What Questions Do Developers Ask About Julia?

Dibyendu Brinto Bose
Reve System
Dhaka, Bangladesh
brintodibyendu@gmail.com

Akond Rahman
Tennessee Tech University
Cookeville, Tennessee, USA

arahman@tntech.edu

ABSTRACT

The programming language Julia is designed to solve the ‘two
language problem’, where developers who write scientific software

can achieve desired performance, without sacrificing productivity.

Since its inception in 2012, developers who have been using other
programming languages have transitioned to Julia. A systematic
investigation of the questions that developers ask about Julia can
help in understanding the challenges that developers face while
using Julia. Such understanding can be helpful (i) for toolsmiths
who can construct tools so that developers can maximize their
experience of using Julia, and (ii) for Julia language maintainers
with empirical evidence on areas to improve the language as well
as the Julia ecosystem. We conduct an empirical study with 3,093
Stack Overflow posts where we identify 13 categories of questions
related to Julia-based software development. We observe developers
to ask about a diverse set of topics, such as GC, Julia’s garbage
collector, JuMP, a domain-specific language constructed using Julia,
and symbols, a metaprogramming utility in Julia. Based on our
emerging results, we recommend enhancing support for developers
with Julia-based tools and techniques for cross language transfer,
type-related assistance, and package resolution.

CCS CONCEPTS

« Software and its engineering — Frameworks.

KEYWORDS
Challenges, Empirical Study, Julia, Stack Overflow

ACM Reference Format:

Dibyendu Brinto Bose, Gerald C. Gannod, Akond Rahman, and Kaitlyn
Cottrell. 2022. What Questions Do Developers Ask About Julia?. In 2022 ACM
Southeast Conference (ACMSE 2022), April 18-20, 2022, Virtual Event, USA.
ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3476883.3520205

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACMSE 2022, April 18-20, 2022, Virtual Event, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-8697-5/22/04...$15.00
https://doi.org/10.1145/3476883.3520205

Gerald C. Gannod

Tennessee Tech University
Cookeville, Tennessee, USA
jgannod@tntech.edu

Kaitlyn Cottrell
Tennessee Tech University
Cookeville, Tennessee, USA

kmcottrell42@tntech.edu

1 INTRODUCTION

Typically developers who develop scientific software, rely on script-
ing languages, such as Python [10]. While these scripting languages
help in developer productivity, can hinder program execution speed,
as these languages do not provide a predictable mapping between
the program and the hardware [10]. As a result, developers have to
migrate their software source code base to C or Fortran to achieve
desired program execution speed. Such migration usually leads
to improved program execution speed for the software project,
but yield development and maintenance overhead [10]. The pro-
gramming language Julia is designed so that developers involved
in scientific software development do not have to transition from
one language to another. Creators of Julia designed the language
to solve the ‘two language problem’, which allows developers to
achieve desired performance, without sacrificing productivity [2].

According to a survey of Stack Overflow (SO) users in 2020, Julia
is considered as one of the “top 10 most loved programming lan-
guages” by practitioners [5]. We observe Julia being used in research
and product development as well. For example, Julia was used in
Celeste [1], a software used in astronomy research. Celeste was
used to load 178 terabytes of astronomical image data to produce a
catalog of 188 million astronomical objects in 14.6 minutes, yielding
a performance improvement by a factor of 1,000, compared to prior
implementation [1]. As of Jan 2021, Julia has been downloaded
24,205,141 times [4].

The above-mentioned discussion shows that Julia is an emerging
programming language, as developers involved in scientific soft-
ware development are switching from scripting languages, such as
Python to Julia [6]. Despite finding beneficial in software projects,
developers face challenges in using Julia as expressed in forms of
questions that are posted on question and answer websites, such
as Stack Overflow (SO). Let us consider Figure 1 in this regard. We
observe a developer to ask about how memory is allocated when
performing array broadcasting in Julia. Broadcasting refers to the
feature of performing element-by-element operations on arrays of
different sizes, e.g., adding a vector to each column of a matrix [3].
Evidence presented in Figure 1 demonstrates that while using Ju-
lia, developers encounter difficulties, and seek help from the SO
community. As an emerging community, developers who use Julia
can benefit from an empirical study that systematically investigates
the questions that developers ask about Julia. Such study can help
the software engineering research community understand the chal-
lenges that developers face while using Julia, which in turn can

Memory allocation with broadcasted operation

Asked 1year, 11 months ago Active 1year, 11 months ago Viewed 112 times

I have a loop which goes upto 100000 and each time it finds the index of numbers matching a
certain criteria.

X is an array of floats.

x = [0.1,0.3,-0.2, 0.4,0.0, 0.9,1.1]
for i = 1:n

cr = max(0.8, 0.2%sqrt(i) - 28)

ftt = findall(x .<= cr)

#I have other things here but they are not necessary
end

How can you avoid memory allocation by using findall in a loop?

Figure 1: An Example Julia-related SO Question [26]

yield derivation of tools and practices so that developers can maxi-
mize their experience in using Julia. Furthermore, Julia language
maintainers can use the obtained empirical insights to improve the
language as well as the Julia ecosystem.

We answer the following research question: RQ: What questions
do developers ask about when writing Julia programs?

Our contribution is a list of categories related to questions that
developers ask about when using Julia.

We organize rest of the paper as follows: we discuss background
and related work in Section 2. We describe our empirical study in
Section 3. We discuss our findings and limitations respectively, in
Sections 4 and 5. We conclude our paper in Section 6.

2 BACKGROUND AND RELATED WORK

In this section, we provide background information and discuss
research relevant to our paper:

2.1 Background

Julia is perceived to solve the ‘two language problem’ [10], which
refers to the phenomenon of practitioners having to switch to a
programming language that is harder to use in order to achieve
better performance. For example, writing programs in Python can
be relatively easy for practitioners because of its scripting nature.
However, Python programs’ execution time may not be as fast as C
programs. Rapid program execution can be desirable when applying
complex computational activities on large-scale datasets, e.g., as
done by the Celeste project [1].

Julia programs can call low-level functions from the C runtime.
Julia programs also take advantage of just-in-time (JIT) compila-
tion, which is the process of compiling lines of code sequentially
as they are seen, instead of compiling all lines beforehand. With
the use of JIT compilation, Julia is perceived to be useful in devel-
oping computationally efficient programs. Julia programs are also
compiled into an intermediate representation of bytecode, which
allows portability between different computer architectures.

We provide an annotated example of a Julia program in Fig-
ure 2. Dedicated code elements, such as include and println
respectively, are used to specify dependencies and redirect program
output to the console. A collection of Julia programs is referred
to as a package. Functions in Julia are defined using the function
keyword. Julia allows the return of one or multiple values without

explicitly specifying the return keyword, as long as the values
that need to be returned reside on the last line in the function body.
For example, in Figure 2, the function mul_and_add performs two
mathematical operations, multiplication and addition, and returns
the results of those two operations by using the statement m, a,
which is the last sentence in the function body. String interpolation
is also possible using the $ character.

Enable pre-compilation
__precompile__()

Create example module

module Example

Include a package dependency

include ()
Simple hello world standard output
println()

Function to multiply and add two values
function mul_and_add(a, b)

m = axb

a = atb

m, a
end

rl, r2 = mul_and add(3, 4) # result: 12, 7
Create macros with "macro" keyword
macro assert_str(s)

return :($s

? nothing

: throw(AssertionError($(string(s)))))
end
Q@assert_str 1 == 1.0 # result: nothing
Qassert_str 1 ==
result: ERROR: AssertionError: 1 == 0
end

Figure 2: An Annotated Example of a Julia Program

2.2 Related Work

Since its inception in 2012, Julia has garnered interest amongst re-
searchers. Quality issues in Julia programs have been investigated,
e.g., Paulding and Feldt [20] applied random testing to find faults
in 9 Julia-provided functions. Churavy [11] constructed and evalu-
ated a debugging tool called ‘Cthulhu’ that uses static and dynamic
analysis to help developers find bugs in array abstractions. Nardelli
et al. [29] used formal specification to verify the correctness of
Julia-related subtypes. Productivity and performance issues have
also been investigated: Gibson [15] reported that Julia has mul-
tiple benefits over existing programming languages with respect
to graphic rendering capabilities, user experience, and program
execution time. Januszek et al. [17] compared the performance
of five programming languages for algorithms with O(n?) time
complexity, and observed superior computational efficiency for
Julia programs compared to that of Wolfram, R, Python, and C#
programs. For parallel programming, Gmys et al. [16] found Julia
to be better than Python with respect to performance, and better
than C programs with respect to productivity. Sells [23] used an
open-source, industry-standard, missile and rocket simulation soft-
ware called ‘Mini-Rocket’ to assess and benchmark productivity
metrics of Julia against Python, Java, and C++. Their [23] results

Table 1: Selection of Julia-related SO Questions

Initial question count 18,597,996
Criterion-1 (Questions tagged as ‘julia’) 6,361
Criterion-2 (Questions with at least one answer) 5,678
Criterion-3 (Questions with accepted answers) 4,355
Criterion-4 (Questions with score > 0) 4,355
Criterion-5 (Questions with > 0 views) 4,355
Criterion-6 (Questions with code snippets) 3,093
Final question count 3,093

showed that Julia required far less lines of code than the other three
languages and was second best only to Python in terms of ‘ease-of-
coding’ productivity. Dogaru et al. [13] observed that Julia’s base
JIT implementation was 157.5 times faster than raw Python code
and 3.09 times faster than JIT-assisted Python code. Farhana et
al. [14]’s paper on synthesizing challenges related to Julia program
performance is the closest to our paper in spirit. However, they [14]
did not investigate the programming-related challenges for Julia.

The above-mentioned discussion highlights research that have in-
vestigated quality and performance comparison for Julia programs.
We observe a lack of research related to challenges expressed in
forms of SO questions that developers ask about Julia. We address
this research gap in our paper.

3 EMPIRICAL STUDY

In this section, we provide the methodology and results for RQ:
What questions do developers ask about when writing Julia
programs?

3.1 Methodology

Dataset: We mine SO questions by using the SOTorrent dataset [9],
which we downloaded on April 15, 2021. According to prior work [21],
SO datasets suffer from quality issues. Similar to prior research [21],
we apply a filtering criteria to improve the quality of the down-
loaded data, which is summarized in Table 1. Altogether, we collect
3,093 SO questions.

Open coding: We apply a qualitative analysis technique called
open coding [22] on the collected 3,093 SO questions. In open cod-
ing, a rater observes and synthesizes patterns within unstructured
text [22]. As part of our open coding process, first, the rater reads
each SO question title, description, comments, and answers to ob-
tain raw text, which is merged into codes. Second, the rater merges
the codes based on similarities to derive categories.

The first author derived the categories. The derivation of cate-
gories is susceptible to bias. We verify the first author’s rating by
allocating another rater, who is the last author of the paper. The
last author applied closed coding [12] on a randomly selected set of
500 SO questions. For each of the 500 SO questions, the last author
examined if the question maps to any of the categories identified by
the first author. The first and last authors respectively, have 1 and
8 years of experience in software engineering. Upon completion of
the inspection process, we calculate Krippendorff’s « [18] to quan-
tify agreement, similar to prior work in software engineering [7].
The Krippendorff’s « is 0.93, indicating ‘acceptable’ agreement [18].

3.2 Results

We identify 13 question categories that developers ask about Julia.
We describe the categories below where we present each category
sorted based on the count of questions that belong to each category.
Description of each category includes examples that are presented
in the (= gp) format, where QID is the ID of the SO question. The
count of questions that map to each challenge is enclosed within
parenthesis. For example, 790 of the studied 3,093 questions belong
to the category ‘Visualization’.

1. Visualization (790) This category consists of questions that are
related to generating visualizations, such as bar plots and box plots.
For example, in a SO question (= 29310646), @ developer asks about
generating a bar plot using a specific color.

2. Array Manipulation (495) This category consists of questions
related to array operations in Julia. Example of a SO question
(+=30699805) related to array manipulation is how to conduct element-
by-element comparison in Julia arrays.

3. Package Resolution (435): This category consists of questions
that describe installation, management, and usage of Julia packages
that are required to develop Julia-based software projects. The
category includes questions related to installing, uninstalling, using,
and resolving unmet package dependencies. Example of a question
related to package resolution was observed for the TimeSeries
package in a SO question (= 31786795). The developer used an empty
string ("") in the header list for a comma-separated value (CSV) file,
which triggered a program crash for the Readtimearray function
available as part of the TimeSeries package. The program crash
was fixed by removing the empty string from the header list.

4. Program Execution Speed (279): This category consists of
questions that are related to program execution speed of Julia pro-
grams. This category includes questions related to program execu-
tion time, memory allocation, and parallel programming of Julia.
In a SO question (+= 31656853), a developer observed performance
decrease while using parallelization. The developer writes “When I
parallelise with Julia I get a performance degradation, i.e. one process
is faster then two processes! I am obviously doing something wrong...
have consulted other questions asked in the forum but I could still not
piece together an answer” The root cause of decreased performance
was related to the incorrect usage of Julia code elements: instead
of using SharedArray or DistributedArray, the developer used
a self-designed algorithm and data structure.

5. Type (278) This category consists of questions related to types
in Julia. While Julia supports as many as 221 types [20], when it
comes to using these types developers face challenges expressed
as SO questions. We observe questions related to immutability and
instantiation to be asked on SO. For example, in a SO question
(+='31775391), a developer seeks to learn about the performance
implications of using immutable types in Julia. According to the SO
discussion, immutable types are “fast when they are small and consist
entirely of immediate data, with no references (pointers) to heap-
allocated objects”. As another example, in a SO question (= 29261431)
a developer wanted to know how to provide keyword arguments
when instantiating a self-defined type.

6. Regular Expression (245) This category consists of questions
that are related to using regular expressions. From our analysis,
we observe developers to ask about Julia-related libraries that can

31000633)» as well as ask
about how to perform fuzzy regex matching (= 37933471).

7. Date Operation (182) This category consists of questions that
are related to performing date-related operations, such as modify-
ing, formatting, and converting dates. For example, in a SO question
(+=27084893), a developer asked about how to format date using a
certain format. The solution was to use the Date constructor.

8. Cross Language Transfer (133): This category consists of
questions related to cross-language transfer, i.e, the phenomenon
of developers transitioning from one programming language to
another [24], e.g., from R to Julia. Cross-language transfer im-
poses challenges for developer that could lead to undesirable con-
sequences. For example, in a SO question we observe to seek the
equivalent code construct for sapply that is available in R’s base
library (= 30281326). In response, another SO user suggested a va-
riety of solutions: (i) use of anonymous functions, (ii) transposing,
and (iii) splatting. The discussion in the SO question shows that
functions, which are available in one language may not be avail-
able in another language, necessitating developers to allocate extra
efforts.

9. I/0 Operations (128) This category consists of questions re-
lated to performing input and output operations, such as file read-
ing/writing and directory management. For example, in a SO ques-
tion (= 49533361) a developer asks about the best practices on how
to setup multiple I/O buffers in Julia. In response, a SO user men-
tioned that use of array comprehensions or the use of map() could
be helpful.

10. Web Mining (80) This category consists of questions that are
related to mining content from the web. For example, in a SO
question (+=59010720), a developer asks about the return type for
HTTP.request(), and asked what is the correct content-encoding
header to get necessary data.

11. Domain Specific Language (22) This category consists of
questions related to developing domain-specific languages (DSLs).
One such DSL is JuMP, a DSL for mathematical optimization. For
example, a SO user, who self-describes as a newcomer to Julia,
asks about how to formulate an optimization problem in JuMP
(='31812458)-

12. Metaprogramming (15) This category consists of questions
related to metaprogramming in Julia. Metaprogramming is the tech-
nique of where one computer program has the ability to use, read,
modify other computer programs and even the program itself [25].
Julia supports metaprogramming using utilities, such as macros
and symbols. However, while using these utilities developers face
challenges and ask questions on SO. As an example, in a SO question
(+=30905546) a developer incorrectly used symbols, which resulted
in returning of incorrect values from a function. Symbols in Julia
are defined as features used to represent Julia’s own code, i.e., rep-
resent code constructs, such as assignments, function calls, literals,
and variables [3].

13. Garbage Collection (11) This category consists of questions
related to Julia’s internal garbage collector, GC. Using GC, a developer
can allocate and deallocate memory in a Julia program. However, the
process of garbage collection in Julia can be confusing to developers
as demonstrated in a SO question (

convert strings into regular expressions (

47449177)- The SO user was

unaware of the fact that Julia’s garbage collector is free to collect a
variable at any time after it is last used [3].

4 DISCUSSION

We discuss the findings of our paper as follows:
Implications for toolsmiths We outline the following areas that
toolsmiths can focus on:

e Enhancing Support for Cross Language Transfer: Shrestha
et al. [24] documented evidence related to cross language transfer
by analyzing SO questions. We too have documented evidence
related cross language transfer that further substantiates findings
reported by Shrestha et al. [24]. Existence of cross language
transfer showcases that developers can transition from a non-
Julia programming language to Julia, but in the process face
challenges. Our conjecture is that as more developers transition
from established languages, such as from Python to Julia, they
will seek information on how they can accomplish tasks in Julia
that they were previously able to do before with the language they
are transitioning from. Based on our findings, we recommend
further systematic analysis of challenges that can occur due to
cross language transfer. We also advocate for development and
dissemination of documentation-related resources that include
examples of other programming languages so that developers
can adequately map an example Julia program to a program in a
language that they already know.

e Type Assistance: Julia supports as many as 221 types [20],
which allows developers the ability to accomplish a wide range of
computational tasks. However, developers face challenges while
using these types as expressed in forms of SO questions. To fa-
cilitate developers in writing Julia programs we advocate for
development of tools that can nudge developers while perform-
ing type-related operations. These tools can provide information
on (i) how to correctly use Julia’s types, and (ii) automatically fix
type-related errors as developers write code.

o Package Assistance: Similar to other programming languages,
such as Go [28] and Python [19], package-related challenges also
accompany Julia development. From our analysis, we observe
developers to seek help on using a package correctly, and also
using the correct package. Based on our findings, we conjecture
that the Julia ecosystem will require derivation of Julia-specific
techniques for adequate package resolution.

Similarities with Other Stack Overflow Topics: We observe our
identified categories to appear for other technologies as well. For
example, date-related operations and package resolution were also
identified as question categories for Python [27]. As another exam-
ple, array-related questions have been reported for big data-related
topics on SO [8]. Our findings show questions that are common-
place in data analytics-related fields, such as big data and Python
also appear for Julia. As Julia advertises itself as a language that
facilitates rapid execution of programs for computationally-heavy
tasks, we advocate for systematic mitigation of the challenges that
developers face while writing Julia programs.

Despite above-mentioned similarities, certain categories, such
as type, metaprogramming, and garbage collection are unique to
Julia’s design and syntax. Solutions to these question categories

require understanding of Julia’s syntax, which differentiate them
from other programming languages.

5 THREATS TO VALIDITY

We discuss the limitations of our paper as follows:

Conclusion Validity: Our findings are limited to rater bias, as all
categories were derived by the first and the last author. The rater
may have missed categories due to their subjective bias. We mitigate
this limitation using two raters. We also may have missed ques-
tion categories that might be available in other types of software
repositories.

External Validity: We only used SO questions to determine ques-
tions categories. Our analysis is susceptible to external validity
as other categories might be available through analysis of other
question and answer websites.

Internal Validity: Our derived categories, and the mapping of SO
questions to identify categories are susceptible to internal validity
because the rater may have inherent expectations on the outcome
of the process.

6 CONCLUSION

Julia is an emerging programming language, which is perceived to
solve the ‘two language problem’. Despite reported benefits, such
as rapid program execution and productivity, developers face chal-
lenges in using Julia. We conduct an empirical study with 3,093
SO questions, from which we identify 13 question categories. Our
analysis shows developers to encounter a wide range of challenges
related to Julia programs, such as visualization, array manipulation,
and package resolution. We observe visualization-related questions
to be the most frequently occurring category. Based on our findings,
we recommend enhancing support for developers with Julia-based
tools and techniques for cross language transfer, type-related assis-
tance, and package resolution.

ACKNOWLEDGMENTS

We thank the PASER group at Tennessee Tech University for their
valuable feedback. This research was partially funded by the U.S.
National Science Foundation (NSF) through Award # 1852126, #
2043324, and # 2026869.

REFERENCES

[1] [n.d.]. Julia. https://juliacomputing.com/case-studies/celeste.html.

[2] [n.d.]. Julia: Come For The Syntax, Stay For The Speed. https://www.nature.
com/articles/d41586-019-02310-3.

[3] [n.d.]. The Julia Language. https://docs.julialang.org/en/v1/.

[4] [n.d]. Julia Update: Adoption Keeps Climbing; Is It a Python Chal-
lenger? https://www.hpcwire.com/2021/01/13/julia-update-adoption-keeps-
climbing-is-it-a-python-challenger/.

[5] [n.d.]. Programming Languages: Developers Reveal What They Love and Loathe,
and What Pays Best. https://www.zdnet.com/article/programming-languages-
developers-reveal-what-they-love-and-loathe/.

[6] [n.d.]. Why Julia is Slowly Replacing Python in Machine Learning and Data
Science. https://www.section.io/engineering-education/why-julia-is-slowly-
replacing- python-for-machine-learning-and-data-science/.

[7] Vard Antinyan, Miroslaw Staron, and Anna Sandberg. 2017. Evaluating Code
Complexity Triggers, Use of Complexity Measures and the Influence of Code

[11

(12]

[13

[14

[15

[16]

[17

=
&

[19

[20

[21]

[22
[23]

[24

&~
i

[29

Complexity on Maintenance Time. Empirical Software Engineering 22, 6 (2017),
3057-3087.

Mehdi Bagherzadeh and Raffi Khatchadourian. 2019. Going Big: A Large-scale
Study on What Big Data Developers Ask. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 432-442.

Sebastian Baltes, Lorik Dumani, Christoph Treude, and Stephan Diehl. 2018.
SOTorrent: Reconstructing and Analyzing the Evolution of Stack Overflow Posts.
In Proceedings of the 15th International Conference on Mining Software Repositories
(Gothenburg, Sweden) (MSR ’18). ACM, New York, NY, USA, 319-330. https:
//doi.org/10.1145/3196398.3196430

Jeff Bezanson, Jiahao Chen, Benjamin Chung, Stefan Karpinski, Viral B. Shah, Jan
Vitek, and Lionel Zoubritzky. 2018. Julia: Dynamism and Performance Reconciled
by Design. Proc. ACM Program. Lang. 2, OOPSLA, Article 120 (Oct. 2018), 23 pages.
https://doi.org/10.1145/3276490

Roland Churavy. 2019. Transparent Distributed Programming in Julia. Ph.D.
Dissertation. Massachusetts Institute of Technology. https://dspace.mit.edu/
handle/1721.1/122755

Benjamin Crabtree and William Miller. 1999. Doing Qualitative Research. SAGE
Publications.

Ioana Dogaru and Radu Dogaru. 2015. Using Python and Julia for Efficient
Implementation of Natural Computing and Complexity Related Algorithms. In
2015 20th International Conference on Control Systems and Computer Science. IEEE,
599-604. https://ieeexplore.ieee.org/abstract/document/7168488

Effat Farhana, Nasif Imtiaz, and Akond Rahman. 2019. Synthesizing Program
Execution Time Discrepancies in Julia Used for Scientific Software. In 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME). IEEE,
496-500. https://ieeexplore.ieee.org/abstract/document/8918949

John Gibson. 2017. The Julia Programming Language: The Future of Scientific
Computing. APS (2017), L39-011. https://ui.adsabs.harvard.edu/abs/2017APS.
.DFDL39011G/abstract

Jan Gmys, Tiago Carneiro, Nouredine Melab, El-Ghazali Talbi, and Daniel Tuyt-
tens. 2020. A Comparative Study of High-productivity High-performance Pro-
gramming Languages for Parallel Metaheuristics. Swarm and Evolutionary Com-
putation (2020), 100720. https://www.sciencedirect.com/science/article/abs/pii/
$2210650220303734

Tomasz Januszek and Mark Pleszczynski. 2018. Comparative Analysis
of the Efficiency of Julia Language Against the Other Classic Program-
ming Languages. Silesian Journal of Pure and Applied Mathematics 8
(2018). https://yadda.icm.edu.pl/baztech/element/bwmetal.element.baztech-
¢4339453-4519-4b92-a673-307638a50cb1

Klaus Krippendorft. 2018. Content Analysis: An Introduction to its Methodology.
Sage publications.

Suchita Mukherjee, Abigail Almanza, and Cindy Rubio-Gonzalez. 2021. Fixing
Dependency Errors for Python Build Reproducibility. In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual,
Denmark) (ISSTA 2021). Association for Computing Machinery, New York, NY,
USA, 439-451. https://doi.org/10.1145/3460319.3464797

Simon Poulding and Robert Feldt. 2017. Automated Random Testing in Multiple
Dispatch Languages. In 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST). 333-344. https://doi.org/10.1109/ICST.2017.37
Akond Rahman, Effat Farhana, and Nasif Imtiaz. 2019. Snakes in Paradise?:
Insecure Python-Related Coding Practices in Stack Overflow. In 2019 IEEE/ACM
16th International Conference on Mining Software Repositories (MSR). 200—-204.
https://doi.org/10.1109/MSR.2019.00040

Johnny Saldafia. 2015. The Coding Manual for Qualitative Researchers. Sage.

R. Sells. 2020. Julia Programming Language Benchmark Using a Flight Simulation.
In 2020 IEEE Aerospace Conference. 1-8. https://doi.org/10.1109/AERO47225.2020.
9172277

Nischal Shrestha, Colton Botta, Titus Barik, and Chris Parnin. 2020. Here We
Go Again: Why Is It Difficult for Developers to Learn Another Programming
Language?. In Proceedings of the 42nd International Conference on Software Engi-
neering, ICSE.

Diomidis Spinellis. 2008. Rational Metaprogramming. IEEE software 25, 1 (2008),
78-79.

Stack Overflow. 2019. Memory Allocation with Broadcasted Operation. https:
//stackoverflow.com/questions/57295291/.

Hamed Tahmooresi, Abbas Heydarnoori, and Alireza Aghamohammadi. 2020.
An Analysis of Python’s Topics, Trends, and Technologies Through Mining Stack
Overflow Discussions. arXiv preprint arXiv:2004.06280 (2020).

Ying Wang, Liang Qiao, Chang Xu, Yepang Liu, Shing-Chi Cheung, Na Meng, Hai
Yu, and Zhiliang Zhu. 2021. HERO: On the Chaos When PATH Meets Modules.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 99-111.

Francesco Zappa Nardelli, Julia Belyakova, Artem Pelenitsyn, Benjamin Chung,
Jeff Bezanson, and Jan Vitek. 2018. Julia Subtyping: A Rational Reconstruction.
Proc. ACM Program. Lang. 2, OOPSLA, Article 113 (Oct. 2018), 27 pages. https:
//doi.org/10.1145/3276483

