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ABSTRACT: There has been a surge of interest in applying deep learning (DL)
to microstructure generation and materials design. However, existing DL-based
methods are generally limited in generating (1) microstructures with high
resolution, (2) microstructures with high variability, (3) microstructures with
guaranteed periodicity, and (4) highly controllable microstructures. In this study,
a DL approach based on a stacked generative adversarial network (StackGAN-v2)
is proposed to overcome these shortcomings. The presented modeling approach
can reconstruct high-fidelity microstructures of additively manufactured
piezoceramics with different resolutions, which are statistically equivalent to
original microstructures either experimentally observed or numerically predicted.
Advantages of the proposed modeling approach are also illustrated in terms of its
capability in controlling the probability density function (PDF) of grain size, grain
orientation, and micropore in a large space, which would have significant benefits
in exploring the effects of these microstructure features on the piezoelectricity of
piezoceramics. In the meantime, periodicity of the microstructures has been
successfully introduced in the developed model, which can critically reduce the
simulation volume to be considered as a representative volume element (RVE)
during computational calculation of piezoelectric properties. Therefore, this DL approach can significantly accelerate the process of
designing optimal microstructures when integrating with computational methods (e.g., fast Fourier spectral iterative perturbation
(FSIPM)) to achieve desired piezoelectric properties. The proposed DL-based method is generally applicable to optimal design of a
variety of periodic microstructures, allowing for maximum explorations of design spaces and fine manipulations of microstructural
features.

KEYWORDS: micromorphology control, periodic microstructure, statistical reconstruction, high-resolution microstructure, deep learning,
piezoelectricity, additive manufacturing

1. INTRODUCTION

Piezoceramics such as lead zirconate titanate (PZT) and
barium titanate (BaTiO3, BTO) have received both academic
and industrial interests because they can be used in
tremendous applications, for instance, sensors, actuators, and
energy harvesting devices.1 The performances of these
applications critically depend on their properties, i.e., piezo-
electric coefficients.2 These coefficients in turn significantly
rely on the characteristics of the microstructure features of
those piezoceramics.3,4 On the other hand, ceramics fabricated
by various manufacturing processes contain different kinds of
microstructure features, such as grains and residual micropores
of different sizes, shapes, and spatial distributions. In particular,
the piezoceramics fabricated by additive manufacturing (AM)
processes exhibit more complex microstructure features than
those produced by conventional approaches.5,6 For instance,
higher volume fraction (VF) of microporosity4 along the grain
boundaries (GBs) (see Figure 1b, c) are usually observed in
the AM-produced piezoceramics because more organic binder

is contained in the feedstock, which will be burned out in the
following debinding and sintering processes as depicted in
Figure 1a. It has been well recognized that the VF, size, shape,
orientation, and spatial distribution of grains and micropores
all have significant effects on the piezoelectric properties of
piezoceramics7 and thus the energy harvesting performance
and other related applications.8,9 For instance, Chen et al.7

indicated a 0.1 VF of micropores causes about a 50% decrease
in the piezoelectric constant d33 in (1−x)Pb(Mg1/3Nb2/3)-
O3−xPbTiO3 (PMN−PT) ceramics. Meanwhile, in perfectly
textured PMN−PT ceramics, the d33 could be almost 8 times
larger than that with random crystal orientation. Nan et al.10
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stated that a decreasing aspect ratio of grain may enhance the
d33 of BTO ceramics. Zheng et al.11 found both relative
permittivity κ33 and d33 of poled BTO ceramics increase
enormously with the decrease in average grain size at room
temperature.
Computational methods, including the finite element

method (FEM) and the fast Fourier transform (FFT) based
method, have been applied to quantitatively analyze the
microstructure effects on the effective piezoelectric properties
of piezoceramics or piezocomposites. Microstructures are
stochastic in nature (see Figure 1b); the statistical functions12

(e.g., L2(r) lineal-path function) of micropores and the
probability density functions (PDFs) of grain sizes, orienta-
tions, etc., have significant effects13,14 on the piezoelectric
properties of piezoceramics. For example, the micropores
whose distribution aligns in the poling direction can enhance
piezoelectric sensitivity,15 whereas the micropores that locate
at the grain boundaries can decrease the d33 more than those
within grains.7 Hence, to acquire statistically structure−
property relations7 from the calculations using the aforemen-
tioned computational methods, a large ensemble of such
calculations using a large quantity of statistically representative
microstructures is strongly required, which necessitates a
method to generate an ensemble of microstructures that are
statistically equivalent to the experimentally observed micro-
structures. In addition, the calculation of effective piezoelectric
properties using the computational methods is usually very
computationally costly, and thus RVE such as microstructures
with periodic boundaries are critically desired to ensure high
computational efficiency yet with relatively high accuracy (see
Figure 1c). On the other hand, from a material-by-design

aspect, high-throughput computational simulations are needed
to guide the design of microstructures to achieve the desirable
piezoelectric properties, which require a high controllability to
generate the microstructure morphologies in a large design
space (see Figure 1d).
Conventional approaches to reconstruct statistically equiv-

alent microstructures include statistical function-based16,17 and
physical descriptor-based numerical modeling methods.4,18

Statistical function-based approaches employ correlation
functions and/or lineal-path functions to characterize and
reconstruct microstructures. Although they are widely used,
potential information loss (e.g., dispersive characteristic) often
occurs in the dimension reduction process required to
represent high-dimensional microstructures. For instance,
using principal component analysis (PCA) to remove
insignificant dimensions would induce information loss, when
conducting a transformation of microstructure representation.
Computational intractability is another disadvantage of the
statistical function-based methods, especially in the case of the
high-order correlation functions (e.g., three-point correlation
functions and above). Moreover, tedious optimization (e.g.,
simulated annealing) for microstructure reconstructions is
needed,19 which make it extremely difficult and computation-
ally inefficient to generate large quantities of microstructures
with distinct microstructure features. There are many physical
descriptor-based models to generate grain microstructures,
many of which were developed to simulate grain growth, such
as the Potts model,20,21 the phase-field grain growth model
(PFM), the front tracking model,22,23 Voronoi tessellation,24

and the vertex model.25 Among these models, the Potts and
PFM are the most robust and versatile and certainly the most

Figure 1. (a) Schematic of slurry-based stereography printing process for manufacturing piezoceramics. Motivations of the present study: (b) to
reconstruct statistically equivalent microstructures based on the stochasticity of microstructures, (c) to generate microstructures with periodic
boundaries to reduce computational cost, and (d) to provide a pathway to materials-by-design through high controllability of micromorphologies in
a large space. The graphs in b and d are plotted with the lineal-path functions L2(r) of the micropore phase. Specifically, the graph in b plots the
average of lineal-path functions of the five microstructures, whereas the curves in d are for each corresponding microstructure.
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highly developed and widely applied.26−28 However, these
approaches usually require identifying the characteristics of
microstructure features and compare the PDFs of those
characteristics between real and synthetic microstructures;
thus, it is still difficult and time-consuming to reconstruct
statistically equivalent microstructures.4

Deep learning (DL) based methods could be a promising
alternative to tackle the shortcomings of the conventional
approaches. In particular, the DL methods have no information
loss because dispersive approximations are not required.
Instead, the DL methods generate microstructures using
specially designed deep convolutional neural networks,29,30

which feature large model capacity and generalities, to achieve
a low-dimensional and nonlinear embedding of high-dimen-
sional microstructures. In addition, the DL methods are
model-based and can promptly generate large quantities of
microstructures by inputting different values of their intrinsic
parameters.31,32 Thus, under these circumstances, many DL
techniques have been successfully applied to microstructure
characterizations and reconstructions.33−35 Cang et al.36

employed a convolutional deep belief network (CDBN) to
hierarchically extract microstructure representations and realize
reconstructions for the chosen multiscale anisotropic alloy
microstructure. But their model relies on a heuristic
postprocessing step which is specifically designed for the
alloy system studied. Li et al.35 proposed a transfer learning
approach to reconstruct microstructures. However, the
optimization objective is achieved by minimizing the style
differences (defined by a Gram matrix) between synthetic and
real microstructures. Hence, the characteristics of micro-
structure features can be spanned only in the vicinity of real
samples.
Another DL-based method, the generative adversarial

networks (GAN),37 and its derivatives38−40 have been widely
adopted in materials science41−43 in recent years. Ma et al.41

employed pix2pix39 based on conditional generative adversarial
networks (CGAN)38 to generate synthetic images with the
styles of selected microscopic images. However, the output
from their network was not highly stochastic even after noise
vectors had been introduced in the generator. This minor
stochasticity in the generated images presents a crucial
limitation in generating large quantities of microstructures
that can span the space of desired microstructure features.
Chun et al.42 proposed to use patch-based GAN to generate
microstructures of heterogeneous energetic materials.
Although their network can successfully parametrize the
microstructure features by conditioning on a global morphol-
ogy parameter, periodic boundaries are not introduced, which
poses a critical limitation in the calculation of the effective
properties of piezoceramics using the FFT-based method. In
addition, it is necessary and time-consuming for the patch-
based GAN to find the right patch size (the receptive field size
of a discriminator). Inappropriate choice of the patch size can
result in an unstable optimization or a lower quality of
images.44 Andrea et al.43 proposed to use GAN to generate
multiphase electrode microstructures. Although they success-
fully generated microstructures with periodic boundaries by
applying circular spatial padding to an input parameter, their
model is not able to control the microstructure features. In
addition, neither of them can achieve high-resolution micro-
structures with more details of the microstructure features
because they obtain the microstructures of larger size by simply
enlarging the input size. On the other hand, the StackGAN

encourages drawing more details in higher-resolution images
by capturing more information from conditional variables,45

which is omitted in the stage of generating low-resolution
images.
In this paper, a DL approach, multistage stacked generative

adversarial network (Stack-GAN-v2),40 is applied for the first
time to generate high-fidelity microstructure models for BTO
piezoceramics fabricated by an AM process. The presented
modeling approach can reconstruct high-resolution micro-
structures for the piezoceramics through a hierarchical stack of
conditional GAN models. More details such as the
morphology of micropores and grain boundaries can be clearly
identified. Highly variable yet statistical equivalence with
experimentally observed AM-ed microstructures can be
synthesized through a novel conditioning augmentation
(CA) technique that presents the smoothness in the latent
conditioning manifold.40 Advantages of the proposed modeling
approach are also illustrated from its capability in controlling
the grain size and orientation, as well as the volume fraction
(VF) and distribution of the micropores in a large space by
manipulating intrinsic parameters of StackGAN-v2. This would
have significant benefits in exploring these microstructure
effects on the piezoelectricity of piezoceramics from the
material-by-design aspect. In addition, in the developed
microstructure models, periodicity of the microstructures has
been successfully introduced, which would facilitate the using
of FFT-based methods to efficiently predict the performance of
the piezoceramics. In another word, the proposed DL
modeling approach can interface with other computational
methods in optimizing microstructures for the piezoceramics
as well as other piezoelectric materials to achieve the desired
piezoelectric and electromechanical properties.

2. METHOD
2.1. Training Images from Phase Field Grain Growth

Model. DL models require large quantities of training data.
Unfortunately, it remains a daunting challenge to collect the
large quantities of experimental data in the community.
Moreover, the experimental images usually involve a bunch
of information or features, but some of them are insignificant
and/or noises in nature due to the limitations of character-
ization techniques. Appropriate image processing such as
segmentation and adjustments of pixels should be adopted for
the training. On the other hand, simulation data are
straightforward to use without any preprocessing and can be
flexibly generated to focus on the most important features, e.g.,
grain size, volume fraction of pores, and grain orientation for
AM-ed piezoelectric microstructures. In fact, it is common to
use simulation images as the training data of deep
learning35,41,46,47 in material science and engineering. For
instance, Singh et al.46 used Cahn−Hilliard equation to
generate microstructures for training and testing. Li et al.35

employed a Gaussian random field (GRF) to synthesize
microstructure patterns for the training sets.
In the present study, the training images are provided by the

images generated in a previous work4 by PFM to demonstrate
the multistage StackGAN-v2 in generating microstructure
images with high resolution, sufficient variability, high
controllability, and guaranteed periodicity. These images
were statistically reconstructed through the comparison
between the PDFs of key features (e.g., grain size and number
of neighboring grains) of the microstructures generated by
PFM and those of scanning electron microscope (SEM)
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images from the AM-produced BTO piezoceramics. Specifi-
cally, a total of 4848 2D images (Figure 2c) were acquired by
slicing simulated 3D images (Figure 2b) along the x, y, and z
directions, separately. Of these, 3848 images are used for
training data sets, whereas the rest are for testing. These
images were obtained by linearly mapping the Euler angles of
grains to the color space. For instance, black corresponds to 0°
and white to 360° of the Euler angle. Therefore, the
orientations of grain could be distinguished by their
discrepancy in colors. Images as presented in Figure 2c
together with conditioning information on parameters P and Z
will be used as the inputs for the training of StackGAN-v2. To
verify that the microstructures generated by StackGan-v2
possess high stochasticity, we trained pix2pix for comparisons.
pix2pix was developed based on the conditional GAN
(CGAN)38 as an approach to image-to-image transfer. The
special design of its architecture intrinsically requires another
image such as the GBs in this study as the condition
information as well. The GBs (Figure 2d) were obtained by
processing the 2D images (Figure 2c) using the widely adopted
software ImageJ.48−50 Specifically, the images obtained from
the PF simulations were first transformed to 8-bit images of
gray scale. Some GBs were first detected on the transformed
gray scale images by finding the edges of grains, followed by
thresholding to obtain all the GBs. The thresholded images
were binarized with black and white color only, which were
then skeletonized to obtain images with only GBs.

2.2. Microstructure Reconstruction via StackGAN-v2.
StackGAN-v2 developed by Zhang et al.40 was modified for
reconstructing the microstructures of piezoceramics. This DL-
based method was upgraded based on a two-stage GAN
(StackGAN) architecture developed by Zhang et al.45 Unlike
vanilla GAN,37 the StackGAN has two stages, and each stage
contains one generator (G0 or G1) and one discriminator (D0
or D1) as indicated in Figure 3. The generators at each stage
are used to generate synthetic images of different resolutions,
while the discriminators of their corresponding stage try to
detect the synthetic images from the real ones of the same
resolution. Specifically, at the first stage, the generator
generates a preliminary sketch of a scene by entering a noise
vector conditioned on a text describing the scene. At the
second-stage GAN, the results obtained from the first stage and
the same text as that used for the first stage are entered as
inputs to produce higher-resolution images with much more
detail. The StackGAN-v2 used in this study contains more
stages and can thus generate higher-resolution images as
compared with StackGAN. Moreover, StackGAN-v2 can be
employed for both conditional and unconditional generative
tasks and displays a more stable training behavior than the two-
stage StackGAN does.
In this work, three stages or branches will be followed to

generate high-resolution (256 × 256) images as illustrated in
Figure 3. Specifically, the noise vector Z of size m will be
conditioned on a constant vector P of size n in replacement of

Figure 2. Images of the microstructure of piezoceramics: (a) an experimental image of AM BTO obtained by SEM, (b) a 3D microstructure
statistically reconstructed by PFM in a previous work, (c) 2D images obtained by slicing from b, and (d) a GB obtained by image processing of the
top image in c via ImageJ. Notice that a representative micropore along GB is marked by a red dashed circle in a and c.

Figure 3. Architecture of StackGAN-v2 used in this work, where P is a constant vector and Z a noise vector. P is randomly drawn from a uniform
distribution on the interval [−1,1], whereas Z is chosen from a normal distribution (0,1), where 0 and 1 are the mean and standard deviation of the
distribution, respectively. G and D indicate the generator and discriminator at different stages, respectively.
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a vector of embedded text. The vector Z will then concatenate
with P to form an input tensor of size b + m + n, in which b is
the batch size. In particular, the noise vector Z is used to
control the local stochasticity of the generated microstructures,
whereas the vector P is employed to control the global
morphology of the microstructures such as grain size and
texture.42

• An input tensor will be linearly transformed at first by a
fully connected (FC) layer and batch-normalized before
entering the first stage, which consists of four
upsampling layers of factor two through an interpolation
layer. The channel of the resulting tensor will then be
reduced to 3 by a convolution layer of 3 × 3 to construct
3 × 64 × 64 low-resolution images as illustrated in
Figure 3.

• Next, the obtained images and the P vector will be
convolved together before entering the second stage that
contains two residual block layers and one upsampling
layer of factor 2. Like the generator at the first stage, the
channel of the output tensor will be compressed to 3 to
generate 3 × 128 × 128 medium-resolution images (see
Figure 3). In particular, the residual block layers are used
as an encoder decoder network to correct incoherent
artifacts or defects yielded in the low-resolution
images.40 Moreover, the noise vector Z will not be
added at this stage because the stochastic nature has
already been induced by this vector in the image
generation at the first stage.

• The third stage has an identical setting as the second
stage and can generate 3 × 256 × 256 high-resolution
images as depicted in Figure 3.

It should be noted that circular padding is applied to the
data in all convolution layers of the generators except for the
first upsampling layer of the first stage. This circular padding
will enforce periodic microstructures when calculating the
convolution, which is essentially required for the FFT-based
method to determine the piezoelectric performance of
piezoceramics. This is because the FFT-based method requests
a periodic boundary condition, which can be readily defined in
periodic microstructures. The architecture of the discriminator
is the same as that of the original conditional StackGAN-v2;40

however, the P vector will not be convolved with images to
calculate a conditional loss as the conditional StackGAN does.
Specifically, for the discriminator at the first stage, the images
are encoded 16 times through a series of convolutional layers
followed by one 1 × 1 convolutional layer to jointly learn
features across the image. Finally, a FC layer with the Sigmoid
function as its activation function is used to make a decision-
score with 0 as a fake and 1 as a real microstructure, as
depicted in Figure 3. The architectures of the discriminators at
the second and third stage are basically the same as that of the
discriminator at the first stage with the exception that more
down-sampling blocks are required on the stage 2 and 3 due to
larger sizes of the images processed at those stages. Circular
padding will not be applied to any layers of the discriminators
throughout all the stages with an assumption that the
generators with cycle padding can ensure the periodicity of
microstructures.
2.3. Microstructure Characterization Metrics. The

computationally generated synthetic microstructures must
faithfully reflect the real microstructures to promote the
application of computational methods in revealing the

microstructure−property relationship of piezoceramics. Thus,
qualitative and quantitative comparisons between the real and
synthetic microstructures are necessary for validating the
computational microstructure models. The qualitative compar-
ison is more straightforward and can be implemented through
visually inspecting the characteristics of key microstructure
features (location and shape of micropores, the size and shape
of grains, etc.). Although a quantitative study has to be
conducted to compare the key features in the real and
synthetic microstructures by employing both physical
descriptors and statistical functions as microstructure charac-
terization metrics.

2.3.1. Physical Descriptors. Physical descriptors such as the
VF of micropores are easy to implement and can be directly
applied for the mining process, the structure, and the property
relation. For instance, using the VF of micropores in the AM
BTO,51 the relations behind the weight ratio between ceramic
particles and polymer binders, microstructures with distinct VF
of micropores due to different weight ratios, and various
piezoelectric charging coefficients d33 corresponding to differ-
ent microstructures can be developed. However, the physical
descriptor method usually ignores important morphology and
spatial correlation information such as the spatial distribution
of micropores in the piezoceramics. In the present study,
physical descriptors of the microstructure features which have
significant effects on piezoelectric responses as indicated in the
introduction will be adopted. Specifically, the VF of residual
micropores, the PDF of grain sizes, the number of neighboring
grains and grain orientations will be used as physical
descriptors to quantify porous polygranular structures of AM
piezoelectric materials.
The VF of micropores of each microstructure can be

obtained by setting a threshold of a certain pixel value (e.g.,
0.3), which can convert the microstructures to binary images
with 0 and 1 representing micropore and grain phase,
respectively. The ratio of the number of pixels with 0 value
to total pixels in a microstructure would be the VF of
micropores. The area of a grain in the microstructures were
determined by counting the number of pixels located within
the boundaries of that grain, and then an equivalent grain
radius was defined to be the radius of a circle with the same
area of that grain. The number of neighboring grains were
obtained by analyzing each of the samples by Voronoi method.
Specifically, all the physical descriptor analysis from micro-
structures can be done by ImageJ.48−50

2.3.2. Statistical Functions. Statistical functions such as
correlation and lineal-path functions are compliant to the
stochastic nature of the microstructures12,52 and can be used to
obtain systematic and rigorous descriptions of hierarchically
internal microstructures. Therefore, the statistical functions are
remarkably useful in microstructure characterization and
verification of the reconstructed microstructures. In the present
study, a two-point correlation function S2(r) and a lineal-path
function L2(r) are used to characterize the morphology of
heterogeneous media featured in the microstructures of
piezoceramics. S2(r) aims at finding the probability V that
the end points belong to the same phase qi of interest (e.g., the
micropore phase) when randomly tossing a line of distance r
on the microstructures;16,43 it is thus defined as

= ∈ + ∈ ∈S r V x q x r q x r( ) ( , ) for ,i i2 (1)

L2(r) is similar to S2(r) except that its goal is to find the
probability that all the points on the line are from the same
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phase qi when throwing a line of distance r. Jointly, these two
functions can capture spatial correlation and connectivity
characteristics of the microstructure features so as to facilitate
the understanding of their influence on the performance of
piezoelectric materials.
2.4. FFT-Based Physical Simulation. Finally, the effective

piezoelectric responses and their spatial distributions (e.g.,
piezoelectric charging constants d33) would be compared
between synthetic and real microstructures as a final
assessment of the computational methods and models applied
in this research. In particular, a Fourier spectral iterative
perturbation method (FSIPM) based on FFT was adopted to
solve the equilibrium equations in a periodic system because
this method is an efficient and direct numerical algorithm.53,54

An external electric field Eext = 2 × 107 (V/m) was applied in
the poling direction with a stress-free mechanical boundary
condition assigned. Poled BTO11 was selected as the ceramic
phase in this work because of its popularity as a lead-free
piezoelectric material.

3. RESULTS AND DISCUSSION
The StackGAN-v2 was trained for 200 epochs with batch size
of 12. Adam55 solver with momentum term beta1 = 0.5 and a
learning rate of 0.0002 for all models was adopted to optimize
the hyper-parameters in the neural network model. Models
saved at epoch 85 are used in the remaining parts because ithey
outperform the models saved at the other epochs; see learning
curves and microstructures generated periodically in Figures S4
and S5 in section C of the Supporting Information.
3.1. High-Resolution Microstructures with More

Details. Figure 4 depicts synthetic microstructures of different

resolutions generated by the generators of first stage, second
stage, and third stage of StackGAN respectively (see Figure
4a−c). The real microstructure is also provided for the purpose
of qualitative comparison. From that figure, it can be seen that
the size, shape, and location of the grains in the polycrystals
generated via the improved StackGAN, especially those
observed in the high-resolution image generated by the third
stage generator, closely resemble the real ones. In addition, the
location and shape of micropores are successfully emulated,
which mostly appear at the GBs with irregular shapes.
Moreover, comparing the reconstructed microstructures with
different resolutions, it can be found that a higher-resolution
image is sharper and can provide more details on the GBs and
the morphologies of micropores as depicted in the synthetic
microstructure displayed in Figure 4c. This could be attributed
to the encoding and decoding nature of the generators, and
more information is learned from conditioning variables in the

stages of higher resolution.40 The capability to generate
different resolutions of microstructures has advantages
compared with the StyleGAN-based architectures,56 which
can only output microstructures fixed at the size of the training
images. The ability to add more details of microstructure
features demonstrates its superiority to those single-stage
GANs42,43 that can generate only images with various sizes but
cannot add any details of microstructure features in the images
of larger size; see Figure S1 in section A of the Supporting
Information for more details. This superiority is enabled
because of the hierarchical architectures of StackGAN-v2
through a sketch-refinement process45 that rectifies defects and
adds compelling details in the results of previous stages. The
grain microstructures of piezoceramics containing more details
of microstructure features can have many benefits. For
instance, it can enhance the simulation accuracy when
predicting the effects of these microstructure features on the
effective piezoelectric properties.

3.2. Microstructures with Periodicity. Polycrystals with
periodicity in four directions, i.e., four edges of the image are
successfully generated as presented in first two columns of
Figure 5. A real microstructure (last two columns of Figure 5)

without periodicity is also presented for comparison. As
mentioned above, the periodicity of the reconstructed
microstructures is induced by adding the circular padding in
the generators except for the first upsampling layer. During the
calculation of the material properties, e.g., piezoelectric
properties of piezoceramics using FSIPM in the present
study, RVEs of the microstructures together with periodic
boundary conditions are often used to save computing time
and efforts.4,18,57,58 It is noted that a microstructure without
periodic boundaries cannot be used as an RVE. This is because
the grains at left/right or top/bottom edges of the micro-
structure cannot be combined into the same grains, when the
grain structure is joined as a periodic unit cell, as marked by
red dashed circles in the last two columns of Figure 5. On the
other hand, the grains at the four edges of synthetic structures
can form into the same grains, respectively, because they are
complementary with other in terms of grain shape, and have
the same color (i.e., pixel value) as indicated in the red circles
in the first two columns of Figure 5. The microstructures with

Figure 4. Comparison between (a−c) synthetic microstructures with
resolutions of 64 × 64, 128 × 128, and 256 × 256, respectively, and
(d) the real microstructure. Notice that more details such as the
morphologies of micropores are reflected in the higher-resolution
images as marked by a white dashed circle.

Figure 5. Illustration of periodicity in a synthetic microstructure (the
first two columns) along four directions. A real microstructure
generated by PFM with no periodicity is shown in the last two
columns for comparison. Notice that the 2 × 2 array of the images
consists of images for the same real or synthetic microstructure. The
red circles indicate the grains at the top and bottom or left and right
edges of the microstructure that can (for synthetic) or cannot (for
real) form into a grain, respectively.
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periodic boundaries can significantly reduce the simulated
volume size of the microstructures considered to be the RVE
of an original microstructure. Therefore, the periodic micro-
structures can make these simulations more efficient, which
enable them as ideal candidates for materials design and
optimization.43

3.3. Microstructures with High Variability Yet of
Statistical Equivalency. The images generated by the
multistage StackGAN are not simply copies of the training
images but through learning a representation of the high-
dimensional probability distribution underlying the images
space from the training data sets. This section will demonstrate
that the microstructures generated by StackGAN-v2 shows
high variabilities and are statistically equivalent to the real
microstructures from testing data sets in terms of key physical
descriptors and statistical functions. On the contrary, the
images generated by the pix2pix look like copies of the training
images, i.e., almost no stochasticity in terms of grain size and
grain orientation can be observed in the output from pix2pix
(see Figure 6). This phenomenon could be attributed to that

the generator learned to ignore the noise vector Z due to the
conditional data (e.g., GB in the present study) is complicated
enough to provide sufficient information to the generator.39

Thus, the noise vector Z is not able to provide stochasticity in
the synthetic microstructures, resulting in merely deterministic
outputs. On the other hand, the multistage StackGAN-v2
enables the variability of synthesized images that are
statistically equivalent with experimentally observed AM-ed
piezoelectric microstructures, through a novel conditioning
augmentation (CA) technique that presents the smoothness in
the latent conditioning manifold;40 see Figure S2 in section A
of Supporting Information for more details. Since exploring the
space of material morphologies is critical to the investigation of
the microstructural effects on the piezoelectric properties, only
the results generated by the multistage StackGAN-v2 will be
discussed in later sections.
3.3.1. In Terms of Physical Descriptors. The statistical

equivalence between the real and synthetic microstructures can
be compared in terms of some key physical descriptors such as
the VF of micropores and PDFs of normalized grain areas and

radius, and PDFs of a number of neighboring grains and crystal
orientations, as presented in Figure 7a. The curves and
columns in that figure were plotted based on average values of
the corresponding physical descriptors of 100 samples of real
and synthetic microstructures; see Figure S6 in section D of
Supporting Information for comparison results using 500
samples. Those samples were randomly chosen from the
testing data sets of real and synthetic microstructures to allow
for a statistically meaningful comparison. The average VF of
pores is 5.89% with a standard deviation of 0.016 for the real
microstructures and 5.52% with the standard deviation of
0.013 for the synthetic microstructures. As can be seen from
the Figure 7a, the PDFs of the normalized grain area and
radius, and the number of neighboring grains obtained from
the real and the synthetic microstructure closely agree well
with each other. Those values are well fitted by log-normal
distribution functions (Figure 7(a)), which match agreeably
with the curves obtained from experiments.57 Crystal
orientations of each microstructure were obtained using the
method described in subsection 3.3.3. As presented in Figure
7a, the PDFs of crystal orientations have a close match with
each other. In particular, those values are well fitted by normal
distribution functions, which indicates both the real and
synthetic microstructures exhibit a low texture with almost
random distribution of crystal orientation. But as will be
demonstrated in subsection 3.4, the crystal orientation can be
easily controlled to achieve grain microstructures of different
textures.

3.3.2. In Terms of Statistical Functions. S2(r) and L2(r) of
the micropore phase between the real and synthetic micro-
structures were compared using the same samples as those
used in comparing physical descriptors (Figure 7b). The
graphs were plotted using the mean values of the S2(r) and
L2(r) of the real and synthetic microstructures, separately. As
can be seen from Figure 7b, statistical functions obtained from
the synthetic microstructures match with those of the real ones
very well. Although there are some deviations from the
statistical functions of the real microstructures, those
deviations are still within the ranges of standard deviations
of the statistical functions of the real microstructures. In
particular, the range of the standard deviation of the statistical
function of the synthetic microstructures is wider than that of
the real microstructures. This indicates that the multistage
StackGAN has successfully learned a representation of a high-
dimensional probability distribution from the training images
that are a representative sample of the probability distribution
underlying the image space.37 This would be extremely
valuable for studying the microstructure effects on the
piezoelectric properties as will be demonstrated in section
3.4. In addition, since the microporosity VFs in both the real
and synthetic microstructures are low, as the pixel distance r
increases, the probability of finding that the two end points of a
line with a distance r belong to the micropore phase becomes
more difficult. When the distance reaches 30 pixels, it becomes
almost impossible to find these two end points on a line
belongs to the micropore phase. This phenomenon becomes
more obvious for the lineal-path function because the lineal-
path function requires all points within the line belong to the
micropore phase. As shown in the right graph of Figure 7b, the
probability of finding all the points in that line is almost zero
when the distance exceeds 20 pixels.
Therefore, through both the qualitative and quantitative

comparison between the real and synthetic microstructures, it

Figure 6. Comparison between real microstructures (top row) and
synthetic structures generated by the pix2pix (mid row) and
StackGAN-v2 (bottom row). Notice only minor stochasticity can be
observed in the synthetic microstructures generated by pix2pix.
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has been proved that the improved StackGAN successfully
learned the statistics of microstructure features in the real
microstructures. In particular, the synthetic microstructures
exhibit a higher variance in all the comparison metrics
compared with those of real ones.
3.3.3. In Terms of Piezoelectric Response. This section

focuses on the effects of the microstructure features that exist
in the piezoceramics fabricated using both the traditional59,60

and AM process4 on their piezoelectric responses. In this
study, the piezoelectric responses are indicated by the
piezoelectric charging constant d33 and relative permittivity
κ33. Figure 8 compares d33 calculated based on the real
microstructure and a high-fidelity one generated using the
multistage StackGAN. Their PDFs of key physical descriptors
(e.g., grain orientation), statistical functions, and VFs of
micropores are close to each other. In particular, the grain
orientations in piezoceramics are described by three
independent Euler angles (θ, ψ, ξ),7,13,14 which correspond
to three consecutive counterclockwise rotations with respect to

the global coordinate (x1, x2, x3), as θ about the x3-axis, ψ
about the rotated x1′-axis, and ξ about the newest x3′-axis. The
pixel value of each grid point in a grayscale image in PNG
format (first column of Figure 8) ranges from 0 (black) to 1
(white), whereas the ψ value of each grid point ranges from 0
to 360°. Therefore, ψ of each grid point can be obtained by
multiplying the pixel value of that grid point with 360°. The
angle ξ can be obtained by solving the following equation.

ξ ξ= ·[ − ]F( ) 0.5 1 cos( ) (2)

Where F has a uniform distribution ranging from 0 to 1, ξ is no
greater than 180°, and θ equals to a value randomly chosen
from the interval [0,1] multiplied by 360°. In addition, both ξ
and θ are uniform for a same grain. Through mapping the pixel
values of all the grid points to the corresponding Euler angles
ψ, a distribution of pixel values could be transformed to an
appropriate distribution of grain orientations. Notice that the
Euler angles can be transformed to acute angles according to
the equation as below when considering the poling process; see

Figure 7. Comparison between real and synthetic microstructures in terms of (a) physical descriptors and (b) statistical functions.
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section B of the Supporting Information for the details of
poling process.

= | |x xcos( ) cos( ) (3)

Thus, the three Euler angles can be assigned to each grid point
in the real and synthetic microstructures using the method
described above. By employing the FSIPM method as
described in subsection 2.4, the effective d33 and κ33 of the
real and synthetic microstructures can be calculated.
Specifically, the effective d33 is found to be 152.3 and 152.1
pC/N, whereas the effective κ33 is 1529 and 1556 for the real
and synthetic microstructure, respectively. As seen in the third
and fourth column of Figure 8, the calculated spatial
distributions of the longitudinal stress σ3 and the internal
longitudinal electric field E3 of the real and synthetic grain
structures are identical. In particular, the concentration of
these two fields can be observed near the interface between the
micropores and grains, which are positive in micropores and
negative in their neighboring grains as marked by a black
dashed circle. This phenomenon contributes negatively to
effective d33 and may be attributed to the large mismatch of the
κ33 and d33 between micropores and neighboring grains.7,14

The identical results obtained from the real and synthetic
grain microstructures confirm that the multistage StackGAN is
capable of effectively learning the data distribution of

microstructure features and precisely capturing their details.
Therefore, the microstructures reconstructed using the multi-
stage Stack-GAN can replace the real microstructures for
studying the microstructure−property−performance relation-
ship of piezoceramics and their composites.

3.4. High Controllability of Microstructures: An
Ingredient toward Materials-by-Design. The capability
to control micromorphology in the large underlying space by
StackGAN-v2 can greatly help the optimal design of
piezoceramic materials, which is enabled by taking advantage
of the achieved high variability in microstructures. Specifically,
the PDFs of microstructure features can be tuned conveniently
by manipulating the parameter P and/or Z. While P can be
used to control the global micromorphology and Z to control
stochastic variations in the microstructure.42

3.4.1. Microstructure Control via Parameter P. During
training, the numerical value of each element in P is set as the
same constant drawn from a uniform distribution on the
interval [−1,1]. However, at inference time, microstructures
with distinct PDFs of the microstructure features can be
obtained by assigning each element in P with a different value.
This can be easily done by drawing the values from a normal
distribution (μ, ρ), where μ and ρ represent mean and
standard deviation of the distribution, respectively. Some
representative microstructures that generated by setting μ and

Figure 8. Calculated spatial fields of d33 for real (top) and synthetic (bottom) grain structures. Longitudinal stress σ3 and internal longitudinal
electric field E3 are induced nearby micropore areas, such as the ones marked with black dashed circles.

Figure 9. Fine tuning the characteristics of microstructure features (crystal orientation and VF of porosity) by manipulating the standard deviation
ρ of P parameters.
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ρ as 0.1 and 0.3, respectively, are presented in the Figure S7 of
section E of Supporting Information. Herein, we demonstrate
the high controllability of the PDFs of two important
microstructure features by varying the value of ρ after selected
two appropriate vectors Z1 and Z2. Moreover, the significant
effects of these two features on piezoelectric properties and
their underlining mechanisms will be discussed. Through this,
the full potential of proposed approach for optimal micro-
structure design of piezoceramics can be sufficiently demon-
strated.
Specifically, two groups of grain microstructures with wide

range of PDFs of crystal orientation or VF of micropores were
synthesized. Several of these two series of microstructures are
illustrated in Figure 9, which display the gradual change of the
crystal orientation (first row) and VF of micropores (second
row), respectively. As seen, the crystal orientations of the grain
microstructures of the first row of Figure 9 become
increasingly uniform due to the color of the images smoothly
turn to white. The change of color (pixel value) arouses a
corresponding variation of Euler angles based on the mapping
relation as discussed in section 3.3.3. This would subsequently
alter the PDFs of crystal orientation and thus the
corresponding piezoelectric properties. Similarly, the VF of
micropores of the second row become larger with the increase
of the value of ρ. Moreover, the increment of micropores
mainly occurs at the GB, which is the main characteristic of
micropore distribution of the real microstructures. Notice that
the grain sizes of these two series of grain microstructures
remain almost unchanged. This allows for the high

controllability of the characteristics of specific microstructure
feature, thus pave the way toward materials-by-design.
Although the qualitative relation between the distribution of

crystal orientation and ρ were discussed in last paragraph, the
quantitative relationships between ρ and the crystal orienta-
tions of the microstructure features (see first row of Figure 9)
are depicted in the Figure 10a. Of particular note is that the
crystal orientations are represented by the Euler angles ψ,
which are obtained by multiplying the pixel value of the images
as discussed in section 3.3.3. Moreover, considering the poling
effect, the Euler angles ψ have been converted to acute angles
using eq 3. As seen in Figure 10a, significantly different crystal
orientations can be achieved by controlling the value of ρ.
Specifically, with the increasing of the value of ρ, the PDFs of
crystal orientation change from normal distribution to log-
normal distribution. The normal distribution indicates the
randomness of the crystal orientations, whereas the log-normal
distributions imply that finding the Euler angle ψ that are less
than 45° has much higher chance. The immense difference in
the PDFs of crystal orientation may induce significant
piezoelectric properties of piezoceramics. The piezoelectric
responses of the grain microstructures including those in the
first row of Figure 9 were calculated using FSIPM method and
the results are presented in Figure 10b. As can be observed,
starting from ρ = 0.4, with the increasing of the value of ρ, the
effective piezoelectric charging constant d33 and relative
permittivity ε33 increase dramatically. This is because of the
PDFs of crystal orientation lean toward left side gradually with
the increasing of the value of ρ. The extent of differences in

Figure 10. (a) High controllability of the PDFs of crystal orientation of grain microstructures by manipulating the standard deviation ρ of
parameter P. (b) Distinct PDFs of crystal orientations induce dramatic change in piezoelectric properties. (c) Illustrates the spatial field
distributions of longitudinal σ3 and E3 of the two grain microstructures that have different PDFs of crystal orientation and were obtained by
assigning a different value (ρ = 1.2 or 0.01) to the standard deviation ρ of P parameters.
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piezoelectric properties of grain microstructures are closely
reflected the resemblance in their PDFs of crystal orientation.
For instance, the PDFs of crystal orientation for ρ = 1.2 and ρ
= 0.9 are close to each other, this results the similarity in their
d33. On the other hand, due to the larger difference in the
PDFs of crystal orientation for ρ = 0.6 and ρ = 0.9, their
discrepancy in d33 (154.8 and 176.3 pC/N) is relatively high.
In addition, the d33 (142.8 pC/N) of the grain microstructure
for ρ = 0.3 is slightly smaller than that (144.1 pC/N) for ρ =
0.01. This is attributed to the extent the PDF of crystal
orientation for ρ = 0.3 leans toward left is mildly smaller as
compared with that of ρ = 0.01.
To fully understand the mechanism through which the PDFs

of crystal orientation affect the piezoelectric properties, the
spatial distribution fields of two grain microstructure (ρ = 1.2
and ρ = 0.01) from the first row of Figure 9 were plotted and
presented in Figure 10(c). By comparing their spatial fields of
d33, the field of the grain microstructure (ρ = 1.2) is
significantly stronger and more uniform than that of the
other grain microstructure. The less uniform field of d33 will
induce a higher longitudinal stress σ3 and a stronger internal
longitudinal electric field E3 as can be observed by comparison
of these two spatial fields of them (see last two rows of Figure
10c), respectively. This is because of the strong mismatch of
the d33 values between the neighboring grains. These two fields
(σ3 and E3) will have detrimental effects on the materials’
piezoelectric responses,7 thus result in significantly distinct
effective d33 values in the two grain structures.

The quantitative relation between the ρ and lineal-path
statistical function L2(r) are established in Figure 11a based on
the grain microstructures of the second row of Figure 9.
Overall, the higher the value of ρ, the more probable to find
the phase of micropores in the grain microstructures. With the
increasing of the length of line segment (r value), the
probabilities of finding all phases belong to micropores are
decreasing. In addition, the statistical functions have similar
shape due to the only difference in microstructure features
between those grain microstructures are the VF of micropores,
while the characteristics of the other microstructure features
(e.g., grain size) are identical. The VF of micropores of those
microstructures can be obtained from the value of statistical
functions when the r equals to 0. The inset graph in Figure 11a
depicts the relations between VF of micropores and the ρ,
where some points that correspond to the symbols of statistical
functions are marked by same color and shape. From the inset
graph, the higher the value of ρ, the higher VF of porosity can
be concluded. Starting from ρ = 0.4, they have almost linear
relation with each other. Thus, the ρ of P can be used to
conveniently to control the VF of micropores of grain
microstructures, which takes only a millisecond using the
trained generator of StackGAN-v2.
To unravel the relation between the piezoelectric response

and VF of micropores, the piezoelectric response of the grain
microstructures including those shown in the second row of
Figure 9 were calculated using the FSIPM method and the
results are presented in Figure 11b. Before the calculation, the

Figure 11. (a) High controllability of the lineal-path statistical functions of the grain microstructures by manipulating the standard deviation ρ of
parameter P. This would control the VF of micropores simultaneously as shown in the inset graph. The great controllability of VF of micropores
can provide convenient way to desired piezoelectric property as shown in b. (c) Illustration of the underlining mechanisms for the effect of
micropores on piezoelectricity.

ACS Applied Materials & Interfaces www.acsami.org Forum Article

https://doi.org/10.1021/acsami.1c12945
ACS Appl. Mater. Interfaces 2021, 13, 53439−53453

53449

https://pubs.acs.org/doi/10.1021/acsami.1c12945?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c12945?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c12945?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c12945?fig=fig11&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.1c12945?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


images were processed by thresholding to the ones with only
black and white color that correspond to micropores and BTO
piezoceramics, respectively. Through the thresholding, only the
effects of micropores on piezoelectric properties will be
evaluated. From the Figure 11b, the piezoelectric properties
are severely deteriorated by micropores can be concluded.
Overall, the porosity has stronger effect on ε33 as compared
with that on d33, although at 0.109 VF of micropores both
reduced to only about 10% of those of the dense grain
microstructures. Moreover, when the VF of porosity is greater
than 0.083 (ρ = 0.7), d33 start to decrease rapidly. To
understand this phenomenon, the spatial fields of the two grain
microstructures (ρ = 0.8 and 0.01) were plotted and presented
in Figure 11c. Concentration of longitudinal stress σ3 and
internal longitudinal electric field E3 can be observed nearby
the micropores. This may be attributed to the existence of
micropores that lead to strong mismatch of local d33 between
the pores and the neighboring grains. The mismatch will in
turn induce the longitudinal stress σ3 and internal longitudinal
electric field E3, which have negative effects on the piezo-
electric responses as describe in previous paragraphs. The fields
σ3 and E3 of the grain structure with a higher porosity level are
much stronger than those of the grain structure with a lower
porosity level as reflected in the last two rows of Figure 11c,
which results in significant declines in piezoelectric properties.
In addition, from the perspective of the connectivity of
piezoactive phase, some grains start to become isolated from
other grains when certain VF of micropores reached, as can be
observed in the grain microstructure from the first two images
of first column of Figure 11c. The connectivity of piezoactive

phase (BTO) is thus significantly weakened, resulting in a
severely decreased effective d33.

3.4.2. Microstructure Control via Parameter Z. Although
the PDF of crystal orientation and VF of micropores can be
conveniently and rapidly controlled by ρ, noise vector Z could
be used to manipulate the PDFs of another important
microstructure feature, i.e., grain size.11,61 Specifically, the
microstructure features can be fine-tuned by the linear
interpolation of two noise vectors Z1 and Z2 through y(ε) =
εZ2 + (1 − ε)Z1 while fixing the vector P. Through the
interpolation, a smoothly varying range of microstructures can
be generated as depicted in Figure 12. It should be noted that
when ε = 0 or 1, the first and last microstructure in the figure
can be obtained, respectively. The smooth transition of
microstructure features is illustrated by the grain marked
with a red dashed circle. As can be seen, the grain grows
smoothly with the ε increasing from 0 to 1 until it combines
with other grains to form a larger grain, although the grain
marked with a yellow dashed circle shrinks continuously until
its place is occupied by other grains. It is worth pointing out
that the capability of generating a smooth variation in the
microstructure suggests the inexistence of mode collapse in
which low variability in the generated images can be observed
when different inputs (e.g., noise vector Z in the present study)
are inputted into the generators. In other words, the generator
converges to a state that consistently generates identical
synthetic microstructures; see Figure S2 of section A in the
Supporting Information. This inexistence of mode collapse
indicates that the generator of StackGAN-v2 does not
memorize the training data, instead, it learns the underlying

Figure 12. Linear interpolation between two noise vector Z1 and Z2. The smooth transition of the microstructure features indicates that the mode
collapse does not exist.

Figure 13. (a) High controllability of the PDF of normalized grain radius by varying the value of ε during the linear interpolation of two noise
vectors. (b) Relations between the average of the grain radius and ε.
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latent data distributions from high-dimensional data (e.g.,
images of grain microstructure in the present study).43,62

The capability to span the spaces of microstructure by the
interpolation of noise vector can be fully utilized to control the
physical descriptors such as the PDFs of normalized grain size
and average grain radius as depicted in Figure 13. These
statistics were obtained by analyzing the microstructures
presented in Figure 12. Specifically, by analyzing Figure 13a,
with the increasing of ε, PDFs will transfer from normal
distribution to log-normal distribution. Simultaneously, the
average grain radius become increasingly larger as seen in
Figure 13b. Therefore, the characteristics of grain size can be
easily controlled through the interpolation of two noise
vectors. This high controllability would not be easy to achieve
by using other types of machine-learning-based methods;35,42

see Figure S3 of section A in Supporting Information. Many
work has been devoted to find the dependence of piezoelectric
properties on grain size, however, there are still large
discrepancies in the literature.61 With the sedulous research
going on, the high controllability of the grain size of
piezoceramics can greatly facilitate better understanding of
the mechanisms of the grain size effect on piezoelectric
properties.

4. CONCLUSION
In this study, a novel DL-based multistage StackGAN
methodology is established for the reconstruction of synthetic
microstructures of AM piezoceramics. Results from the
qualitative and quantitative comparisons show that the
reconstructed microstructures via this DL-based approach are
statistically equivalent to the real ones. More details of the
microstructure features such as micropore morphology can be
added in higher-resolution images. Also, the images generated
using StackGAN-v2 outperform the images generated using
other state-of-the-art methods in precisely and completely
capturing all features in the real microstructures. Another
strength of the proposed DL-based microstructure reconstruc-
tion method is that such a method allows for the generation of
microstructures with periodic boundary conditions. The FFT-
based numerical methods such as FSIPM then can be readily
applied on such microstructure models to determine material
properties. Moreover, it has been verified that the proposed
StackGAN-v2 method is capable of expanding the range of
morphological variation. The variation ranges of the features in
the generated microstructures (e.g., crystal texture, grain size,
porosity VF) are much wider than those of the features in the
real microstructures. In addition, the proposed method can
precisely control the PDFs of microstructure features by
manipulating P and/or Z vectors with the StackGAN-v2
method. All these traits make the presented StackGAN-v2
method an effective and powerful tool in investigating the
structure−property−performance relationship of the piezo-
electric materials (Figures 11 and 12).
Through the calculations of piezoelectric properties on a

large ensemble of the morphology-controlled microstructures,
the quantitative relations between the microstructure features
and the piezoelectric properties and responses could be
established by coupling with machine-learning models.47,63

This would pave the way to quantify the effect of the
microstructure stochasticity and/or uncertainty on the piezo-
electric properties, i.e., structure−property relation, in a
statistical fashion. The high controllability to generate the
microstructure morphologies opens a new avenue to optimize

piezoceramics and their composites to achieve desired
piezoelectric and electromechanical properties by searching
the microstructure morphologies in the large space. The results
of this study will benefit industry because the piezoceramics
and piezocomposites have been widely used in transducers,2,64

biomedical applications,65,66 and other wearable electronics for
a wide range of applications including mechanical sensing67,68

and energy harvesting.1 On the basis of the outcomes of this
study, a continued research of linking process, structure,
property, and performance for AM piezoceramics and
piezocomposites is underway, which will lead to guidelines of
acquiring those piezoelectric materials with optimal properties
by choosing appropriate AM processes and process parameters.
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