Frequent, Timed Coding Tests for Training and Assessment of
Full-Stack Web Development Skills: An Experience Report

Kathryn Bridson
University of Memphis
Memphis, Tennessee, USA
kbridson@memphis.edu

ABSTRACT

This experience report describes the use of frequent, timed coding
tests in a project-intensive software engineering course in which
students first learn full-stack web development using Ruby on Rails
and then apply their skills in a team project. The goal of the skills
tests was twofold: (1) to help motivate students to engage in dis-
tributed practice and, thus, gain adequate coding skills to be an
effective team member during the team project and (2) to accu-
rately assess whether students had acquired the requisite skills
and, thereby, catch deficiencies early, while there was still time to
address them. Regarding the first goal, although several students
indicated that the tests motivated them to engage in substantial
practice coding, it was ultimately inconclusive as to the extent of
the tests’ impact on students’ distributed practice behavior and
on their preparation for the project. Regarding the second goal,
the skills testing approach was indeed considerably more effective
than graded homework assignments for assessing coding skill and
detecting struggling students early. Lessons learned from our ex-
periences included that students had significant concerns about
the strict time limit on the tests, that the tests caused a spike in
mid-semester withdrawals from the course that disproportionately
impacted students from underrepresented groups, and that detect-
ing struggling students was one thing, but effectively helping them
catch up was a whole other challenge.

CCS CONCEPTS

« Social and professional topics — Computing education.

KEYWORDS

software engineering education, skills testing, mastery learning,
assessment, full-stack web development

ACM Reference Format:

Kathryn Bridson and Scott D. Fleming. 2021. Frequent, Timed Coding Tests
for Training and Assessment of Full-Stack Web Development Skills: An
Experience Report. In The 52nd ACM Technical Symposium on Computer
Science Education (SIGCSE °21), March 13-20, 2021, Virtual Event, USA. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3408877.3432549

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE °21, March 13-20, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8062-1/21/03...$15.00
https://doi.org/10.1145/3408877.3432549

Scott D. Fleming
University of Memphis
Memphis, Tennessee, USA
Scott.Fleming@memphis.edu

1 INTRODUCTION

This experience report describes the use of a skills testing approach
to enhance student mastery of software development skills and to
provide more accurate and timely assessment of such skills in an
undergraduate software engineering course. Following the basic ap-
proach used by other software engineering courses in the literature
(e.g., [9, 16]), our course teaches software engineering principles
in the context of “full-stack” web development—that is, the devel-
opment of both client and server software built upon a platform
that includes, among other things, a web server framework and
a database management system (DBMS). In particular, the course
uses Ruby on Rails (Rails for short) as the web server framework
and PostgreSQL as the DBMS. During the first half of the semester,
students receive practical training on how to develop web applica-
tions using Rails and PostgreSQL. The second half of the semester
is project focused, with the students working in collaborative teams
to build Rails-based web applications.

In prior iterations of the course, a combination of worked exam-
ples and practice homework assignments was used to train students;
however, the homework assignments were consistently found to
be inadequate both in helping students gain the necessary exper-
tise and in assessing their mastery of the requisite skills. Teams
frequently reported unproductive team members who were unable
to complete the tasks assigned to them and who, all too often, con-
tributed code that was itself broken or caused other team members’
code to break. In one-on-one interactions with these struggling
students, instructors often found that they were unable to per-
form basic tasks covered in the homework assignments. However,
inexplicably, these students often had completed the homework
assignments successfully, earning high marks. Thus, the instructors
concluded that the homework assignments were both failing to help
these students gain the necessary skills for the project and failing to
accurately assess their skills. Others in the literature have reported
similar problems with traditional course designs being unsuccessful
in helping students master software development skills [8, 16].

To address these problems, we introduced a skills testing ap-
proach with two main goals:

(1) Training: Improve student preparation for the project by
helping them learn to perform common development tasks
quickly and correctly.

(2) Assessment: More accurately assess whether students have
achieved the desired level of proficiency and reveal strug-
gling students earlier in the course.

The skills tests were administered each week in class (i.e., in a
controlled testing environment) during the first half of the course.
Each test required students to complete a practical coding task. Full

https://doi.org/10.1145/3408877.3432549
https://doi.org/10.1145/3408877.3432549

access to the web was allowed, but only existing documentation and
forum posts could be viewed (e.g., no texting or posting). Students
were given 25 minutes to complete the task, and the time limit was
strictly enforced. The tests were graded as pass/fail, and for every
two tests, an additional second-chance test was offered.

2 RELATED WORK

Our skills testing approach has a number of things in common
with prior applications of mastery learning for teaching coding [10].
Mastery learning aims to help students achieve a high level of
understanding of a domain by having them progress through a
series of learning steps, not advancing to the next step until the
current step has been sufficiently mastered, and moving through
the steps at their own pace [1]. Mastery tests are used to assess
whether a learner is ready to advance to the next step. Studies have
shown the considerable educational benefits of mastery learning,
such as learning gains in lower ability students [18]. Similar to our
skills testing approach, mastery learning approaches have been
applied to help prepare students to work on advanced software
projects [15, 23]. Like our skills tests, the mastery tests used in these
approaches have employed strict time limits [23] and have used
pass/fail grading [8, 19, 23]. However, due to the time constraints
of our course, our approach diverged from mastery learning in
two key ways: students could advance without passing a test, and
students had to follow the course schedule (i.e., not go at their
own pace). To compensate for these differences, we followed prior
(non-CS) approaches [12, 13, 20, 25] and incorporated second-chance
tests, which allow students to receive feedback on tests and then be
retested on the same material with some form of grade replacement.

Athletic Software Engineering [14, 16, 17] is another educational
approach similar to our skills testing. Athletic Software Engineer-
ing also aims to prepare students for full-stack web development
projects (albeit in Meteor rather than in Rails). They aim to en-
courage students to engage in distributed practice by challenging
them with Workouts of the Day (WODs), which are similar to our
skills tests. Like our skills tests, WODs require students to perform
common development tasks, are strictly timed, and use a pass/fail
grading system. The key differences between their approach and
ours are that they have additional procedures to encourage students
to practice (e.g., in-class group practice sessions) prior to graded
testing, and they do not offer second-chance tests.

3 SKILLS TESTING DESIGN AND RATIONALE

As mentioned above, our skills testing approach aimed to address
training and assessment goals. Regarding our training goal, we
hypothesised that timed tests would more effectively communicate
our expectation that students would be able to perform common
tasks quickly as well as correctly. Furthermore, we hypothesized
that the time limit would motivate students to prepare for tests by
engaging in repeated practice of tasks, thus, causing them to benefit
from practice effects. Regarding our assessment goal, we hypothe-
sized that a timed coding test would more accurately assess how
well prepared students were to be productive team members during
the project than would our prior coding homework assignments.
The rationale for this hypothesis was twofold: the time limit would
reveal the inability to perform basic tasks quickly, and a controlled

Table 1: Skills testing schedule and learning goals assessed.

Week Test Main Learning Goals
1 1 * Setup a Rails web development environment
* Initialize and run an existing Rails web app
) e Add web pages to a Rails web app
2 * Add web forms to a Rails web app

1-SC Second chance for test 1 goals
* Create a model class to store data in a DB
Insert seed data into a DB
* Render backend data on a web page
* Create model validations to catch invalid data
Create automated tests of the model
2/3-SC Second chance for test 2 and 3 goals
5 5 * Create Ul features for CRUDing DB records
* Create a one-to-many model association
* Create model tests that include associations
6 * Create Ul features for CRUDing model objects that
manipulate association links between objects
4/5-SC Second chance for test 4 and 5 goals
7 7 ¢ Secure an application with authentication
* Restrict resource access based on authorization
8 6/7-SC Second chance for test 6 and 7 goals

testing environment would prevent behaviors that invalidate the
assessment, like overreliance on help or copying.

Another key aspect to our skills testing approach was the use of
a pass/fail grading system. One reason for this decision was that it
is inherently difficult to assess partial credit commensurate with
a student’s level of mastery based only on a code submission. For
example, it is hard to tell from partial or broken code how much
the student actually understood, and many students have the bad
habit of copying and pasting existing code (e.g., found on the web)
without understanding it, which can result in broken but sort-of-
correct-looking code. Another rationale for pass/fail grading was
that timely grading of the tests was critical, and making a pass/fail
determination takes less time than assessing partial credit.

3.1 Overview of the Rails Skills Tests

We created a sequence of seven weekly skills tests to cover a core set
of common coding tasks in Rails-based web development. Table 1
provides a description of each test. The tests covered a range of
learning goals, such as simply running an existing app, making an
app retrieve and display data from a database, and securing an app
with authentication. The rationale for having seven weekly tests
was that spreading them out over many weeks would encourage
students to engage in distributed practice—that is, the breaking up
of practice over an extended period of time. Distributed practice
has been shown to improve student learning and test performance
versus cramming-style massed practice [3, 6, 24].

In addition to the seven weekly tests, we also included four
second-chance tests, one for roughly every two weekly tests. Each
second-chance test was new, but it would cover the same learning
goals as the associated previous tests, often using an isomorphic
problem. One reason for these second chances was that second-
chance testing has been found to improve student outcomes by
allowing students to study and learn from feedback on a prior
test [20, 21]. Another reason is that second-chance testing has been
found to decrease test anxiety [4, 5]. We anticipated that anxiety
might be high for the skills tests because of the risk that a careless

mistake might cause a student to run out of time and fail. Even
for highly skilled students, such mistakes can happen occasionally.
Thus, the second chances help to ensure that such students can
earn full marks despite the occasional slip up.

3.2 Coding Tasks

Each skills test provided the code base for a web app and a set of task
instructions. For example, Skills Test 4 included a partially complete
web app with a Movie model class, test fixtures for the class (i.e.,
sample data for use in testing), and a unit test that used the fixtures.
The student was tasked with adding two attribute validations to
the model class (e.g., to ensure that the title attribute cannot be
nil) and with adding two new unit tests that test the validations.

In designing each skills test, several key principles were followed.
First, to ensure that a test was not overlong, it must be doable for a
well-prepared student in less than half (or at most two-thirds) of
the time limit (25 minutes). As a confirmation that this principle
was followed, the first author, who did not write the tests, was able
to solve each of them in 10 minutes, except for one that took 15
minutes. Second, the starting app must be quickly understandable
to a well-prepared student. Thus, the starting apps were generally
kept small and used logic that was as straightforward as possible.
Third, the test must contain nothing tricky. Thus, the tests gener-
ally included only material covered in the accompanying worked
example documentation.

Because the aim of the skills tests was to prepare students for
the team project, the development environment they used on the
skills tests was the same as the one they would use for the project.
They used all the same tools and technologies (e.g., code editor,
web browser, operating system, web-server framework, and DBMS).
Additionally, the skills tests were open book, open note, and mostly
open internet to reflect the access to these resources that students
working on the project would typically have. The only exception
was that students were not allowed to communicate directly with
any other individual (except the course instructor) during a test.

3.3 Test Administration

All tests were conducted in a controlled classroom environment.
At the start of a test session, the test code and instructions were
distributed using Git and GitHub. Students submitted their work
via an online dropbox that would automatically lock once the test
time expired. Thus, to successfully pass the test, a student had to
complete and upload their submission before the dropbox locked.

To to deter cheating, each student was required to record a screen-
capture video of their test performance. As a rule, the instructor
generally viewed the videos only if there was some specific reason
to do so, such as to investigate suspected cheating or to understand
a problem that a student encountered during a test.

4 COURSE EXPERIENCES

We applied our skills testing approach during Spring 2020 in the
undergraduate software engineering course at the University of
Memphis. The second author served as instructor for the course, and
the first author assisted as a consultant with the course and skills
tests. 38 junior- and senior-level undergraduate students enrolled in
the course. Seven (18%) of the students were female. Eight (21%) of

8 18%
16% 16%
13% 13%
11%

(o)}

8%

Frequency
S

5%

1

0

0(0) 1(30) 2(60) 3(70) 4(80) 5(90) 6(100) 7(100)
Number of Skills Tests Passed (Score Out of 100)

Figure 1: Student performance on the skills tests. The X-axis
is the number of tests passed (with the points out of 100
awarded for passing that many tests), and the Y-axis is the
number of students who passed that many tests. Green bars
denote scores that correspond to an A grade; yellow bars de-
note scores that correspond to a B or a C grade; red bars de-
note scores that correspond to a D or an F grade.

the students were Black or African American. One of the students
was Hispanic or Latino, and one was American Indian.

Seven skills tests, plus three second-chance tests, were adminis-
tered during the first seven weeks of the course. There was supposed
to be one additional second-chance test; however, the COVID-19
pandemic unexpectedly caused in-person classes to be suspended
following the seventh week of the course. Thus, the last second-
chance test could not be administered in class and was dropped. To
account for the loss of this second-chance test, the grading scale for
the skills tests was softened (e.g., only 6 passed tests were required
to earn full marks as per the X-axis in Figure 1).

4.1 Skills Test Performance

As Figure 1 shows, 40% of the students passed 5 or more skills tests,
thus, earning the equivalent of an A grade on the tests. Around
one-third (34%) of the students were borderline, passing only 3
or 4 out of the 7 tests, earning the equivalent of a B or a C grade.
Over a quarter (26%) of the students effectively failed the skills test
portion of the course, passing 2 or fewer of the 7 tests. The skills
tests accounted for 35% of a student’s final grade in the course.

4.2 Mid-Semester Withdrawals

Five of the 38 students withdrew from the course midway through
the semester, after the last skills test was administered. Two of the
five passed 0 tests, and the other three passed only 1 test. Thus, no
students who passed 0 tests participated in the team project, and
less than half of those who passed only 1 test participated.

In addition to the five students who officially withdrew from the
course, three students who remained enrolled in the course did not
participate at all in the project. These students were more diverse
in their skills test performance than the ones who dropped, with
one passing 5 tests, one passing 4 tests, and one passing 2 tests. The
reasons for their total lack of participation were not entirely known;
however, the student who passed 5 of the 7 tests did inform the
instructor that they would be unable to participate in the project
due to personal issues caused by COVID-19. Because these students
made no attempt to contribute to the project, we will treat them

W Productivity Deficiency

100% g
80% 1
60%
2 4
40%
20% 1 3
1 1 1
0% 0
4 5 6

1 2 3
Number of Skills Tests Passed

& No Productivity Deficiency

Figure 2: The relationship between the number of skills tests
passed (X-axis) and the proportion of students who did and
did not exhibit a productivity deficiency during the team
software project (Y-axis). Red and green bars denote the pro-
portion of students who did and did not exhibit a productiv-
ity deficiency, respectively. Each bar is annotated with the
number of students.

as if they had withdrawn and omit their data from the analysis of
project productivity below.

4.3 Project Productivity Deficiencies

Skills test performance was a good predictor of whether a student
would have a productivity deficiency during the project—that is,
as the number of tests passed increased, the number of students
with productivity deficiencies tended to decrease. The project in-
volved two 2-week development iterations, and at the outset of
each iteration, each student planned the development tasks they
would complete by the end of the iteration. A student received
a productivity-deficiency deduction for an iteration if they com-
pleted substantially fewer tasks than they planned, and the work
they completed was considerably less than what would be reason-
ably expected for a 2-week assignment. As Figure 2 shows, all of
the students who passed only 1 skills test exhibited a productivity
deficiency during the project, and roughly half of the students with
2 or 3 tests passed exhibited a productivity deficiency. In contrast,
far fewer of the students with 4 or more passed tests exhibited pro-
ductivity deficiencies (only 3 out of 19). Indeed, there was a strongly
negative correlation between the number of students with a pro-
ductivity deficiency and the number of skills tests passed (Pearson:
r(5) = —0.86, p = 0.014).

4.4 Student Opinions

To better understand students’ impressions of the skills tests, we
asked them to complete an opinion questionnaire after the final
exam. A small amount of extra credit on the exam was given as
compensation for completing the questionnaire. The instructor
assured the students that their responses would not be reviewed
until after final grades were assigned. In the end, 29 (94%) of the 31
students who took the final completed the questionnaire.

The questions were a mix of Likert-style quantitative questions
and open-ended questions. In this section, we report only the quan-
titative questions. The open-ended questions generally asked partic-
ipants to elaborate on their responses to the quantitative questions.
Where relevant, we will mention the things they said in Section 5.

(a) Like or Dislike?
Overall, what was your opinion of the use of skills tests
in the course?

0 2 4 6 8 10

I liked it a lot 1 21%

| liked it a moderate amount] 28%
I liked it a little T/ 17%
I disliked it a little GGG 2 1%
| disliked it a moderate amount B 3%
| disliked ita lot |EEE— 10%

(b) Effective for Training?

A goal of the skills tests was to help students gain
adequate proficiency in Rails to be effective team
members during the project. Overall, how effective do
you think that the skills tests were for achieving this
instructional goal?

0 2 4 6 8 10 12 14

Very effective 1 45%

Moderately effective 1 38%
Alittle effective —/—/———1 17%
Ineffective 0%

(c) Effective for Assessment?
Another goal of the skills tests was accurately evaluate
student proficiency in Rails. Overall, how effective do
you think that the skills tests were for achieving this
evaluation goal?

0 2 4 6 8 10 12 14

Very effective 1 34%

Moderately effective 1 45%
A little effective /1 14%
Ineffective NN 7%

Figure 3: Student responses to the opinion questions regard-
ing their overall impressions of the skills tests and their ef-
fectiveness.

4.4.1 Overall Opinions of Effectiveness. The first part of the opinion
questionnaire sought to get students’ overall impression of the
skills tests and their effectiveness. Although students may not be
able to objectively assess the effectiveness of the skills tests, we
wanted to know whether they believed that the tests were effective,
because their beliefs about the tests could impact class morale and
their motivation to invest effort into the tests. Figure 3 lists these
questions and provides a summary of the students’ responses.
Overall, a strong majority of the students viewed the skills tests
favorably. As Figure 3a shows, roughly two-thirds (66%) of students
liked the skills tests to some degree, with roughly half (49%) of

(a) Training - Which Is Better?
Which approach [skills tests or graded homework
assignments] do you think would tend to be more

effective for teaching Rails development skills?

0 2 4 6 8 10 12 14 16

Skills tests EEr—————] 41%
Graded homework 1 48%

No difference or no opinion /3 10%

(b) Assessment - Which Is Better?
Which approach [skills tests or graded homework
assignments] do you think would tend to be more
effective for evaluating Rails development skills?

0 2 4 6 8 10 12 14 16 18 20

Skills tests Err——] (5] %,
Graded homework I 34%
No difference or no opinion =@ 3%

Figure 4: Student responses to the opinion questions that
asked them to compare the skills tests to graded homework
assignments.

them liked the skills tests a moderate amount or a lot. However,
that means that roughly one-third (34%) of the students held a
negative opinion of the skills tests, and 5 (13%) of the students held
a moderately or strongly negative opinion of the tests.

Regarding the effectiveness of the skills tests for helping students
gain proficiency in Rails-based web development, all the students
found the tests to be at least somewhat effective. As Figure 3b shows,
no students rated the skills tests as ineffective for training, and a
very strong majority (83%) found them to be moderately or very
effective.

Regarding the effectiveness of the skills tests for evaluating de-
velopment skills, the students were again generally positive. As
Figure 3c shows, 93% of students thought that the skills tests were
effective to some degree for assessment, and 79% were more posi-
tive, rating the tests moderately to very effective. However, 2 (7%)
of the students thought the tests were ineffective for assessment.

4.4.2 Skills Tests versus Graded Homework Assignments. The sec-
ond part of the opinion questionnaire asked students to compare
the skills tests with graded homework assignments, the main com-
peting approach for training and assessing Rails development skills.
Similar to the opinion questions about the effectiveness of the skills
tests, the rationale for these questions was to see what students be-
lieve about the relative effectiveness of skills tests versus homework
assignments, because their beliefs might suggest which approach
would engender higher morale and/or greater motivation. Figure 4
lists these questions and provides a summary of the students’ re-
sponses.

Student opinions were almost evenly divided on whether they
thought that skills tests versus graded homework assignments
would be more effective for learning Rails-based web development

skills. As Figure 4a shows, fourteen (48%) of the students thought
that graded homework assignments would be more effective for
learning, whereas twelve (41%) of the students thought that skills
tests would be more effective.

In contrast, the students were more strongly in favor of skills
tests versus graded homework assignments where assessment was
concerned. As Figure 4b shows, 62% of the students thought that
skills tests would be more effective for assessment, whereas only
about one-third (34%) of the students thought that graded home-
work assignments would be more effective.

5 KEY TAKEAWAYS AND LESSONS LEARNED

5.1 Improved Assessment? Yes!

We will discuss our goal of improving assessment first, because it
was the one that had a more definitive (and positive!) outcome. Nu-
merous indicators pointed to the skills tests as being substantially
more effective for assessment than graded homework assignments.
Skills test scores were strongly predictive of which students would
exhibit productivity deficiencies during the project (recall Figure 2).
Qualitatively, the instructor generally felt confident that skills test
performance was a good reflection of a student’s skill level. Fur-
thermore, the instructor also felt that he had a much better handle
throughout the course on who was succeeding and who was strug-
gling. As early as the third skills test, the instructor was able to
identify students in trouble and offer help. This enhanced aware-
ness was a major improvement over prior semesters in which such
issues were discovered only very late in the course. Even the stu-
dents tended to respect the skills tests as an effective assessment,
with a strong majority indicating so in the opinion questionnaire
(recall Figure 3c). Moreover, a strong majority also thought that
the skills tests would be more effective for assessment than graded
homework (recall Figure 4b).

5.2 Improved Training? Inconclusive

Unfortunately, it was less clear whether the skills tests induced
the desired practice effects and, thus, improved student prepara-
tion for the team project. The instructor’s perspective on this goal
was inhibited by the unexpected move to an on-line format during
the projects. As a consequence, the instructor did not have many
opportunities to observe students working on the project and to
notice how well they were performing. The students’ opinion ques-
tionnaire feedback was generally very positive regarding the tests
effectiveness in preparing them (recall Figure 3b); however, the stu-
dents were split almost evenly on whether skills tests or homework
assignments would have better prepared them (recall Figure 4a). In
their responses to the open-ended opinion questions, five students
(out of 29) specifically mentioned that the skills tests encouraged
them to practice or study—for example, one said the following:

For instance, for the practice skills test, I just kept doing them
and doing them over and over again. Not so much to learn.
Really, I just wanted to see how much time I could shave off
my previous effort. But in the process, I was learning.

Thus, the skills tests clearly had the desired effect for some students;
however, further study would be needed to understand the extent
to which they are effective across all students.

5.3 Lessons Learned

5.3.1 Time Limit Concerns. By far, the aspect of the skills tests
that the students voiced the most concern about was the time
limit. Eighteen (62%) of the 29 students who completed the opinion
questionnaire made a negative comment about the time limit in
their responses to the open-ended questions. A key concern was
the fear of encountering bugs during the test and running out of
time while debugging, as expressed in this comment:

The only thing that bothered me about the skills tests were
the time restrictions... the time limit was very tight and did
not really allow for any type of technical or system errors
that may occur. For example during one skills test I left a
closed parenthesis in a block which caused my code to fail.
However since I knew the time frame was very short and
strict this caused me to not really be able to go back and
identify the problem with a clear head as I was frantic over
the fact that the code was not working and I was running
short on time.

It remains an open question whether failures due to careless mis-
takes unduly depressed test scores or whether a student’s inability
to resolve such errors within the time limit was a valid indicator
that they had not achieved the desired level of proficiency. If such
failure scenarios are not actually that common or problematic, then
the question remains as to what can be done to assuage students’
anxieties about them.

5.3.2 Increased Mid-Semester Withdrawals. The introduction of
skills tests created a noticeable spike in the number of students
who withdrew from the course at mid-semester. In the past four
iterations of the course prior to introducing skills tests, a total of 2
students withdrew at mid-semester, and the average mid-semester
drop rate per semester was 1%. In contrast, 5 (13%) of the students
in the skills test class withdrew—roughly a tenfold increase. These
high withdrawal rates are consistent with the high dropout and
failure rates reported for mastery learning based approaches to
teach coding skills (i.e., 21% [23] and 27% [15]).

5.3.3 Better Interventions for Struggling Students Needed. Although
the skills tests were effective at revealing struggling students early,
providing effective support to help those students remained prob-
lematic. The main approach adopted in the course was to invite
struggling students to one-on-one tutoring sessions with the course
instructors. A few students took full advantage of this invitation,
spending lots of time in office hours, and anecdotally, the tutoring
seemed to help these students improve significantly; however, the
vast majority of struggling students never responded to the invita-
tion. The other main help resource for students during the skills
testing portion of the course was Piazza, to which they could post
questions anonymously; however, few struggling students posted
questions. Interestingly, during the project, when the course was
moved online, Discord was adopted as a communication mecha-
nism, and there was a noticeable increase in the number students
seeking help. The reason for this increase may have been that Dis-
cord offers key features that Piazza lacks, including voice channels,
synchronous messaging, and screen sharing, and those features
improved the quality of feedback and help that could be provided
to students.

5.3.4 High Instructor Effort. The instructor effort required to apply
our skills testing approach was generally high. Because the skills
tests were open book and students were allowed internet access,
old tests could not be reused verbatim. Thus, a new version of each
test needed to be created every time it was administered, and this
task generally took 1-2 hours per test (and more if the test was
totally new and original). Grading the tests also took substantial
time, because, at the least, each test submission would need to
be executed and the code inspected, which generally took 10-15
minutes per test. However, all too often, submissions would require
extra effort to understand (e.g., the screen capture video might
need to be viewed), which would greatly increase the time needed
for grading. With 1-2 tests being given each week, the total time
spent on creating, administering, and grading them added up to be
a considerable effort. Such high effort has also been reported as a
concern with numerous other mastery learning based approaches
for teaching coding skills [2, 8, 15, 19, 23].

5.3.5 Issues with Equity and Inclusion. Equity and inclusion for
underrepresented groups in computer science education programs
remains a high concern, and thus, it is important to consider such
issues in the evaluation of educational approaches. Fourteen (37%)
of the 38 students enrolled in the course belonged to an underrep-
resented group based on gender or race/ethnicity. Unfortunately,
the median pass rate on the skills tests for these students was no-
ticeably lower than the median pass rate for the class (3 versus 4
tests passed), and 4 (80%) of the 5 students who withdrew from
the course at mid-semester belonged to underrepresented groups.
Changes to the skills testing approach that could be explored in
future work to help address these negative trends include adopt-
ing a more equitable grading policy (e.g., as discussed in [11]) and
introducing a student mentoring program, like the one used at
Swarthmore College that was found to improve performance and
retention among students from underrepresented groups [22].

6 CONCLUSION

In this experience report, we described our use of a skills testing
approach to teach full-stack web development in an undergraduate
software engineering course. The key takeaways of our experi-
ences were (1) that the skills testing approach was considerably
more effective than graded homework assignments for assessing
coding skill and detecting struggling students early and (2) that,
although a few students mentioned that the tests motivated them
to practice coding, it was ultimately inconclusive as to its over-
all impact on students’ distributed practice behavior and on their
preparation for the project. Lessons learned included that students
had significant concerns about the tests’ strict time limit, that the
tests caused a spike in mid-semester withdrawals from the course
that disproportionately impacted students from underrepresented
groups, and that detecting struggling students was one thing, but
effectively helping them catch up was a whole other challenge. Our
experiences also motivate a number of future directions, including
how to reduce student test anxiety while still motivating them to
engage in the level of distributed practice necessary to master full-
stack development skills, how to reduce instructor effort (e.g., with
auto-grading [7]), and how to provide more equitable grading and
learner support to help every student succeed in computer science.

ACKNOWLEDGMENTS

We give special thanks to Jeff Atkinson for his exemplary service
as teaching assistant for the software engineering course.

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 1822816 and Grant No. 1918751.
Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not neces-
sarily reflect the views of the National Science Foundation.

REFERENCES

(1]

[2

=

(3

=

(6]

[7

[

[10]

Benjamin S. Bloom. 1971. Mastery Learning. In Mastery Learning: Theory and
Practice, James H. Block (Ed.). Holt, Rinehart and Winston, 47-63.

Dino Capovilla, Marc Berges, Andreas Miihling, and Peter Hubwieser. 2015.
Handling Heterogeneity in Programming Courses for Freshmen. In Proceedings
of the 2015 International Conference on Learning and Teaching in Computing and
Engineering (LATICE °15). 197-203. https://doi.org/10.1109/LaTiCE.2015.18
Shana K. Carpenter, Nicholas J. Cepeda, Doug Rohrer, Sean H. K. Kang, and Harold
Pashler. 2012. Using Spacing to Enhance Diverse Forms of Learning: Review of
Recent Research and Implications for Instruction. Educational Psychology Review
24, 3 (2012), 369-378. https://doi.org/10.1007/s10648-012-9205-2

William B. Davidson, William J. House, and Thomas L. Boyd. 1984. A Test-Retest
Policy for Introductory Psychology Courses. Teaching of Psychology 11, 3 (1984),
182-184. https://doi.org/10.1177/009862838401100320

Amy Diegelman-Parente. 2011. The Use of Mastery Learning With Competency-
Based Grading in an Organic Chemistry Course. Journal of College Science
Teaching 40, 5 (2011), 50-58.

John Dunlosky, Katherine A. Rawson, Elizabeth J. Marsh, Mitchell J. Nathan,
and Daniel T. Willingham. 2013. Improving Students’ Learning With Effective
Learning Techniques: Promising Directions From Cognitive and Educational
Psychology. Psychological Science in the Public Interest 14, 1 (2013), 4-58. https:
//doi.org/10.1177/1529100612453266

Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: Automati-
cally Grading Programming Assignments (ITiCSE "08). 328. https://doi.org/10.
1145/1384271.1384371

Sophie Engle and Sami Rollins. 2013. Expert Code Review and Mastery Learning
in a Software Development Course. J. Comput. Sci. Coll. 28, 4 (April 2013),
139-147.

Armando Fox and David Patterson. 2012. Crossing the Software Education Chasm.
Commun. ACM 55, 5 (May 2012), 44-49. https://doi.org/10.1145/2160718.2160732
James Garner, Paul Denny, and Andrew Luxton-Reilly. 2019. Mastery Learning in
Computer Science Education. In Proceedings of the Twenty-First Australasian
Computing Education Conference (ACE ’19). 37-46. https://doi.org/10.1145/
3286960.3286965

[11

[12]

[13

=
&

[15

[16

(17

)
=

[22

[23

[24

~
2

Mark Guzdial. 2020. CS Teachers, It’s (Past) Time To Learn About Race |
blog@CACM. Retrieved August 28, 2020 from https://cacm.acm.org/blogs/blog-
cacm/245408-cs-teachers-its-past-time-to-learn-about-race/

G. Herman, K. Varghese, and C. Zilles. 2019. Second-chance Testing Course
Policies and Student Behavior. In IEEE Frontiers in Education Conference (FIE ’19).
1-7.

Geoffrey L. Herman, Zhouxiang Cai, Timothy Bretl, Craig Zilles, and Matthew
West. 2020. Comparison of Grade Replacement and Weighted Averages for
Second-Chance Exams. In Proceedings of the 2020 ACM Conference on International
Computing Education Research (ICER °20). Association for Computing Machinery,
New York, NY, USA, 56-66. https://doi.org/10.1145/3372782.3406260

E. Hill, P. M. Johnson, and D. Port. 2016. Is an Athletic Approach the Future of
Software Engineering Education? IEEE Software 33, 1 (2016), 97-100.

Mehdi Jazayeri. 2015. Combining Mastery Learning with Project-Based Learning
in a First Programming Course: An Experience Report. In Proceedings of the 37th
International Conference on Software Engineering - Volume 2 (ICSE ’15). 315-318.
Philip Johnson. 2019. Design and Evaluation of an “Athletic” Approach to Soft-
ware Engineering Education. ACM Trans. Comput. Educ. 19, 4, Article 41 (Aug.
2019). https://doi.org/10.1145/3344273

P. Johnson, D. Port, and E. Hill. 2016. An Athletic Approach to Software Engineer-
ing Education. In 2016 IEEE 29th International Conference on Software Engineering
Education and Training (CSEET). 8-17.

Chen-Lin C. Kulik and James A. Kulik. 1987. Mastery Testing and Student
Learning: A Meta-Analysis. Journal of Educational Technology Systems 15, 3
(1987), 325-345. https://doi.org/10.2190/FG7X-7Q9V-JX8M-RDJP

Noel LeJeune. 2010. Contract Grading with Mastery Learning in CS 1. . Comput.
Sci. Coll. 26, 2 (Dec. 2010), 149-156.

Jason W. Morphew, Mariana Silva, Geoffrey Herman, and Matthew West. 2020.
Frequent mastery testing with second-chance exams leads to enhanced student
learning in undergraduate engineering. Applied Cognitive Psychology 34, 1 (2020),

168-181. https://doi.org/10.1002/acp.3605
Craig E. Nelson. 1996. Student Diversity Requires Different Approaches To

College Teaching, Even in Math and Science. American Behavioral Scientist 40, 2
(1996), 165-175. https://doi.org/10.1177/0002764296040002007

Tia Newhall, Lisa Meeden, Andrew Danner, Ameet Soni, Frances Ruiz, and
Richard Wicentowski. 2014. A Support Program for Introductory CS Courses
That Improves Student Performance and Retains Students from Underrepresented
Groups. In Proceedings of the 45th ACM Technical Symposium on Computer Science
Education (SIGCSE ’14). 433-438. https://doi.org/10.1145/2538862.2538923
Steven C. Shaffer and Mary Beth Rosson. 2013. Increasing Student Success by
Modifying Course Delivery Based on Student Submission Data. ACM Inroads 4,
4 (Dec. 2013), 81-86. https://doi.org/10.1145/2537753.2537778

Nicholas C. Soderstrom and Robert A. Bjork. 2015. Learning Versus Performance:
An Integrative Review. Perspectives on Psychological Science 10, 2 (2015), 176-199.
https://doi.org/10.1177/1745691615569000

Craig Zilles., Matthew West., Geoffrey Herman., and T. Bretl. 2019. Every Univer-
sity Should Have a Computer-Based Testing Facility. In Proceedings of the 11th
International Conference on Computer Supported Education - Volume 1: CSEDU,.
414-420. https://doi.org/10.5220/0007753304140420

https://doi.org/10.1109/LaTiCE.2015.18
https://doi.org/10.1007/s10648-012-9205-z
https://doi.org/10.1177/009862838401100320
https://doi.org/10.1177/1529100612453266
https://doi.org/10.1177/1529100612453266
https://doi.org/10.1145/1384271.1384371
https://doi.org/10.1145/1384271.1384371
https://doi.org/10.1145/2160718.2160732
https://doi.org/10.1145/3286960.3286965
https://doi.org/10.1145/3286960.3286965
https://cacm.acm.org/blogs/blog-cacm/245408-cs-teachers-its-past-time-to-learn-about-race/
https://cacm.acm.org/blogs/blog-cacm/245408-cs-teachers-its-past-time-to-learn-about-race/
https://doi.org/10.1145/3372782.3406260
https://doi.org/10.1145/3344273
https://doi.org/10.2190/FG7X-7Q9V-JX8M-RDJP
https://doi.org/10.1002/acp.3605
https://doi.org/10.1177/0002764296040002007
https://doi.org/10.1145/2538862.2538923
https://doi.org/10.1145/2537753.2537778
https://doi.org/10.1177/1745691615569000
https://doi.org/10.5220/0007753304140420

	Abstract
	1 Introduction
	2 Related Work
	3 Skills Testing Design and Rationale
	3.1 Overview of the Rails Skills Tests
	3.2 Coding Tasks
	3.3 Test Administration

	4 Course Experiences
	4.1 Skills Test Performance
	4.2 Mid-Semester Withdrawals
	4.3 Project Productivity Deficiencies
	4.4 Student Opinions

	5 Key Takeaways and Lessons Learned
	5.1 Improved Assessment? Yes!
	5.2 Improved Training? Inconclusive
	5.3 Lessons Learned

	6 Conclusion
	Acknowledgments
	References

