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Abstract. We consider the following constrained Rayleigh quotient optimization prob-
lem (CRQopt):
minoT Av  subject to vTv=1and CTo=b,
veR"

where A is an n x n real symmetric matrix and C is an #n x m real matrix. Usually, m «n.
The problem is also known as the constrained eigenvalue problem in literature since it
becomes an eigenvalue problem if the linear constraint CTv=b is removed. We start by
transforming CRQopt into an equivalent optimization problem (LGopt) of minimiz-
ing the Lagrangian multiplier of CRQopt, and then into another equivalent problem
(QEPmin) of finding the smallest eigenvalue of a quadratic eigenvalue problem. Al-
though these equivalences have been discussed in literature, it appears to be the first
time that they are rigorously justified in this paper. In the second part, we present
numerical algorithms for solving LGopt and QEPmin based on Krylov subspace pro-
jection. The basic idea is to first project LGopt and QEPmin onto Krylov subspaces to
yield problems of the same types but of much smaller sizes, and then solve the reduced
problems by direct methods, which is either a secular equation solver (in the case of
LGopt) or an eigensolver (in the case of QEPmin). We provide convergence analy-
sis for the proposed algorithms and present error bounds. The sharpness of the error
bounds is demonstrated by examples, although in applications the algorithms often
converge much faster than the bounds suggest. Finally, we apply the new algorithms
to semi-supervised learning in the context of constrained clustering.
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1 Introduction

In this paper, we are concerned with the following linear constrained Rayleigh quotient
(CRQ) optimization:

min v' Av, (1.1a)
CRQopt: st.olo=1, (1.1b)
Clo=b, (1.1¢)

where AcR"*" is symmetric, CeR"*™ has full column rank, and beIR". Necessarily m<n
but often m «n. We are particularly interested in the case where A is large and sparse and
b#0.

CRQopt (1.1) is also known as the constrained eigenvalue problem, a term coined in
1989 [10]. However, it had appeared in literature much earlier than that [15]. In that
sense, CRQopt is a classical problem. However, past studies are fragmented with some
claims, although often true, not rigorously justified or needed conditions to hold. In this
paper, our goal is to provide a thorough investigation into this classical problem, includ-
ing rigorous justifications of statements previously taken for granted in literature and
addressing the theoretical subtleties that were not paid attention to. We also present a
quantitative convergence analysis for the Krylov type subspace projection method, which
we will also call the Lanczos algorithm, for solving large scale CRQopt (1.1).

1.1 Related works

CRQopt (1.1) has found a wide range of applications, such as ridge regression [5, 12],
trust-region subproblem [27, 33], constrained least square problem [9], spectral image
segmentation [6,36], transductive learning [19], and community detection [28].

The first systematic study of CRQopt (1.1) belongs to Gander, Golub and von Matt
[10]. Using the full QR and eigen-decompositions, they reformulated CRQopt (1.1) as an
optimization problem of finding the minimal Lagrangian multiplier via solving a secu-
lar equation (in a way that is different from our secular equation solver in Appendix A).
Alternatively, they also turned CRQopt (1.1) into an optimization problem of finding the
smallest real eigenvalue of a quadratic eigenvalue problem (QEP). However, the equiv-
alence between the QEP optimization and the Lagrangian multiplier problem was not
rigorously justified in [10].

Numerical algorithms proposed in [10] are not suitable for large scale CRQopt (1.1)
because they require a full eigen-decomposition of A. Later in [14], Golub, Zhang and
Zha considered large and sparse CRQopt (1.1) but only with the homogeneous constraint,
i.e, b=0. In this special case, CRQopt (1.1) is equivalent to computing the smallest eigen-
value of A restricted to the null space of CT. An inner-outer iterative Lanczos method was
proposed to solve the homogeneous CRQopt (1.1). In [41], Xu, Li and Schuurmans pro-
posed a projected power method for solving CRQopt (1.1). The projected power method
is an iterative method only involving matrix-vector products, and thus it is suitable for
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large and sparse CRQopt (1.1). However, its convergence is linear at best and often too
slow. In [6], Eriksson, Olsson and Kahl reformulated CRQopt (1.1) into an eigenvalue op-
timization problem (see Appendix B for details). An algorithm based on the line search
was used to find the optimal solution. This algorithm is suitable for CRQopt (1.1) with a
large and sparse matrix A, but it is too costly because the smallest eigenvalue has to be
computed multiple times during each line search action.

1.2 Contributions

Our study on CRQopt (1.1) begins with the standard approach of Lagrangian multipliers,
as was taken in [10], to lead to an optimization problem of minimizing the Lagrangian
multiplier of CRQopt, called LGopt (Section 2.2). Then LGopt is transformed to a prob-
lem of finding the smallest real eigenvalue of a quadratic eigenvalue problem, called
QEPmin (Section 2.3). Our major contributions are as follows:

(i) Although transforming CRQopt into LGopt and QEPmin is not really new, our
formulations of LGopt and QEPmin set them up onto a natural path for use in Krylov
subspace type projection methods that only requires matrix-vector products. Therefore,
the formulations are suitable for large scale CRQopt. We rigorously prove the equiva-
lences among the three problems while they are only loosely argued previously as, see
for example [10]. As far as subtle technicalities are concerned, we prove that the leftmost
eigenvalue in the complex plane is real, which has a significant implication when it comes
to numerical computations.

(ii) We devise a Lanczos algorithm to solve the induced optimization problems: LGopt
and QEPmin. This algorithm is made possible, as we argued moments ago, by our dif-
ferent formulations from what in literature. Along the way, we also propose an efficient
numerical algorithm for the type of secular equations arising from solving each projected
LGopt. We establish a quantitative convergence analysis for the Lanczos algorithm and
obtain error bounds on approximations generated by the algorithm. These error bounds
are in general sharp in the worst case as demonstrated by artificially designed numerical
examples.

(iii) We apply the proposed Lanczos algorithm to large scale CRQopt for constrained
clustering, an extension of the well-known spectral algorithm with linear constraints to
encode prior knowledge labels. We observe that the new Lanczos algorithm is 2 to 23
times faster than FAST-GE-2.0 [18] for constrained image segmentation.

1.3 Organization and notation

The rest of the article is organized as follows. In Section 2, we investigate the theoretical
aspects of CRQopt (1.1) such as the feasible set, existence of a minimizer, and transform-
ing CRQopt (1.1) into equivalent optimization problems with rigorous justifications. A
Krylov subspace projection approach for solving CRQopt (1.1) via its equivalent opti-
mization problems are detailed in Section 3. The convergence analysis is given in Sec-
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tion 3.5. Numerical examples to demonstrate the sharpness of convergence estimates
are presented in Section 3.6. Section 4 describes an application of our algorithms to the
constrained image segmentation problem. Concluding remarks are in Section 5. There
are three appendices. Appendix A explains how to solve the secular equation arising
from solving the LGopt. Appendix B proves the equivalence between CRQopt (1.1) and
an eigenvalue optimization problem proposed by Eriksson, Olsson and Kahl [6]. Ap-
pendix C documents CRQPACK, a software package for an implementation of Lanczos
algorithm and reproduce numerical experiments presented in this paper.

Throughout the article, R, R” and R™*" are sets of real numbers, columns vectors of
dimension 7, and m x n matrices, respectively. C, C" and C"*" are sets of complex num-
bers, columns vectors of dimension 7, and m xn matrices, respectively. We use MATLAB-
like notation X(;.; .y to denote the submatrix of X consisting of the intersections of rows
i to j and columns k to /, and when i: is replaced by :, it means all rows, similarly for
columns. For a vector veC, v(y) refers the kth entry of v and v(;;;) is the subvector of v
consisting of the ith to jth entries inclusive. An n xn identity matrix is I, or simply I if
its size is clear from the context, and ¢; is the jth column of an identity matrix whose size
is determined by the context. diag(ci,c2,-:-,c,) is an n x n diagonal matrix with diagonal
elements cy,c5,---,¢,. The imaginary unit is i =+/—1. For Xe C"™*", XT, R(X) and N (X)
denote its transpose, range and null space, respectively. For a real symmetric matrix H,
eig(H) stands for the set of all eigenvalues of H, and Amin(H) and Amax(H) denote the
smallest and largest eigenvalue of H, respectively. ||, (1< p<o0)is the £,-vector or /-
operator norm, respectively, depending on the argument. As a special case, |- |2 or |-| is
either the Euclidean norm of vector or the spectral norm of a matrix.

2 Theory

2.1 Feasible set and solution existence

Let 19 be the unique minimal norm solution of C'v =b:
no=(C")', (2.1)

where X is the Moore-Penrose inverse of X [1,4,38]. By the assumption of rank(C) =m,
Cf=(CTC)~'C" and (CT)"=(C")T=C(C"C)~!. The most important orthogonal projection
throughout this article is

P=I-CCF, 2.2)

which orthogonally projects any vector onto A/(CT), the null space of CT [38]. Any veR"
that satisfies C'v = b can be orthogonally decomposed as

v=(I—P)v+Pv=ng+Pveny+N(CT). (2.3)

Evidently |v||?> = | |?+ | Pv||?>, which, together with the unit length constraint (1.1b), lead
to the following immediate conclusions about the solvability of CRQopt (1.1):
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e If |ng| > 1, then there is no unit vector v satisfying C'v =b. This is due to the fact
that any v satisfying C'v =b has norm no smaller than ||1o[. Thus CRQopt (1.1) has
no solution.

e If |n9| =1, then v=ny is the only unit vector that satisfies C'v=>b. Thus CRQopt (1.1)
has a unique minimizer v =ny.

e If |ny| <1, then there are infinitely many feasible vectors v that satisfy CTv =b.

Therefore only the case |19| <1 needs further investigation. Consequently, throughout
the rest of the article, we will assume |np| <1.

2.2 Equivalent LGopt

Using the orthogonal decomposition (2.3), we have
v Av= UTPAPU+ZUTPAno+ngAnO, (2.4a)
00 =no|?+|Po|?. (2.4b)

Since n} Ang and |ng| are constants, CRQopt (1.1) is equivalent to the following con-
strained quadratic minimization problem:

min v PAPv+20" by, (2.5a)
CQopt: s.t. |Pv|| =1, (2.5b)
veng+N(C), (2.5¢)

where

bo=PAnge N'(CT), y:=4/1—|ng|2>0. (2.6)

Necessarily, 0 < <1. However, in the rest of our development, unless we refer back to
CRQopt (1.1), ¥ <1 can be removed, i.e., y can be any positive number.

Theorem 2.1. v, is a minimizer of CRQopt (1.1) if and only if v, is a minimizer of CQopt (2.5).

One way to solve CQopt (2.5) is the method of the Lagrangian multipliers. It seeks
the stationary points of the Lagrangian function

Z(v,A) =0 PAPv+20"by— A (v Pv—~?). 2.7)
Differentiating .# with respect to v and A, we get

(PA—AI)Po=—by, (2.8a)
|Pof=". (2.8b)
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Let u=Pve N'(CT). Then u=Pu and v=rnp+u. The Lagrangian equations in (2.8) are
equivalent to the following equations:

(PAP—AI)u=—by, (2.9a)
=", (2.9b)
ue N(CT). (2.9¢)

In fact, any solution (A,v) of (2.8) gives rise to a solution (A,u) with u = Pv of (2.9), and
conversely any solution (A,u) of (2.9) leads to a solution (A,v) with v=mny+u of (2.8).

The system of equations (2.9) has more than one solution pairs (A,u) since CQopt (2.5)
is non-convex and any local minimum or maximum has a corresponding solution pair
(A, u) of (2.9). In addition, in Section 2.3, we will show that under some conditions, an
eigenpair of a quadratic eigenvalue problem (QEP) leads to a solution of (2.9), and the
number of eigenpairs is not unique. We seek a pair (A,u) of (2.9) that minimizes the
objective function of (2.5) for ve R". Note that

f(v) := v'PAPv+20"by=0"PAPv+20' PAng
ZPOT Ay 2uT Ang " " uT PAPu +2uT PAng
= u'PAPu+2u'by = f(u), (2.10)
ie., f(v)=f(u) for veR" and u = Pv. Therefore minimizing f(v) over veR" is equivalent
to minimizing f(u) over u € N'(CT). The following lemma compares the value of f at

different solution pairs (A,u) of (2.9). The proof of the lemma is inspired by Gander [9]
on solving a least squares problem with a quadratic constraint.

Lemma 2.1. For two solution pairs (A;,u;) for i=1,2 of the Lagrangian system of equations (2.9),
A <Ay ifand only if f(uq) < f(uz).

Proof. The proof relies on the following three facts: (i) For any solution pair (A,u) of (2.9),
we have

Au=PAPu+by = A:ui—uuT(PAPqubo):%uT(PAPqubo). (2.11)

(ii) Given (A;,u;) for i =1,2, satisfying (2.9), we have
f(ul) = M;[PAPLQ +2M;[b0 (2.:9a) —bgul +A1M¥M1 +2M¥bo
(2.:9b) }ﬂbo +/\1’)/2 (2.:9a) —M;(PAP—/\zl)Ml +)\1’)/2.
Similarly, we have f(uy)=—ul (PAP—A1I)uz+Ay7?. Therefore

fur) = f(uz) = (A1 = A2) (V? —ujuz). (2.12)
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(iii) For u; of norm v, by the Cauchy-Schwartz inequality, u{u> <|u1 || |u2| =72, and ufur =
|ua | |uz|| =~? if and only if u; =up. Hence if u; # uy, then > —ujuy > 0.

Now we are ready to prove the claim of the lemma. If A; <A,, then u; #u; otherwise
(2.11) would imply A1 =A,, and thus f(u1) < f(u2) by (2.12). On the other hand, if f(u1) <
f(uz), then 72—u¥u2 > 0 because 72—u¥u2 >0 always and it cannot be 0 by (2.12), and
thus Ay — A, <0 again by (2.12). O

As a consequence of Lemma 2.1, we find that solving CQopt (2.5) is equivalent to
solving the smallest Lagrangian multiplier A of (2.7), i.e., those A that satisfy (2.9). Specif-
ically, solving CQopt (2.5) is equivalent to solving the following Lagrangian minimization
problem:

min A (2.13a)

s.t. (PAP—AI)u=—by, 2.13b

LGopt: ( ) 0 (2.13b)
|l ="y, (2.13c)

ue N (Ch). (2.13d)

Theorem 2.2. If v, is a minimizer of CQopt (2.5), then (Ay,u,) with u, = Pv, and A, =
%uI(PAPu*—i—bo) is a minimizer of LGopt (2.13). Conversely if (Ay,u,) is a minimizer of
LGopt (2.13), then v, =ng+u, is a minimizer of CQopt (2.5).

The case by = PAny =0, which includes but is not equivalent to the homogeneous
CRQopt (1.1) (i.e., b=0) treated in [14,15] can be dealt with as follows. Suppose by=0 and
let 6; be the smallest eigenvalue of PAP. Keep in mind that PAP always has an eigenvalue
0 with multiplicity m associated with the subspace NV (CT)+ =R (C), the column space of
C. There are the following two subcases:

e Subcase 0; #0: Then' 0; <0. Let z; be a corresponding eigenvector of PAP. Then
z1=PAPz1/6,e N (CT). So (61,21) is a minimizer of LGopt (2.13) and therefore z; is a
minimizer of CQopt (2.5), which in turn implies that v, =n+z1 /||z1 | is a minimizer
of CRQopt (1.1).

e Subcase 0; =0: If there exists a corresponding eigenvector z; e N'(C?), i.e., Pz; #
0, then (61,Pz;) is a minimizer of LGopt (2.13) and therefore Pz; is a minimizer
of CQopt (2.5), which in turn implies that v, =no+7yPz1/|Pz1| is a minimizer of
CRQopt (1.1). Otherwise there exists no corresponding eigenvector z; such that
Pz #0. Let 6, be the second smallest eigenvalue of PAP, which is nonzero, and z; a
corresponding eigenvector. Then z, = PAPz, /6, N (CT), and (#,,2;) is a minimizer
of LGopt (2.13) and therefore z, is a minimizer of CQopt (2.5), which in turn implies
that v, =19 +z2/| 22| is @a minimizer of CRQopt (1.1).

In view of such a quick resolution for the case by =0, in the rest of this article, we will
assume
bo = PAngy#0. (2.14)

TThis cannot happen if A is positive semidefinite.
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2.3 Equivalent QEPmin

Let (A,u) be a feasible pair of LGopt (2.13) and A ¢ eig(PAP). From (2.13b), we can write
u=—(PAP—AI)"'by, and then

Y2 =uTu=bl(PAP—AI)2by = b(z, (2.15)

where z=(PAP—AI)~2by, or equivalently, (PAP—AI)?z=by. Therefore blz/7*=1by (2.15),
and the pair (A,z) satisfies the quadratic eigenvalue problem (QEP):

(PAP—AI)%z=by=bo-1=by (bgz/72) - %bobgz. (2.16)

We claim that any z satisfying (2.16) is in A/(CT). To see this, we expand (PAP—AI)?z and
extract A%z from (PAP—AI)?z =by to get

z= % [~ (PAP)?z+2A-PAPz+by| e N(CT),
where we have used the assumption A¢eig(PAP) to conclude A#0, and by=PAnoeN (CT).
Therefore we have shown that under the assumption that LGopt (2.13) has no feasible
pair (A, u) with A eeig(PAP), any feasible pair (A,u) of LGopt (2.13) satisfies QEP (2.16)
with ze N'(CT).

Next, we prove that any pair (A,z) satisfying

0#zeN(C"), Ag¢eig(PAP) and QEP (2.16), (2.17)

leads to a feasible pair of the Lagrange equations (2.13). First we note that b}z # 0; other-
wise we would have (PAP—AI)?z =0 by (2.16), implying z =0 since A ¢ eig(PAP), a con-
tradiction. Let (A,z) be a scalar-vector pair satisfying (2.17). Define u:= —(PAP—AI)™1bo.
Then (PAP—AI)u=—by, i.e., (2.13b) holds, and also

AMi=PAPu+by = u=—(PAPu+by)eN(CY),

>

i.e., (2.13d) holds. Without loss of generality, we may scale z such that blz =~?2. It follows
from (2.16) that
(PAP—AIz=by = z=(PAP—AI)"2hy,
implying
Lor _ 17 -2 LT
1= ?boz: ?bo (PAP—AI)"by = ?u u = J|u|=7,

i.e., (2.13c) holds. Lemma 2.2 summarizes what we have just proved.
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Lemma 2.2. Suppose the constraints of LGopt (2.13) has no feasible pair (A,u) with Aeeig(PAP),
and suppose that QEP (2.16) has no solution pair (A,z) with 0#ze N (CT) and A e eig(PAP).
Then any pair (A,u) satisfying the constraints of LGopt (2.13) gives rise to a pair (A,z) with
z=(PAP—AI) 2by that satisfies QEP (2.16). Conversely, any pair (A,z) with z # 0 satisfying
QEP (2.16) leads to a pair (A,u) with u:= —(PAP—AI)"'by that satisfies the constraints of
LGopt (2.13).

As a corollary of Lemma 2.2, we conclude that LGopt (2.13) is equivalent to

min A (2.18a)
QEPmin: s.t. (PAP—AI)?z=7"2byblz, (2.18b)
AeR, 0#ze N (CT), (2.18¢)

under the assumptions of Lemma 2.2. Soon we show that LGopt (2.13) and QEPmin
(2.18) are still equivalent even without the assumptions.

We name the minimization problem (2.18) QEPmin because the constraint (2.18b) is
a quadratic eigenvalue problem (QEP). Although this QEP generally may have complex
eigenvalues A, the “min” in (2.18a) implicitly restricts the consideration only to the real
eigenvalues A of QEP (2.18b) in the context of QEPmin (2.18). In this sense, there is no
need to specify A€R in (2.18c), but we are doing it anyway to emphasize the implication.
This comment applies to two other minimization problems pQEPmin (2.26) and rQEPmin
(3.22) later that involve a QEP as a constraint as well.

In the rest of this section, we prove the equivalence between LGopt (2.13) and QEPmin
(2.18) without the assumptions of Lemma 2.2. The key idea is to remove the null space
conditions u,ze N'(C?) by projecting Egs. (2.13b), (2.13c) in LGopt and (2.18b) in QEPmin
onto an appropriate subspace.

24 pLGopt
Let S=[S1, S2]€ R"*" be an orthogonal matrix with
R(S1)=N(CT), R(S2)=N(C")*. (2.19)

Since rank(C) = m, we know S; € R**(*=") and S, € R"*™. It can be verified that the
projection matrix P=I—CCT in (2.2) can be written as

P=5,S]=1-5,5], (2.20)

and
PS{=5S;, PS,=0.

Set
g0=STby, H=STPAPS;=S]AS eR"—mx*(n—m) (2.21)
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we have

STPAPS, STPAPS;| wu [ H 0

T N 1 21 2|

S PAP S‘[s}PAPs1 sgpAPsz]_ " [ 0 0 ] (2.222)

§Tpy— | S1oo| _ v [ 80 (2.22b)
7|8~ w | O | '

Immediately from the decomposition (2.22a), we conclude the following lemma.

Lemma 2.3. The eigenvalues of PAP consist of those of H and 0 with multiplicities m, i.e.,
eig(PAP) =eig(H)u{0,0,---,0}. If 0# Aeceig(PAP), then Aceig(H) and its associated eigen-
vector must be in N'(CY). The matrix PAP has more than m eigenvalues 0 if and only if H is
singular. For each eigenvalue 0 of PAP coming from eig(H), there is an eigenvector z of PAP
such that Pz #0 (in fact, Pz is an eigenvector for that particular eigenvalue 0 as well).

To explicitly eliminate the constraint u € A'(CT) in LGopt (2.13), we project LGopt
(2.13) onto R(S1) and introduce the following projected minimization problem

min A (2.23a)
pLGopt: s.t. (H-AI)y=—go, (2.23b)
yl=7- (2.230)

The next theorem establishes the equivalence between LGopt (2.13) and pLGopt (2.23).

Theorem 2.3. The pair (A,y.) is a minimizer of pLGopt (2.23) if and only if (A,u.) with
Uy = S1Yx is a minimizer of LGopt (2.13).

Proof. We begin by showing the equivalence between the constraints of LGopt (2.13) and
those of pLGopt (2.23). Note that any 0 ue N (CT) can be expressed by u = Sy for some
0#yeR"™" and vice versa. Making use of (2.22), we have

ST[(PAP—AI)u+bg] =S (PAP—AI)SSTu+SThy
H-AI 0
" S]] @2

utu=y'sTsy=yty. (2.25)

Now if (A,u) satisfies the constraints of LGopt (2.13), then ST[(PAP—AI)u+by] =0 be-
cause of (2.13b), u = S1y for some y because of (2.13d), and ||y =y because of (2.13c) and
(2.25). It follows from (2.24) that (H—AI)y+go =0. Thus (A,y) satisfies the constraints of
pLGopt (2.23).

and
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On the other hand, suppose (A,y) satisfies the constraints of pLGopt (2.23). Let u =
S1ye N'(CT). Both (2.24) and (2.25) remain valid. Then ST[(PAP—AI)u+by] =0 which
implies (PAP—AI)u+by =0 because S' is an orthogonal matrix. Also |ul| = by (2.25).
This completes the proof of that (A,u) satisfies the constraints of LGopt (2.13).

Therefore, LGopt (2.13) and pLGopt (2.23) have the same optimal value A,.. More than
that, if (A.,u.) is a minimizer of LGopt (2.13), then there exists y. such that u,, =Sy, and
that (A, y.) is a minimizer of pLGopt (2.23), and vice versa. O

We note that for a modest-sized CRQopt (1.1), say n up to 2000, we may as well per-
form the reduction to form pLGopt (2.23) explicitly. Due to its modest size, pLGopt (2.23)
can be solved as a dense matrix computational problem. The detail is buried later in the
proof of Lemma 2.4.

2.5 pQEPmin

For the same purpose as we projected the Lagrange equations, we introduce the follow-
ing projected minimization problem as the counterpart of QEPmin (2.18):

min A (2.26a)
pQEPmin: s.t. (H=AI*w=v"2gogtw, (2.26b)
AeR, w #0. (2.26¢)

The equation in (2.26b) has an appearance of a QEP. As stated, the optimal value of pQEP-
min (2.26) is the smallest real eigenvalue of QEP (2.26b). The next theorem establishes the
equivalence between QEPmin (2.18) and pQEPmin (2.26).

Theorem 2.4. The pair (A, w,) is a minimizer of pQEPmin (2.26) if and only if (Ax,z.) with
Zy = S1Wy 15 a minimizer of QEPmin (2.18).

Proof. We begin by showing the equivalence between the constraints of QEPmin (2.18)
and those of pQEPmin (2.26). Keeping (2.22) in mind, we have for any z=S;w

sT [(PAP—AI)ZZ—r2 bobY z]
=ST(PAP—-AI)SST(PAP—AI)SSTz—v72SThyb} SS 2

AR e

Now if (A,z) satisfies the constraints of QEPmin (2.18), then 0#ze N (CT) and thus z=S,w
for some 0 #weR" ™. Therefore, by (2.27), (A, w) satisfies (2.26b).

On the other hand, suppose (A,w) satisfies (2.26b) and (2.26c). Let z=S;we N (CT).
Then z#0 and by (2.27), ST[(PAP—AI)?z—~2bybiz] =0. Since S! is orthogonal, we get
(2.18b). This proves that (A,z) satisfies the constraints of QEPmin (2.18).
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Therefore, QEPmin (2.18) and pQEPmin (2.26) have the same optimal value A,. More
than that, if (A,,z,) is a minimizer of QEPmin (2.18), then there exists w, # 0 such that
Zyx = S1w, and that (A, w,) is a minimizer of pQEPmin (2.26), and vice versa. O

2.6 The equivalence of pLGopt and pQEPmin

Although, in leading to pLGopt (2.23) and pQEPmin (2.26), the matrix H and the vector
Qo are derived from reducing A, C, and b in the original CRQopt (1.1), the developments
in this section does not require that. Given this, in the rest of this section, we consider
general pLGopt (2.23) and pQEPmin (2.26) with?

HeR™™!, H'=H, 0#goeR’ and 7>0.

To set up the stage for the rest of this subsection, let H=Y®Y" be the eigen-decomposition
of H:

H=YOY! with ©@=diag(61,6,--,0,), Y=[yiy2-ye] YY=I. (2.28)
Without loss of generality, we arrange 6; in the ascending order:
Or=0r=--=0;<0s1<--<0y,

and set Apin(H) =6;. Define the secular function

! 2
X(A) =85 (H=AD)2go—7"=(Y"g0) (@—AI)(YTg0)— Z l —72, (2.29)
i=
where ¢; :ggyi fori=1,2,---,n,and let
jo=min{i: ¢; #0}. (2.30)

Lemma 2.4. Let (A,y.) be a minimizer of pLGopt (2.23). The following statements hold.
(@) Ax <Amin(H).
(b) Aw=Amin(H) if and only if
goLU and |(H—Amin(H)D) o2 <7,
where U is the eigenspace of H associated with its eigenvalue Amin(H).
(c) If go LU, then Ay < Amin(H) and A, is the smallest root of the secular function x(A), and
Yu=—(H—A D) 1go.

fUnlike before, there is no need to assume 7 < 1. In addition, the size of square matrix H and vector gy can
be arbitrary, not necessarily equal to n—m.
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Proof. The secular function x(A) in (2.29) is continuous on (—o0,0;) and lim)_, o, x(A) =
—72 <0. Since

4 2
s
X' ()= —22 ()\—lﬁi)3 >0 forA<6y,
i=1

X(A) is strictly increasing in (—o0,6;). We have the following situations to deal with:

(1) If go£U, then Zflzl Cl-z >0, 1ie., jo<d, then lim)‘_)el_ X(A)=400>0. There exists a unique
A« €(—00,601) such that x(A,) =0. Let y, = —(H—A,I)"!go, then

Yays =80 (H=AD) g0 =x(As) +9° =%
Therefore, (A,,y.) satisfies the constraints of pLGopt (2.23).
(2) Suppose that go LU, then Zflzl g?=0,ie.,jo>d. Let

l

T

Then (H—61I)w = —gp and lim - x(A\) =w'w—~2. There are the following three

subcases:

(i) If ||| >y, then there exists a unique A, € (—0,6;) such that x(A.)=0. Moreover
(A, Ys) With vy, = —(H—ALI )t go satisfies the constraints of pLGopt (2.23).

(ii) If |w| =7, then (A, y«) with A, =6; and v, =w satisfies the constraints of pLGopt
(2.23).

(i) If |w| <7, then (A4, ys) with A, =61 and y, =w++/7?— |w|?y; satisfies the con-
straints of pLGopt (2.23).

Hence we proved that (A,,y,) satisfies the constraints of pLGopt (2.23) for all situations.

Now we prove A, is the smallest solution which satisfies the constraints of pLGopt
(2.23). Suppose there exists A < A, such that (X,ﬁ) satisfies the constraints of pLGopt
(2.23), then A<A, <61, 50 A¢ eig(H). Therefore, in order to make (/A\,ﬁ) satisfies (2.23b),
we have i/ = —(H—?\I)_lgo. Note that limA_m;)((A) <0 for all cases and x(A) is strictly
increasing in (—o0,A), s0 x(A) =§Tj—7% <0, which is contradictory to (2.23¢) that |7 =".
Therefore, A, is the smallest Lagrangian multiplier, and thus (A,,y.) is a minimizer of
pLGopt (2.23).

For all situations, the smallest Lagrangian multiplier A, of pLGopt (2.23) satisfies
Ax < Amin(H), as expected. Also A, =6; can only happen in the subcase (ii) or (iii). O

Buried in the proof above is a viable numerical algorithm to solve pLGopt (2.23), pro-
vided A, in the case (1) and the subcase (i) of the case (2) can be efficiently solved. In both
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cases, it is the unique root of secular equation x(A) =0 in (—o0,60;) in which x(A) mono-
tonically increasing. A default method is Newton’s method which applies the tangent
line approximation, since both x(A) and its derivative x’(A) are rather straightforward to
evaluate. However, this secular equation x(A) =0 has a special rational form. Previous
ideas in solving secular equations of similar types [2,10,21,43] can be adopted to devise
a much fast method than Newton’s method. Details are presented in Appendix A.

Lemma 2.5. If (A,y) satisfies the constraints of pLGopt (2.23), then there exists a vector we R’
such that (A, w) satisfies the constraints of pQEPmin (2.26). Specifically,

_JH=-ADy, if A¢eig(H),
| the corresponding eigenvector of H, if Aeeig(H).

In particular, the optimal value of pQEPmin (2.26) is less than or equal to the optimal value of
pLGopt (2.23).

Proof. There are the cases to consider. (1) Case Aeeig(H): Let w be an eigenvector of H
corresponding to eigenvalue A, i.e., Hw = Aw. By (2.23b), go = —(H —AI)y, and thus

v 29088 w=—72goy" (H—AI)w=0.

Evidently, (H—AI)>w =0. Hence (A,w) satisfies (2.26b). (2) Case A ¢ eig(H): Let w =
(H—AI)"'y. Using (2.23b), we have

(H-ATPw = (H-ADy =—go,
v %g0g0w =" 28080 (H—AI) 'y=—7""g0y"y=—20.

Again (A, w) satisfies (2.26b).

Hence we proved that (A,w) satisfies the constraints of pQEPmin (2.26). As a corol-
lary, the optimal value of pQEPmin (2.26) is less than or equal to the optimal value of
pLGopt (2.23). O

The next lemma claims a stronger conclusion than the last statement in the previous
lemma.

Lemma 2.6. The optimal value of pLGopt (2.23) is equal to the optimal value of pQEPmin
(2.26).

Proof. Let (A4, y+) be a minimizer of pLGopt (2.23), and let A be the optimal value of
pQEPmin (2.26). By Lemma 2.5, we have A < A,. It suffices to show that A < A, cannot
happen. Assume, to the contrary, that A< As. By Lemma 2.4, we have A< Amin(H). In
particular, ?\géeig(H )- Let (/A\,zT)) be a minimizer of pQEPmin (2.26). By (2.26b), we have

1 ~an
@0 =" 280800 =0" (H-A170 >0,
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implying ¢7@ #0. Let § = —(+2/g1@) (H—AI)@, and observe that

2 N 2
(H=AD)j =~ (H- A1 =~y 2gogl =g, (2.31a)

go Sow

2\ 2 N 2\2 T, T
5= (7 ) @T(H—A1)2@:< ZA) 28000 _ 2, (2.31b)
oW oW i

( ,17) satisfies the constraints of pLGopt (2.23). This implies A, < 3\, contradicting the
assumptlon A< Ax. Therefore, A= Ay, as expected. O

We are ready to establish the equivalence between pLGopt (2.23) and pQEPmin (2.26).
Theorem 2.5 (The equivalence of pLGopt (2.23) and pQEPmin (2.26)).
(1) Let (Ay,yx) be a minimizer of pLGopt (2.23), then either Ay < Amin(H) 0r Ay =Amin(H),
and there exists w, such that (A, w.,) is a minimizer of pQEPmin (2.26). Specifically,

v — (H—)\*I)_ly*, Zf)\* <Amin(H)/
* | the corresponding eigenvector of H, if Aw=Amin(H).

(2) Conversely, if (Ay,wy) is a minimizer of pQEPmin (2.26), then there exists y, such that
(A, Y ) is a minimizer of pLGopt (2.23). Specifically,

_ | =(¥/gws) (H=ADw, if gyw. #0,
Xat A/ V2= [P (wi/ [wsl),  if ggwa=0,

where x, = —(H—A,I)Tgo in the case gt w. =0, and it is guaranteed that |x.|| <-y.

Proof. Item (1) is a consequence of Lemmas 2.5 and 2.6.

Consider item (2). Suppose (A, w,) is a minimizer of pQEPmin (2.26). By Lemma 2.6,
it suffices to show that there exists y, such that (A,,y,) satisfies the constraints of pLGopt
(2.23).

e Case glw, #0: The equations in (2.31) hold with substitutions
A=Ay, Toys=—(V/g3ws) (H=AuD)w,
So (A«,y+«) satisfies the constraints of pLGopt (2.23).

e Case glw, =0: By (2.26b), we find that (H—A,I)*w, =0, implying (H—A,)w, =0
since H—A,I is real symmetric. Hence A, eeig(H) and w, is an associated eigen-
vector. Let x, be the minimum norm solution of (H—A,I)x.=—go.

Note that we already know A, is the optimal value of pLGopt (2.23), which means
there exists y such that (A,,y) satisfies (2.23b) and [|y| = . On the other hand, x is
minimal norm solution of (2.23b), so ||x|<|ly|=7. Then it can be verified that (A.,y.)
with v, =X, ++/72 —||x«]? (w,/||w,|) satisfies the constraints of pLGopt (2.23).
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This proves that (A.,y.) satisfies the constraints of pLGopt (2.23). In addition, by Lemma
2.6, A, is the optimal value of pLGopt (2.23), which proves the result. O

The following theorem is about the uniqueness of the solution for pLGopt (2.23).

Theorem 2.6 (Uniqueness of the minimizer for pLGopt (2.23)). Let (A, w,) be a mini-
mizer of pQEPmin (2.26).

(1) If gdw. #0 for all possible minimizers for pQEPmin (2.26), then A, < Amin(H) and the
minimizer of pLGopt (2.23) is unique.

(2) If there exists a minimizer for pQEPmin (2.26) such that g w.=0, then A, =Amin(H) and
the minimizer of pLGopt (2.23) is unique if and only if | x| ="y, where x,=—(H—A,I) go.

Proof. (1) First we prove A, < Amin(H). Suppose it is not true, i.e., A, = Amin(H), let w,
be an eigenvector of H corresponding with eigenvalue Apin(H), then by Theorem 2.5,
(Ax,wy) is @ minimizer of pQEPmin (2.26). Since QEP (2.26b) leads to y2 0 ggw* =(H-
AvD)?w, =0 and w, #0, we have ggw* =0, which is contradictory to our assumption that
ggw* #0 for all possible minimizers (A, w,) of pQEPmin (2.26). Therefore, A, <Amin(H).
In this case (A4, xx = —(H—A,I) lgo) is the unique minimizer of pLGopt (2.23) since the
H—A,I is nonsingular and x, is the unique solution of (2.23b).
(2) Making use of (2.26b), we have

(H—A*I)zw* :’y*ZgOggw* =0 = (H-ADw,=0

because H—A,I is real symmetric. Therefore A, ceig(H), which yields A, =Amin(H). Note
that x, is unique and w, can be chosen arbitrarily in the eigenspace of H corresponding
with eigenvalue Amin(H), so w, is not unique. Therefore, i, =X, ++/7%— | X« |? (W /||ws]|)
is unique if and only if ||x, | =1. O

Remark 2.1. In [10], the authors investigate the relationship between the problems
pLG: (H-ADy=—go, |yl=", (2.32)
pQEP: (H—-AD)w=v 2gogiw, AeR, w#0. (2.33)

They differ from pLGopt and pQEPmin without taking the min over A. The following
results were obtained in [10]:

1. If (A,y) is a solution of pLG (2.32), then there exists w such that (A,w) is a solution
of pQEP (2.33).

2. Suppose that (A,w) is a solution of pQEP (2.33).

o If A¢eig(H), then there exists y such that (A,y) is a solution of pLG (2.32).

o If Aeeig(H), then there exists y such that (A,y) is a solution of pLG (2.32) if
and only if |(H—AI)Tgo| <.
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Consequently, these results provide no guarantee that for any solution (A,w) of pQEP
(2.33), there exists a corresponding solution (A,y) of pLG (2.32). Nonetheless, the au-
thors stated without proof that for the solution (A, w,) of pQEP (2.33) with A, being the
smallest eigenvalue of pQEP (2.33), there does exist a solution (A,,y.) of pLGopt (2.23),
a conclusion that does not seem straightforward. In Theorem 2.5 we rigorously proved
that for any minimizer (A,,w,) of pQEPmin (2.26), there exists y. such that (A,,y,) is a
minimizer of pLGopt (2.23).

Next we will establish an important result in Theorem 2.7 below that says the leftmost
eigenvalue of QEP (2.26b) is real. We begin by establishing a close relationship between
the zeros of the secular function x(A) in (2.29) and the eigenvalues of QEP (2.26b), and
then using the relation to expose an eigenvalue distribution property of QEP (2.26b).

Lemma 2.7. Suppose A¢eig(H), A (possibly complex) is an eigenvalue of QEP (2.26b) if and
only if x(A) =0, where x(A) is defined in (2.29).

Proof. Let x(A)=0and A¢eig(H). Define z= (H—AI) 2gp. Then we have (H—AI)?z =g
and
4

4
82= (g =" and thus (H-AIPz=g0=7"gogl
i=1"""

i.e., (A,z) is an eigenpair of QEP (2.26b).
On the other hand, suppose A is an eigenvalue of QEP (2.26b) and A ¢ eig(H). Pre-
multiply (2.26b) by ¢f (H—AI)~2 to get
802=77"80 (H=AI) %808y . (2.34)

We claim that glz #0. Otherwise, (H—AI)?z =0 by (2.26b), which implies (H—AI)z=0,
ie., Aeeig(H), a contradiction. So gg z+#0 and thus it follows from (2.34) that

Y280 (H—AI)"2go =1,

i.e., A is a zero of x(A), as was to be shown. O

Lemma 2.8. QEP (2.26b) has no eigenvalue A =a+1ip with a <0;, and p#0, where a, BER, i
is the imaginary unit, and jo is defined in (2.30).

Proof. Suppose, to the contrary, that QEP (2.26b) has an eigenvalue A =a+1if with a <
0, and B #0. Evidently A =a+1ipB¢eig(H) because all eigenvalues of H are real. By
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Lemma 2.7, a +if must be a zero of the secular function x(A) in (2.29), i.e
&z 2
(a—0;+ip)?

&7 o
6) —p2+2i(a—0)B

Pla—0)2—p?—2i(a—6)p]
(0 —0;)2 =2 +4p (a—0;)>

|
M-

0=Xx(a+1ip)

I
—

T M& WMex

4 (a—
&
Al
In particular, the imaginary part of x(«+1p) is zero, i.e.,

‘ —20& 0:)BS7 ‘ —2(a—;)&2
g AR (6 (Z [(e—0—FPrapa—op |~ @3

l=]0

Since a < 6; for all i > jo, Cﬁ) >0and (;‘12 >0 for all i > jo, we know

é —2(a—6;)&2 0
i=jo [(06—91‘)2_52]2‘}—452(01—91‘)2 '
Therefore, by (2.35), we conclude =0, a contradiction. O

Lemma 2.9. QEP (2.26b) has an eigenvalue A< 0, (necessarily A€R), where jo is defined in
(2.30).

Proof. There are two possible cases:
e Case 0, = : Without loss of generality, let {; #0. Since x(A) is continuous and

strictly increasing in (—o0,6;), and

2
lim y(A)=-9*<0, Lm x(A)> lim 1

2
=7 =+4+00>0,
A——00 A—0 A—0] ()\_91)2

there exists a zero A € (—o0,0;) of x(A). Evidently A ¢ eig(H), and then by Lemma
2.7, A must be an eigenvalue of QEP (2.26b).

o Case 0;,>0;: Let A=6; and z=Yy1. We have (H—XI)Z,Z: (H—)N\I)Zyl =0. Furthermore,

96z=gty1 =& =0. Therefore (A,z) satisfies (2.26b), implying A is an eigenvalue of
QEP (2.26b) and A =6; <6,.

The proof is completed. U
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With the three lemmas above, now we are ready to prove our main result on the
leftmost eigenvalue of QEP (2.26b).

Theorem 2.7. The leftmost eigenvalue, by which we mean the one with the smallest real part, of
QEP (2.26b) is real. As a consequence, the optimal value of pQEPmin (2.26) A, is the leftmost
eigenvalue of QEP (2.26b).

Proof. Let A, =, +1if, be the leftmost eigenvalue. By Lemma 2.9, QEP (2.26b) has a real
eigenvalue A with A < 9]-0. Hence . <A< 9]-0, which together with Lemma 2.8 tell us that

B«=0and thus A, eR. O

Remark 2.2. In [37], the authors stated without proof that the rightmost eigenvalue of
the QEP

[(W+AI)2—5_2hhT] x=0 (2.36)

is real and positive, where W is a real symmetric matrix, & is a vector, and J >0 is a
scalar. It was pointed out in [20] that the rightmost eigenvalue of (2.36) may not always
be positive and the authors proved in [20, Theorem 4.1] that the largest real eigenvalue of
(2.36) is the rightmost eigenvalue. The authors applied a maximin principle for nonlinear
eigenproblems for the proof. In Theorem 2.7 we have proved the leftmost eigenvalue A,
of (2.26b) is real, i.e., there is no complex eigenvalue of QEP (2.26b) with real part equal
to A, and nonzero complex part. This result cannot be obtained by the approach used
in [20].

2.7 The equivalence of LGopt and QEPmin

Theorem 2.5 says that pLGopt (2.23) and pQEPmin (2.26) are equivalent. Previously in
Lemma 2.2, we showed that LGopt (2.13) and QEPmin (2.18) are also equivalent under
the assumptions stated there. Our goal in this subsection is to have the assumptions of
Lemma 2.2 removed.

For convenience, we restate LGopt (2.13) and QEPmin (2.18) as follows:

min A (2.13a)
s.t. (PAP—AI)u = —by, (2.13b)

LGopt:
|l ="y, (2.13c)
ue N (CH; (2.13d)

and

min A (2.18a)
QEPmin: s.t. (PAP—AI)?z=7"2byblz, (2.18b)

AeR, 0#zeN(CT). (2.18¢)
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Recall S; and S as defined in (2.19) and H and g as defined in (2.21). Before stating
our main result in this subsection, we need two lemmas. The first one is about an eigen-
relationship between PAP and H and the second one is on the relationships among PAP—
Al H—AI, (PAP—AI) and (H—AI)T.

Lemma 2.10. (A,s) is an eigenpair of H if and only if (A,S1s) is an eigenpair of PAP with
S]SEN(CT).

Proof. This is a consequence of the decomposition (2.22a). O
Lemma 2.11. For any A€RR, (PAP—AI)S;=S1(H—AI) and (PAP—AI)TS; =S;(H—AI)'.

Proof. Let H=Y®YT be the eigen-decomposition of H, where Y e R("~)* (=) js orthog-
onal and @ is a diagonal matrix. Then the eigen-decomposition of PAP is given by

T
PAP=[S, 5] [lg (I’] [? 8] ﬁ) (I’] (1 ST (2.37)

Therefore (PAP—AI)S;=S1Y(®—AI)YT=S;(H—AI). On the other hand, for A #0,

Y o] [(@—AI)T 0 HYT 0

(PAP—AI)' =[S S] [ 0 1] [S1 S2]7,

0 I 0 —11
and for A =0,
Y o][e" o][Yy" o
= T
parytssal! S O s
Hence (PAP—AI)TS; =5 Y(@—AI)TYT=S;(H—AI)', as was to be shown. O

Now we are ready to state the main result of the subsection.
Theorem 2.8 (The equivalence of LGopt (2.13) and QEPmin (2.18)).

(1) Let (Ay,uy) be a minimizer of LGopt (2.13). Then there exists z, such that (A,,z.) is a
minimizer of QEPmin (2.18). Specifically,

(PAP—AD)Tu,, if Ay ¢eig(PAP) or A, €eig(PAP) but there is no corre-
sponding eigenvector entirely in N'(CT),
S, if A, €eig(PAP) and there is a corresponding eigenvector

se N (CT).

Zy =

(2) Let (Ay,zx) be a minimizer of QEPmin (2.18). Then there exists u,, € R" such that (A, u.)
is a minimizer of LGopt (2.13). Specifically,

= /lz)(PAP=A D)z, if bz, #0,
X/ V2 =[x |2 (24 /| 24])), i byze =0,

where x, = —(PAP—\,I) by in the case b}z, =0 and it is guaranteed that |x.|| <.
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Proof. We prove item (1) first. By Theorem 2.3, (A,,y.) with v, = SlTu* is a minimizer of
pLGopt (2.23). We have two cases to consider.

(a) If A,¢eig(PAP) or A,eeig(PAP) but there is no corresponding eigenvector se V' (CT),
then A, ¢eig(H) by Lemma 2.10. Using Theorem 2.5, we conclude that (A,,w,) with

=(H=AD) e =(H=AD) Ty,

is a minimizer of pQEPmin (2.26). Now use Theorem 2.4 to conclude that (A.,z.)
with z, = S1(H—AI)y, is a minimizer of QEPmin (2.18). By Lemma 2.11,

=S1(H=A D)y, = (PAP—A,I)'S1y, = (PAP— A, D) u,.

(b) Suppose that A,eeig(PAP) and there is a corresponding eigenvector se N’ (CT). Then
s=51r for some 0#reR"~". By Lemma 2.10, r is an eigenvector of H corresponding
to the eigenvalue A,. Use Theorem 2.5 to conclude that (A,,w,) with w, =ris a
minimizer of pQEPmin (2.26), which in turn, by Theorem 2.4, yields that (A.,z.)
with z, =s= 547 is a minimizer of QEPmin (2.18).

Next we consider item (2). By Theorem 2.4, (A,,w.) with w, = Ssz* is a minimizer of
pQEPmin (2.26). Since by, z, €N (CT), we have z, = Sjw, and b}z, = ¢f STS1w. = gl w..

o Case bgz*;éO: We have ggw*;éo. By Theorem 2.5, (A, y) with i, :—(72/ggw*)(H
AxI)w, solves pLGopt (2.23). By Theorem 2.3, (A, u,) with u, :—('yz/ggw*)sl(H—
A«)w, solves LGopt (2.13). Furthermore, by Lemma 2.11, (PAP—A,l)z, =
(PAP—AD)Siws = S1(H—AD)w,. Therefore u, = —(v?/¢dws)S1(H—ADw, =
—(v?/b{zs) (PAP— A, I)z,

e Case b}z, =0: We have gw, =0 and z, is an eigenvector of PAP corresponding to
its eigenvalue A,. By Lemma 2.10, y, = S?z* is an eigenvector of H corresponding
to its eigenvalue A,. Let s = —(H—A,I)Tg, according to Theorem 2.5, ||s| <y and
(A, Yx) With v, =s+4/72—||s|]*(w./|wx]) solves pLGopt (2.23). By Theorem 2.4,
(A, uty) With u, = S1y, is a minimizer of LGopt (2.13). Now set

X =S15=—S1(H—=A,I)Tg=—(PAP—A,I)'hy,

and thus

Zy

?/U*
u*zsly*2515+ r)/ H‘Sl H2 ”S H =Xsx+ 72_H *”2

as expected.

This completes the proof. O
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We note that proving the equivalence between LGopt (2.13) and QEPmin (2.18) is of
theoretical interest. The proof in [10] is incomplete as discussed in Remark 2.1.

Returning to the original CRQopt (1.1), we observe that if (A, u.) solves LGopt (2.13),
then 7o +u, solves CRQopt (1.1). Therefore immediately we obtain the following theo-
rem.

Theorem 2.9. Suppose (Ay,z,) is a minimizer of QEPmin (2.18). Then a minimizer v, of
CRQopt (1.1) is given by

D, — ”0—(’72/bgz*)(PAP—)\*I)Z*, ifbgz*#),
T otV =[Pz, if Bize=0,

where x, = —(PAP—A,I)by in the case of b}z, =0 and it is quaranteed that ||x,| <1.

What the next theorem says is that solving QEPmin (2.18) is equivalent to calculating
the leftmost eigenvalue of QEP (2.18b) among those having eigenvectorsS in A/(CT). This
result paves the way for the use of a Krylov subspace method to calculate the minimizer
of QEPmin (2.18) in Section 3 ahead.

Theorem 2.10. If (A,z.) is a minimizer of QEPmin (2.18), then A, is the leftmost eigenvalue
of QEP (2.18b) among those having eigenvectors in N'(CT).

Proof. Following the argument in the proof of Theorem 2.4, we find that the set of eigen-
values of QEP (2.18b) that have eigenvectors in € V'(CT) and the set of eigenvalues of
QEP (2.26b) are the same. The conclusion is an immediate consequence of Theorems 2.4
and 2.7. O

2.8 Summary

Starting with CRQopt (1.1), we have introduced five equivalent optimization problems.
Fig. 1 summarizes the relationships of these problems. The edge “«—" in Fig. 1 connect-
ing two optimization problems indicates that we have an equivalent relationship in the
previous subsections. We note that CRQopt (1.1) and CQopt (2.5) share the same min-
imizers v,, while correspondingly the minimizer for LGopt (2.13) is u, = Pv,. Slightly
more efforts are needed to describe corresponding minimizers for other equivalent op-
timization problems. The optimal values for the objective functions of LGopt (2.13),
pLGopt (2.23), QEPmin (2.18), and pQEPmin (2.26) are all the same. The proof of Theo-
rem 2.8 relies on Theorems 2.3, 2.4 and 2.5.

2.9 Easy and hard cases

Motivated by the treatments of the trust-region subproblem [27,43], QEPmin (2.18) can
be classified into two categories, namely easy case and hard case, defined as follows.

SThis does not exclude the possibility that they may have eigenvectors not in \/(CT).
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Theorem 2.
Theorem 2.1

CRQopt (1.1) CQopt (2.5)

LGopt (2.13)|,__ Theorem 2.8 | OEPmin (2.18)

Theorem 2.3 Theorem 2.4

Theorem 2.5

pLGopt (2.23) PQEPmin (2.26) |

Figure 1: Equivalence of optimization problems.

Definition 2.1. QEPmin (2.18) is in the hard case if it has a minimizer (A,z.) with bgz* =0.
Otherwise, QEPmin (2.18) is in the easy case. Furthermore, any one of the equivalent opti-

mization problems as shown in Fig. 1 is said to be in the hard or easy case if the corresponding
QEPmin is.

The notion of hardness and easiness has its historical reason in dealing with the trust-
region subproblem. The hard case is not really hard as its name suggests when it comes to
numerical computation. It is just a degenerate and rare case that needs special attention.
The easy case is a generic one. Consider the hard case, let } be the maximal eigenspace
of PAP corresponding to eigenvalue A, then by L)V by Theorem 2.11. This creates diffi-
culties to our later Lanczos method to solve QEPmin (2.18) in that the Krylov subspace
K (PAP,bp)cV* for any k. So in theory there is no vector in K (PAP,bg) can approximate
any eigenvector ze ) well.

In Theorems 2.11 and 2.12 below, we present a number of characterizations about the
hard case.

Lemma 2.12. QEPmin (2.18) is in the hard case if and only if pQEPmin (2.26) has a minimizer
(A, wy) satisfying ggw* =0.

Proof. To see this, we let (A,z.) be a minimizer QEPmin (2.18) satisfying bg z, =0. By
Theorem 2.4, we know that z, and w, are related by z, = S;w,. Since also by = 5180,
iz = gR W ]

Theorem 2.11. Suppose that QEPmin (2.18) is in the hard case, and let (Ay,z,) be a minimizer
such that bz, =0. Then we have the following statements:

(1) Ax=Amin(H), the smallest eigenvalue of H;
(2) goLU, where U is the eigenspace of H associated with its eigenvalue Amin(H);

(3) bo LV, whereV is the eigenspace of PAP associated with its eigenvalue Amin(H)€eig(PAP).

Proof. By Lemma 2.12, pQEPmin (2.26) has a minimizer (A,,w.) satisfying ggw* =0. The-
orem 2.6 immediately leads to item (1). Item (2) is a corollary of Lemma 2.4.

For item (3), it follows from Lemma 2.3 that if Apin(H) #0, then V = S1U. Since by =
S180 and go LU by item (2), we conclude that by LS1U. If, however, Apmin(H) =0, then
V=S1U+R(S2). Since again gy LU by item (2) and also by L R(S,), we stillhave by LV. O
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Theorem 2.12. QEPmin (2.18) is in the hard case if and only if
oLU and |[H—Amin(H)I]'go2< 7, (2.38)
where U is as defined in Theorem 2.11.

Proof. 1f QEPmin (2.18) is in the hard case, then its optimal value (which is also the one of
LGopt (2.13)) A = Amin(H). This can only happen when (2.38) holds. On the other hand,
if (2.38) holds, then A, = Amin(H) by Lemma 2.4. By Theorem 2.5, pQEPmin (2.26) has a
minimizer (A,,w,), where Hw, = A, w,. Thus ggw* =0 because go LU and w.el. Hence
QEPmin (2.18) is in the hard case by Lemma 2.12. O

When QEPmin (2.18) is in the easy case, the situation is much simpler to characterize.
Theorem 2.13. CRQopt (1.1) has a unique minimizer when QEPmin (2.18) is in the easy case.

Proof. Suppose that QEPmin (2.18) is in the easy case. By Definition 2.1, all minimizers
(As,w4) of pQEPmin (2.26) satisfy glw, # 0. Theorem 2.6 guarantees that pLGopt (2.23)
has a unique minimizer. Consequently, the minimizer of LGopt (2.13) is unique by Theo-
rem 2.3 and so is the minimizer of CRQopt (1.1). O

We use the remaining part of this subsection to explain how CRQopt (1.1) and the
well-known trust-region subproblem (TRS) are related. We have already proved in The-
orem 2.1 that CRQopt (1.1) is equivalent to CQopt (2.5). Set u = Pv. Solving CQopt (2.5)
is equivalent to solving

min u' PAPu+2u"by, (2.39a)
s.t. |ul|=1, (2.39b)
ue N(Ch). (2.39¢)

Let H and go be defined in (2.21) and S; be defined in (2.19). Then u is a minimizer of
optimization problem (2.39) if and only if y= S?u is a minimizer of the following equality
constrained optimization problem

min y" Hy+2y" go, (2.40a)
s.t. |yl =" (2.40Db)

The Lagrange equations for (2.40) is exactly the same as pLGopt (2.23). The problem
(2.40) is similar to TRS

min y"Hy+2y" go, (2.41a)

{ s.t. y| <7, (2.41b)

except that its constraint is an equality instead of an inequality. When H is not positive

semi-definite, solution of (2.40) and TRS (2.41) are exactly the same. But when H is pos-
itive semi-definite and go L. NV (H), we need to check whether |H'go| <. If so, —Hgy,
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instead of the minimizer of (2.40), is the minimizer of TRS (2.41). If, however, [H'go| >,
then the minimizer of TRS (2.41) is the same as that of (2.40).

Lemma 2.1 in [17] shows that y is the solution of (2.40) if and only if there exists
A €R such that (X,y) satisfies the constraints of pLGopt (2.23) and H —Al is positive
semi-definite. According to Lemma 2.4, the optimal value of pLGopt (2.23) satisfies
A s < Amin(H), which indicates that H— A is positive semi-definite. Therefore, solving
the equality constrained problem (2.40) is equivalent to solving pLGopt (2.23).

As we have mentioned, the terms “easy” and “hard” were adopted from the treatments
of the trust-region subproblem [27,43], where the term “easy” means the associated case
is easy to explain, not implying the case is easy to solve, however. A more detailed
connection with TRS (2.41) is as follows.

1. In the easy case of QEPmin (2.18), b}z, # 0 for all minimizers (A4,z.). By The-
orem 2.4, z, = Syw, for some w, € R"" and thus ggw* = nglw* = bgz* #0. By
Theorem 2.6, A, <Amin(H), and thus (A, y.) with y, = —(H—/\*I)*lgo is the unique
minimizer of pLGopt (2.23). Hence y. is the unique minimizer of (2.40), which is
related to the easy case of TRS (2.41).

2. In the hard case of QEPmin (2.18), there exists a minimizer (A,,z,) such that bgz,,< =0.
Again by Theorem 2.4, z,, =S w, for some w,eR"~™ and ggw* =0. By Theorem 2.5,
a minimizer of pLGopt (2.23) is given by

W
Jw.l”

(Aw,ys)  and Yo =xs 4/ 7% — | x4

where x, = —(H—A,I)go and it is guaranteed that x| <. Therefore, in general,
a minimizer of (2.40) can be expressed by . = x, +1/7>— | x> (ws/|ws]|), which is
related to the hard case of TRS (2.41).

It is known that the generalized Lanczos method does not work for TRS (2.41) in the
hard case [43, Theorem 4.6]. A restarting strategy was proposed to overcome the diffi-
culty, but it was commented that the strategy is computationally expensive for large scale
problems [16, Theorem 5.8].

In the next section, we present that the Lanczos algorithms for CRQopt (1.1), which
resemble the generalized Lanczos method for TRS and are suitable for handling the easy
case. However, with some additional effort, the hard case can be detected.

3 Lanczos algorithm

As was shown in Section 2, solving CRQopt (1.1) is equivalent to solving LGopt (2.13) or
QEPmin (2.18). In this section we present algorithms to solve CRQopt (1.1) by solving
LGopt (2.13) and QEPmin (2.18). We first review the Lanczos procedure in Section 3.1,
and then we apply the procedure to reduce LGopt (2.13) and QEPmin (2.18), and finally
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solve the reduced LGopt and QEPmin to yield approximations to the minimizer of the
original CRQopt (1.1). In addition, we prove the finite step stopping property of the
proposed algorithms and comment on how to detect the hard case.

3.1 Lanczos process

We review the standard symmetric Lanczos process [4,13,30,34]. Given a real symmetric
matrix M e R"*" and a starting vector rop € R", the Lanczos process partially computes
the decomposition MQ = QT, where T € R"*" is symmetric and tridiagonal, Q e R"*" is
orthogonal and the first column of Q is parallel to ry.
Specifically, let Q =[q1,92,--,9x] and denote by «; for 1 <i<n the diagonal entries of
T, and by B; for 2 <i<n the sub-diagonal and super-diagonal entries of T. The Lanczos
process goes as follows: set g1 =ro/||10/, and equate the first column of both sides of the
equation MQ = QT to get
Mg =q1a1+42B2. (3.1)

Pre-multiply both sides of the equation (3.1) by g1 to get a1 =4} Mgy, and then let

f2=Mgi—qia1, B2=|72].

If B2 >0, set g2 =2/P2; otherwise the process breaks down. In general for j > 2, equating
the jth column of both sides of the equation MQ = QT leads to

Mq;=q; 1B +4;aj+qj11Pj+1- (3.2)
Up to this point, q; for 1 <i<j, a; for 1 <i<j—1, and B; for 2 <i < have already been
determined. Pre-multiply both sides of Eq. (3.2) by q]-T to geta; = q]-Tqu, and then let
giv1=Mai—qi1Bj—4jaj,  Bjy1=qj41l.

Now if B;,1 >0, we set gj,1 = 7j;1/Bj+1; otherwise the process breaks down. The process
can be compactly expressed by

MQy = QT +Brr1qks16t (3.3)

assuming the process encounters no breakdown for the first k steps, i.e.,, no B; =0 for
2<i<k, where

[ w1 B
B2 ax PBs
Qr=Iq1.92,9¢l, Te=Qf MQy= .
Br-1 a1 Pr
i Br ok

IWe sacrifice slightly mathematical rigor in writing (3.3) in exchange for simplicity and convenience, since
Jx+1 cannot be determined unless also By1 >0.
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Furthermore, the column space R(Qy) is the same as the kth Krylov subspace
Kx(M,rg) :=span(rg, Mro,--- ,Mkilro).

In the case of a breakdown with By, 1 =0, MQr= QT and R(Qy) is an invariant subspace
of M.

3.2 Solving LGopt

In this subsection, we first use (3.3) obtained by the Lanczos process with M = PAP to re-
duce LGopt (2.13), and then solve the reduced LGopt via an approach based on a secular
equation solver.

3.2.1 Dimensional reduction of LGopt

For the dimensional reduction of LGopt (2.13), we restate the Lagrange equations (2.13b)
and (2.13b) here
(PAP—ADu=—-by, |u|=vy, Pu=u, (3.4)

where we include the constraint Pu = u since we are only interested in those vectors
ue N'(CP).

Apply the Lanczos process with M = PAP and the starting vector ry = by to get (3.3)
with M = PAP. It then follows that for any scalar A,

QF (PAP=ADQe=Ti—AI and  Qfbo=|boles.

Consequently, we arrive at the reduced LGopt (2.13)

min A (3.5a)
rLGopt: s.t. (Txr—AI)x=—|bo|e1, (3.5b)
[xl = (3.5¢)

A couple of comments are in order for the efficiency of the Lanczos process with
M = PAP. In the process, we have to calculate matrix-vector products Mx = P(A(Pg;))
efficiently. For that purpose, it suffices for us to be able to calculate the product Pc effi-
ciently for any given ceR". In fact

Pc=c—CCle=c—Cy,
where y = C'c is the minimum-norm solution of the least squares problem

yzargzrgli{ry}HCz—cHz, (3.6)

which can be computed by using the QR decomposition of C € R"*™ or an iterative
method such as LSOR [7, 29, 35]. Another cost-saving observation due to [14] is that
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for the matrix-vector product Mg; = P(A(Pg;)), the first application of P in Pg; can be
skipped due to the fact that if the initial vector bye N'(CT), then Pg;=g; for all 1<j<k+1.
We end this subsection by pointing out that rLGopt (3.5) cannot fall into the hard case.
The same phenomenon happens to the tridiagonal TRS generated by the generalized
Lanczos method [16, Theorem 5.3] as well. Let the eigen-decomposition of Ty be

Te=YOYT, YIY=1I, ©=diag(d,0,--,%), (3.7)

where we suppress the dependency of Y, ©, and ¢; on k for notational convenience.
Further, we arrange 19]- in nondecreasing order, i.e., ) <% <--- <% and Y =[y1,y2, -, Yk

Theorem 3.1. Suppose that B;#0 for j=2,3,--- k in the Lanczos process. Let 1®) be the optimal
value of rLGopt (3.5), then u® <8 = Amin(Ti), and rLGopt (3.5) cannot fall into the hard case.

Proof. 1t is well-known that the first components of all eigenvectors y; of irreducible Ty
are nonzero [30, p.140]. In particular, e y; #0. Lemma 2.4 immediately leads to u*) <.

Since 1Y) < Amin(T¢) by Theorem 2.11(1), we conclude that rLGopt cannot fall into the
hard case. O

3.2.2 Solving rLGopt

Now we explain how to solve rLGopt (3.5). Suppose that §; #0 for j=2,3,---,k, and let
the eigen-decomposition of Ty be given by (3.7).

Theorem 3.2. The optimal value u'*) of rLGopt (3.5) is the smallest root of the secular function

k 2
RO = IbolPe] (T ATy 2er = Y 52 68)
i=l( - l)
where (; = HboHe?yifor i=1,2,--- k. Furthermore,
(u®, 2% = (uO, = [bo) (T — 1 OT) ey) 3.9)

is a minimizer of rLGopt (3.5).

Proof. rLGopt (3.5) takes the same form as pLGopt (2.23). By Theorem 3.1, #*) < A in (Ty).
The conclusions of the lemma are now consequences of Lemma 2.4. O

Theorem 3.2 naturally leads to a method for solving rLGopt (3.5) through calculating
the smallest root of the secular function x(A). Algorithm 1 outlines the method, based on
an efficient secular equation solver in Appendix A.

Although Theorem 3.2 assures us that the hard case cannot happen for rLGopt (3.5),
cases where |e{y1| is very tiny are possible. Such a nearly hard case has to be treated with
care, a subject of further study.
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Algorithm 1 Solving rLGopt (3.5)

Input: T eR**K, by, ¥ >0, and tolerance €;
Output: (u®),x%)), approximate minimizer of rLGopt (3.5);
1: Compute the eigenvalues 0; <0, <--- <0 of Ty and the corresponding eigenvectors

]/l,"'/]/k)
2: Ci(_ ||b0||€¥yl for i=1,2,---,k,'

2

3 By 20/, 00 6y~ BO) 6y and g2 X,
4: if >0 then A 0, —|& |/, /7] else A —0; —50/2;
5. for j=0,1,2,--- do

k : .
6: X‘—Zi=1uu)€7,9i)z—72/
7 if X >(0 then a(j“‘l) (_a(j)’ ﬁ(]"‘l) <_A(]) else a(j“‘l) (_)\(])’ ‘B(]‘H) <_ﬁ(]),

‘ 2 ‘ 2

8 ac(A0—0P% ) oo be (A —0) sofl -
9: if b >0 then

10: A —01—+/a/b;

11: if Ay (aUtD),gU+D) then AUHD Ay else AUHD — (aU+1) 4 gG+1)) /2;
12: else

13: AUHD  (aU+D) 4 gU+1)) /2,

14: end if

15 if [AUFD —A0)| <€ then stop;

16: end for

17: return (u®),x0) = (AU+D, (T, —u®1)~1|by|e;) as a solution of rLGopt (3.5).

Remark 3.1. Let us discuss the relationship between solving rLGopt (3.5) and solving
TRS by a generalized Lanczos (GLTRS) method proposed in [16]. GLTRS projects a sim-
ilar problem to (2.39a) and (2.39b) by a Krylov subspace to yield a small-size problem.
Ignoring (2.39¢c) for the moment, we run the Lanczos process with M = PAP and the start-
ing vector be rp = by to generate the orthonormal basis matrix Qy and the tridiagonal
matrix Ty. Since bpe N (CT), it can be verified that R(Qy) = N (CT), which means that
(2.39¢) is automatically taken care of. Project (2.39a) and (2.39b) onto the column space of
Qy and we arrive at the following equality constrained optimization problem:

min x! Tex +2x7||gole1, (3.10a)
s.t. [|x]| =1. (3.10b)

Problem (3.10) is similar to the tridiagonal TRS generated by GLTRS except that the con-
straint here is equality instead of inequality. Solving (3.10) by the method of the La-
grangian multipliers leads to exactly rLGopt (3.5).
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3.2.3 Solving LGopt

After computing (u®),x(®)), the minimizer of rLGopt (3.5), we deduce an approximate
minimizer of LGopt (2.13):

(1, u®) = (0, Q™). (3.11)

It can be verified that
@) =[xO )=, u®eR(QeN(CT). (3.12)

That is the pair in (3.11) satisfies the constraints (2.13c) and (2.13d).
The accuracy of this approximate minimizer (4),u*)) can be measured by the resid-
ual vector

PECPt_ (PAP— 1 ® 1) ®) 1 by, (3.13)

For simplicity, we may assume that (u©),x(¥)) satisfies the constraint of rLGopt (3.5) ex-
actly. In particular (T —u® 1)x®) = —||by|e1, since it is reasonable to assume that the error
in (u®,u®) as an approximate minimizer of LGopt (2.13) is much larger than the er-
ror in (¢®),x®)) as the computed minimizer of rLGopt (3.5). Subsequently, we have the

Gop

following expression for the residual vector r,I: *, similar to the one on the generalized

Lanczos method for TRS [16].

Proposition 3.1. Suppose that the approximate minimizer (4®),x%)) of rLGopt (3.5) satisfies
the constraints of rLGopt (3.5) exactly. We have

eSO = By 1 gisr (e 2 @), (3.14)

Proof. We have by (3.3)

1P = (PAP—p® 1) Qex® +bo = [Qu(Te— D) + Byt aef 15+ by

=—Qxllboller + Brs1qxs1 (e x®) +bo = Bry 141 (e xP),

as was to be shown. O

In deciding if r,%GOpt is sufficiently small, a sensible way is to check some kind of
normalized residual. In view of (3.13), a reasonable one is

LGopt
NRes-P": = I _ [Biesr | e x| —: §LCoPt (3.15)
¢ (AL +[E®D x® ]+ [bol — ([AI+ D x|+ b
The Lanczos process is stopped if 5,I;G°Pt <€, a prescribed tolerance. In summary, the

Lanczos algorithm for solving LGopt (2.13) is given in Algorithm 2.
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Algorithm 2 Solving LGopt (2.13)
Input: AcR"*", CeR"*"™, bpeR", v >0, and tolerance ¢;
Output: (1®,u®), approximate minimizer of LGopt (2.13);
t Bre|bol;
if B; =0 then stop;
q1<bo/P1, 90 <0;
fork=1,2,--- do
q—Aqk, § < P§, §—q—Prqr-1;
= qgd, 44— e, Prar < 4]
compute the minimizer (4®,x®)) of rLGopt (3.5) by Algorithm 1;
if 5,I;G°Pt <€ then stop;
k1 <4/ Br+1;
end for

Qk=[91.92,++ qk];
return (u,u®) with u®) = Q;x*) as an approximate minimizer of LGopt (2.13).

R N N R o e

= =
N = 2

3.3 Solving QEPmin

In this section, we propose a Lanczos algorithm for solving QEPmin (2.18). It follows
the same framework as in the previous subsection. First, we reduce QEPmin (2.18) to a
smaller problem by projection, and then solve the reduced QEPmin by an eigensolver.
One immediate advantage of doing so is the availability of mature eigensolvers for use
to solve the underlying QEP. Independently, QEPmin (2.18) is of interest of its own, e.g.,
it plays a role in solving the total least square problems [20, 37].

3.3.1 Dimensional reduction of QEPmin

The Lanczos process is natural as a method to solve QEP (2.18b) for its leftmost eigen-
value and the corresponding eigenvector. For convenience, we restate QEP (2.18b) here:

(PAP—AIz=9"2bybiz, Pz=z. (3.16)

Note that we have added the constraint Pz =z since we are only interested in those eigen-
vectors ze N/(CT).

Now we discuss how to perform the dimensional reduction of the QEP (3.16) via
the projection onto the Krylov subspace generated by the Lanczos process described in
Section 3.1. Let Qi be the orthogonal matrix and Tj be the tridiagonal matrix generated
by k steps of the Lanczos process with the matrix M = PAP and the starting vector by. We
will again have (3.3), i.e.,

PAPQy=QiTi+Bri1qrrier  and  Qiboby Qx = |bo|®erer . (3.17)
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By a straightforward calculation, we have

(PAP—AI)*Qi=(PAP—AI)[Qi(Tc — M) +Prsr i1t |
= [Qk(Tk=AD) +Brs1qisrer | (Te—AL) +(PAP—AI)By 1qk 10k
= Qu(Tk = A1+ Brsrdr1er (Te—AD) +Brp1 (PAP=Al)griref  (3.18)

and

Qf (PAP—AT* Qi = (T = A1) +0+Bi1 QF (PAP = Al)gy 1}
(Te=A1)?+Brsa [Qu(Te—AD) +Brsadesrer] qesrer

(Tx—AI)>+B7 s exe; (3.19)

By (3.17) and (3.19), naturally one would like to take the reduced QEP (3.16) to be
[(Ti= AL +Biyaexer Jw =2 bo|*er (efw). (3.20)

Unfortunately, this reduced QEP may not have any real eigenvalue, not to mention that
the leftmost eigenvalue is guaranteed to be real, as demonstrated by Example 3.1 below.
To overcome it, we propose to drop the term p2 Hekeg in (3.19) and use the following
reduced QEP

(Te—=AD)?w =2 |bo| e (e] w). (3.21)

Since it has the same form as the QEP in pQEPmin (2.26b), the leftmost eigenvalue of the
reduced QEP (3.21) is guaranteed to be real by Theorem 2.7.

It can be seen that the corresponding reduced QEPmin (2.18) to QEP (3.21) is given
by

min A (3.22a)
rQEPmin: s.t. (Tr—=AI?w="2||bo|e1 (efw), (3.22b)
AR, w#0. (3.22¢)

We note that the Lanczos process of PAP on by is the same as, upon a linear transforma-
tion by S?, that of H on gp in pQEPmin (2.26). Therefore, rQEPmin (3.22) can be viewed
as a reduced-form of pQEPmin (2.26).

Example 3.1. Let A=diag(1,2,3,4,5), C= [0.65,1,0.68,1.13,—0.23]T and b =[1]. The eigen-
values of QEP (2.18b) and (2.18c) in QEPmin, computed by MATLAB, are 0.8333, 1.6493,
2.0000, 2.9916+0.23691, 3.8786, 4.8236, 5.1196. We see the leftmost eigenvalue is real.
Apply the Lanczos process with k=2 leads to a 2x2 QEP (3.20) whose eigenvalues are
computed to be 1.8124+0.4172i and 3.371410.25471, both are genuine complex num-
bers! In contrast, the eigenvalues of QEP (3.21) are 1.1429, 2.2661, 2.8915, 4.0672, all of
which are real.
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3.3.2 Solving rQEPmin

To solve rQEPmin (3.21), we first linearize it into a linear eigenvalue problem (LEP).
The reader is referred to [11, Chapter 1] for many different ways to linearize a general
polynomial eigenvalue problem. Our rQEPmin (3.21) takes a rather particular form, and
we use similar ideas but slightly different linearization. Specifically, we let y = (T —AI)w

and s= [ zyu ] . Then QEP (3.22b) can be converted to the following LEP:
Te =7~ %lbolPerer ] _
{—I T, s=As. (3.23)
At this point, one can use a standard eigensolver to find the leftmost real eigenvalue y*)
y)
w

of LEP (3.23) and its corresponding eigenvector s() = [ (k)]. Subsequently, an approxi-

mate optimizer of rQEPmin (3.22) is given by (u®),w®),

3.3.3 Solving QEPmin

The minimizer (u®,w®)) of rQEPmin (3.22) yields an approximate minimizer of QEP-
min (2.18) as
(1®,2) = (), Quo®). (324)

The accuracy of this pair (u(¥),z()) as an approximate minimizer can be measured by the
norm of the following the residual vector

. 2
erEPmln _ (PAP _ V(k) I) (k) _ ’y*zbo (bgz(k)), (3.25)

The following proposition shows that this residual vector can be efficiently obtained dur-
ing computation.

Proposition 3.2. Suppose that (u®),w®) is an exact minimizer of rQEPmin (3.22) and y*) =
(T —u® w®), Then

P = By 1164 y® + Brat (PAP— O g (efw®). (3.26)
Proof. Keeping (3.18) in mind, we find that
pQEPmI - _ (PAP— u®1 )2 Qe —y2boby Qo™
2 O (Te— O 12w ® + By 1 g1 s1ef (Te—p® D
+Biey1 (PAP O g1 efw® — Qk'h%fﬁ (e1w®)

3.22b
CE0 g kel (Ti—p O Dw® + By (PAP— P gy 41 (e w0®)

= Briadirreiy + i1 (PAP— O g (efw®),
as expected. O
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We note that if the (k+1)st step are carried out in the Lanczos process (3.3), then the
term (PAP—u®)I)gy,1 in (3.26) can be expressed as a linear combination of gy, g1, and
Jx+2- We propose to use the following normalized residual norm as a stopping criterion
for the Lanczos process:

NRes2EPmin . — I (3.27a)
¢ [([AT+[1®])2 +9=2]bo 2] [w®]
Beaalllefy® 1+ (AL + DI O] qermin (3.27b)

T LA+ D22 bo Pl Jw® ] T

The Lanczos algorithm for solving QEPmin (2.18) is summarized in Algorithm 3.

Algorithm 3 Solving QEPmin (2.18)
Input: AcR"*", CeR"*"™, bpeR", v >0, and tolerance €;
Output: (u®),z(})), approximate minimizer of QEPmin (2.18)

: Br|lbol;
: if B1 =0 then stop;

: q1<bo/B1, 90<0;
: fork=1,2,--- do

1
2
3
4
5 < Aqy, §< P4, §—4—Brar1;
6
7
8
9

i —qd, 44— i, Brsr < 14l
compute the leftmost eigenpair (1*),s) of LEP (3.23);
y® “—S(1:k)s w® < S(k+1:2k)
if 5,9Epmin <€ then stop;
100 Gkp1 —G/Prss

11: end for
122 Qk=191,92,"*9x]; i
13: 200 = Qw® and u®) = — s Oy ©;

14: return (u®),z()) as an approximated minimizer of QEPmin (2.18) and, as a by-
product, (#®,u®)) as an approximated minimizer of LGopt (2.13).

It remains to explain why (¢®,u®)) at line 14 of Algorithm 3 is an approximated
()
minimizer of LGopt (2.13). Let (y(k), { Zyu (k)]) be the leftmost eigenpair of LEP (3.23). By

Theorem 3.2, u®0) ¢eig(Ty), (Tr— ™ 1)>w® 0 and ef w®) 0. Through a straightforward
application of Theorem 2.5 to rLGopt (3.5) and rQEPmin (3.22), we find that (u®),x®)) is
the minimizer of rLGopt (3.5) where

U T N (5 N S G (3.28)
|bollefw® |boflefw® ™ '
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Therefore, as a by-product, an approximate minimizer of LGopt (2.13) is given by

2
(u(k),u“)):(u(k), 77Qky(")) (329)
[bollej

3.4 Lanczos algorithm for CRQopt

Having obtained approximate minimizers of LGopt (2.13) and QEPmin (2.18), by Theo-
rem 2.2 we can recover an approximate minimizer of CRQopt (1.1) as

o) =ng+u®, (3.30)

where u® is given by (3.11) if via solving LGopt (2.13) or by (3.29) if via solving QEP-
min (2.18). The overall algorithm called the Lanczos Method, is outlined in Algorithm 4.
In line 6, we can solve LGopt (2.13) by Algorithm 2 for rLGopt (3.5) or Algorithm 3 for
rQEPmin (3.22). Since the most time-consuming step is the Lanczos iterations, there is
no significant difference between two algorithms in overall efficiency. We include them
for the sake of completeness in addition to the different advantages of each algorithm
discussed in the previous sections.

Algorithm 4 Solving CRQopt (1.1)
Input: AecR"*", CeR"*"™ with full column rank, beR", tolerance €;
Output: approximate minimizer v of CRQopt (1.1);
: g« (C1)Tb (by, e.g., the QR decomposition of C);
if |np| > 1 then output no solution;
if [|np|| =1 then v «ny and output v;
if |np|| <1 then
v </1—|ng|?, g« Ang, by« (I—-CC¥)g;
compute an approximate solution of LGopt (2.13) (1®,u®)) by Algorithm 2 or 3
return %) =g +u®), approximate minimizer of CRQopt (1.1);
end if

3.4.1 Finite step stopping property

As in many Lanczos type methods for numerical linear algebra problems [4, 13, 30, 34],
Algorithm 4 enjoys a finite-step-stopping property in the exact arithmetic, i.e., it will
deliver an exact solution in at most n steps. It is an excellent theoretic property but of
little practical significance for large scale problems. We often expect that the Lanczos
process would stop much sooner before the nth step for otherwise the method would be
deemed too expensive to be practical.
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We will show the property using LGopt (2.13) as an example, which, for convenience,
is restated here:

min A (2.13a)

s.t. (PAP—AD)u=—by, 2.13b

LGopt ( ) 0 (2.13b)
lul =", (2.13¢)

ue N(Ch). (2.13d)

Let (A, u) be the minimizer of LGopt (2.13) and kmax be the smallest k such that ;1 =0
in the Lancozs process, namely the Lanczos process breaks down at step k=kmax. We will
prove that ptkme) = A, and u(kma) =y,

We have already shown in (3.12) that the second and third constraints of LGopt (2.13)
are satisfied by ukmax)  Besides, since Bre+1=0, r,%i‘x)pt =0 by Proposition 3.1, i.e., the first

constraint of LGopt (2.13) holds. It remains to show that p(ma) = A,
Lemma 3.1. p(ma) is the smallest root of
XA =g [(H=AD"Pg" =2 (3.31)

In addition, if LGopt (2.13) is in the easy case, then y(kmax) = A, where (Ay,z4) is the minimizer
of LGopt (2.13).

Proof. Let % <8 <--- <0, be the eigenvalues of Ty and let y1,y5, -,y be the cor-
responding orthonormal eigenvectors. Expand |bglle; = Zfz? Ciy; and define the secular
function

Kmax CZ
1

-~ _ 2T _ =2, A2 _
X(A) = b0 ef (Try, —AD) Pe1—1y iZl(A_ﬁi)z

—92. (3.32)

By Theorem 3.2, um) < ¢;. Apply Lemma 2.7 with H="T;__ and g=|boe; to conclude
that u(fm) is a root of the secular function (3.32). Since X(A) is strictly increasing in
(—co, plkma)), i (kmax) is the smallest root of x(A).

Expand Qi . to form an the orthogonal matrix Q = [Qkpoer QL]ER™ ™ and let T =
QTPAPQ. Since the column space of Qk,,., is an invariant subspace of PAP, we have

J— Tkmax
r=|T |

Let S=[51,S,] be defined in (2.19), and let H=S] PAPS; and gy = S{by. For any A <9, we
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have

X(A) = bollef (T =AD" Fllb0ller =7
=|bollef [(T—AD) ] ([bofler — 7
=6 QQ[(PAP-ADT?QQ b0~
=bE[(PAP—AD)?by— >
=By SST[(PAP—AI) >SS by —+?

~ADT12
= [gg 0] {[(H éd) ] [(_)?I)T]z] [gg O]T_72

= [(H-ADPgo—7"=:F(A).

Therefore, Y(A)=0and ¥(A) <0 for A <pkma) implying p(*max) is the smallest root of Y(A).

On the other hand, by the definition of the easy case, b}z # 0 for all possible mini-
mizers (Ay,z,) of QEPmin (2.18). Theorem 2.4 says that z,. =S;w, for some w,eR"~" and
thus gTw* = nglw* = bgz* #0. By Theorem 2.6, A,. < Amin(H). Therefore, it is related to
case (1) or subcase (i) in case (2) of the proof in Lemma 2.4, for which A, is the smallest
root of x(A), and thus A, = y(kmax). O

Theorem 2.13 guarantees that the minimizer of CRQopt (1.1) is unique if QEPmin
(2.18) is in the easy case. We also have established a finite step stopping property for
Algorithm 4 as detailed in the following theorem, since kmax <.

Corollary 3.1. Suppose QEPmin (2.18) is in the easy case, and let (u©),w®)) be the minimizer
of rQEPmin (3.22). Define u® as in (3.11) and kmax is the smallest k such that Br+1 =0.
Then (p(kwax) 3y (kma)) solves LGopt (2.13), and vlkmax) = yy(kma) 41 is the unique minimizer of
CRQopt (1.1).

3.4.2 Hard case

The hard case is characterized by Theorem 2.12 and we translate gy L/ into by LV, where
V is the eigenspace of PAP associated with its eigenvalue Amin(H). For this reason,
K (PAP,bp) will contain no eigen-information of PAP associated with Apyin(H). Nonethe-
less, rLGopt (3.5) and rQEPmin (3.22) can be still formed and solved to yield approxima-
tions to the original CRQopt (1.1) with suitable stoping criteria satisfied. But the approx-
imations will be utterly wrong if it is indeed in the hard case. Hence in practice it is
important to detect when the hard case occurs.

Denote by (A.,z,) the minimizer of LGopt (2.13). In the easy case, the smallest root of
X(A)is Ay and A, <Amin(H), while in the hard case, A, = Amin(H) and the smallest root of
X(A) defined in (3.31) is greater than or equal to Amin (H). Since y(k) converges to y("max),
eventually whether u¥) < Ain(H) provide a reasonably good test to see if it is the easy
case. Therefore, we propose to detect the hard case as follows:

1. Solve rLGopt (3.5) or rQEPmin (3.22);
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2. Run the Lanczos process with M = PAP with ro = Pc, where c€R" is random to
compute Amin (H) of PAP and its associated eigenvector Z;

3. Check if the optimal value of rLGopt (3.5) or rQEPmin (3.22) is greater than or equal
to Amin (H) within a prescribed accuracy;

4. If it is, then QEPmin (2.18) is in the hard case. Compute an approximation ¥ of
x4 =—(PAP—A,I)Thg

J=argmin

in , X=Qi¥,
yE

Tic
+||boe
Lo bl
and then an approximate minimizer of LGopt (2.13) is given by ¥++/7%— | %||>(Z/|Z])-

A remark is in order for item 2 above. Because of the randomness in ¢, with probability 1,
ro = Pc will have a significant component in 51U/, where U is as defined in Theorem 2.11.

3.5 Convergence analysis

In this section, we present a convergence analysis of the Lanczos algorithm (Algorithm 4)
for solving CRQopt (1.1) in the easy case. Let h(v) = v' Av be the objective function of
CRQopt (1.1), v, be the unique solution of CRQopt (1.1) and (A, u,) be the solution of
LGopt (2.13). Our main results are upper bounds on the errors h(v®)) —h(v,), [0 —v,|
and |u® —\,|, where v(¥) defined in (3.30) is the kth approximation by Algorithm 4 and
(1®),x(1) is the solution of rLGopt (3.5).

Our analysis is analogous to the one in [43]. We start by establishing an optimality
property of v¥), as an approximation of v,, that minimizes h(v) over ng+Ky(PAP,by).

Theorem 3.3. Let %) be defined in (3.30). Then it holds that

h(o®)) = i h(v). 3.33
@) aen0+/ck(r1§}411r},bo),uvu=1 2 (3:33)

Proof. Recall that (4®),x(®)) solves rLGopt (3.5). Consider the optimization problem
{min 0(x):=x"Tex +2||boel x, (3.34a)
s.t. x| =". (3.34b)
By the theory of Lagrangian multipliers, we find the Lagrangian equations for (3.34) are
(Te=AD)x=—[boler, x| =1. (3.35)

Following the same argument as we did to prove Lemma 2.1, we can reach the same
conclusion that ¢(x) is strictly increasing with respect to A in the solution pair (A,x) of
(3.35). Therefore, in order to minimize ¢(x), we need to find the smallest Lagrangian
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multiplier satisfying (3.35). Hence, solving (3.34) is equivalent to solving rLGopt (3.5) for
which (y(k),x(k)) is a minimizer and thus x(®) solves (3.34), where x(®) is defined in (3.28).
By definition, u®) = Q;x®) and v =u*) 4. For any veng+ Ky (PAP,bo) with [v]| =1,

let
u=v—npeKy(PAP,by) c N'(CT). (3.36)

Hence Pu=u, |[u| =1, and u= Qyil for some #ie R¥. We have v=1u+mng=Pu+nyand

h(v) = (Pu+no) T A(Pu+np)
=u'PAPu+2bju+nl Ang
=T QF PAPQyil +2b§ Quii +nf Ang
_uTTku+2\|b0\|elu+noAno
> [xONTTx® 42bg ef x®) 41 Ang (since x(¥) solves (3.34))
= [x®TQIPAPQx™® 425 Qxx® -1l Ang
= [u®TPAPU® +2bfu® 11l Ang

= (u® +10)TAu® +ng)
= h(o®).
Since veng+Kr(PAP,by) with |v]| =1 but otherwise is arbitrary, (3.33) holds. O

Recall that H and gg are defined in (2.21) and S;, Sz in (2.19). Let Omin and Omax be
the smallest and the largest eigenvalue of H, respectively, v, be the minimizer of CRQopt
(1.1), and A, be the optimal objective value of LGopt (2.13). Then

(Ag,uy)  with u,=Pv,=0v,—ny

is a minimizer of LGopt (2.13). Set

X_)\*

k=k(H—Ayl):i= 5,
( ) 9m1n A*

To estimate h(v%)) —h(v,), [|[o®) —v,| and |u®) —A,|, we first establish a lemma that pro-
vides a way to bound (v®))—h(v,), [v®) —v,| and |p*) —A,| in terms of any nonzero
UEi’lo-}-le(PAP bo)

Lemma 3.2. For any nonzero veng+ Ky (PAP,by), we have

0<h(o®)~h(v,) <A|H—=Aul|2-[v—0.3, (3.37a)
[0®) .| <2k 0—0.]2, (3.37b)

1
KO =l < o3 IH= AT fo—ou 32V o2+ fo—ou o] (3:370)
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Proof. For veng+Cr(PAP,by), let

u=v—ng€x(PAP,by), u=~u/||ul, U=no+uecng+kKi(PAP,by). (3.38)
First, we have |||u||—v| =||u]| — |u«l|| < || —u+| =|v—v«|, which leads to
‘1_1 o=l (3.39)
lull 1 ful

Letr=0—v,, we have

[7l=lve =0l <o =0 +[0=0] < o =] + [u—i]

u
~low ol 4T < lou ol +lulx[1- Tl <20l G40
] ]
where we have used (3.39) to infer the last inequality.
The first inequality in (3.37a) holds because
h(o®)) = min h(v) > min h(v) =h(v,).

UEHO+,Ck(PAP,b0),||U”=1 ) - UEYI()-‘FN(CT),”U“:l
Let f(u)=u" Au+2u"by, it can be verified that h(v) =h(u+ng) = f (1) +ng Ang. Therefore,
U—u,=0—0s=1, h(0)—h(vy)=f()—f(uy). (3.41)

Set s =S]r. It follows from re N'(CT) that r = S5 and |s| = |r||. Noting that 0 satisfies the
constraint of CRQopt (1.1) and that i = u, +r, we have

(3.41)

h(©)—h(vs) =" f(@) = f(us) = f (s +7)— f (1)

— rTPAPr+2rT(PAPu, +bp)

= rTPAPr+2/\*rTu* (3.42)
= rT(PAP=AD)r (3.43)
= s'ST(PAP—A,I)S;s

= sT(H—A*I)s

|H=AuI|s|? = [H=AI[r?

0<h(w®)—h(v,)

N

N

(3.40)
< 4|H=A | v =), (3.44)

yielding the second inequality in (3.37a), where we have used (PAP—A..I)u, = —by to get
(3.42) and
712 +2r 10 = 47 = 10 |2 = 0] — e[ =0

to obtain 2171, = —rTr and then (3.43).
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Next we prove (3.37b). Define

~

fu):=f(u)=AwuTu=u(PAP— A D)u+2u'by.

Noticing (PAP—AI)u.+bo=0by (2.13b), let u®) = o) _3,, we have

~

Fu9)y = Fuy) + @® —u,)"(PAP A ) (u® —u,).

Therefore

~ ~

F@®) = F102) 2 (Bosin =) [u®) =104 > = Orin = 10) [0H) 0

On the other hand,

~

FO) =) = [F ) = A ® PL= [ () = At ]
= f(u®) = f () =h (@) ~h(.),

yielding
(Bmin —Ax) [0® =0, > <h(00) —h(v,) <4|H-A, I [o—v. ]2, (3.45)

which leads to (3.37b).
To prove (3.37c), we pre-multiply (PAP—A,I)u, = —by by ul and use ulu, =12 to get

Y2y =uLPAPu, +ulby =0 PAPv, +vlby, (3.46)
since Pv, =u, and Pby=by. By (2.4a), we have h(v,) = U};PAPU* +20£bo +ngAno and thus
V2w =h(vy) —0vlbg—ng Any.

On the other hand, it follows from rLGopt (3.5) that [x®)]TTix® + [|bo|2[x®)]Te; = y?u®).
Plug in
Ti=QfPAPQ;, u®=0Qux®, Qfbo=|bol2er, ©® =u® +ng

to get
Y2 u® = h(u®) +[u®] by = h (™) = [0®Thy—nf Ang. (3.47)

It follows from (3.46) and (3.47) that

1
HO =] =5 ) ~h(e) b (1 ~0.)

1
<z [IH@®) k(@) |+ ol 1o —ou]2], (3.45)

which combined with (3.37a) and (3.37b) yield (3.37c). O



236 Y. Zhou, Z. Bai and R.-C. Li / CSIAM Trans. Appl. Math., 2 (2021), pp. 195-262

The inequalities in (3.37) hold for any v e ng+ Ky (PAP,by) which, in general can be
expressed as
Uv=n0+¢Pk_1 (PAP)bO,

where ¢, _1(-) is a polynomial of degree k—1. By judicially picking certain ¢ 1, meaning-
ful upper bounds on h(v®))—h(v,), [0 —v,| and |[u®) —A,| are readily obtained. These
upper bounds expose the convergence behavior of ). The next theorem contains our
main results of the section.

Theorem 3.4. Suppose CRQopt (1.1) is in the easy case, and let v, be its minimizer. Let (A, uy)
be the minimizer of the corresponding LGopt (2.13), and, for its corresponding pLGopt (2.23),
let Omin and Omax be the smallest and largest eigenvalue of H, respectively, and set

Gmax - )\*

KZK(H—)\*I)IZG .
min &

Then the following statements hold:

(a) The sequence {h(v®)} is nonincreasing;

(b) For k<kmax, the smallest k such that B, =0,
0<h(0®) —h(0,) <1692 H— A I|2 [r§+r;k] - (3.49)
o) o,y <ayvi|th 47| (3.49)
WO <16l H A [P | S imlayR [T, G0

where

Vi+1
VE=1

Proof. Item (a) holds because for any 0 <k <kmax,

I'p:=

(3.50)

h(o®) = min h(v) > min h(v) =h(o®+D).
veng+Kp(PAP,by), 0] =1 veng+Ky11(PAP,bo), Jo=1

Before we prove item (b), we note that ()\*,S?v*) solves pLGopt (2.23). In particular, since
pLGopt (2.23) is in the easy case,

STv.=—(H—-M\,I)"1go. (3.51)

Consider now ve ng+Ky(PAP,by). Then STve Ky (H,g0) = Ky(H—A41,g0). Therefore by
(3.51)

STo—S{v,=dp_1(H=AI)g+(H-A D) g0
=[P (H=AI) (H=A D) +T](H—A,I) g0
= —yr(H—A,I)STo,, (3.52)
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where ¢_; is a polynomial of degree k—1, and ¢, (t) =1+t¢r_1(t), a polynomial of degree
k, that satisfies §(0) = 1. Note that ¢,(0) =1 but otherwise ¢ is an arbitrary polynomial
of degree k, offering the freedom that we will take advantage of in a moment.

Given that v, solves CRQopt (1.1), we have

v =[Pos|=[S1510s] = S04 |-
Thus
min )||v—v* |= min )HS?U—S?U*H (use (3.52))

veno+ICk(PAP,bo UEﬂ0+ICk(PAP,b0
<7 min H—-A,I
<7 min [(H-A.D)|

<7 mi 6;—A 3.53
vlp%l)rzlngrirgq{mll/)k( i— M) (3.53)
<v mi t)]. 3.54

LT v L (.54

The inequality (3.54) holds for any polynomial i of degree k such that i, (0) =1. For the
purpose of establishing upper bounds, we will pick one that is defined through the kth
Chebyshev polynomial of the first kind:

T (t) =cos(karccost) for |t| <1, (8.55a)

:%{(H-M)k—}—(t—{-\/ﬂ)k] for |t|>1. (3.55b)

Specifically, we take

() = % (%) /% (ﬁ) , (3.56)

where & =0min—Ax and f=0max—A .. Evidently, #4(0) =1, and for t€[Omin —Ax,Omax—A«] =
[, B], we have

|2t —(a+B)| =||t+Asx —Omin| — |t + A s —Omax|| < |Omax —Omin| = B— .

Therefore, [2t—(x+B)]/(B—a)€[—1,1], and thus for te[«,B] [23]

—(a+B)\ | B K+1
i ( B—u =| % Kk—1
Minimize the right-most quantities in (3.37) over v e ng+/Cy(PAP,by), utilize (3.54) and
(3.57) to get the inequalities in (3.49). O

-1

(6)] < =2 [r§+r;k] - (3.57)

We end this section with remarks regarding the results in Theorem 3.4.
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Remark 3.2. The rate of convergence for the Lanczos algorithm depends on k. Recall
that x = 9“‘“%: When A, is far away from 0nin, we may regard that CRQopt (1.1) is far
from hard case. In this case, x moves towards 1, and we expect faster convergence of
our Lanczos algorithm. However, when CRQopt (1.1) is near hard case, i.e., Omin = A,
k is large, and Theorem 3.4 suggests slow convergence. These conclusions derived from
Theorem 3.4 are consistent with the numerical observations in [17] that “a Lanczos type
process seems to be very effective when the problem is far from the hard case”. We
provide an example in Example 3.3 later to illustrate the relationship between the rate of
convergence and k.

Remark 3.3. The bounds in (3.49a) and (3.49b) are generally sharp. However, there are
some cases where the bounds suggested in (3.49a) and (3.49b) are pessimistic. This occurs
for near-hard-case situations where A, ~ Omin. Although the Lanczos method could still
enjoy fast convergence, the bounds in (3.49a) and (3.49b) do not suggest so. One of such

situations is when
Gmax - )\*

K+ =
0y — Ay
is small, even though 0min ~ A, and thus x is huge, where 6 is the second smallest eigen-
value of H. This suggests that the bounds by (3.49a) and (3.49b) have room for improve-
ment. In fact, instead of (3.56), we may choose

where « and f are as before, and o =6, —A,.. Evidently, again ¢ (0) =1, but now (61 —
Ax)=0. We have

max |Pr(0i—Ax)|= max |Pp(6;i—As )|< max_ |(t)]

1<isn—m 2<is<n—m te[a,B]
< max t; [F(k 1)+F (k l)]
tefaspl| —
_ + { Omax —Omin (k-1)  ~—(k-1)]7 ¢
_2(79mm— - )[rK+ +T ] . (3.59)
By combining with (3.53), it leads to the following bounds
x —Omi 2 — (k-1)]72
1(o®) —h(v.) <1672 [H—A. 1|2 (mi_;”‘) [mEs vl I (3.60a)
mlﬂ *
-1
oo s < i (St ) [r 0y 0] (3.600)
mln

mln _)\

max — Omin 2 — —(k=1)] "2
WA <161 H A g (St ) [ )

mln _)\

- o -1
—HbOHZ\/_ (u> SRS vl I (3.600)
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These bounds can be much sharper than the ones in (3.49) if Omin = A, and there is a
reasonably gap between 0in and 6,, see Example 3.4.

Remark 3.4. In our numerical experiments, we observed that the bound (3.49c) often
decays much slower than |y(k) —Ay|. Recall that in obtaining (3.49¢c), in (3.48), we used
the inequality

‘bg(v(") —V4)

It turns out that | by Hv(") —v,| decays much slower than ‘bg(v(k) —0y)|,

<ol [o® — o4 .

(3.61)

as evidenced by
numerical tests. While at this point we do not know how to estimate |bg(v(k) —v,)| much
more accurately than the inequality (3.61), we offer a plausible explanation as follows.

Let u® =v® —ny and u, =0, —nyg. Since ulu, = [u(k)]Tu(k) =72, we have

o) —03)| = [l s = 2 [l e, — (O |
Ll g o

—v*”; is of order O([Tk+TF] 72), and thus |u£(v(k) —v,)| is also of or-

der O ( [I"ﬁ +I; k] _2) as (3.62) suggests. Let 6) <6, <---<8,_,, be the eigenvalues of PAP
restricted to the subspace R(P), y1,Y2,**,Yn—m be the corresponding orthonormal eigen-
vectors in R(P), u, =Y " &y, and v —v, =u®) —y, = 3" "e;y;. Then we have

On the other hand, by = —(PAP— A, I)u,=—>"1"(6;i—A+)¢y; and thus

= DA Ee-

B (@ —o.)
i=1

Note that the sequence {6, —A.} is positive and increasing for the easy case and the se-
quence {G;y;} oscillates. Therefore, when x(PAP—A,I)= 17/\}\* is modest, i.e., the dif-
ference between 6, — A, for different i is modest, we expect that the difference between
68 (0 —v,)| =" (0 — Ax)Eiei] and [ul (v® —v,)|=|37" &ie;| is small. Therefore, the
convergence rate of |bT o®) —v*)| can be similar to the convergence rate of |u£(v(k) —04)|,

whichis O ([Tk+TI*] _2). This explains why the bound (3.49¢) decays much slower than
[0 = Aul.

3.6 Numerical examples

In this section, we demonstrate the sharpness of the convergence error bounds in Theo-
rem 3.4 for the Lanczos algorithm (Algorithm 4) for solving CRQopt (1.1). For that pur-
pose, we first provide examples that are considered to be hard for the Lanczos algorithm.
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The basic idea is similar to the one in [24]. Also shown are the history of the normalized
residual NRes2*"™™ and its upper bound 62" ™" in (3.27b).

3.6.1 Construction of difficult CRQopt problems

The convergence analysis of the Lanczos algorithm (Algorithm 4) for solving CRQopt
(1.1) presented in Theorem 3.4 indicates that the convergence behavior is determined
by the spectral distribution of the matrix H defined in pLGopt (2.23) and the optimal
value A, of LGopt (2.13). It is not a secret that approximations by the Lanczos proce-
dure converge most slowly when the eigenvalues of H distribute like the zeros or the
extreme nodes of Chebyshev polynomials of the first kind [22-24,43]. Therefore, we con-
struct matrices A, C and vector b of CRQopt through constructing matrices H and gy of
pLGopt (2.23).

In what follows, we describe one set of test matrix-vector pairs (H,go) using the ex-
treme nodes of Chebyshev polynomials of the first kind. Recall that the /th Chebyshev
polynomials of the first kind .7;(t) has £+1 extreme points in [—1,1], defined by

Tj¢ = cosVj, with ¥y = %71 for j=0,1,---,4. (3.63)
At these extreme points, | 7(7j,)| =1. Given scalars « and  such that a <3, set
_p-a _atp
w="5—, T= g (3.64)
The so-called the ¢th translated Chebyshev extreme nodes on [«,p] are given by [22,23]
"L']-téanszw("fjg—"f) for j=0,1,--- . (3.65)

It can be verified that 7}{*"* = f and 7" = a.
Given integers n and m with m <, and the interval [, 8], we take

3z trans trans trans
H =diag (T, 1/ T 177 Tnom1n—m 1) (3.66)

Now we construct go =[g1,82,°*+, gn_m]T e R"™". Recall that the eigenvector of H corre-
sponding to the smallest eigenvalue is ¢,,_,,. In order to make pLGopt (2.23) in the easy
case, we need to make go not perpendicular to that eigenvector e,_,,, i.e., gn—n #0. Asa
simple choice, we take

g0=[1,1,---, 1]FeR"™™. (3.67)

With H and g set, we construct matrices A, C and vector b in the following way:
1. Pick 0<{ <1, and ae R" with |a||=1/;
2. Pick arandom CeR"*™ and compute its QR decomposition

m

C=[5 & ]x" {IS]ESQR; (3.68)
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3. Define b=_?R"a;
4. Take A1p=goa', Ap =1L, with = (gt H10)/7%

_g| H An|g _
5. Set A=S [A}; Azz] S', where §=[51,5;].
Note that by the construction, the matrix A is positive semidefinite when H is positive
definite. This is because the Schur complement of H in the matrix [ AT glz] :
12 22

Ap—ALH "Ap=Ap—agyH 'goa" = Apn— (g9 H 'go)aa’
=nI—(g0H™"go)aa" = (ggH"go)(|a]*I —aa")

is positive semidefinite since H is positive definite and g} H'go > 0.
Now we verify that CRQopt (1.1) with A, C, b constructed from the process above
will yield pLGopt (2.23) with matrices H and go and scalar y =+/1—(?, as desired.
Recall the definitions in (2.21):

g0=STby, H=STPAPS;=STAS eR"—m)x(n=m) (3.69)

By the construction of A, S?ASl = H, which is consistent with H defined in (3.69). Further
recall that P is a projection matrix onto NV (CT) and the columns of S; form an orthonormal
basis of N'(CT). So P = SlS? In addition, by the QR factorization (3.68), (CTHYI =S,RT,
and so ng=(C")'b=S,R~Tb. By the definition of matrix A, S?ASQ = A1y, we have

SThy=STPAng=515STAS,R~Tb=STASR=Th=?A1pa=goa"a=go, (3.70)
which is consistent with gp defined in (3.69). Finally,

Y= 1=l = /1~ |S2R-Tb P = /1~ |R-Tb[2 = /1~ | Zal2 = /1-22.

3.6.2 Numerical results

For testing purpose, we compute a solution v, by the direct method [10] as a reference
(exact) solution. We also compute x = % to examine the error bounds in Theo-
min *

rem 3.4.
The Lanczos algorithm (Algorithm 4) is applied to solve CRQopt (1.1) via QEPmin
(2.18) and via LGopt (2.13). For each computed v®)  the kth iteration, we compute relative

errors
|(09)T A0 —o] Av,| 1 ® A,
|’0}:A’0*| |)\*|

Since ||v.| =1, the absolute error err; is also relative. The stoping criterion for solving
QEPmin (2.18) is either (5,9EPmm <1071 or the number of Lanczos steps reaches maxit =
200, where (5,9EPmin is defined in (3.27). The stoping criterion for solving LGopt (2.13) is

either NResiGolot <10~ or the number of Lanczos steps reaches maxit =200.

err) = , erry=[o® —v,| and err;=
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o - - ] - - -
10 ——err, by LGopt ol ——err, by LGopt
a 10° F\\ 1
——err, by LGopt Q ——err, by LGopt
——err, by LGopt R . ——err, by LGopt
105 err, by QEPmin | . \\° . err, by QEPmin
err, by QEPmin 107 \\: . ) err, by QEPmin| |
o, N
err, by QEPmin \\e Ne err, by QEPmin
-10 T e " -
1070 . ] 107+ 8=1000 N\
. W
e, R TS e Ry
107"% ¢ ‘ ‘ ‘ ‘ ] 10718 L ‘
0 5 10 15 20 25 0 20 40 60 80 100
k k

Figure 2: Example 3.2: history of err, err; and errs for the cases where =100 (left) and f=1000 (right).

Example 3.2. In this example, we test the correctness and convergence behavior of the
Lanczos algorithm to solve CRQopt (1.1). Let n=1100, m =100, « =1, =100 or 1000, and
construct H as in (3.66) and go as in (3.67). For (A,C,b), let {=0.9 and a be random vector
normalized to have norm 1/ and then the rest follows Subsection 3.6.1 in constructing
A, Candb.

The convergence histories for err, err, and errz are plotted in Fig. 2. It can be seen
that all converge to the machine precision. err;, err, and errs are the same, respectively, at
every iteration whether CRQopt (1.1) is solved via QEPmin (2.18) or LGopt (2.13), which
is consistent with our theory that solving rLGopt (3.5) is equivalent to solving rQEPmin
(3.22).

Example 3.3. We illustrate the sharpness of the error bounds (3.49) in Theorem 3.4 and
the relationship between the convergence rate of our Lanczos algorithm and «.

The same test matrices as in Example 3.2, with f =100 and 1000 are used. We solve
CRQopt (1.1) by solving QEPmin (2.18) and choose the same parameters as in Exam-
ple 3.2. For « =1 and S =100, We calculate

(A1) = (—42.6007,3.2706) for (a,8) =(1,100);
©7 1 (~18.2629,52.8613)  for (a,B) =(1,1000).

Judging from the corresponding x, we expect our Lanczos algorithm will converge faster
for the case =100 than the case f=1000. We plot in Fig. 3 the convergence histories for

. 2|H— k-2
err; and its upper bound % [Tk+T%] 7 by (3.49a),
err; and its upper bound 4+/x [Tk + ] - by (3.49Db),
. k12 k-1
err; and its upper bound % |H=AI| [TE+Tk] ~+ ﬁ\/? [Tk+T7] " by (3.49¢).

The bounds for err; and err; by (3.49a) and (3.49b) for both =100 and =1000 appear
sharp. However, the bound for errz by (3.49¢) is pessimistic. In the plots, err3 goes to 0 at
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Figure 3: Example 3.3: histories for err; (first row), errp (second row), errs (third row) and their upper bounds
for =100 (left column) and f=1000 (right column).

about a similar rate of err;, but the bounds by (3.49b) and (3.49c¢) for err3 progress at the
same rate as the bound by (3.49a) for err,. As discussed in Remark 3.4, we unsuccessfully
tried to establish a better bound for errs, and are only able to offer an explanation.

As expected, errj, erry and errz go to 0 faster for the case =100 than the case f=1000.
It is consistent with the convergence results in Theorem 3.4 that our Lanczos algorithm
for CRQopt (1.1) converges faster when « is smaller.
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Example 3.4. We consider an example where the error bounds in Theorem 3.4 are pes-
simistic, while those by (3.60) can correctly reveal the speed of convergence. This occurs
when CRQopt is a “nearly the hard case”, i.e., where the optimal value of the correspond-
ing pLGopt (2.23) A, ~ Amin(H). Specifically, we choose n =1100, m =100, { =0.9, a a ran-

1 _ 1 trans trans trans 3
dom vector with the norm 1/7, and H = diag(15,™", 2 Ty _0r s Ty o onm_o,1) With

(a,8) = (2,1000) in (3.64) and (3.65), and go = [e",€!,---,e("~ m)”] where 77 = —5x1073.
In this case, Amin(H) =1 and A, =0.9845, Amin(H) ~ A, and K= # ~ 6.4466 x 104,

Thus it is a nearly the hard case and « is large. We solve the associated CRQopt (1.1) via
QEPmin (2.18). In Fig. 4, we plot the convergence history:

erry, its upper bounds ||H Al [TE+TF]™ - by (3.49a), and

TA

- o -2
167 ), IHz(Lﬁ“m) [r,ﬁ’; Doyr, ”] by (3.60a),

v}; Avy ®

erry, its upper bounds 47+/x [Tk +TcF| - by (3.49b), and

Ay /K ( s mm)[ra‘ Yir, ko )]_l by (3.60b),

mm

err3, its upper bounds My |||H Al [TE+TF]™ - ﬁubo\hﬁ[rhr;k]‘l by (3.49¢),

and % |H-A, IHZ(L@M) [r(k Dy 1)]

mm_)\*

o lbolav/e ( “‘““’“‘“‘) [Fffi‘l)JrF;fk‘”]* by (3.600).

mmf/\
It can be observed that The error bounds by Theorem 3.4 decay much slower than err,

errp and errs in this “near hard case”. This is an example for which « is large but x is

small:
Gmax - /\*

0 — A

As commented in Remark 3.3, sharper bounds (3.60) should be used. We can see that
the bounds (3.60) correctly reflect the slope of the convergence, but they are still larger
than the actual errors by several order of magnitudes. This is due to the fact that in the

proof of the bounds (3.60), we use [T¥+T'7*] “'and [Tk +TF] o reflect the convergence
trend. We select polynomials such that maxi<j<y—m |Pr(6i—A+) | =Maxo<icn—m |Pr(0i—Ax)|
by setting ¢ (61 —A.) =0. In this case the coefficients involving “g2—i js large in nearly
the hard case when 0pin = Ay

Kyi= ~983.7702,

Example 3.5. In this example, we test the effectiveness of the residual bound 5,9Epmin in

(3.27). We use the same test problem as in Example 3.2 for both =100 and g = 1000.
We run our Lanczos algorithm for QEPmin (2.18) and record the residual NResQEP min
and its bound 5,9Epmm defined in (3.27) for every Lanczos step in Fig. 5. We observe that
both NRes2"™" and §2°"™" in (3.27) converge at the same rate, suggesting 52 ™" is an

effective upper bound of the residual NRes2*™™,
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Figure 4: Example 3.4: histories of err;, erry, errz and their upper bounds. “Error bound by k" and “Error
bound by x4+" means upper bounds in (3.49) and (3.60), respectively.

ol - - - - - — - - - - - - -
10 esidual ol — Residual ]
> Residual Bound 10 ----Residual Bound

-10 L
10 10710t

10'15 r S 10—15 L

Figure 5: Example 3.5: relative residual of QEP NRestEPmin and the bound of the relative residual 5,?Epmin

for the case where =100 (left) and §=1000 (right).

4 Application to the constrained clustering

In this section, we use semi-supervised learning for clustering as an application of
CRQopt (1.1). We first discuss unconstrained clustering in Section 4.1 and then discuss a
new model for constrained clustering in Section 4.2. Numerical experiments are shown
in Section 4.3.

4.1 Unconstrained clustering

Clustering is an important technique for data analysis and is widely used in machine
learning [8, Chapter 14.5.3], bioinformatics [32], social science [26] and image analysis
[36]. Clustering uses some similarity metric to group data into different categories. In
this section, we discuss the normalized cut, a spectral clustering method that are popular
for image segmentation [36,39].

Given an undirected graph G=(V,£) whose edge weights are represented by an affin-
ity matrix W = [w;;], we define the cut of a partition on its vertices V' into two disjoint sets
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Aand B,ie., AuB=V, AnB= as

cut(A,B)= ) wj. (4.1)
ieA,jeB

Intuitively one would minimize the cut to achieve an optimal bipartition of the graph G,
but it often results in a partition (A, B) with one of them containing only a few isolated
vortices in the graph while the other containing the rest. Such a bipartition is not balanced
and not useful in practice. To avoid such an unnatural bias that leads to small sets of
isolated vortices, the following normalized cut [36] is introduced:

cut(A,B) N cut(A,B)

Neut(A,B) == T ol(B) -

(4.2)

where

vol(A) = Z wj; and vol(B)= Z wij.

ieA,jeV ieB,jeV

It turns out that minimizing Ncut(.A,B) usually yields a more balanced bipartition. Let

. vol(B) and ¢ = vol(A)

7\ vol(A)-vol (V) —\/ vol(B)-vol(V)’

and xeR" (n=|V|, the cardinality of V) be the indicator vector for bipartition (A,B), i.e.,

cy, i€A,
x(i)Z{ " (4.3)

c_, 1eB,

and D be a diagonal matrix with the row sums of W on the diagonal, i.e., D =diag(W1).
Then it can be verified that

Necut(A,B)=xT(D-W)x, x'Dx=1, (Dx)'1=0,

where 1 is a vector of ones. Therefore in order to minimize Ncut(.4,B), we will solve the
following combinatorial optimization problem

min xT(D—W)x, (4.4a)
s.t. xye{ey, e}, (4.4b)
x'Dx=1, (4.4¢)
(Dx)T1=0. (4.4d)

However, the problem (4.4) is a discrete optimization problem and known to be NP-
complete. A common practice to make it numerical feasible is to relax x to a real vector
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and solve instead the following optimization problem

min xT(D—W)x, (4.5a)
s.t. x'Dx =1, (4.5b)
(Dx)T1=0, (4.5¢)
xeR", (4.5d)

Under the assumption that D is positive definite, by the Courant-Fisher variational prin-
ciple [13, Sec 8.1.1], solving (4.5) is equivalent to finding the eigenvector x corresponding
to the second smallest eigenvalue of the generalized symmetric definite eigenproblem

(D—W)x=ADx.

Note that the setting here is different from the one in [36], where the indicator vector

x()€{1,—b} and b= 1?)11%2? Instead of minimizing a quotient of two quadratic functions
in [36], we use the constraint that xTDx =1. The model (4.4) is similar to the one in [39,

section 5.1], where they use the number of vertices in the sets A and B instead of the
volumes. The model (4.4) is derived in a similar way to the derivation in [39, section 5.1].

4.2 Constrained clustering

When partial grouping information is known in advance, we can use partial grouping
information to set up different models for better clustering. These models are known as
constrained clustering. Existing methods for constrained spectral clustering includes im-
plicitly incorporating the constraints into Laplacians [3,18] and imposing the constraints
in linear forms [6,41,42] or bilinear forms [40].

We encode the partial grouping information into linear constraints, which can be ei-
ther homogeneous [42] or nonhomogeneous [6,41]. In [6], the authors set up a model
where the objective function is the quotient of two quadratic functions and used hard
coding for the known associations of pixels to specific classes in terms of linear con-
straints. In [41], the authors used a model for which the objective function is quadratic
and encoded known labels by linear constraints. This is an approach that we take to set
up the model.

Let Z = {iy,---,i;} be the index set for which we have the prior information such as
Z< A. According to (4.3), we set x(;y =c,. for ieZ. Similarly, let 7 ={j1,---,jx} be the index
set for which we have the prior information that 7 = B, and we set x(;) =c_ for je J. This
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leads to the following discrete constrained normalized cut problem

min xT(D—W)x, (4.6a)
s.t.xgy€{cy, e}, (4.6b)
x'Dx=1, (4.6¢0)

< (Dx)T1=0, (4.6d)
xq=cy for i€eZ, (4.6e)
xg=c- forieJ. (4.6f)

\

However, there are two imminent issues associated with the model (4.6):
1. the combinatorial optimization (4.6) is NP-hard;

2. the model is incomplete because to calculate c; and c_ we need to know vol(.A)
and vol(B), which are unknown before the clustering.

Common workarounds, which we use, are as follows. For the first issue, we relax the
model (4.6) by allowing x to be a real vector, i.e., xeR". For the second issue, we use

‘\’,?)11((‘%) as an estimate of :,’gll((ﬁ)) to get
Al - vol(J) o ~D - vol(Z)
TN vol(Z)vol(V) T T\ vol(J)-vol(V)'

By these relaxation, we reach a computational feasible model:
min xT(D—-W)x, (4.7a)
s.t. x"Dx =1, (4.7b)
. (Dx)T1=0, (4.7c)
X (i) =E+, ieZ, (47d)
L X(i) =C_. ieJ, (476)

The last three equations are linear constraints and can be collectively written as a linear
system of equations:
NTx=b.

Let v= D2y, and define
A=D""2(D-W)D"'2 and C=D"'2N.

Then the optimization problem (4.7) is turned into CRQopt (1.1) with matrices A, C and
b just defined.
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4.3 Numerical results

In this section, we show the numerical results of the constrained clustering for the seg-
mentation of a set of images listed in Table 1 and Fig. 6. All experiments were conducted
on a PC with Intel Core i7-4770K CPU@3.5GHz and 16-GB RAM. CRQopt (1.1) is solved
via solving QEPmin (2.18). The minimum and maximum numbers of Lanczos steps are
minit=120 and maxit=300, respectively. The stopping criterion is 62" ™" <§x10~5. We
check the stopping criterion every five iterations.

For a grayscale image, we can construct a weighted graph G = (V,£) by taking each
pixel as a node and connecting each pair (7,j) of pixel i and j by an edge with a weight
given by

LR {1 if [ X() = X(j) |0 <, (48)

0 otherwise,

where 6r and r are chosen parameters, F is the brightness value and X is the location of a
pixel [36].] We take 6r=¢ -max; ;||F (i) = F(j) |5 for some parameter ¢ to be specified below.
The definition of weight in (4.8) ensures that every pixel is connected with an edge to at
most (2r+1)? other pixels.

Table 1 lists the values of key parameters used in our experiments. r is taken either
5 or 10, and thus the weight matrix W is sparse, which in turn makes the matrix A in
CRQopt (1.1) sparse, too. Note that for the Crab image, the contrast between the upper
right of the object and the background is not significant. Therefore, r is chosen to be twice
as much as other images to ensure the weight matrix correctly reflect the connectivity of
the graph. J is around 0.1, to be consistent with the statement in [36] that “Jr is typically
set to 10 to 20 percent of the total range of the feature distance function”. Finally, the
number m of linear constraints is small yielding CRQopt (1.1) with m « n.

ITn a 2-D image, pixel i may naturally be represented by (ix,iy) where iy and i, are two integers.

Table 1: The number of pixels 1, parameters é and r and size m of linear constraints.

Image | Number of pixelsn | ro| m
Flower 30,000 01 | 5|24
Road 50,268 01 | 5|46
Crab 143,000 0.1 | 10| 32
Camel 240,057 008 | 5 | 24

Dog 395,520 01| 5133
Facel 562,500 01 | 5|31
Face2 922,560 01| 51|19
Daisy 1,024,000 008 | 5 |29
Daisy2 1,024,000 008 | 5 |59
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Figure 6: The left, middle and right columns are labels, results of image cut and the heat maps of the solutions
by the Lanczos algorithm for CRQopt, respectively. Images from top to bottom are Flower, Road, Crab, Camel,
Dog, Facel, Face2, Daisy and Daisy2, respectively.
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Table 2: Runtime (in seconds) and number of Lanczos steps.

H Image H Run Time ‘ Lanczos steps H

Flower 4.61 210
Road 14.92 200
Crab 21.58 135

Camel 31.12 300
Dog 22.33 135
Facel 67.46 215
Face2 35.54 165
Daisy 84.09 235

Daisy2 105.80 245

Table 3: Runtime for Fast-GE-2.0, projected power method and the Lanczos algorithm.

H Image H Fast-GE-2.0 | Projected Power Method | Lanczos algorithm H

Crab 47.13s 446.76 s 21.58 s
Daisy 1572.81s 3+ hours 84.09 s
Daisy?2 1319.58 s 3+ hours 105.80's

Fig. 6 shows that the results of the model (4.7) for the image segmentation indeed
agree with natural visual separation of the object and the background. Table 2 displays
the wall-clock runtime and the numbers of Lanczos steps used for the images.

We note that Daisy and Daisy2 are the same image but with two different ways of
prior partial labeling. For both ways of prior partial labelling, the computed image cuts
look equally well. The purpose of experiments on Daisy and Daisy2 is to observe how the
size m of the linear constraints may affect running time. Daisy has 29 linear constraints
while Daisy2 has 59. As shown in Table 2, the Lanczos algorithm took 84.09 seconds
for Daisy and 105.80 seconds for Daisy2. It suggests that the larger m is, the more times
the Lanczos algorithm takes to solve the associated CRQopt. This is because the matrix-
vector product Px does more work as m increases.

In Table 3, we show the running time of Fast-GE-2.0 [18], the projected power method
[41], and the Lanczos algorithm for selected images. For comparable segmentation qual-
ity, the runtime of the Lanczos algorithm is significantly less than Fast-GE-2.0 and the
projected power method.

5 Conclusions

Although the constrained Rayleigh quotient optimization problem (CRQopt) (1.1), also
known as the constrained eigenvalue problem, has been around since 1970s, some of
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the mathematical claims were not rigorously justified. There are very few numerical
methods that are suitable for large scale CRQopt (1.1), such as those arising from con-
strained image segmentation. The projected power method [41] converges too slow
while the method in [14] is for the homogeneous constraints only. Eigenvalue optimiza-
tion method [6] could be too expensive. In this paper, we conducted a systematical and
rigorous theoretical study of the problem and, as a result, devised an efficient Lanczos
algorithm for large scale CRQopt (1.1). We perform a detailed convergence analysis of
the Lanczos algorithm. As an application, we apply our Lanczos algorithm to the image
cut problem with partial prior labeling. Numerical experiments demonstrate the effec-
tiveness of the algorithm in terms of accuracy and superior efficiency compared to Fast-
GE-2.0 [18] and the projected power method [41]. Future work include the treatment of
rLGopt (3.5) in nearly the hard case and applications of Lanczos algorithms on other ma-
chine learning problems such as outlier removal [25], semi-supervised kernel PCA [31],
and transductive learning [19].

Although our presentation in this paper is restricted to the real numbers, their exten-
sions to the complex version of CRQopt (1.1)

minvlAv st. ofo=1 and CHo=b
veC"

are rather straightforward, where AeC"*" is Hermitian, i.e., A =AH CceCnxm, Essentially,
all we need to do is to replace all transposes - by complex conjugate transposes -. We
also note that we can also easily extend the discussion of this paper to the model

ml%{nxTAx st. x"Bx=1 and CTx=b, (5.1)
xeR"

where B is a symmetric positive definite matrix. In fact, let B = LLT be the Cholesky
decomposition of B and v=Lx, then (5.1) is transformed to CRQopt (1.1) with A:=L~TAL
and C:=L"TC.
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Appendices

A Solve secular equation

We are interested in computing the smallest root A, of the secular function

2
X(A) :=Zl ()fei)z —92, (A1)

where it is assumed
¥>0, 01<6,<---<6, and either ¢; #0 or ¢; =0 but lim)\_»(;l—?(()\) >0.

Those assumptions guarantee that x(A) has a unique zero A, in (—0,0;). This is due to
the facts

&2
(A—6;)3

>0 for A <#6;.

A——00

n
lim x(A)=-9"<0, lim x(A)>0, and x'(A)=-2)
A—0 i=1

1
First, we find an initial lower bound a(® of A,, i.e., «(®) <6, such that X(lx(o)) <0. Note

&
(A—6r)2

X(A)sZ for A <0;.

i=1

One such () can be found by solving

n 2 n

- 1

i A2 0 _pn : _+ 2
E — 7 =0 = aV=0;-6p with 6p= <,
~ (“(0)_91)2 Y 1—00 0 - ;151

We conclude that A, € [¢(9),3(0)], where B(©) = 6;. Quantities a®¥) and B*) will be deter-
mined during our iterative process to be described such that A, e [a*), ()],
Without loss of generality, we may assume that

if 01=-- :9d<9d+1/ then (?2 = ch =0.
Let
jo=min{i: ¢; #0}. (A.2)
To find the initial guess of the root, we solve
2
Jo + - é712 2 0

—_l)/ —
(=602 " 2, [0 -0l —6)?

=:—7
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for A to get

A0 — 0j =S5 |//1 if n>0,
0j,—%0/2, if <0,

where the second case is based on bisection.

For the iterative scheme, suppose we have an approximation A ~ A,. First, the
interval (a®),3®)) will be updated as

a4 209 and BED — 6O if x(A®) <0,
BED  A®) and at+D —a® if x(A) >0,

Then we find the next approximation A*+1). For that purpose, we seek to approximate
X, in the neighborhood of Ak, by

such that
2(A®)=—p+ —(A®) 2 &
®)—0),)? (A0 —g)2 7
Ay= 2T '(Mk))——zi i
S Y R YNGR B E
yielding
n
k k
4= 2( A0 ) 'AR) = (A" —g 0j, Z A(k)—
I Y NN SN ®
b F—a, X(A (A 21 A(k)_ X(AW).

Ideally, b>0 so that ¢(A) =0 has a solution in (—0,0;,). Assuming b >0, we find the next

approximation A(+1)

~ A, is given by
ARD) — g, — 1 /a/b. (A.3)

Now if b <0 (then A**1) as in (A.3) is undefined) or if AK+1) ¢ (a,B), we let A*+1) be
(a*+1) 4 pk+1)) /2 according to bisection method.
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B Proof of the equivalence between CRQopt and the eigenvalue
optimization problem

Consider CRQopt (1.1), suppose U € R"*("=™) has full column rank and that R(U) =
N(CT) and let ueR" satisfies CTu = y/nb. Define

- " U u
C-[ct —vib], N=' [ . 1] B.1)

and !
A 0 - 0 I, 0
— T — T n+1 — T n
LN[OO]N,EN[O 1_L]N,MN{ ]N.

Note that it is easy to see that R(N) =N (C).

In this appendix we prove that CRQopt (1.1) is equivalent to the following eigenvalue
optimization problem

r?%X/\min(L—HE,M), (B.2)
€

where Amin(L+tE, M) is the smallest eigenvalue of (L+{E)x=AMzx. This equivalency was
initially established by Eriksson, Olsson and Kahl [6]. However, the statements presented
here are stronger than the related ones in [6]. For examples, we will prove M is positive
definite, and we can use ‘'max’ in (B.2) instead of 'sup” in [6].

Let 0=+/nv, 0= [11)]’ A= [18 8] and B= {I(,; 8] Then v is a minimizer of CRQopt
(1.1) if and only if ¥ is a minimizer of
T AD - R An
%, s.t. V(nt1) =1, v v=n+1, Cov=0. (B.3)

Since R(N) =N (C), for any 7 satisfying Co =0, there exists §€R" "1 such that 5= N7,
N is defined in (B.1). By the matrix structure in (B.1), we know that 6%71 )= 1if and only

min

if ﬁ%n_ m1) = L Therefore, solving (B.3) is equivalent to solving

/\T ~
minl 2 ot Poomin—1=0, F'N"Nj=n+1. (BA4)
yMy

To prove (B.4) is equivalent to its dual problem, we use the following result on the
duality of the quadratic constrained optimization problems.

Lemma B.1 ([6, Corollary 1]). Let y' Ayy+2b3y+cs be a positive semidefinite quadratic form.
If there exists y such that yT Asy+2bly+cs <0 and if A3 is positive semidefinite, then the primal
problem
TAyy+2b]
L Ay ehiyta

, st yTAsy+2bly+c3=0
v yTAsy+2bly+co Ay Ty
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and the dual problem
T T
suping!_(A1+AA)Y +2(b1 +Abs) y+(c1+Acs)
Ay yTAsy+2b1y+cs
has no duality gap.
Proof. See [6, Corollary 1]. -

With the help of Lemma B.1, we have the following theorem to show that there is no
duality gap between the optimization problem (B.4) and its dual problem.

Theorem B.1 ([6, Theorem 1]). Let Ai = {?TZ lzl] fori=1,23. If Az and Ajz are positive
i 1

semidefinite and if there exists § such that T Asj <n+1 and i +1 =1, then the primal problem

T Aqy+2bT 7TAg
inf y Aiytebiyten inf Y Alz
YT Asy+26Tyres=n+1YT Agy+2bTy+c2 g Asg=nt1 2, =177 Al

(B.5)

and its dual

GT A +H2,  —t
sup _inf 7o Ayfrl
t T Asj=n+1 yT Aoy
has no duality gap.
Proof. Let v, be the optimal value of (B.5), then
Y= _ inf Y Alz
F Asg—n+172 =1y A2y

=sup _ inf =~
O Agentl =1 YT ALY

T A+, —t
>sup inf vy Ayfrl
t ﬁTA\?,ﬁ n+1 :/V\TAZ:V
JT AT+ — AT As— (n+1
> supinf?_21Y Vs (" Asy—(n+1)
tA T 7T Asy
Y A +2b Ty o1 12—t A (YT Asy+2b5 y +c3— (n+1))
=supinf T
A Y YT Azy+2bjy+co
TAyy+2bf Ayt Azy+2bt —(n+1
_sup_inf LAWY (y"Asy+2bsy+c3—(n+1))
tA Prg=1 yTAsy+2bly+co
B ot y Ay +2bjy+cy
yTA3y+2b y+ez=n+1Y A2y+2b2y+C2
where (B.6) and (B.7) apply Lemma B.1. O
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Remark B.1. One of the conditions in [6, Theorem 1] is ”A\g, is positive semidefinite”.
However, the proof of Theorem B.1 applies Lemma B.1, which requires A3 to be posi-
tive semidefinite and there exists § such that §TA3j <n+1 and 72 +1=1. Therefore, the
condition “As is positive semidefinite” is not necessary. In addition, in the statement
of [6, Theorem 1], one of the constraints is y% +1=1. However, in (B.5), the size of the ma-
trix A; and 1/4\1 isnxnand (n+1)x (n+1) fori=1,2,3, respectively. Therefore, we consider
yeR" and e R"*!, and change the constraint 2, =1to y2_; =1.

We now prove that the conditions of Theorem B.1 are satisfied for the constrained
Rayleigh quotient optimization problem (B.4).

Lemma B.2. Suppose |vo| <1, where vy = (CY)'b. Then there exists i such that |ij|% =
QTNTNQ< n+1and ]//\(n—m-i-l) =1.

Proof. Note that vg=(CT)'b is the minimum norm solution of CTo=b. Let 0 = [y/nv],1]".

Then e NV (C) and thus there exists i/ such that v = Ny for which we have ||jj||y = |?]2 <
vn+1, and, at the same time, ¥/, 41) = V(n+1) = 1. O

By Lemma B.2 and Theorem B.1, the optimization problem (B.4) is equivalent to its
dual problem

V' LY+t i~

su inf - B.8
tpgTNTNg:nH yT™My (B:8)
Since
. ~ yINTNY ¢~
ty%7m+1_t:ty%7m+l_t%: 'EY,
(B.8) is equivalent to
yT(L+tE)y
sup inf M (B.9)

b FINTNg=n+1  YTMY
To transform the dual problem (B.9) to an eigenvalue problem, we first prove that M

is positive definite.

Lemma B.3. Let b be as defined in (1.1c) and b+#0, and N has full column rank, then M is
positive definite.

Proof. 1t is clear that M is positive semi-definite. We claim that M is nonsingular. Sup-
pose, to the contrary, that M is singular. Then there exists a nonzero x such that Mx =0.

0

follows from Mx =0 that UTUx =0, implying x; =0 because U has full column rank. Thus
x =0, a contradiction.

We claim that x(,,_,41) # 0; otherwise suppose x(;,_,+1) =0 and write x = [xl], It
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X1

1 ] Note that

Without loss of generality, we may normalize x(,_,,4+1) to 1, i.e., x= [

. NTN is invertible. We now express

M:NTN—en_mHeLmH. Mx=0implies NTNx= [(1)

(NTN) ! in two different ways. NTNx = {0

. 110
(n—m+1n—m+1) 1] ylelds X= (NTN) ! [

1] and thus

ol*  [o]" 0

Tan—1 Tamn—1
1:{1] x:H (N H:(N N 41,1-m1):
On the other hand,

NTN: [UTU LITu :|

ut  ulu+1

By the assumption that U has full column rank, UTU is invertible. Then we have
det(NTN) =det(UTU)det[(1+uTu—uTuWUTu)*Utu].

According to the relationship between the inverse and the adjoint of a matrix, we find

n—m+l+n—m+1 det(uTU)

(N*N)G st nmeny = (1) Jet(NTN)
det(UTU)
~ det(UTU)det[(1+uTu—uTUUTU) "UTy]
det(UTU)

~ det(UTU)[1+uT(I—Py)u]’

where Py is the orthogonal projection onto R(U). Therefore, (NTN) (’nl_ M) = 1if

and only if u"(I—Py)u =0 implying that u is in the column space of U. Without loss of
generality, we may assume the first column of U is u. Now subtract the first column of N

from its last column to conclude that e, is in the null space of é, which contradicts that
b+#0. O

By Lemma B.3 and Courant-Fisher minimax theorem [13, Theorem 8.1.2], finding

inf YT (L+tE)y
JINTNg=n+1  YTMy

is equivalent to finding the smallest eigenvalue of K~'(L+tE)K~Tx =Ax, where M = KKT
is the Cholesky factorization of M. Therefore, (B.9) is equivalent to

SUPAmin(L+tE,M). (B.10)
t

Finally, we prove that the maximum value can be obtained, i.e., ‘sup” in (B.10) can be
replaced by ‘max’.
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Lemma B.4. Let f(t) = Amin(L+tE,M). There exits to€ R such that f(to) =sup,. f(t).

Proof. We prove the claim by showing that
lim f(f)= lim f()=

t—+00 t——00

First, let v; € R(N) with the last component being zero, and set y; = N'v;. We have

YiEy; =— |lfﬂ12 <0 and y] My, >0 since M is positive definite. Hence

T(L+tE
lim f(t)= lim mfy(}rﬂ< lim u< lim ¢ y% En + Amax(L,M) =
t— 400 t—+o0 § Yy My t— 400 Yi M]/l t— 400 21 yl

Recall vp=(CT)'b and the assumption that |[vg| <1. Let v = [/nv], 1]. Clearly v,e R(N)

nflvol3
o) 4—1—”—Jrl >0 since |vp|| <1 and y3 My, >0 since

and let y» =NTv,. We have y1 Eyp = —
M is positive definite. Hence

lim f(t)= lim 1nf7y ( +tE)y< li 7y2(L+tE)y2 < i yTz Ey2 Amax(L,M) =—
yz

t——o0 to—w § fTMy t—>—0 Y, Myz o Y,
Therefore, there exits f; <0 such that f(t) < f(0) for t <t; and there exits t, >0 such that
f(t)<f(0) for when t>t,. Therefore

supf(t)= sup f(t).

teR te[ty,tr]

Because f(t) = Amin(L+tE,M) is a continuous function [38], there exists ty € [t1,f2] such
that f(t) = Supyeg f(1). 0

In conclusion, we have shown that CRQopt (1.1) is equivalent to the eigenvalue opti-
mization problem (B.2).

C CRQPACK

The Lanczos algorithm for solving CRQopt (1.1) described in this paper has been im-
plemented in MATLAB. In the spirit of reproducible research, MATLAB scripts of the
implementation of the Lanczos algorithm and the data that used to generate numeri-
cal results presented in this paper are available in CRQPACK at https://github.com/
yunshenzhou/CRQPACK . git. CRQPACK consists of three folders:

1. src: the source code for solving CRQopt (1.1). It consists of four functions
CRQ_Lanczos, QEPmin, LGopt and rLGopt. CRQ_Lanczos is the driver and calls
QEPmin and LGopt. LGopt is dependent on rLGopt. In addition, we also provide
two other drivers for solving CRQopt (1.1), namely CRQ_explicit for the direct
method [10] and CRQ_ppm for the projected power method [41].
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2. synthetic: the drivers for numerical examples in Section 3.6. correct.m and
QEPres.m are for the examples in Sections 3.2 and 3.5, respectively. CRQsharp.m
is used to generate the plots for Example 3.3 on error bounds in (3.49a) and (3.49D),
while CRQnotsharp.m on the error bounds (3.49a) and (3.49b).

3. imagecut: the code for constrained image segmentation. It has three subfolders:
examples contains the drivers, data contains image data including prior labeling
information, and auxiliary contains program to generate the matrices A, C, and
vector b of CRQopt (1.1).
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