
Frequent, Timed Coding Tests for Training and Assessment of
Full-Stack Web Development Skills: An Experience Report

Kathryn Bridson
University of Memphis

Memphis, Tennessee, USA
kbridson@memphis.edu

Scott D. Fleming
University of Memphis

Memphis, Tennessee, USA
Scott.Fleming@memphis.edu

ABSTRACT

This experience report describes the use of frequent, timed coding

tests in a project-intensive software engineering course in which

students first learn full-stack web development using Ruby on Rails

and then apply their skills in a team project. The goal of the skills

tests was twofold: (1) to help motivate students to engage in dis-

tributed practice and, thus, gain adequate coding skills to be an

effective team member during the team project and (2) to accu-

rately assess whether students had acquired the requisite skills

and, thereby, catch deficiencies early, while there was still time to

address them. Regarding the first goal, although several students

indicated that the tests motivated them to engage in substantial

practice coding, it was ultimately inconclusive as to the extent of

the tests’ impact on students’ distributed practice behavior and

on their preparation for the project. Regarding the second goal,

the skills testing approach was indeed considerably more effective

than graded homework assignments for assessing coding skill and

detecting struggling students early. Lessons learned from our ex-

periences included that students had significant concerns about

the strict time limit on the tests, that the tests caused a spike in

mid-semester withdrawals from the course that disproportionately

impacted students from underrepresented groups, and that detect-

ing struggling students was one thing, but effectively helping them

catch up was a whole other challenge.

CCS CONCEPTS

• Social and professional topics → Computing education.

KEYWORDS

software engineering education, skills testing, mastery learning,

assessment, full-stack web development

ACM Reference Format:

Kathryn Bridson and Scott D. Fleming. 2021. Frequent, Timed Coding Tests

for Training and Assessment of Full-Stack Web Development Skills: An

Experience Report. In The 52nd ACM Technical Symposium on Computer

Science Education (SIGCSE ’21), March 13–20, 2021, Virtual Event, USA. ACM,

New York, NY, USA, 7 pages. https://doi.org/10.1145/3408877.3432549

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8062-1/21/03. . . $15.00
https://doi.org/10.1145/3408877.3432549

1 INTRODUCTION

This experience report describes the use of a skills testing approach

to enhance student mastery of software development skills and to

provide more accurate and timely assessment of such skills in an

undergraduate software engineering course. Following the basic ap-

proach used by other software engineering courses in the literature

(e.g., [9, 16]), our course teaches software engineering principles

in the context of “full-stack” web development—that is, the devel-

opment of both client and server software built upon a platform

that includes, among other things, a web server framework and

a database management system (DBMS). In particular, the course

uses Ruby on Rails (Rails for short) as the web server framework

and PostgreSQL as the DBMS. During the first half of the semester,

students receive practical training on how to develop web applica-

tions using Rails and PostgreSQL. The second half of the semester

is project focused, with the students working in collaborative teams

to build Rails-based web applications.

In prior iterations of the course, a combination of worked exam-

ples and practice homework assignments was used to train students;

however, the homework assignments were consistently found to

be inadequate both in helping students gain the necessary exper-

tise and in assessing their mastery of the requisite skills. Teams

frequently reported unproductive team members who were unable

to complete the tasks assigned to them and who, all too often, con-

tributed code that was itself broken or caused other team members’

code to break. In one-on-one interactions with these struggling

students, instructors often found that they were unable to per-

form basic tasks covered in the homework assignments. However,

inexplicably, these students often had completed the homework

assignments successfully, earning high marks. Thus, the instructors

concluded that the homework assignments were both failing to help

these students gain the necessary skills for the project and failing to

accurately assess their skills. Others in the literature have reported

similar problems with traditional course designs being unsuccessful

in helping students master software development skills [8, 16].

To address these problems, we introduced a skills testing ap-

proach with two main goals:

(1) Training: Improve student preparation for the project by

helping them learn to perform common development tasks

quickly and correctly.

(2) Assessment:More accurately assess whether students have

achieved the desired level of proficiency and reveal strug-

gling students earlier in the course.

The skills tests were administered each week in class (i.e., in a

controlled testing environment) during the first half of the course.

Each test required students to complete a practical coding task. Full

https://doi.org/10.1145/3408877.3432549
https://doi.org/10.1145/3408877.3432549

access to the web was allowed, but only existing documentation and

forum posts could be viewed (e.g., no texting or posting). Students

were given 25 minutes to complete the task, and the time limit was

strictly enforced. The tests were graded as pass/fail, and for every

two tests, an additional second-chance test was offered.

2 RELATEDWORK

Our skills testing approach has a number of things in common

with prior applications ofmastery learning for teaching coding [10].

Mastery learning aims to help students achieve a high level of

understanding of a domain by having them progress through a

series of learning steps, not advancing to the next step until the

current step has been sufficiently mastered, and moving through

the steps at their own pace [1]. Mastery tests are used to assess

whether a learner is ready to advance to the next step. Studies have

shown the considerable educational benefits of mastery learning,

such as learning gains in lower ability students [18]. Similar to our

skills testing approach, mastery learning approaches have been

applied to help prepare students to work on advanced software

projects [15, 23]. Like our skills tests, the mastery tests used in these

approaches have employed strict time limits [23] and have used

pass/fail grading [8, 19, 23]. However, due to the time constraints

of our course, our approach diverged from mastery learning in

two key ways: students could advance without passing a test, and

students had to follow the course schedule (i.e., not go at their

own pace). To compensate for these differences, we followed prior

(non-CS) approaches [12, 13, 20, 25] and incorporated second-chance

tests, which allow students to receive feedback on tests and then be

retested on the same material with some form of grade replacement.

Athletic Software Engineering [14, 16, 17] is another educational

approach similar to our skills testing. Athletic Software Engineer-

ing also aims to prepare students for full-stack web development

projects (albeit in Meteor rather than in Rails). They aim to en-

courage students to engage in distributed practice by challenging

them withWorkouts of the Day (WODs), which are similar to our

skills tests. Like our skills tests, WODs require students to perform

common development tasks, are strictly timed, and use a pass/fail

grading system. The key differences between their approach and

ours are that they have additional procedures to encourage students

to practice (e.g., in-class group practice sessions) prior to graded

testing, and they do not offer second-chance tests.

3 SKILLS TESTING DESIGN AND RATIONALE

As mentioned above, our skills testing approach aimed to address

training and assessment goals. Regarding our training goal, we

hypothesised that timed tests would more effectively communicate

our expectation that students would be able to perform common

tasks quickly as well as correctly. Furthermore, we hypothesized

that the time limit would motivate students to prepare for tests by

engaging in repeated practice of tasks, thus, causing them to benefit

from practice effects. Regarding our assessment goal, we hypothe-

sized that a timed coding test would more accurately assess how

well prepared students were to be productive team members during

the project than would our prior coding homework assignments.

The rationale for this hypothesis was twofold: the time limit would

reveal the inability to perform basic tasks quickly, and a controlled

Table 1: Skills testing schedule and learning goals assessed.

testing environment would prevent behaviors that invalidate the

assessment, like overreliance on help or copying.

Another key aspect to our skills testing approach was the use of

a pass/fail grading system. One reason for this decision was that it

is inherently difficult to assess partial credit commensurate with

a student’s level of mastery based only on a code submission. For

example, it is hard to tell from partial or broken code how much

the student actually understood, and many students have the bad

habit of copying and pasting existing code (e.g., found on the web)

without understanding it, which can result in broken but sort-of-

correct-looking code. Another rationale for pass/fail grading was

that timely grading of the tests was critical, and making a pass/fail

determination takes less time than assessing partial credit.

3.1 Overview of the Rails Skills Tests

We created a sequence of seven weekly skills tests to cover a core set

of common coding tasks in Rails-based web development. Table 1

provides a description of each test. The tests covered a range of

learning goals, such as simply running an existing app, making an

app retrieve and display data from a database, and securing an app

with authentication. The rationale for having seven weekly tests

was that spreading them out over many weeks would encourage

students to engage in distributed practice—that is, the breaking up

of practice over an extended period of time. Distributed practice

has been shown to improve student learning and test performance

versus cramming-style massed practice [3, 6, 24].

In addition to the seven weekly tests, we also included four

second-chance tests, one for roughly every two weekly tests. Each

second-chance test was new, but it would cover the same learning

goals as the associated previous tests, often using an isomorphic

problem. One reason for these second chances was that second-

chance testing has been found to improve student outcomes by

allowing students to study and learn from feedback on a prior

test [20, 21]. Another reason is that second-chance testing has been

found to decrease test anxiety [4, 5]. We anticipated that anxiety

might be high for the skills tests because of the risk that a careless

mistake might cause a student to run out of time and fail. Even

for highly skilled students, such mistakes can happen occasionally.

Thus, the second chances help to ensure that such students can

earn full marks despite the occasional slip up.

3.2 Coding Tasks

Each skills test provided the code base for a web app and a set of task

instructions. For example, Skills Test 4 included a partially complete

web app with a Movie model class, test fixtures for the class (i.e.,

sample data for use in testing), and a unit test that used the fixtures.

The student was tasked with adding two attribute validations to

the model class (e.g., to ensure that the title attribute cannot be

nil) and with adding two new unit tests that test the validations.

In designing each skills test, several key principles were followed.

First, to ensure that a test was not overlong, it must be doable for a

well-prepared student in less than half (or at most two-thirds) of

the time limit (25 minutes). As a confirmation that this principle

was followed, the first author, who did not write the tests, was able

to solve each of them in 10 minutes, except for one that took 15

minutes. Second, the starting app must be quickly understandable

to a well-prepared student. Thus, the starting apps were generally

kept small and used logic that was as straightforward as possible.

Third, the test must contain nothing tricky. Thus, the tests gener-

ally included only material covered in the accompanying worked

example documentation.

Because the aim of the skills tests was to prepare students for

the team project, the development environment they used on the

skills tests was the same as the one they would use for the project.

They used all the same tools and technologies (e.g., code editor,

web browser, operating system, web-server framework, and DBMS).

Additionally, the skills tests were open book, open note, and mostly

open internet to reflect the access to these resources that students

working on the project would typically have. The only exception

was that students were not allowed to communicate directly with

any other individual (except the course instructor) during a test.

3.3 Test Administration

All tests were conducted in a controlled classroom environment.

At the start of a test session, the test code and instructions were

distributed using Git and GitHub. Students submitted their work

via an online dropbox that would automatically lock once the test

time expired. Thus, to successfully pass the test, a student had to

complete and upload their submission before the dropbox locked.

To to deter cheating, each studentwas required to record a screen-

capture video of their test performance. As a rule, the instructor

generally viewed the videos only if there was some specific reason

to do so, such as to investigate suspected cheating or to understand

a problem that a student encountered during a test.

4 COURSE EXPERIENCES

We applied our skills testing approach during Spring 2020 in the

undergraduate software engineering course at the University of

Memphis. The second author served as instructor for the course, and

the first author assisted as a consultant with the course and skills

tests. 38 junior- and senior-level undergraduate students enrolled in

the course. Seven (18%) of the students were female. Eight (21%) of

Figure 1: Student performance on the skills tests. The𝑋 -axis

is the number of tests passed (with the points out of 100

awarded for passing that many tests), and the 𝑌 -axis is the

number of students who passed that many tests. Green bars

denote scores that correspond to an A grade; yellow bars de-

note scores that correspond to a B or a C grade; red bars de-

note scores that correspond to a D or an F grade.

the students were Black or African American. One of the students

was Hispanic or Latino, and one was American Indian.

Seven skills tests, plus three second-chance tests, were adminis-

tered during the first sevenweeks of the course. Therewas supposed

to be one additional second-chance test; however, the COVID-19

pandemic unexpectedly caused in-person classes to be suspended

following the seventh week of the course. Thus, the last second-

chance test could not be administered in class and was dropped. To

account for the loss of this second-chance test, the grading scale for

the skills tests was softened (e.g., only 6 passed tests were required

to earn full marks as per the 𝑋 -axis in Figure 1).

4.1 Skills Test Performance

As Figure 1 shows, 40% of the students passed 5 or more skills tests,

thus, earning the equivalent of an A grade on the tests. Around

one-third (34%) of the students were borderline, passing only 3

or 4 out of the 7 tests, earning the equivalent of a B or a C grade.

Over a quarter (26%) of the students effectively failed the skills test

portion of the course, passing 2 or fewer of the 7 tests. The skills

tests accounted for 35% of a student’s final grade in the course.

4.2 Mid-Semester Withdrawals

Five of the 38 students withdrew from the course midway through

the semester, after the last skills test was administered. Two of the

five passed 0 tests, and the other three passed only 1 test. Thus, no

students who passed 0 tests participated in the team project, and

less than half of those who passed only 1 test participated.

In addition to the five students who officially withdrew from the

course, three students who remained enrolled in the course did not

participate at all in the project. These students were more diverse

in their skills test performance than the ones who dropped, with

one passing 5 tests, one passing 4 tests, and one passing 2 tests. The

reasons for their total lack of participation were not entirely known;

however, the student who passed 5 of the 7 tests did inform the

instructor that they would be unable to participate in the project

due to personal issues caused by COVID-19. Because these students

made no attempt to contribute to the project, we will treat them

Figure 2: The relationship between the number of skills tests

passed (𝑋 -axis) and the proportion of students who did and

did not exhibit a productivity deficiency during the team

software project (𝑌 -axis). Red and green bars denote the pro-

portion of students who did and did not exhibit a productiv-

ity deficiency, respectively. Each bar is annotated with the

number of students.

as if they had withdrawn and omit their data from the analysis of

project productivity below.

4.3 Project Productivity Deficiencies

Skills test performance was a good predictor of whether a student

would have a productivity deficiency during the project—that is,

as the number of tests passed increased, the number of students

with productivity deficiencies tended to decrease. The project in-

volved two 2-week development iterations, and at the outset of

each iteration, each student planned the development tasks they

would complete by the end of the iteration. A student received

a productivity-deficiency deduction for an iteration if they com-

pleted substantially fewer tasks than they planned, and the work

they completed was considerably less than what would be reason-

ably expected for a 2-week assignment. As Figure 2 shows, all of

the students who passed only 1 skills test exhibited a productivity

deficiency during the project, and roughly half of the students with

2 or 3 tests passed exhibited a productivity deficiency. In contrast,

far fewer of the students with 4 or more passed tests exhibited pro-

ductivity deficiencies (only 3 out of 19). Indeed, there was a strongly

negative correlation between the number of students with a pro-

ductivity deficiency and the number of skills tests passed (Pearson:

𝑟 (5) = −0.86, 𝑝 = 0.014).

4.4 Student Opinions

To better understand students’ impressions of the skills tests, we

asked them to complete an opinion questionnaire after the final

exam. A small amount of extra credit on the exam was given as

compensation for completing the questionnaire. The instructor

assured the students that their responses would not be reviewed

until after final grades were assigned. In the end, 29 (94%) of the 31

students who took the final completed the questionnaire.

The questions were a mix of Likert-style quantitative questions

and open-ended questions. In this section, we report only the quan-

titative questions. The open-ended questions generally asked partic-

ipants to elaborate on their responses to the quantitative questions.

Where relevant, we will mention the things they said in Section 5.

(a) Like or Dislike?

(b) Effective for Training?

(c) Effective for Assessment?

Figure 3: Student responses to the opinion questions regard-

ing their overall impressions of the skills tests and their ef-

fectiveness.

4.4.1 Overall Opinions of Effectiveness. The first part of the opinion

questionnaire sought to get students’ overall impression of the

skills tests and their effectiveness. Although students may not be

able to objectively assess the effectiveness of the skills tests, we

wanted to know whether they believed that the tests were effective,

because their beliefs about the tests could impact class morale and

their motivation to invest effort into the tests. Figure 3 lists these

questions and provides a summary of the students’ responses.

Overall, a strong majority of the students viewed the skills tests

favorably. As Figure 3a shows, roughly two-thirds (66%) of students

liked the skills tests to some degree, with roughly half (49%) of

(a) Training - Which Is Better?

(b) Assessment - Which Is Better?

Figure 4: Student responses to the opinion questions that

asked them to compare the skills tests to graded homework

assignments.

them liked the skills tests a moderate amount or a lot. However,

that means that roughly one-third (34%) of the students held a

negative opinion of the skills tests, and 5 (13%) of the students held

a moderately or strongly negative opinion of the tests.

Regarding the effectiveness of the skills tests for helping students

gain proficiency in Rails-based web development, all the students

found the tests to be at least somewhat effective. As Figure 3b shows,

no students rated the skills tests as ineffective for training, and a

very strong majority (83%) found them to be moderately or very

effective.

Regarding the effectiveness of the skills tests for evaluating de-

velopment skills, the students were again generally positive. As

Figure 3c shows, 93% of students thought that the skills tests were

effective to some degree for assessment, and 79% were more posi-

tive, rating the tests moderately to very effective. However, 2 (7%)

of the students thought the tests were ineffective for assessment.

4.4.2 Skills Tests versus Graded Homework Assignments. The sec-

ond part of the opinion questionnaire asked students to compare

the skills tests with graded homework assignments, the main com-

peting approach for training and assessing Rails development skills.

Similar to the opinion questions about the effectiveness of the skills

tests, the rationale for these questions was to see what students be-

lieve about the relative effectiveness of skills tests versus homework

assignments, because their beliefs might suggest which approach

would engender higher morale and/or greater motivation. Figure 4

lists these questions and provides a summary of the students’ re-

sponses.

Student opinions were almost evenly divided on whether they

thought that skills tests versus graded homework assignments

would be more effective for learning Rails-based web development

skills. As Figure 4a shows, fourteen (48%) of the students thought

that graded homework assignments would be more effective for

learning, whereas twelve (41%) of the students thought that skills

tests would be more effective.

In contrast, the students were more strongly in favor of skills

tests versus graded homework assignments where assessment was

concerned. As Figure 4b shows, 62% of the students thought that

skills tests would be more effective for assessment, whereas only

about one-third (34%) of the students thought that graded home-

work assignments would be more effective.

5 KEY TAKEAWAYS AND LESSONS LEARNED

5.1 Improved Assessment? Yes!

We will discuss our goal of improving assessment first, because it

was the one that had a more definitive (and positive!) outcome. Nu-

merous indicators pointed to the skills tests as being substantially

more effective for assessment than graded homework assignments.

Skills test scores were strongly predictive of which students would

exhibit productivity deficiencies during the project (recall Figure 2).

Qualitatively, the instructor generally felt confident that skills test

performance was a good reflection of a student’s skill level. Fur-

thermore, the instructor also felt that he had a much better handle

throughout the course on who was succeeding and who was strug-

gling. As early as the third skills test, the instructor was able to

identify students in trouble and offer help. This enhanced aware-

ness was a major improvement over prior semesters in which such

issues were discovered only very late in the course. Even the stu-

dents tended to respect the skills tests as an effective assessment,

with a strong majority indicating so in the opinion questionnaire

(recall Figure 3c). Moreover, a strong majority also thought that

the skills tests would be more effective for assessment than graded

homework (recall Figure 4b).

5.2 Improved Training? Inconclusive

Unfortunately, it was less clear whether the skills tests induced

the desired practice effects and, thus, improved student prepara-

tion for the team project. The instructor’s perspective on this goal

was inhibited by the unexpected move to an on-line format during

the projects. As a consequence, the instructor did not have many

opportunities to observe students working on the project and to

notice how well they were performing. The students’ opinion ques-

tionnaire feedback was generally very positive regarding the tests

effectiveness in preparing them (recall Figure 3b); however, the stu-

dents were split almost evenly on whether skills tests or homework

assignments would have better prepared them (recall Figure 4a). In

their responses to the open-ended opinion questions, five students

(out of 29) specifically mentioned that the skills tests encouraged

them to practice or study—for example, one said the following:

For instance, for the practice skills test, I just kept doing them

and doing them over and over again. Not so much to learn.

Really, I just wanted to see how much time I could shave off

my previous effort. But in the process, I was learning.

Thus, the skills tests clearly had the desired effect for some students;

however, further study would be needed to understand the extent

to which they are effective across all students.

5.3 Lessons Learned

5.3.1 Time Limit Concerns. By far, the aspect of the skills tests

that the students voiced the most concern about was the time

limit. Eighteen (62%) of the 29 students who completed the opinion

questionnaire made a negative comment about the time limit in

their responses to the open-ended questions. A key concern was

the fear of encountering bugs during the test and running out of

time while debugging, as expressed in this comment:

The only thing that bothered me about the skills tests were

the time restrictions. . . the time limit was very tight and did

not really allow for any type of technical or system errors

that may occur. For example during one skills test I left a

closed parenthesis in a block which caused my code to fail.

However since I knew the time frame was very short and

strict this caused me to not really be able to go back and

identify the problem with a clear head as I was frantic over

the fact that the code was not working and I was running

short on time.

It remains an open question whether failures due to careless mis-

takes unduly depressed test scores or whether a student’s inability

to resolve such errors within the time limit was a valid indicator

that they had not achieved the desired level of proficiency. If such

failure scenarios are not actually that common or problematic, then

the question remains as to what can be done to assuage students’

anxieties about them.

5.3.2 Increased Mid-Semester Withdrawals. The introduction of

skills tests created a noticeable spike in the number of students

who withdrew from the course at mid-semester. In the past four

iterations of the course prior to introducing skills tests, a total of 2

students withdrew at mid-semester, and the average mid-semester

drop rate per semester was 1%. In contrast, 5 (13%) of the students

in the skills test class withdrew—roughly a tenfold increase. These

high withdrawal rates are consistent with the high dropout and

failure rates reported for mastery learning based approaches to

teach coding skills (i.e., 21% [23] and 27% [15]).

5.3.3 Better Interventions for Struggling Students Needed. Although

the skills tests were effective at revealing struggling students early,

providing effective support to help those students remained prob-

lematic. The main approach adopted in the course was to invite

struggling students to one-on-one tutoring sessions with the course

instructors. A few students took full advantage of this invitation,

spending lots of time in office hours, and anecdotally, the tutoring

seemed to help these students improve significantly; however, the

vast majority of struggling students never responded to the invita-

tion. The other main help resource for students during the skills

testing portion of the course was Piazza, to which they could post

questions anonymously; however, few struggling students posted

questions. Interestingly, during the project, when the course was

moved online, Discord was adopted as a communication mecha-

nism, and there was a noticeable increase in the number students

seeking help. The reason for this increase may have been that Dis-

cord offers key features that Piazza lacks, including voice channels,

synchronous messaging, and screen sharing, and those features

improved the quality of feedback and help that could be provided

to students.

5.3.4 High Instructor Effort. The instructor effort required to apply

our skills testing approach was generally high. Because the skills

tests were open book and students were allowed internet access,

old tests could not be reused verbatim. Thus, a new version of each

test needed to be created every time it was administered, and this

task generally took 1–2 hours per test (and more if the test was

totally new and original). Grading the tests also took substantial

time, because, at the least, each test submission would need to

be executed and the code inspected, which generally took 10–15

minutes per test. However, all too often, submissions would require

extra effort to understand (e.g., the screen capture video might

need to be viewed), which would greatly increase the time needed

for grading. With 1–2 tests being given each week, the total time

spent on creating, administering, and grading them added up to be

a considerable effort. Such high effort has also been reported as a

concern with numerous other mastery learning based approaches

for teaching coding skills [2, 8, 15, 19, 23].

5.3.5 Issues with Equity and Inclusion. Equity and inclusion for

underrepresented groups in computer science education programs

remains a high concern, and thus, it is important to consider such

issues in the evaluation of educational approaches. Fourteen (37%)

of the 38 students enrolled in the course belonged to an underrep-

resented group based on gender or race/ethnicity. Unfortunately,

the median pass rate on the skills tests for these students was no-

ticeably lower than the median pass rate for the class (3 versus 4

tests passed), and 4 (80%) of the 5 students who withdrew from

the course at mid-semester belonged to underrepresented groups.

Changes to the skills testing approach that could be explored in

future work to help address these negative trends include adopt-

ing a more equitable grading policy (e.g., as discussed in [11]) and

introducing a student mentoring program, like the one used at

Swarthmore College that was found to improve performance and

retention among students from underrepresented groups [22].

6 CONCLUSION

In this experience report, we described our use of a skills testing

approach to teach full-stack web development in an undergraduate

software engineering course. The key takeaways of our experi-

ences were (1) that the skills testing approach was considerably

more effective than graded homework assignments for assessing

coding skill and detecting struggling students early and (2) that,

although a few students mentioned that the tests motivated them

to practice coding, it was ultimately inconclusive as to its over-

all impact on students’ distributed practice behavior and on their

preparation for the project. Lessons learned included that students

had significant concerns about the tests’ strict time limit, that the

tests caused a spike in mid-semester withdrawals from the course

that disproportionately impacted students from underrepresented

groups, and that detecting struggling students was one thing, but

effectively helping them catch up was a whole other challenge. Our

experiences also motivate a number of future directions, including

how to reduce student test anxiety while still motivating them to

engage in the level of distributed practice necessary to master full-

stack development skills, how to reduce instructor effort (e.g., with

auto-grading [7]), and how to provide more equitable grading and

learner support to help every student succeed in computer science.

ACKNOWLEDGMENTS

We give special thanks to Jeff Atkinson for his exemplary service

as teaching assistant for the software engineering course.

This material is based upon work supported by the National Sci-

ence Foundation under Grant No. 1822816 and Grant No. 1918751.

Any opinions, findings, and conclusions or recommendations ex-

pressed in this material are those of the authors and do not neces-

sarily reflect the views of the National Science Foundation.

REFERENCES
[1] Benjamin S. Bloom. 1971. Mastery Learning. In Mastery Learning: Theory and

Practice, James H. Block (Ed.). Holt, Rinehart and Winston, 47–63.
[2] Dino Capovilla, Marc Berges, Andreas Mühling, and Peter Hubwieser. 2015.

Handling Heterogeneity in Programming Courses for Freshmen. In Proceedings
of the 2015 International Conference on Learning and Teaching in Computing and
Engineering (LATICE ’15). 197–203. https://doi.org/10.1109/LaTiCE.2015.18

[3] Shana K. Carpenter, Nicholas J. Cepeda, Doug Rohrer, SeanH. K. Kang, andHarold
Pashler. 2012. Using Spacing to Enhance Diverse Forms of Learning: Review of
Recent Research and Implications for Instruction. Educational Psychology Review
24, 3 (2012), 369–378. https://doi.org/10.1007/s10648-012-9205-z

[4] William B. Davidson, William J. House, and Thomas L. Boyd. 1984. A Test-Retest
Policy for Introductory Psychology Courses. Teaching of Psychology 11, 3 (1984),
182–184. https://doi.org/10.1177/009862838401100320

[5] Amy Diegelman-Parente. 2011. The Use of Mastery Learning With Competency-
Based Grading in an Organic Chemistry Course. Journal of College Science
Teaching 40, 5 (2011), 50–58.

[6] John Dunlosky, Katherine A. Rawson, Elizabeth J. Marsh, Mitchell J. Nathan,
and Daniel T. Willingham. 2013. Improving Students’ Learning With Effective
Learning Techniques: Promising Directions From Cognitive and Educational
Psychology. Psychological Science in the Public Interest 14, 1 (2013), 4–58. https:
//doi.org/10.1177/1529100612453266

[7] Stephen H. Edwards and Manuel A. Perez-Quinones. 2008. Web-CAT: Automati-
cally Grading Programming Assignments (ITiCSE ’08). 328. https://doi.org/10.
1145/1384271.1384371

[8] Sophie Engle and Sami Rollins. 2013. Expert Code Review and Mastery Learning
in a Software Development Course. J. Comput. Sci. Coll. 28, 4 (April 2013),
139–147.

[9] Armando Fox and David Patterson. 2012. Crossing the Software Education Chasm.
Commun. ACM 55, 5 (May 2012), 44–49. https://doi.org/10.1145/2160718.2160732

[10] James Garner, Paul Denny, and Andrew Luxton-Reilly. 2019. Mastery Learning in
Computer Science Education. In Proceedings of the Twenty-First Australasian
Computing Education Conference (ACE ’19). 37–46. https://doi.org/10.1145/
3286960.3286965

[11] Mark Guzdial. 2020. CS Teachers, It’s (Past) Time To Learn About Race |
blog@CACM. Retrieved August 28, 2020 from https://cacm.acm.org/blogs/blog-
cacm/245408-cs-teachers-its-past-time-to-learn-about-race/

[12] G. Herman, K. Varghese, and C. Zilles. 2019. Second-chance Testing Course
Policies and Student Behavior. In IEEE Frontiers in Education Conference (FIE ’19).
1–7.

[13] Geoffrey L. Herman, Zhouxiang Cai, Timothy Bretl, Craig Zilles, and Matthew
West. 2020. Comparison of Grade Replacement and Weighted Averages for
Second-Chance Exams. In Proceedings of the 2020 ACMConference on International
Computing Education Research (ICER ’20). Association for Computing Machinery,
New York, NY, USA, 56–66. https://doi.org/10.1145/3372782.3406260

[14] E. Hill, P. M. Johnson, and D. Port. 2016. Is an Athletic Approach the Future of
Software Engineering Education? IEEE Software 33, 1 (2016), 97–100.

[15] Mehdi Jazayeri. 2015. Combining Mastery Learning with Project-Based Learning
in a First Programming Course: An Experience Report. In Proceedings of the 37th
International Conference on Software Engineering - Volume 2 (ICSE ’15). 315–318.

[16] Philip Johnson. 2019. Design and Evaluation of an “Athletic” Approach to Soft-
ware Engineering Education. ACM Trans. Comput. Educ. 19, 4, Article 41 (Aug.
2019). https://doi.org/10.1145/3344273

[17] P. Johnson, D. Port, and E. Hill. 2016. An Athletic Approach to Software Engineer-
ing Education. In 2016 IEEE 29th International Conference on Software Engineering
Education and Training (CSEET). 8–17.

[18] Chen-Lin C. Kulik and James A. Kulik. 1987. Mastery Testing and Student
Learning: A Meta-Analysis. Journal of Educational Technology Systems 15, 3
(1987), 325–345. https://doi.org/10.2190/FG7X-7Q9V-JX8M-RDJP

[19] Noel LeJeune. 2010. Contract Grading with Mastery Learning in CS 1. J. Comput.
Sci. Coll. 26, 2 (Dec. 2010), 149–156.

[20] Jason W. Morphew, Mariana Silva, Geoffrey Herman, and Matthew West. 2020.
Frequent mastery testing with second-chance exams leads to enhanced student
learning in undergraduate engineering. Applied Cognitive Psychology 34, 1 (2020),
168–181. https://doi.org/10.1002/acp.3605

[21] Craig E. Nelson. 1996. Student Diversity Requires Different Approaches To
College Teaching, Even in Math and Science. American Behavioral Scientist 40, 2
(1996), 165–175. https://doi.org/10.1177/0002764296040002007

[22] Tia Newhall, Lisa Meeden, Andrew Danner, Ameet Soni, Frances Ruiz, and
Richard Wicentowski. 2014. A Support Program for Introductory CS Courses
That Improves Student Performance and Retains Students from Underrepresented
Groups. In Proceedings of the 45th ACM Technical Symposium on Computer Science
Education (SIGCSE ’14). 433–438. https://doi.org/10.1145/2538862.2538923

[23] Steven C. Shaffer and Mary Beth Rosson. 2013. Increasing Student Success by
Modifying Course Delivery Based on Student Submission Data. ACM Inroads 4,
4 (Dec. 2013), 81–86. https://doi.org/10.1145/2537753.2537778

[24] Nicholas C. Soderstrom and Robert A. Bjork. 2015. Learning Versus Performance:
An Integrative Review. Perspectives on Psychological Science 10, 2 (2015), 176–199.
https://doi.org/10.1177/1745691615569000

[25] Craig Zilles., Matthew West., Geoffrey Herman., and T. Bretl. 2019. Every Univer-
sity Should Have a Computer-Based Testing Facility. In Proceedings of the 11th
International Conference on Computer Supported Education - Volume 1: CSEDU,.
414–420. https://doi.org/10.5220/0007753304140420

https://doi.org/10.1109/LaTiCE.2015.18
https://doi.org/10.1007/s10648-012-9205-z
https://doi.org/10.1177/009862838401100320
https://doi.org/10.1177/1529100612453266
https://doi.org/10.1177/1529100612453266
https://doi.org/10.1145/1384271.1384371
https://doi.org/10.1145/1384271.1384371
https://doi.org/10.1145/2160718.2160732
https://doi.org/10.1145/3286960.3286965
https://doi.org/10.1145/3286960.3286965
https://cacm.acm.org/blogs/blog-cacm/245408-cs-teachers-its-past-time-to-learn-about-race/
https://cacm.acm.org/blogs/blog-cacm/245408-cs-teachers-its-past-time-to-learn-about-race/
https://doi.org/10.1145/3372782.3406260
https://doi.org/10.1145/3344273
https://doi.org/10.2190/FG7X-7Q9V-JX8M-RDJP
https://doi.org/10.1002/acp.3605
https://doi.org/10.1177/0002764296040002007
https://doi.org/10.1145/2538862.2538923
https://doi.org/10.1145/2537753.2537778
https://doi.org/10.1177/1745691615569000
https://doi.org/10.5220/0007753304140420

	Abstract
	1 Introduction
	2 Related Work
	3 Skills Testing Design and Rationale
	3.1 Overview of the Rails Skills Tests
	3.2 Coding Tasks
	3.3 Test Administration

	4 Course Experiences
	4.1 Skills Test Performance
	4.2 Mid-Semester Withdrawals
	4.3 Project Productivity Deficiencies
	4.4 Student Opinions

	5 Key Takeaways and Lessons Learned
	5.1 Improved Assessment? Yes!
	5.2 Improved Training? Inconclusive
	5.3 Lessons Learned

	6 Conclusion
	Acknowledgments
	References

