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Introduction

Nonlinear dynamical systems are ubiquitous in the study of many natural phenomena (see, for instance,
[1-3] and references therein). In particular, they have many important applications, in biology and medicine,
such as in studying of the spread of infectious diseases, the dynamics of concentrations in biochemical
reaction networks, or the dynamics of populations for species that interact in an eco-system.

Inspired by Poincaré [4], mathematicians decided to look for qualitative aspects of nonlinear dynamics,
since explicit solutions of nonlinear dynamical systems are usually impossible to calculate. Of course, qual-
itative questions also prove to be very challenging. For instance, the second part of Hilbert’s 16th problem
(see [5] and references therein for the state of the art) concerning polynomial differential equations in the
real plane remains open after more than a century. In particular, an upper bound for the number of limit
cycles is not known even for quadratic vector fields in the plane. Another very important feature of many
nonlinear dynamical systems is chaotic dynamics [1]. The best known chaotic system is the Lorenz system: a
quadratic dynamical system in R?® which is known to have chaotic solutions (the “butterfly effect”, see [6]).

Nonlinear dynamical systems modeling interaction networks are usually systems of differential equations
generated by reaction networks. The latter are seen as directed graphs living in the Euclidean space, called
Euclidean embedded graphs (see [7]). In the context of mass-action kinetics, the qualitative dynamical prop-
erties of these systems are strongly related to the combinatorics of the corresponding Euclidean embedded
graph that generates the system. In addition, the right-hand-side of such systems is given by polynomials
with real coefficients, giving rise to fruitful connections with the field of algebraic geometry [8-10].

Actually, the same dynamical system (i.e. the same polynomial right hand side), can be generated by
several distinct reaction networks (see for instance [11,12,3]). In other words, by studying several reaction
networks that generate the same system, we might deduce important and useful dynamical behavior, that
would not have been accessible to us via the initial network. In our present work, which is a follow-up of
[11], we will use this important property.

In this paper we focus on complexr balanced dynamical systems, which have been introduced in the
fundamental paper by Horn and Jackson [13] in 1972. Complex balanced systems form a large class of
nonlinear dynamical systems for which a remarkable amount of information is known. For example, Horn
and Jackson proved the existence and uniqueness of positive equilibria in each stoichiometric compatibility
class. In other words, up to conservation laws, complex balanced dynamical systems have a unique positive
steady state; moreover, these steady states are locally asymptotically stable. In the last decades, complex
balanced dynamical systems have been proven or conjectured to enjoy exceptionally strong dynamical
properties, such as global stability in each stoichiometric compatibility class, impossibility of oscillations
and chaotic dynamics, persistence, and permanence.

One of the current main open questions and motivation in the field of chemical reaction network theory
is the Global Attractor Conjecture, which was stated in 1974 by Horn in [14]. For a recently proposed proof
see [15]. The conjecture says that complex balanced mass-action dynamical systems are globally stable
within each positive stoichiometric compatibility class, that is, they have a globally attracting point (up
to conservation laws). See [7, Section 2.2]. The global attractor conjecture has been proven under several
hypotheses: in the case where the dimension of the stoichiometric compatibility class is lower or equal to
three, and in all dimensions if the Euclidean embedded graph is connected and in all dimensions in the case
of strongly endotactic networks. See [3] and references therein for the state of the art.

Complex balanced dynamical systems have been recently called toric dynamical systems [10], due to their
strong connections to combinatorial and computational algebraic geometry. If the parameters of the system
verify certain algebraic conditions, then the corresponding system is complex balanced (i.e., toric). It was
also shown that the moduli spaces of toric dynamical systems are toric varieties [10]. This is advantageous,
since toric varieties (see [16]) have particularly nice computational and combinatorial features. However, for
most networks, the set in parameter space that gives rise to toric systems has Lebesgue measure zero. We
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will refer to this set of parameters as the toric locus of the network. Note that recently there has been an
increasing interest on the study of the toric locus, see also [17].

Our main contribution is proving that the dynamical properties of toric (i.e., complex balanced) dynamical
systems are true for a larger class of dynamical systems, that we call disguised toric dynamical systems,
see Definition 2.1. Roughly speaking, we expand the toric locus from sets of Lebesgue measure zero in the
positive orthant, to sets of positive measure. We also present an explicit algorithm (see Algorithm 8.2)
that can be used systematically in order to find the disguised toric locus (Definition 2.2), given a reaction
network.

Regarding the structure of the paper: in Section 1 and Section 2 we give the standard terminology. Next
we introduce the notion of disguised toric dynamical systems.

Section 3 deals with the dynamical system generated by the complete graph consisting of three vertices.
Here the toric locus is a codimension-1 semialgebraic variety inside the positive orthant. However, the
disguised toric locus is the whole space of positive rate constants.

In Section 4 we focus on the dynamical system generated by the graph with four collinear vertices, that we
call “the quadrilateral on a line”. In Theorem 4.1, we show that the parameter space can be decomposed in
four chambers, and we study the corresponding dynamical behavior in each of these chambers. In particular,
there are three chambers where the dynamical systems are complex balanced for every parameter values.
However, in the fourth chamber there are parameter values for which the dynamical system is not disguised
toric. Furthermore we give a complete characterization of the complex balanced dynamical systems belonging
to this special chamber. That is, we give necessary and sufficient conditions for the systems in this chamber
to be disguised toric: see Theorem 4.3. In the literature (see [18]) it was known that if the parameters lay
on a certain hypersurface (the Segre variety in this case), then the system generated by the quadrilateral
on a line is complex balanced. Our main result in Theorem 4.3 states that all the parameters above this
Segre variety give rise to complex balanced dynamical systems. That is, we pass from a set of Lebesgue
measure zero (a hypersurface) to a set of positive Lebesgue measure. Next, in Section 5 we study the multi-
stationarity region in the parameter space, which is delimited by the zero locus of a certain discriminant
(Fig. 6). To this end, we use the notion of detailed balance and tools from real algebraic geometry, such as
the discriminant of a real polynomial and Descartes’ rule of signs.

In Section 6 we consider a non-weakly reversible reaction network. Note that weak-reversibility is a
necessary condition for obtaining a nonempty toric locus. However, as was shown in [11], the dynamical
system generated by this network can be realized by other reaction networks, which might exhibit nicer
combinatorial properties, such as weak reversibility. Using the latter together with algebraic tools such as
quantifier elimination, we show that the disguised toric locus of the system turns out to be a set of positive
measure in the parameter space.

Section 7 is dedicated to the generalization of our study. We prove that the equilibria in the single-sign-
change chambers for the “N-gon on a line” are detailed balanced, thus complex balanced.

In Section 8 we propose some systematic procedures one could follow in order to extend the toric locus
to the disguised toric locus of a polynomial dynamical system: this is Algorithm 8.2. The main tools in
the algorithm are properties of the Euclidean embedded graphs that generate the given dynamical system.
The main idea is that one can add some degrees of freedom by introducing new positive real variables in
the process of generating the same dynamical system using a different reaction network. Instances where
we apply the steps of Algorithm 8.2 appear throughout our paper: see the triangle on a line (Section 3),
the quadrilateral on a line (Section 4) or Section 6, where by using Algorithm 8.2 we manage to extend an
empty toric locus to a disguised toric locus of positive Lebesgue measure.
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1. Preliminaries

In this section we present standard terminology and notations for the study of chemical reaction networks.
We refer to the textbook [19] for a complete introduction to the subject.

Throughout this paper, by Rfo we denote tuples of real numbers indexed by elements of E. We use bold
letters to refer multi-index objects as vectors and monomials.

Definition 1.1 (/7]). A Euclidean embedded graph (or E-graph for short) is a digraph (directed graph) G =
(V,E), where V. C R™ is the set of vertices, E is the set of edges with no self-loops and at most one edge
between a pair of ordered vertices. Given an edge (y,y’) € F we also write y — y’ € E. Moreover, the
vertices y, y’ are called respectively the source and the product of the edge y — y’.

A reaction network can be regarded as an E-graph G = (V| E) where E is the set of reactions [7].
Sometimes, we will refer to an E-graph as a reaction network, in order to emphasize its applied side. To this
end, we will also refer to vertices as compleres and to edges as reactions. So, the restriction on E ensures
that there is no reaction from a complex to itself (with no self-loops) and there is at most one reaction from
one complex to another (at most one edge between a pair of ordered vertices).

Definition 1.2. Given an E-graph G = (V, E) with V C R™ and k € RE, consider the function

Fax(x) = Z ky—yx¥ (y' =) (1.1)
y—y' eE
where, for y = (ai,...,a,) € R", x¥ := 27" ---2%". The positive real number ky_,y is a rate constant

corresponding to the reaction y — y’ and the dynamical system generated by G and k € Rfo is the following
dynamical system.
dx
— = Fo k(x). 1.2
> = Fowx) (12)
Note that, for V' C R, Definition 1.2 corresponds to mass-action kinetics [19, page 28]. For V C N7,
in the setting of mass-action kinetics, the function Fg k(x) gives rise to a polynomial dynamical system in
(1.2), which is the case for most practical applications. Moreover, in this case, the set of source vertices
corresponds to the set of monomials appearing in Fg k(x).
Inspired by [20] and [11], we give the following definition:

Definition 1.3. A particular dynamical system

dx
E:f(x)

has a realization using an E-graph G = (V| E) if there exists k € REO with

Fox(x) = f(x) for all x € R,
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Definition 1.4. Given an E-graph G = (V, E) and k € RE, the G-equidynamic locus of k is the set
V(G,k) == {k' e RE| : Fgx(x) = Fg i (x) for all x € R%}.
Given a subset €2 C Rfo, the G-dynamic completion of € is the set

V(G Q) =[] V(G.Kk).

keQ

Fix an E-graph G = (V, E). We describe the G-equidynamic locus for a k € RZ,. Let S = {y1,...,y:}
be the set of sources of G with some fixed order. Let E; = {y; — y € E} be the set of reactions whose
source is y; and set n; as the cardinal of E;. Consider the n x n; matrix A; whose columns are the vectors
y — yi € E; with some fixed order. Given k € Rfo, consider the column vector k; = (ky,y) € ng with
the same order as the matrix A;. Now,

l
FG7k(X) = Z(Aiki)xy’i,

i=1

and it is straightforward to see that V(G, k) is the polyhedral cone
V(G, k) =k +ker Ay x --- X ker A;,
where we consider R” = RF! x ... x R¥t and A; as a linear map R — R”.

Definition 1.5. Given an E-graph G = (V, E) with V' C R", the inflow at the vertex yo € V and the state
Xo € RY, is the number

> kyayeXo, (1.3)
Y—Yo€E
and the outflow at yg and xg is
( > kyﬁy)xoyo. (1.4)
Yo—YEE

In terms of reaction networks the inflow can be interpreted as the total production of the complex yq per
unit of time when the reaction network is at the state xq. Similarly, the outflow corresponds to the total
rate at which the complex yq is being consumed.

Definition 1.6 (/13,5,10]). Given an E-graph G = (V, E) and k € RE, the couple (G, k) satisfies the complex
balanced condition if there exists xo € RZ satisfying the equation

( Z kyo—w)XOyO: Z ky—yoXo” (1.5)
Yo—YEE Y—yoEE

for every complex yo € V. When such an xg exists, the dynamical system (1.2) generated by (G, k) is called
a toric dynamical system and xg is called a complex balanced steady state of (1.2).
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Recall that, when it exists, a complex balanced steady state is a steady state. In fact, the existence of
a single complex balanced steady state implies that every steady state is complex balanced [13]. Moreover,
the steady states variety of a toric dynamical system is a toric variety [10].

In terms of reaction networks the complex balanced condition has a very clear interpretation. It is asking
for the existence of a state xg for which the inflow and the outflow are equal (or, in other words, are balanced)
at every complex. That is, if a complex balanced steady state x¢ exists, when the reaction network is at
such state the total production of each complex is balanced with its total outflow.

The first to study toric dynamical systems, Horn and Jackson [13], called these systems complex balanced
dynamical systems. The new terminology has been introduced in [10], where the authors studied these
systems from the computational algebraic geometry point of view. Given an E-graph G, they showed that
the space of parameters k for which the couple (G, k) satisfies the complex balance condition is a toric variety.
It is well known that toric ideals (see [16]) have particularly nice algebraic and combinatorial properties:
“the world is toric” [21, Section 8.3].

Remark 1.7. A necessary condition for a dynamical system to be complex balanced is the weak reversibility
of the graph that generates it [13,19].

Definition 1.8 (/3,19]). Given a reversible E-graph G = (V, E) and k € RZ, the couple (G, k) satisfies the
detailed balanced condition if there exists xg € RY, that satisfies

kyo—yXx0”® = kyyoXo0” (1.6)
for every reaction y — yo in . When such an x¢ exists, it is called a detailed balanced steady state.

Definition 1.9 (/3, Definition 2.7]). Given an E-graph G, denote by n the number of vertices, by [ the number
of its connected components, and by s the dimension of the stoichiometric compatibility class (that is, the
vector subspace generated by the edges of G). Then the deficiency of G is the integer 6 :=n — 1 — s.

2. Disguised toric dynamical systems

In this section we introduce the main objects of study: disguised toric dynamical systems and the disguised
toric locus of an E-graph.

Definition 2.1. Given a dynamical system

dx

= f(x) on x € R, (2.1)

we say that it is a disguised toric dynamical system if there exist an E-graph G = (V, E) and k € ]Rgo such
that

f(x) = Fgx(x) for all x € RY,

and the couple (G, k) satisfies the complex balanced condition. When (2.1) is a disguised toric dynamical
system, we also say that it has a complex balanced realization using the graph G.

We say that the dynamical system (2.1) has a detailed balanced realization if there exist an E-graph
G = (V,E) and k € R such that

f(x) = Fgx(x) for all x € RY,

and the couple (G, k) satisfies the detailed balanced condition.
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Definition 2.2. Given an E-graph G = (V, E), we define respectively the toric locus and the disguised toric
locus of G as the sets

K(G):={k € RE, | the system generated by (G, k) is toric},
K(G) :={k € RE, | the system generated by (G, k) is disguised toric}.

2.1. Goals and motivation

Given an E-graph G = (V| E), we are mostly interested in its toric and disguised toric locus.

A first trivial observation is that for every E-graph, K(G) C K(G), since every toric dynamical system
is disguised toric.

According to [10, Theorem 9], if G is weakly reversible, then K(G) C RE; is a semialgebraic variety of
codimension J, where ¢ is the deficiency of G (see Definition 1.9).

In particular, for every weakly reversible E-graphs with 0 deficiency, K(G) = K(G) = RE, (see [19,
Section 7.7]).

Most reaction networks (or E-graphs) coming from practical applications have positive deficiency. So, for
these reaction networks the toric locus is usually of measure zero in the space of rate constants. That is
the main problem with toric dynamical systems, they enjoy extremely pleasant dynamical properties but
the chances for a particular dynamical system to be toric are really small. But from the point of view of
dynamical systems, the dynamical systems generated by a k in the toric locus K(G) or in the disguised
toric locus K (@) are completely equivalent and, as we will show, K (@) is a much larger set in many cases.
For example, K (G)) may have positive measure even when K (G) is empty (see Section 6).

The disguised toric locus of an E-graph has been indirectly introduced in [11], where the authors used
analytical methods to study it. Our main goal here is, first to establish an explicit definition of disguised
toric dynamical systems and disguised toric locus, and second to compute and to find approximations of
K(G) by means of algebraic methods.

3. Triangle on a line

In this section, we study the E-graph G = (V, E) given by Fig. 1. It is the complete graph over the three
vertices y1,¥y2,y3-

This is an example where K (G) C RE is a codimension-1 semialgebraic variety, but K(Q@) is the whole
space of rate constants RZ. This example also outlines a procedure to determine K(G) where non explicit
complex balanced realization is given. More precisely, we will show that for every k € Rfo, there exists
ke REO such that (G, 1A<) satisfies the complex balanced condition and the systems generated by G, k and
G, k are equal. That is, this example shows that sometimes the system generated by some rate constants
can have a complex balanced realization using the very same graph but different rate constants. In other
words, we show that V(G,k) N K(G) # () for all k € RZ.

Given a vector of rate constants k € Rgo, we simplify the notation ky, .y to ki;.

Following the combinatorial scheme established in [10], the equation on k;; for the toric locus K(G) C R%,
is

K\ K3 — K3, (3.1)

where K; are the maximal minors of the negative of the Laplacian of the graph G, which can be computed
by means of the matrix-tree theorem. Namely,

Ky = ko1ks1 + ksakor + kaskai;
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X

L 4 X4
Y1

Fig. 1. Triangle on a line.

& X1
Y1

Fig. 2. Cycle on three vertices G*.

Ky := ki3kas + karkis + ki2kas;
K3 = kiokso + ki3ksa + k31k12.

Observe that equation (3.1) defines a toric variety in P2. This is a general fact for E-graphs proved in [10)].
In fact, this toric variety is the rational normal curve in P2, and this is a general fact for strongly connected
E-graphs contained in a hyperplane X; + --- + X,, = N, see [18, Proposition 5.2.1.]

Theorem 3.1. For the E-graph G = (V, E) given by Fig. 1, the disquised toric locus K(G) is the whole space
of rate constants RE.

Before proving Theorem 3.1 we reduce the E-graph G to have only one reaction per source. Observe that
given k € Rgo we may realize the system generated by (G,k) by a cycle directed graph over yi,y2,y3
(see Fig. 2). Indeed, consider the vectors

u; = Z kij(y; — ¥i)-

Yi—2Y;EE

Since ki12(y2 — y1) and k13(ys — y1) are positively proportional to (_g), so is the vector u;. Let us denote

-2
u1:]€>1k< 2)

Similarly, let us denote by k3 € R~ the proportional factor between us and (7%)

The situation for the vector us is slightly different. Let us assume it is different from zero. Depending

on the values of kyj, it will be positively proportional to (_%) or to (_}) We assume that u, is positively

by ki € R< the proportional factor, that is

proportional to the later, the other case simply corresponds to a permutation of the formal variables X7,
Xs. So, let us denote by k3 € R+ the proportional factor.
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Now, consider the E-graph G* = (V, E*) given by Fig. 2. Finally, by construction, the dynamical systems
generated by G, k and by G*, k* = (kf, k3, k3}) € RE| are equal.

Proof of Theorem 3.1. Clearly, we just need to prove that the disguised toric locus K (G*) is the whole
RZ; =R,.

Now, we will come back to the E-graph G. That is, we realize the system generated by G*, k* using the
graph G. Fix k* and consider the E-graph G = G and the rate constants k given by

~ 1 ~ c

= X > % kig = 2— k7
Rz : 1+ak3 kop :=ky +b ' I+ct (3.2)
A a 7 A 1 ’
kay := —— kX kos :=b ey A
31 2(1+a) 3 k13 . 1+Ck1

where a, b, ¢ > 0. Equations (3.2) are chosen so that the dynamical systems generated by G*, k* and G’, k
are equal for all a,b,c > 0.

The toric locus for G is given by equation (3.1) substituting ki; by ]%Zj So, the pullback of the equation
defining K (G) C REO by (3.2) is the following function ¢(a,b,c) on a,b,c > 0:

<k§ (b+E5)  (ak)(b+k3) b(aky) ) (k’f(b +k3) bk b(QCkf)) B
a+1 2(a+1) 2(a+1) c+1 c+1 c+1

- ( kiks k3 (2ck;) (aks) (2ck}) )2

(a+1)(c+1) (a+1D(c+1) (2a+1)(c+1)) °

(3.3)

Now, if there exist ag,bg,co > 0 such that ¢(ag,bg,co) = 0, then (3.2) for ag,bg,co will give a complex
balanced realization of the system generated by G*, k* using the graph G. So to finish, we show that such
ao, bo, co always exist regardless of k*.

First observe that, taking b large enough (tending to infinity), there exist real numbers (aq, b1, ¢1) with
a1,bi,c1 > 0 such that ¢(a1,bi,c1) > 0 (the first term of ¢ grows to infinity and the second term is
bounded).

Second, taking by small enough (tending to zero) and ¢y large enough (tending to infinity), there exist
(ag,ba, ca) with as, ba, ca > 0 such that ¢(ag,bse, ) < 0.

Hence, by the intermediate value theorem, there exist (a, b, ¢) such that ¢(a, b, c) = 0, since the function
@ is continuous and its domain is connected. O

Corollary 3.2. For every endotactic (see [22] for the definition) E-graph G' = (V' E') with the same three
source vertices y1,ya2,y3 and for every k' € Rgé, the generated dynamical system is disquised toric.

Proof. We can always realize the system generated by G’, k/ using the E-graph G* given by Fig. 2. That
is, for every k' € ng, there are k* € RES (which we have proved that are disguised toric) generating the
same system. 0O

Remark 3.3. The same result (with essentially the same proof) remains true for every weakly reversible E-
graph with three vertices and deficiency one. More generally, the same is true for every endotactic network
with the three source vertices and all vertices on a line.

4. Quadrilateral on a line

In this section, we completely determine the dynamics of the systems generated by the E-graph G = (V, E)
given by Fig. 3. It is the complete graph over the four vertices y1,y2,¥3,y4-
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X

. X4
yi

Fig. 3. Complete directed graph on 4 vertices.

This example outlines a procedure to find sufficient semialgebraic conditions on k € REO for being in
K (G). The procedure could be described as follows. For a given k € REO, realize the dynamical system
generated by (G, k) using an E-graph G= (V, E) where the detailed balance condition can be established.
Then, pullback to k € REO the equations of the detailed balance condition on k e ]R];JO. So, the obtained
semialgebraic set will be contained in K (G), since detailed balance dynamical systems are toric.

In fact, the previous procedure completely determines the disguised toric locus K (G) in many cases, for
this example and in Section 7 for all the so called single-sign-change chambers. Nevertheless, in Section 6,
we will show that it may fail.

Similarly to Section 3, we start reducing the E-graph G to an E-graph G* = (V, E*) with one reaction
per vertex. We do it systematically and aiming that the procedure will be easy to extrapolate to the more
general E-graph of Section 7, the N-gone on a line.

For a given vector of rate constants k € Rgm let us simplify £y, .y, to k;; and consider the vectors

wi= > kyly; - yi)-

Yi—~Yy;EE

The system generated by G, k is

d (z1) g 2 2 3 _
— = W] + UxiTe + uzxr1xy + Uyxy; =

3
.T/'1+

+ (ka1 — kaz — 2ka4) (
+ (2kz1 + k3o — kza) (_1)z123+
+ (3kay + kaz + 2kas) ( _1 )23

(k12 + 2k13 + 3k1a) (7]

1)
%)Ifxfr
1
1

The vectors uy, uy are respectively positively proportional to (*%) and (_%) Let us denote by k7, k; €
R~ the respective proportional factors, namely

ki = k1o + 2k13 + 3]€14;
ky = 3ka1 + 2kgo + kus.
Again, for the vectors ug, usz the situation is slightly different, since their direction depends on the particular

values of k € RE. Both vectors are always positively proportional to either (~}) or (_{). We denote
respectively the positive proportional factor for each case by k5 and k3, namely
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B e ko1 — kos — 2koy if ko1 — kog — 2koy >0
2 —ko1 + kog + 2koy  otherwise

. 2k31 + k32 — ka4 if 2k31 + k32 — k3qs >0
8 —2ks31 — k3o + k34 otherwise.

So now, we have to distinguish four possible cases in order to realize the system generated by G, k by an
E-graph with a reaction per source. This cases are summarized in Proposition 4.1 below.

Proposition 4.1. Consider the E-graph G = (V, E) given by Fig. 3. Consider a vector of rate constants
ke Rgo and consider k* = (k3,...,k}) defined above. The dynamical system generated by G, k is equal to
the system generated by k* and

1. the E-graph given by (A) in Fig. 4 if

ko1 — kog — 2ko4 < 05
2k31 + k3 — k3q <05

2. the E-graph given by (B) in Fig. J if

ka1 — ka3 — 2kay > 0;
2k31 4 k3 — k3q <05

3. the E-graph given by (C) in Fig. j if

ko1 — koz — 2koy > 0;
2k31 + k3 — k3q > 05

4. the E-graph given by (D) in Fig. J if

ko1 — kog — 2ka4 < 0;

2ks1 + k3o — k3q > 0.
Definition 4.2. We call respectively the regions in ]REO (= ]R1>20, by abuse of notation) corresponding to
each case of Proposition 4.1 the i-th chamber, and we denote them by Cy,...,C4. We call single-sign-change
chambers the chambers for which the direction in the sequence of vectors uy, ..., us changes only one time;
in this case these are the chambers Cq,Cs, C3.

Theorem 4.3. Consider the E-graph G = (V, E) given by Fig. 5. Consider a vector of rate constants k € RZ
and consider k* = (ki,...,k}) defined above. The dynamical system generated by G and k € RE is disquised
toric if and only if

1. the vector k belongs to the 1st chamber, or to the 2nd chamber, or to the 3rd chamber (i.e. these are the
single-sign-change chambers) or

2. the vector k belongs to the 4th chamber and

kiky < kKT (4.1)
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X2
Ya
4
Y3
Y2
X1
Y1
X
Ya
4
Y3
Y2
X1
Y1
X2
Ya
L
Ys
Y2
X1
Y1
X2
Ya
4
Y3
Y2
X1
Y1

(A) Chamber C;.

(B) Chamber Cs.

(C) Chamber Cs.

(D) Chamber Cy4.

X2
Ya
L 3
ys
ko
Y2
\o
Y1
X2
Ya
L 3
ys
.
A
Y2
ko
Y1
X2
Ya
L 2
Y3
.
A
Y2
.
A
Y1
X
Ya
L 3
y3
ko
Y2
°
A
Y1

X1

X1

X1

X1

Fig. 4. The four chambers associated to the quadrilateral on a line. Chambers Ci, C2, C3 are single-sign-change chambers. Chamber
, ug changes three times.

C,4 is not a single-sign-change chamber because the direction of the vectors uy, ...

Proof. The first case is a particular case of a more general fact proved in Theorem 7.2.

Fix k in the 4th chamber C4. Then, the system generated by G, k is equal to the system generated by

the E-graph G* given by (D) in Fig. 4 and k*. Hence, we may restrict to the system generated by G*, k*.
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X

L 4 > X1
Y1

Fig. 5. Detailed balanced extension of Cy.

Now, we consider the E-graph G given by Fig. 5, which contains the same source vertices as the E-graph
G*; we will obtain the desired result by considering the detailed balance conditions for G, as explained
below. We also consider the rate constants k given by

1%12 =k ]%23 =a ]2743 =k

]2;21 = k; +a ]2?32 =b ];‘34 = k‘; +b

where a,b > 0. First we will show that, for every k* satisfying Equation (4.1), there exist a,b > 0 for which
the couple (G, k) satisfies the detailed balance condition (and then also the complex balanced condition).
Second, we will show that if the system generated by G*, k* is disguised toric, then the condition Equa-
tion (4.1) is necessarily satisfied.

The dynamical system generated by G* and k* is

L = Kiaad + kdes — K + Ky (1.2)
o fn (4.3)

So, given a positive steady state (Z1,Z2) € ]R2>0, the ratio a := ;C—f > 0 satisfies the equation
ki — okl — o?(ak; — k3) = 0. (4.4)

From this equation and assumption Equation (4.1) it follows that

k—3<a<k—1.
ky = Tk

Hence, we may set b := akj — k% and a := ab. It is trivial to check that the point (Z,Z2) satisfies the
detailed balance conditions for the couple (é, 1A<) if and only if

k12 kag k34
ko1 k32 kas

a,

which are satisfied for such values of a and b.
Now assume that Equation (4.1) is not satisfied. If the system generated by G* and k* is disguised toric,
by [11, Theorem 4.7], we should be able to find a complex balanced realization using the complete directed
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E-graph G given by Fig. 3. We will focus on the vertex y4, since we just need to check that the complex
balanced condition fails at one vertex. Consider the following realization using the E-graph G’ = G and k'
given by

1 1
kyjs :=a kjy:= ib ky = §(k’z —a—0b) ki :=kj+a+b,
where a,b > 0 and a + b < k3 (we just focus on the relevant rate constants).

Again, fix a positive steady state (#1,Z2) of the system generated by G* and k*. If for this steady
state we have k37133 < kjZ3, then, by Equation (4.4), Equation (4.1) is satisfied. Hence, we assume that
k33133 > k3. So, for the outflow at y4 we have

(ks + Ko + Ky )®5 < ka5 < k32135 < kb, #1353,

and the inflow is greater than k},%1#3. From this, we conclude that the complex balanced condition cannot
be satisfied. O

5. Globally stable systems which are not disguised toric

In this section we discuss the difference between uniqueness of equilibria and the property of being
disguised toric. In particular, we provide examples of dynamical systems which are globally stable but fail
to be disguised toric. We study the qualitative behavior of the dynamical systems inside a fixed stoichiometric
compatibility class, i.e., up to conservation laws. See [19, Definition 3.4.6.] for a definition.

Lemma 5.1. Consider the E-graph G* given by (D) of Fig. /. The dynamical system generated by G, k* has
exactly one equilibrium point in each stoichiometric compatibility class if and only if the following inequality
1s satisfied

(k3k3)? — 4k (k3)® — 4(k3)3ky — 27(k3kT)? + 18k k3kik; < 0. (5.1)

Proof. The dynamical system generated by G* and k is Equation (4.2). Since we are interested in the
dzs _
I 0 =
Given a steady state of the system generated by G and k*, the ratio o := ;—f satisfies Equation (4.4).

dynamics inside a fixed stoichiometric compatibility class, we have x1+x4 is constant (see Fig. 7), since

_dzy
dt *

Thus we are interested in the zeros of the cubic polynomial:
fla) =k} — kja+ kja? — kja®.

The dynamical system (4.2) has no negative equilibria, since the cubic polynomial f has no negative
real roots. This follows from Descartes’s rule of signs [23, Theorem 2.33] for counting positive roots of
a real polynomial in one variable. Namely, we have the derivative f'(a) = —kj + 2kja — 3kja?. Since
f'(—a) = —k3 — 2k} — 3k} a?, the number of sign-changes in the coefficients of f/(—a) is zero, thus f’ has
no negative real roots. In addition, by Descartes’ rule of signs we obtain that f can either have one or three
positive real roots, counted with multiplicity.

Since f is a cubic polynomial in «, with positive real coefficients &}, condition (5.1) is equivalent with
the discriminant of f being negative, i.e., f has one real root and two complex conjugate roots. See [23,
Subsection 4.1]. In other words, if (5.1) holds, then in each stoichiometric compatibility class there exists a

unique positive equilibrium. O

Remark 5.2. The hypersurface k3k3 — kjkT = 0 appears in this context in [18, page 74|, where the author
studied the toric locus of this reaction network. Here we prove that the disguised toric locus is the set
k3ks — kjky <0.



L. Brustenga i Moncust et al. / Journal of Pure and Applied Algebra 226 (2022) 107085 15

Fig. 6. Two different perspectives of the zero locus of the discriminant A = 0 (the grey hypersurface), in the positive orthant,
where the equation (5.1) is scaled by setting k] = 1. For the positive parameters k situated above the discriminant surface and in
the positive orthant, the dynamical system has exactly one equilibrium point. The dynamical systems corresponding to positive
parameters k below the discriminant surface are multistationary. The beige surface is the Segre variety given by k3k3 — kjk] = 0.
All the parameters k on the surface and above it (4.1) give rise to complex balance dynamical systems. In particular, above the
beige surface the dynamical systems are disguised toric. (For interpretation of the colors in the figure(s), the reader is referred to
the web version of this article.)

A <O A >0

Fig. 7. The two-dimensional phase plane z10xz2 for the system (4.2): if there exists a unique equilibrium (the red points), then
the equilibrium is also a globally attracting point. This holds since each stoichiometric compatibility class (the segments where
T 4+ y = constant in ]R2>0) is one-dimensional. (For interpretation of the colors in the figure(s), the reader is referred to the web
version of this article.)

We are working in the two-dimensional setting and with one-dimensional stoichiometric compatibility
class. In addition, a simple computation shows that near the axes the direction of the vector field given by
Equation (4.2) points towards the interior of a fixed stoichiometric compatibility class, as in Fig. 7. Thus if
there exists a unique equilibrium, then this equilibrium is also a globally attracting point (see for example
Fig. 7).

Hence for the points in the parameter space situated above the zero locus of the discriminant in Fig. 6
(where we dehomogenize the space of rate constants by setting k} = 1), there exists a globally attracting
fixed point for each stoichiometric compatibility class (i.e., up to conservation law).

In other words, the zero locus of the discriminant (the grey hypersurface), completely separates the
globally stable dynamical systems (those corresponding to the parameters above the grey surface) and the
multistationary dynamical systems (those corresponding to the parameters below the grey surface). Note
that a dynamical system being multistationary or not is an important property of bio-chemical reaction
networks (see [24]), since multistationarity can be translated into distinct responses of the cells, in function
of their initial conditions (up to conservation law).

One can show that inequality (4.1) implies (5.1). This has the following interpretation: there are dy-
namical systems which have a single equilibrium in each stoichiometric compatibility class, but that fail
to be disguised toric. This is because at the equilibrium point the complex balance conditions fail to be
satisfied.
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X
Ya Y3
L3
Y8 Y7
L ] L]
.
.
[ ] L]
Y5 Yeé
e o 0 X1
Y1 Y2

Fig. 8. Four reactions that start at the corners of a rectangle: graph G, rates k; > 0.

X2
Ya Y3
} }
ys8 A
L ] L]
I [ ] L]
Y5 Y6
_l_ e o o X1
Y1 Y2

Fig. 9. Complete graph over the sources of G: graph C:H rates k; > 0.
6. Filling an empty toric locus

In this section, we study the E-graph G = (V, E) given by Fig. 8, which is a generalization of [11, Example
5.2]. Here, we consider

[0 . A o A {0

1 o Y27 o 3= \B Y4 =\ B

o aA o —aA o —aA . aA
Y5 :=Yy1+ 3B Y6 :=Yy2 + 3B Y7 :=ys+ _3B Y8 ' =Yya+ 3B

with A,B >0, o, > 0 and af > 0. When «, 8 > 0, the E-graph G is not weakly reversible and its toric
locus K(G) is empty. But, as Corollary 6.2 shows, its disguised toric locus K (G) is a semialgebraic set of
Lebesgue positive measure. Instead, when a = 0 or = 0, the E-graph G is weakly reversible and its toric
locus K (G) is not empty, it is a hypersurface in RZ. But now, K’(G) = K(G), hence the disguised toric
locus K (G) has measure zero (see Remark 6.3).

Following [11, Theorem 4.7], we consider the realization using the complete directed graph on the sources
of G, as in Fig. 9.

Theorem 6.1. The dynamical system generated by the E-graph G = (V, E) given by Fig. 8 and k € Rfo has
a complex balanced realization using the E-graph G= (f/, E) given by Fig. 9 if and only if

(a—B)Q - k1ks < (a+ﬁ)2.

a+ koky a—p3 (6'2)
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Proof. Denote respectively by k; and l%ij > 0 the rate of the reaction y; — y; in G' and G. Fix rate constants
k € RZ and consider rate constants k € RZ given by

]%12 = kl(a — a) 1%21 = kg(a — b) ]%31 = kgC ]%41 = k4(5 — d)
kis == k1a ka3 := ko (B — 1) fezo = k3 (B — c) kaz = kad (6.3)
;12114 = kl(ﬁ — a) ]2124 = kgb ]A€34 = kg(Oé — C) ]2343 = k4(0¢ — d)

When
0 <a,b,c,d < min{a, 5},

we have I%Z‘j > 0 and the systems generated by G,k and by G,k are equal.

In [10, Theorem 9], the authors present a method to derive the equations defining the toric locus of a
graph from its Laplacian and the nullspace of its Cayley matrix. Following this method, we computed the
equations for the toric locus of G. It is given by a single equation

p(k) =0,

where p(ﬁ) is an homogeneous polynomial of degree 6 and 346 terms, we do not reproduce it here. Observe
that both the Laplacian and the nullspace of the Cayley matrix of G do not depend on A, B. Hence, the

polynomial p(k) does not depend on A, B.
Evaluating the polynomial p(k) at the k given by Equation (6.3), we obtain the equation

kikokska(kiks(a+c— (a+ B))* — koka(b+ d — (a + B8))%) = 0. (6.4)

Since k1, ..., ks > 0, Equation (6.4) is equivalent to

kiks <b+d—(a+ﬁ)>2. (6.5)

koky  \a+c—(a+p)

The system generated by G,k has a toric realization using the graph G if and only if there exist 0 <
a, b, c,d < min{«, 5} satisfying Equation (6.4) or, equivalently, Equation (6.5). Hence, in order to determine
when such a realization exists, we need to find the relative maximum and minimum of the function

()

restricted to 0 < a,b,¢,d < min{a, 3}. First assume that o # 8. The function f(z) = (z — (a + 3))?
is a parabola with a double zero at x = « + 3, which is bigger than 2min{a, 5}. Hence, in the region
0 < z < 2min{a, 3}, its maximum is (a + 8)? at = 0 and its minimum is (o — §)? at z = 2min{a, 8}.
Hence, the system generated by G,k has a toric realization using the graph G if

(O‘_ﬂ)Q < ks (O‘Jrﬂ)Q. (6.6)

a+p kaoky a—p
For the case a = f3, the reaction network G can always be realized using a single target network, where the
single target is the intersection of the diagonals of the rectangle given by y1,...,ys. Hence, by [25] for all
ki,...,ky the system generated by G and k is disguised toric. Observe that, fixing § > 0 and considering
the limit @ — f of Equation (6.2), the Equation (6.4) imposes no restriction on ki, ..., ks, which agrees
with the previous fact. O
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Corollary 6.2. We have K(G) is the set of ky,... ks > 0 such that

(55) < = (G25)

Proof. By [11, Theorem 4.7], it is enough to look at the complete directed graph on the source vertices of
G, i.e., é, while allowing some l%ij = 0 (which practically means that we are focusing on G and its weakly
reversible subgraphs). The result follows from Theorem 6.1, together with the remark that if one of the
inequalities

(55 <om = (G55

is not strict, then we can just choose some I;:Z-j =0in (6.3). O

Remark 6.3. Observe that

a—pf 2

a+p
is the square of the tangent of the angle between the vectors («, 8) and (1, 1), which is a measure of how far
is (a4, BB) of lying on one of the diagonal of the rectangle given by y1,...,ys. So, the worst case is when

such an angle is /4, that is, when « or § is zero. In this case, the network G is weakly reversible and its
toric locus is k1ks = koky, which is also its disguised toric locus since tan(w/4) = 1.

7. The N-gon on a line

In this section we study the complete E-graph G = (V, E) over the finite set V C R? of nonnegative
integer points on the line {X; + Xo = N — 1} see Fig. 10. It corresponds to N vertices on a line. Following
the construction and notation introduced in Section 4, given a vector of rate constants k € RE, we realize
the dynamical system generated by G and k by an E-graph with one reaction per source. Now, there are NV
vectors u;. The direction of the vectors u; and uy does not depend on the values of k, but for every vector

2N=2 chambers in RZ, one for

Uo,...,uny_1 there are two possibilities. Hence, now we need to consider
every possible sequence of directions of the vectors us, ..., uy_1, and, if in such a sequence there is a unique
direction change, we call that chamber a single-sign-change chamber. So, there are N — 2 single-sign-change
chambers, one for each vector us,...,uy_1.

In this section, Theorem 7.2 below shows, by means of algebraic methods, that for every k belonging to
a single-sign-change chamber the system generated by G and k is disguised toric. So, the disguised toric
locus K'(G) contains at least N — 2 regions in RZ of positive measure, while the toric locus K(G) has
codimension N — 2, and therefore has Lebesgue measure zero (the codimension is given by the deficiency

§=N—20f G).

Remark 7.1. After a change of coordinates, given by the maximal minors of the negative of the Laplacian
of G (see [10]), the toric locus K(G) is parametrized by the monomial map v : P* — PN~1. That is, the
toric locus is the rational normal curve in PV~ (see [18, Proposition 5.2.1]).

Theorem 7.2. Consider the “N-gon on a line” network given by the G = (V, E) introduced above. Given
ke REO belonging to a single-sign-change chamber, the system generated by G and k is disquised toric.
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‘YI X1

Fig. 10. The N-gon on a line.

Proof. First, we assume that the direction change occurs at the vector uy_;. For example, for N = 4 that
corresponds to (A) Chamber C; of Fig. 4.
That is, first we show that every system generated by the E-graph G* = (V, E*), where

E* = {yl — yi+1}i:1,...7N—l U{yN - yN—1}7

is disguised toric; then the general case will follow straightforwardly.
Consider the E-graph G = (V, E) where

E = {yi = Yit1:¥id1 = Yiti=1,. .N—1.

The E-graph G is a minimal extension of G* where the detailed balanced conditions can be established. In
fact, we will realize the system generated by G* and k* using the graph G in such a way that the detailed
balanced condition for G will be satisfied regardless of the values of k*.

Given k* € RZ; and ke R’EO we simplify the notation k5, _,, . to k] and ]%yi—>yj tojcij.
Fix a steady state (Zo, 1) of the system generated by G* and k*. The ratio a := > is a root of the
polynomial

p(x) =k Ry — ke
Consider k € REO given by
]2?12 =k ]%m'-;-l =k + ]Afii—l
by o1 =ky ki1 = a1

for every i =2,..., N — 1. Now, the system generated by G and k is equal to the one generated by G* and

k*. Indeed, for i = 2,..., N — 1, the coefficient of the monomial asév_ixil_l is

N —1 A 1 —k*
kiit1 ( 1) + ki1 <_1> = ( k7*> .

Moreover, the point (Zg, #1) is a detailed balance steady state for the system generated by G, k if and only
if foreveryi=1,...,N —1
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kiv1i = ok
Hence, by the recursive definition of IQ:H_“, we just need to check the case i = N — 1. Consider the sequence

qi ‘= kaifl N—is
fori=N—1,...,1. So, we have gqnv_o = k7 and for i =N —3,...,0

¢ = ki + qi1c
Hence, by Horner’s Method, agy = p(«) + k% and finally

aky_1n =aq =k =kyy_1. O

Remark 7.3. Another way one can prove this is by using the theory of single target networks. Note that the
other chambers will have both disguised-toric and not-disguised-toric points because the presence of three
or more sign changes allows us to get two or more equilibria, which rules out disguised-toric.

8. An algorithm for computing the disguised toric locus

We are now ready to give an algorithm to obtain the disguised toric locus of a reaction network.

First, we introduce some notation. By a cone, we mean a polyhedral cone. Consider two reaction networks
G = (V,E), G = (V, E’) We consider the locus of k € RE for which the dynamical system generated by
(G, k) has a complex balanced realization using the graph G ,

K(G,G):={kecRE, : 3ke Rfo with Fg k(x) = Fg (x) and (G, k) complex balanced}.

The set K (G, G’) is the part of the disguised toric locus of G that can be obtained using the graph G.
For example, for any network G, we have K (G,G) = V(G, K(@)). Another example, for the network G in
Section 3 we showed that, for all k € RE,, V(G, k) N K(G) # () which is equivalent to K(G) = K(G,G) =
RE,,

Given a y € R", we denote by C¢ y the positive cone generated by all the reaction vectors y — y’ of
G (notice that, when y is not a source of G, then Cgy = {0}). We also consider the cone I 4(y) € Réo

given by the condition on k € R‘EO

Z kyy (Y = ¥) € Cay,

y—y’ e@

and the cone

Hg e = ﬂ g aly) C RZ,.

y source of G or G

~

Observe that 3, ky—y (' — ) is the coefficient of x¥ in Fy, ;. So, the set I ¢ is the locus (possibly
empty) of k e RIEO for which the dynamical system generated by (G‘ , 1A<) has a realization using the network
G.

For example, vertex y; in Fig. 9 is a source in both the blue (G) and the yellow (&) networks. For
the yellow network, the coefficient of x¥! is a multiple of y5 — y1, but for the blue network it is a linear
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combination of three vectors. Now, such a linear combination is a positive multiple of y5 — y; if and only
if k € g, o (y1)-

We are interested to parametrize HG,G” where by to parametrize we mean to give a surjective rational
map. Observe that, since Il » is an intersection of cones, it always admits a parametrization. Typically,
we are interested in cases where G and G have the same sources and Cgy C C¢ , for all source. So,
dim Rgo < dim Hg e and we may use as source for the parametrization some subspace X C REO x R™, for
some m > dim Heo e — dim ]Rfo and with the projection p : X — ]REO surjective. For example, consider
again Fig. 9 with the blue (@) and the yellow (G) networks. Equations (6.3) define a parametrization
p: X = T(G,G) where X = RE, x Q with Q the open cube in R* of side length min{a, 3}.

Obviously, among all the parametrizations p : X — Hg e with X C Rgo xR™andp : X — REO
surjective, we are interested in those respecting the construction of Fgx and Fey. To this intent, we
introduce the following restrictions.

Fix a rational map p : X — g e with X C Rgo x R™ and with the projection X — Rgo being
surjective. We call p mass-action faithful if, for all (k,«) € X, setting k= p(k,«) the couples (G, k) and
(G, k) generate the same dynamical system.

When p is mass-action faithful, we call it dynamically complete if, for all ke Rfo, there is (k,a) € X
such that p(k, o) € V(é, 1A<) In other words, if for each dynamical system generated by G, there is (k,a) e X
such that (G, k) also generates such a dynamical system. Notice that if p is surjective, then it is dynamically
complete.

We call p a mass-action parametrization if it is both mass-action faithful and dynamically complete.

We call p target-surjective if, given k € REO and k € Rfo generating the same dynamical systems, there
exists @ € R™ such that (k,a) € X and p(k,a) = k.

Now, we can state Theorem 8.1 on which our algorithm is based. Its proof follows straightforwardly from
the definitions.

Theorem 8.1. Let G = (V, E) and G = (V, E) be two E-graphs. Consider a rational map p : X — I o with

X C Rgo X R™ for some m and consider the projection p : X — Rgo. If p is a mass-action parametrization,
then

Moreover, if p is also surjective, then
K(G,G) =V(G,p(p~ (K ().
Finally, if p is also both surjective and target-surjective, then
K(G,G) = p(p~ (K (G))).

Algorithm 8.2. Input: two reaction networks G and G.
Output:

K(G,G)
Step 1. Find a surjective target-surjective mass-action parametrization
p X — HG &

(For example, in Section 6, the map p is defined by the equations (6.3).)
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Step 2. Compute the equation on k for the toric locus K (é) of G, either by eliminating the variables
x1,..., Ty from the complex balance conditions (1.5) or by means of the Matrix Tree Theorem (see [10]).
Step 3. Compute p~ (K (G’)), which simply corresponds to substituting the components of p within the
equations for K (G) C REO. (See equation (3.3) for an example.)

Step 4. Project p~!'(K(G)) € X to RP. This amounts to eliminating the parameters of R” by means of
quantifier elimination. (For example, in Section 6, equation (6.6) is the result of eliminating a, b, ¢, d from
equation (6.4).)

Remark 8.3. Observe that, a surjective target-surjective mass-action parametrization p (from Step 1) can
be quite intricate to get, or it can lead to a computationally unfeasible quantifier elimination in Step 4. As
Theorem 8.1 highlights, the whole set K (G, G’) can still be obtained with simpler p at expenses of computing
some dynamical completions (see Definition 1.4).

Consider two reaction networks G = (V, E), G = (V, E). Observe that from [11, Theorem 4.10] follows
that

K(G) = U K(G,a"),

G’ weakly reversible subgraph of Geomp

where Gcomp is the complete graph over the sources of G. So, in order to compute the whole disguised toric
locus of G, we can apply the previous algorithm to all the subgraphs of Gcomp-
Moreover, notice that, when G’ is not weakly reversible, K (G,G") = (. Hence,

K(G) = U K(G,G".

G’ subgraph of Gcomp

So, in order to compute the whole disguised toric locus of G, we can apply the previous algorithm to all the
subgraphs of Gcomp. But now, we will show that the previous algorithm can be adapted to compute

U K(G,G)

G’ subgraph of G

with almost no additional computational cost. The main idea follows from the following observation: allowing
some of the coordinates of k to be zero is equivalent to considering the subgraph G’ corresponding to
removing from the graph G the reactions corresponding to those vanishing coordinates. So, we simply need
to replace Réo by Réo, and take care that all the limit cases behave as expected.

First, it is clear that when some of the coordinates of k are zero, the complex balance conditions of
the new subgraph G’ are the complex balance conditions of G evaluating those coordinates of k to zero.
Moreover, it is not hard to see that the equations of K(G') C RE, are the equations of K(G) C Réo
evaluating those coordinates of k to zero.

Now, we extend HG,G to contain the values of k with some zero coordinates:

Moo= [1  CaynCey
y source of G or G

In order to find a parametrization p : X — fIG ¢&» notice that f[G ¢ may be closed or locally closed depending
on the dimension and the relative positions of Cgy and Cg .; in each case so will be X.

Algorithm 8.4 (Computing the disguised toric locus).
Input: Two reaction networks G and G.
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Output:

U K(G,G".

G’ subgraph of &

Step 1. Find a surjective and target-surjective mass-action parametrization
p X — ﬂG &
Step 2. Reproduce Algorithm 8.2 using this p.

Remark 8.5. Note that going from Algorithm 8.2 to 8.4 simply amounts to interchange the strict inequalities
on the parameters of R™ defining the region X by non-strict inequalities.

Finally,

Algorithm 8.6 (Computing the whole disguised toric locus).
Input: A reaction network G.
Output: The disguised toric locus K(G) of G.

G

Apply Algorithm 8.4 to G and G = Geomp.

Remark 8.7. Note that using Gcomp can be computationally unfeasible.

On the other hand, if in order to simplify our computations we choose p (and é) such that p fails to
be surjective or target-surjective, then we may still obtain sufficient conditions on k such that (G, k) is
disguised toric.
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