interval (CI) 

[0.9757, 0.9780]. 

 
Keywords— COVID-19, CT-Scans, Deep learning & Radiomic 

Feature extraction, classification, AUC-ROC.  

I. INTRODUCTION 

  The novel Coronavirus alias COVID-19 has led to a 
global pandemic which has been changing the lives of the 
people drastically all over the world [1, 2]. Even though 
symptom tracking helps us to understand the disease, for 
diagnosing COVID-19 accurately, people must undergo an X-
ray and/or CT scan which provides detailed images of the lungs 
[16, 17, 2, 18]. In addition, CT scans of the lung has been shown 
[1, 2, 3] to provide a significant adjunctive role in diagnosing, 
tracking progress and complication of COVID-19 as compared 
to other methods such as monitoring of temperature/respiratory 
symptoms and the current “gold standard”, molecular testing, 
using sputum or nasopharyngeal swabs. More recently 2D/3D 
CT images have been used to detect COVID19 using 
Convolutional Neural Network (CNN) [1, 2, 10, 22, 23, 24]. 
The CNNs with 3D kernels have been shown to be more 
effective than 2D CNNs in extracting spatiotemporal features 
[18, 19]. Radiomic features extracted from CT scans have also 
proven to be effective in identifying the subtle disease 
characteristics which failed to be detected by human 
visualization [3, 5]. In the past, Radiomic texture features were 
identified based on the greater contribution value in 

differentiating indolent adenocarcinoma and Intralobular 
Adenocarcinoma [3]. The Radiomic features are used by the 
Radiologists to quantitatively analyze the presence and severity 
of abnormalities in the COVID-19 infected lungs such as 
ground glass opacities (GGO), Consolidation and Crazy-paving 
patterns. Recent study used feature selection methods for 
selecting Radiomic features and then used it for classification 
of COVID-19 infected and other pneumonia cases [21]. 
Authors used a segmentation algorithm to create COVID-19 
infection masks for Radiomic feature extraction and achieved 
the AUC of 0.922 [21]. To detect COVID-19 infection, 
Radiomic features measured from the new segmentation 
methods were analyzed by using sophisticated statistical 
models with high interpretability [26]. The efficacy of 
Radiomics in diagnosing patients with COVID-19 and other 
types of viral pneumonia in addition to clinical symptoms and 
CT signs were studied in the past works [27] where the latest 
version of PyRadiomics was used for feature extraction.  
 
  In this work we propose to use Random Forest 
Classifier using the combination of extracted Radiomic texture 
features and Deep Learning features to classify COVID-19 
virus infected patients from healthy cases. The texture features 
known as second-order statistical features are showing the 
interrelationship between voxels with similar or dissimilar grey 
level values which provide the measure of intra nodule 
heterogeneity. Analyzing Radiomic texture features from the 
segmented pulmonary parenchyma regions can assist 
radiologists in diagnosing COVID-19 [26]. Radiomic texture 
features extracted from the COVID-19 CT scans build the basic 
blocks towards our classification of COVID-19. The novelty of 
our work lies in the use of a combination of a set of DL features 
and Radiomic texture features to classify COVID-19 cases 
using RF to achieve high True Positive rate. Although many 
COVID-19 classifiers have been developed either using DL or 
Radiomics, to the best of our knowledge our study is the first to 
explore the combination of DL features with Radiomics texture 
features. 
 
  We will show the experimental analysis of the impact 
of both DL features and our selected Radiomic texture features 
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computed from the area of lung damage (COVID-19 
segmentation masks) caused by this COVID-19 in identifying 
the COVID-19 cases. We will evaluate the performance of our 
2D/3D integration of both DL and Radiomic texture feature 
classification models to classify COVID-19 infections using t-
test, Area Under the Receiver (AUC) Operating Characteristics 
Curve (ROC) measures, True Positive Rate and False Positive 
Rate. We also conducted experiments using 2D images and 
compared them with that of the 3D images from the same 
number of patient’s CT scans of lungs. 
  
The major contribution in our research is as follows: 

1. Extraction and selection of Radiomic texture features 
using 3D COVID-19 CT scans and associated 
COVID-19 infected segmentation mask data.  

2. Developed a highly predictive 3D DL model for 
classification of COVID-19 infected patients using CT 
scans. 

3. Classification of COVID-19 infected patients using 
both Extracted Radiomic texture features and DL 
features. 

II. BACKGROUND AND RELATED WORK 

What are Radiomic Features? 

 

  There are two feature variations in CT scans of the 
patient's lungs. The features are either quantitative or 
qualitative in which radiologists review the pathophysiology of 
the lung nodules or damages. To extract the quantitative 
features, mathematical and data characterization techniques 
have been used. This process is called Radiomics, and the 
extracted quantitative features are the Radiomic features [5]. 
Radiomic features primarily embrace texture, shape, and gray 
level statistics of lung nodules. There are four groups of 
Radiomic features: 1) Shape/volumetric features, 2) First-order 
statistics features, 3)Second-order statistics features, 4) 
Transformed features: wavelet or Laplacian-of Gaussian 
filtration applied in 1) and 3) groups [6].  Radiomic texture 
features:(belong to the 3 group) contain gray level co-
occurrence matrix (GLCM), gray level run length matrix 
(GLRLM), gray level size zone matrix (GLSZM), neighboring 
gray size zone matrix (NGSZDM), and gray-level dependence 
matrix (GLDM). Parekh et al. [6] defined “Radiomics is the 
high throughput extraction of quantitative features from 
radiological images creating a high dimensional data set 
followed by data mining for potentially improved decision 
support.”  
 
What are the Deep learning Features? 

 

  Deep Learning (DL) is seen as a hierarchical feature 
learning where DL models perform automatic feature 
extraction from raw data called feature learning [15]. DL 
representations are hierarchical and are of three feature types: 
low-level features, mid-level features, high-level features. 
These DL features extracted from several layers of the DL 

model are fed into the trainable classifier for classification 
purposes [15]. 
 

In recent years, the widely accessible large datasets 
and computationally powerful machines have paved the way for 
Deep convolutional neural networks to transcend the 
performance of many conventional computer vision algorithms 
[7].  Approaches depending on Deep convolutional neural 
networks (CNN) are very promising when the CT scans are 
available from large cohorts [8]. When compared to Radiomics 
approaches, Deep CNN methods usually need huge amounts of 
training data. After training, the CNN models can become very 
efficient in making predictions as they can be made directly 
from the image without having any need to extract the 
quantitative features before performing the classification.  

Related work 

 

In [10], the authors identify common and severe 
COVID-19 using Radiomic features. We also compute 149 
features per patient from 3D CT scans of 38 COVID-19 patients 
then identify the top related Radiomic texture features for 
classification. 

 
On the other hand, there is previous work that speckle-

like textures perform classification of COVID-19 using Support 
Vector Machine (SVM) from a combination of X-ray and CT 
images of 126 patients using shrunken features [1]. Robust 
features were extracted using 4 different feature extraction 
techniques: Gray Level Co-occurrence Matrix, Local Binary 
Gray Level Co-occurrence Matrix, Gray Level Run Length 
Matrix, and Segmentation Based Fractal Texture Analysis 
feature extraction algorithms.  

 
One of the past works demonstrated by Belkhatir et al. 

[11] uses a representative spatial texture feature and employs 
supervised image classification algorithms like SVM that helps 
to diagnose COVID-19 using 349 CT images that are reported 
COVID-19 positive and 397 CT images that are reported 
negative. Gray Level Co-occurrence Matrix textures were 
extracted using PyRadiomics for classifying images 
accordingly.  

 
  The authors in [21] extracted 108 features which 
include features in all four groups. We focus on using 7 
Radiomic texture features. We have 3 texture features 
overlapping with the 108 radiomic features used in [21]. We 
combined these 7 Radiomic features with 64 extracted DL 
features as input for Random Forest classifiers. While authors 
in [21] use 108 radiomic features as input for ML classifiers. 

 
Furthermore, there has also been relevant work shown 

by Mehta et al.  where a 3D DL model was created for 3D image 
data and compared against the RF classification using a 
combination of volumetric Radiomic features, biomarkers, and 
DL features for lung cancer classification [5]. In Fact, the 
authors in [5] used only one radiomic feature i.e. the volumetric 
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radiomic features whereas, we have made use of seven radiomic 
texture features from the second order statistical features.  

 
Both the selection of Radiomic features for analysis of 

COVID-19 and the combination Radiomic and DL features for 
classification have not been fully exploited yet to our best 
knowledge. Except, radiomic features extracted from CT scans 
have been combined with DL scores to classify COVID-19 
critical cases from severe cases using Regression models [25]. 
Authors demonstrate that the Regression model achieves better 
performance with the highest testing AUC of 0.861 and better 
sensitivity when using both radiomic features and DL scores 
(merged model) [25]. This work in [25] by Li et al.  is the 
existing research which is closely associated with our work.  

 
However, these Radiomic texture features have been 

used to build a Machine Learning predictive model which 
performs better than radiologists in diagnosing non-small cell 
lung cancer [3]. In addition, using only the Radiomic texture 
features have shown to be statistically significant in differential 
diagnosis of COVID-19 and quantitatively informative in 
diagnosis of other lung diseases [26, 28, 29]. In addition, we 
use a set of high-level DL features while Li et al. just uses a 
single DF score [25].  

 
In summary, from the previous works [5][25] we see 

that very limited work has been done on Radiomic features and 
its combination with deep learning. Thus, it is worthwhile to 
explore further down this area.  

III.      METHODOLOGY 

  In the methodology, as shown in Fig. 1, towards our 
first step, we have preprocessed the 3D data of COVID-19 CT 
scans which is collected from a public repository [19]. In Fig.  
2, the dataset sample is shown. 
 
   After this, we extracted the Radiomic texture features 
from the 3D COVID-19 data using CT images and its 
segmented masks. In addition to this, we have also trained and 
extracted the DL features from our developed 3D DL CNN 
model (Fig. 3). Using the radiomic texture features and deep 
learning features as shown in Fig. 1, the RF model that is used 
to classify the patients into COVID-19 infection and non-
COVID-19 classes.  

A. Dataset Description 

We have made use of COVID-19 public dataset 
consisting of a total of 38 patient’s data which contains the CT-
scans, its associated infection and lung masks [19]. The 
proportion of the COVID-19 infections in the CT scans of 
patients’ lungs range from minor to moderately severe [0.01% 
to 59%] [30]. The COVID-19 masks were manually annotated 
by radiologists. Each patient’s CT scans have resolution 
512x512xZ dimension. We can call each patient’s CT scans as 
3D images or 3D volume. Where the Z is the number of CT 
slices ranges from 100-400 slices per patient with the slice 

thickness varying from 3.5mm to 7.5mm. The values in each 
CT scan represent radiodensity in the Hounsfield unit then were 
adjusted to the lung window [-1250,250] before usage. 

 
 

 
Fig. 1 Workflow diagram 

In total, we have considered 38 patient’s CT scans 
with 38 3D images, 3888 2D images to perform classifications. 
We conducted experiments using 3888 numbers of 2D images 
in which there are totally 300+ COVID-19 infections (COVID-
19 infection masks) in 1800+ images. 

 
 The number of patients for 3D COVID positive data 

is 19, and 19 patients’ data are negative COVID data. Out of 
which, 30 patients were used for training, and 8 patients for 
testing COVID-19 cases (5 positive and 3 negative cases). In 
Fig. 2, the dataset sample is shown. 

 
Fig .2 Lung image(left), covid-19 mask(middle), Lung mask for covid19 

patient (right) 

B. Deep Learning and Radiomic texture feature extraction  

 

Our work made use of two types of features: (a). DL 
features, (b) Radiomic texture features.  

(a) Deep Learning feature extraction 

As step 1, we first developed our customized 10 layers 
3D CNN model and trained for 32 epochs.  The 3D CNN 
architecture consists of a Convolutional layer which is a multi-
layer design that identifies and extracts the high-level features 
as we can see in Fig. 3. After the model was fully trained, given 
input CT scans, we extracted DL features from the second 
dense layer in the last with 64 units (high level DL features). 
These 64 DL features will be used as input features for the RF 
classifier. See section IV for details of our experiments. 
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(b) Radiomic texture feature extraction 

As step 2, we have extracted the Radiomic texture 
features which are calculated by using the 3D public COVID-
19 CT scans along with the associated infection masks [19]. 

 
We have calculated the subset of Radiomic texture 

features and selected 7 Radiomic texture features. These 7 
Radiomic texture features have been shown to be reliable and 
quantitatively informative in differential diagnosis of COVID-
19 and other lung diseases [3, 26, 28, 29]. 

 
(i). Gray Level Co-occurrence Matrix (GLCM): Gray 

Level Co-occurrence of matrix size Ng times Ng is the second-
order joint probability of the image region. It is defined by the 
mask with the probability function, where (i, j) defines the 
number of times the combination of pixel i and j occurs in an 
image with a distance value and angle. Some of the features that 
we used in our study include [28]:  

                    
  =  ((, ))  

Maximum probability is the appearance of the most pre-
dominant pair of neighboring pixel intensities [28] 

  =    − 


  
 . 



  
(, ) ((, )  

+   )  
 

Joint Entropy is the measure of randomness in the 
neighborhood intensity values where,  is the arbitrary small 
positive number (≈ 2.2 × 10) [28] 
 

  =. 


  
   ()  (   ()  +  ) 

Sum entropy is the sum of neighborhood intensity 
value differences [28] 

where ()  =  ∑
    . ∑

    (, )  , +   =   

and  =  2,3, . . . , . 

  =  


  
 . 



  
 ((, )) 

Energy is termed as a measure of homogeneous 
patterns. A greater energy shows that there are more examples 
of intensity pairs in the image that are close to each other with 
higher frequencies [28].  
 

(ii). Gray Level Size Zone Matrix (GLSZM): Gray 
level Size zone matrices are useful to identify the textural 
homogeneity, and speckle like textures. It is used to 
differentiate gray scale granularity among different texture 
features. Some of the important GLSZM features include small 
area emphasis, large area emphasis, gray level non-uniformity, 
size-zone non-uniformity, zone percentage, gray level 
variances, and zone variance. We have used Gray Level Non-
Uniformity and Size Zone Non-Uniformity in our experiments. 

   −  
=   ∑

    (∑
    (, ))


 

 
GLN signifies the variability of gray-level intensity values in 
the image where a lower-value shows higher homogeneity of 
intensity values. [28] 

   −  ()   

=   ∑
    (∑

    (, )) 


 

 
SZN measure occurrences of size zone quantities in the images 
[28] where, 
 
 is the number of discrete intensity values in the image 
 is the discrete zone sizes in an image 
(, ) is the size zone matrix 
 
(iii). Gray Level Run Length Matrix (GLRLM): In a matrix of 
size Ng times Ng, Gray Level Run Length Matrix is the length 
of a number of pixels, which has the same gray level values. 
Some of the important features include short run emphasis, long 
run emphasis, gray-level non-uniformity, run-length non-
uniformity, run percentage, gray level variance, and run 
variance. We used low-gray level run emphasis in our 
experiments 

    ℎ ()  

=   ∑
    . ∑

    ( ,  | )/

()  

 
LGLRE is the distribution of low gray level values where  
 
 is the number of discreet intensity values in the image. 
 is the number of run lengths in the image. 
() is the number of run lengths along angle  
( ,  | ) is the run length matrix for an arbitrary direction  
[28] 
 
  (iv). Gray Level Dependence Matrix (GLDM): Gray 
Level Dependence Matrix describes the gray level 
dependencies in an image. The number of same gray level data 
points connected by a distance which is dependent on the center 
of the matrix defining the value of Gray Level Dependence 
Matrix. Some of the important features include small 
dependence emphasis, larger dependence emphasis. 

 
For selecting the Radiomic texture features, image and 

associated mask dataset is accessed using SimpleITK library. 
The image and associated mask dataset are then converted to a 
series of arrays and loaded into the PyRadiomics library.  

 
The parameters were set to extract the features and the 

available features in PyRadiomics are First order features, Gray 
Level Co-Occurrence Matrix, Gray Level Run Length Matrix, 
Gray Level Size Zone Matrix, and Gray Level Dependence 
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Matrix. A total of 149 features were found for each patient in 
3D out of which the selected 7 texture features are listed as 
shown in Table I.  

TABLE I  SELECTED RADIOMIC TEXTURE  FEATURES 

RADIOMIC TEXTURE 

FEATURE 

SPECIFIC FEATURE 

Gray Level Co-Occurrence Matrix Maximum Probability 

Gray Level Co-Occurrence Matrix Joint entropy 

Gray Level Co-Occurrence Matrix Sum Entropy 

Gray Level Co-Occurrence Matrix Joint Energy 

Gray Level Size Zone Matrix Gray Level Non-Uniformity 

Gray Level Size Zone Matrix Size Zone Non-Uniformity 

Gray Level Run Length Matrix Low Gray Level Run Emphasis 

 
 

C. 3D Dataset and Preprocessing  

Our 3D dataset consists of 38 patients where each 
patient has multiple slices ranging between 100-400. Out of the 
38 patients, there are 19 COVID-19 positive patients and 19 
non-COVID-19 patients. To achieve a faster DL model’s 
computation time using GPU, for each patient, we have resized 
the entire 3D CT images in 512x512xZ dimension into 
100x100x20 volume where Z is the number of slices that varies 
from patient to patient. The third dimension is reduced to 20 by 
chunking multiple continuous slices into 20 chunks then 
average. Because the patient CT scans can have resolution from 
512x512x600 to 1024x1024x600 or larger in Z dimension 
leading to hundreds of millions of voxels radiodensities in 
Hounsfield units (HU) per patient. Also, the CNN architectures 
for training 2D 512x512 slices typically require ~10GB of GPU 
memory already, and thus training a deep learning model using 
entire 3D CT scan volume is impractical [18]. Thus, the input 
3D volume for each patient has 100x100x20 dimensions, each 
associated with a label: either 1 (COVID-19 positive) or 0 
(COVID-19 negative or non-COVID-19) by Radiologists. 
These data will be used as input to train our 3D CNN model. 

 
The Radiomic texture feature extraction has been done 

using full 3D CT scans without using resize and chunking. 
Therefore, there is no impact on the performance of the model 
using Radiomic texture features. The segmentation annotations 
are manually done by the experienced senior radiologists [30]. 
An open-source python package called PyRadiomics is used to 
extract 3D features for each image against the associated masks 
where the extracted features are stored in a data frame for 
feasibility.   

 
Table II shows the range of values for each of 7 

Radiomic texture features for COVID-19 infection and non-
COVID-19 cases extracted from 3D CT scans. 

TABLE II  CALCULATED  RADIOMIC TEXTURE FEATURES ( VALUES IN 

RANGE ) FROM 3D CT SCANS 

 
 

D. Architecture & Training of our 3D CNN model 

 
Our 3D CNN architecture comprises 10 layers with 

input size 100x100x20 after preprocessing our 3D data for 
computational feasibility (Fig. 3). It uses RELU as the 
activation function where the last layer uses sigmoid function 
with cross entropy as our loss function. The expected output 
classification from this architecture is in binary format 
(COVID-19 /non-COVID-19). The first layer of our 10-layer 
3D-CNN architecture consists of a 3D-convolution layer 
(100x100x20, 32 feature maps) followed by activation, batch 
normalization, and max pooling. The second layer of our 
architecture consists of a 3D-convolution layer followed by 
activation, batch normalization and max-pooling. Similarly, we 
have the odd numbered layers exactly similar to the first layer 
and the even numbered layers similar to the second layer except 
the last 10th layer does not have the max-pooling layer at the 
end but has a flattening layer instead. This combination of 
convolution layers is then followed by 2 dense layers along with 
batch normalization and dropout followed by a final dense 
layer.  

E. RF Classifier 

RF works on the principle of collective decisions. 
Multiple decision trees collectively form a RF. The RF 
classifier is an ensemble of N trees {Ti(X), ..., TN(X)}, where X 
= {x1, ..., xp} is a p-dimensional feature vector describing the 
input to be classified. This type of an ensemble produces N 
outputs {Ŷ1 = T1(X), ..., ŶN = TN(X)} and these N outputs are 
later aggregated to predict the class of Ŷ of the input. A single 
feature forms a branch of each decision tree. An input is given 
to multiple decision trees, and the collective majority will be 
the output of the RF algorithm. For example, 7 selected 
Radiomic texture features (see table I for the list of features) 
extracted from CT scans are given as input to the RF model, 
output predicts either patient having COVID-19 infection or 
non-COVID-19 case. We have used the RF classifier to form 
an ensemble with the 3D-CNN model. The number of trees in 
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the forest was set to 5000. The random state was set to 42 when 
using the bootstrapping method to fit the model. 

 
 

Fig. 3 3D CNN Architecture 
 

 

F.  Performance Metrics  

 
We employed one of the important evaluation metrics 

called AUC-ROC. The AUC-ROC curve measures the 
performance of a binary classification problem at different 
threshold settings. The True Positive Rate and The False 
Positive Rate needed to be calculated for the ROC plot [13][14]. 
The probability curve is the ROC, and the degree or measure of 
separability is represented by AUC [13][14]. This evaluation 
metric tells us the capability of our model in distinguishing 
between different classes (COVID-19 or non-COVID-19). The 
better performance curve should hug tightly to the top left 
corner of the ROC plot. The higher the AUC, the better is our 
model in predicting 1s as 1s and has a lower chance of 
predicting the wrong class. In addition, we use a t-test to 
determine if there is a significant difference between mean 
value of the AUCs obtained from the experiments which use 
Radiomic texture features alone and the combination of DL and 
Radiomic texture features (our proposed solution). 

IV.    EXPERIMENTAL DESIGN  AND RESULTS 

We performed 4 experiments to evaluate the 
performance of COVID-19 classification using our DL using 
3D CNN only, RF, Images, and the combination of DL and 
Radiomic texture features as follows:  
 

● Experiment 1 (Exp#1):  RF classification using 3D 
Radiomic texture features only.  

● Experiment 2 (Exp#2): 3D CNN DL classification 
using 3D CT scans only. 

● Experiment 3 (Exp#3): RF classification using 
extracted DL features only.  

● Experiment 4 (Exp#4): Our proposed RF classification 
using a combination of extracted 3D DL and Radiomic 
texture features. 

 
We also presented the results of 4 additional 

experiments using the same design as experiment #1 to #4 
above using 2D CT scans and 2D Radiomic texture features 
extracted from using 3888 2D CT images.  

 
For each experiment, the RFs were trained and tested 

1000 times. Then the True Positive Rate, False Positive Rate 
and AUC performance on the testing dataset were used for 
ROC/AUC plots. 
 
Experiment 1 - RF Classification using 3D Radiomic texture 

features only  

 
In this experiment we have performed classification 

using the extracted 3D Radiomic texture features using the RF 
classifier. The input is 7 Radiomic texture features shown in 
table I, to classify if the patient has COVID-19 or is a healthy 
patient. After extracting the 3D Radiomic texture features using 
PyRadiomics, the 7 texture features were stored and the data 
was split into 80% patient’s data for training and 20% test data. 
The RF model with 5000 trees was trained and tested on the 
separated 20% test data.  The overall workflow for creating RF 
classification using the Radiomic texture features extracted 
from 3D CT scans is shown in Fig. 4.   
 

The test ROC is plotted in Fig. 5. It reaches a True 
Positive Rate of approximately 1 when the False Positive Rate 
is 0.18 with AUC of 0.9918. 
 
Experiment 2 - 3D CNN DL classification using 3D CT 

scans only. 

In experiment 2, we performed classification using a 
3D CNN model with 3D CT scans only. The overall 
architecture of the 3D CNN model is shown in Fig.  3. The 3D 
CT scans were pre-processed, and the final dimension was 
(100x100x20). These data cubes are the input for the 3D CNN 
model to classify if the patient has COVID-19 or is a healthy 
patient. 80% percent of the patient's data was used for training 
and 20% for testing. The test ROC/AUC results are plotted in 
Fig. 8.  
 

Experiment 3 - RF classification using extracted DL 

features only.  

 
In experiment 3, we performed RF classification using 

DL features extracted from the trained 3D CNN model.  From 
the 3D CNN model fully trained using 3D CNN data (in 
experiment 1), the DL features were extracted from the second 
dense layer which has 64 units given the 3D input dataset. Thus, 
the input for the RF model has a vector of 64 values (64 dense 
layer units). The input data is split into 80 % patient’s data for 
training and 20% test data. The overall workflow for creating 
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this model is shown in Fig. 6 . The test ROC/AUC results and 
its comparison is described in Fig. 8 .  
 

 
Fig. 4 RF Classification using 7 Radiomic texture features extracted from 3D 

CT scans. 
 

 
Fig. 5 The best test AUC-ROC curve for 3D DL features plus 3D Radiomic 
texture features experiment using 3D dataset 
 

 
Fig. 6 Classification using 3D CNN DL features using RF 
 

Experiment 4 Our proposed RF classification using a 

combination of extracted 3D DL and Radiomic texture 

features. 

In this experiment, we performed RF classification 
using extracted DL combined with Radiomic texture features. 
There are 7 Radiomic texture features extracted, and the list of 
features are shown in Table I. The DL features are the same as 

the DL feature, we used in experiment 3. Since the DL features 
are a vector of 64 values and Radiomic texture features have a 
length of 7, we duplicate the Radiomic texture features 7 times 
before combining them. Thus, we have combined a vector of 
407 features as input for the RF classifier.  The input data is 
split into 80% of the patient's data for training and 20% for 
testing. The overall workflow is described in Fig. 7. The 
ROC/AUC results are plotted in Fig. 8. 
 
 

 
 
Fig. 7 Classification using 3D CNN Deep learning features plus 3D Radiomic 

features using RF. 
 

  

 
Fig. 8 The best Test ROC/AUC curves for Experiment 2, 3, 4. Our proposed 
model ROC is green. 
 
  In Fig. 8, the classification of 3D images using just the 
3D CNN model (blue) only gives us the best AUC of 0.9232 
whereas, the classification using 3D images using Exp#3 3D 
CNN and RF (orange) produces a better AUC of 0.9918. The 
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ROC curves show that the RF using extracted DL features 
(orange) gives a much better threshold of True Positive Rate 
with lower False Positive Rate than the 3D CNN model only 
(blue). Evidently, our proposed model’s ROC curve (green), 
hugging the top left corner, reaches quickly with high True 
Positive Rate and lower False Positive Rate for the experiment 
number 4. It gives approximately 90% True Positive rate with 
almost 0% False Positive Rate. Our combined model produces 
the best AUC value (0.9977). This justifies that our novel RF 
classifier using the combined DL and Radiomic texture features 
(Exp#4) yields the best performance compared with other 
models. 
 
  TABLE III.  Summary of our experimental results  

Experiments 

(Best Testing performance) 

2D model 
(AUC) 

3D model 
(AUC) 

Exp#1 RF Classifier using 
Radiomic texture Features only  

0.9856 0.9918 

Exp#2 DL CNN 0.9467 0.9232 

Exp#3 RF classifier using DL 
features 

0.9704 0.9918 

Exp#4 RF classifier using the 
combination of both DL and 
Radiomic texture Features 

0.9912 0.9977 (our 

model) 

 
  Table III shows the AUC of the 4 experiments which 
we described above. In addition, we conducted the same 
experimental design for 2D CNN model, training using 2D 
input data of 3888 CT scans, and Radiomic texture features 
(extracted from the 2D images). The results for the 2D 
experiments are shown in table III. The AUC results in table III 
shows that 3D models performed better than that of 2D models. 

 
Fig.  9 Average Test AUC-ROC for RF Classifier using 3D Deep Learning 

plus Radiomic texture features (Exp#4). 
 
Fig. 9 shows the Average AUC-ROC curve of our proposed 
model (Exp#4 ) with a RF classifier using a combination of DL 

and Radiomic texture features. The average value with 
confidence interval is Average AUC = 0.9768, 95% Confidence 
Interval [0.9756, 0.9779].   
  
  The effectiveness of using DL features combined with 
the Radiomic texture features in comparison of using Deep 
learning features alone is studied by using t-test on the obtained 
mean value of the AUCs obtained from the two experiments 
(Exp#2 and Exp#4). The equation for calculating the t-test 
value is as follows: 

 =   −  
 / √  

where, m is the mean and  is the theoretical value, s is the 
standard deviation and n is the variable set size. The obtained t-
test value is 2.356, and the p-value <0.02. The p value of less 
than 2% is statistically significant, which means that our RF 
model using the combination of DL features and the Radiomic 
texture features is better than using DL CNN only (DL model 
trained using images). Experiments have been conducted using 
AMD 1885 MHz 32 cores, 658 GB, 3 NVIDIA GeForce RTX, 
each GPU has 11 GB memory. It took ~4 hours to train a DL 
model.  
 
  In summary, both t-test values and ROC/AUC results 
in Fig. 8 and Fig. 9 shows that our RF model using the 
combination of Radiomic texture features and DL features 
gives the best performance with high True Positive Rate. 

III. V.   DISCUSSION 

  We have a limited total of 38 patients for 3D CNN 
models. However, the 2D CNN models are trained using 3888 
2D CT images. In which there are 300+ COVID-19 infected 
areas (COVID-19’s segmented annotations) in 1800+ images. 
The infected COVID-19 positive cases range from minor to 
moderately severe [0.01% to 59%]. We showed that the 
performance of 3D CNN models and 2D models show 
consistent improvements when compared between experiments 
#1, #2, #3, and #4 (see results in table III). With the increase in 
the size with diversity of patients' dataset, the performance of 
the models might drop, and further DL techniques can be 
explored for these classification tasks [2, 9, 18, 20]. As future 
work, morphological and pathological features can be extracted 
and added to enhance the classification models. Further 
experiments can be done by considering classifying COVID-19 
infection against other lung diseases such as Pneumonia, Lung 
Cancer etc. In addition, the 3D CT scans dimensions were 
resized and chucked to 100x100x20 per patient for training DL 
models because of the burden of computing time and limitation 
of GPU’s memory. Dimension reduction comes with the loss of 
information issues. We recommend another method to 
overcome this issue where the 3D CT scans are divided into 
multiple non overlapping sub 3D volumes for computation 
[18].   
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  From our results, we performed four different 
combinations of experiments that led to evaluating different 
models. We recommend performing experiment # 1 (RF 
Classifier using Radiomic texture features only) when there is 
no segmentation or computation power to handle Deep 
Learning 3D CNN. We recommend performing experiment # 4 
(RF classifier using the combination of both extracted DL and 
Radiomic texture Features) to get the best performance. We 
expect to see the adoption of our proposed model with further 
validation using much larger cohorts with diverse patient’s CT 
scans. 

IV. VI.   CONCLUSION 

  In this work, we present a novel approach for 
classification of COVID-19 infected cases by incorporating a 
RF model to train on a combination of DL and Radiomic texture 
features that were extracted from CT scans of patients' lungs. In 
addition, we have developed and trained customized DL 
models using 10 layers of 3D CNN architecture for extracting 
DL features.  Radiomic texture features combined with 
extracted DL features boost the performance of the prediction 
compared with just using DL or Radiomic texture classifiers. 
Our proposed 3D model has  achieved a highly True Positive 
rate with  the average AUC of 0.9768, 95% CI  [0.9757, 
0.9780].  
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