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We study families of polynomial dynamical systems inspired by biochemical reaction 
networks. We focus on complex balanced mass-action systems, which have also 
been called toric. They are known or conjectured to enjoy very strong dynamical 
properties, such as existence and uniqueness of positive steady states, local and 
global stability, persistence, and permanence. We consider the class of disguised 
toric dynamical systems, which contains toric dynamical systems, and to which 
all dynamical properties mentioned above extend naturally. By means of (real) 
algebraic geometry we show that some reaction networks have an empty toric locus 
or a toric locus of Lebesgue measure zero in parameter space, while their disguised
toric locus is of positive measure. We also propose some algorithms one can use to 
detect the disguised toric locus.
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Introduction

Nonlinear dynamical systems are ubiquitous in the study of many natural phenomena (see, for instance, 
[1–3] and references therein). In particular, they have many important applications, in biology and medicine, 
such as in studying of the spread of infectious diseases, the dynamics of concentrations in biochemical 
reaction networks, or the dynamics of populations for species that interact in an eco-system.

Inspired by Poincaré [4], mathematicians decided to look for qualitative aspects of nonlinear dynamics, 
since explicit solutions of nonlinear dynamical systems are usually impossible to calculate. Of course, qual-
itative questions also prove to be very challenging. For instance, the second part of Hilbert’s 16th problem 
(see [5] and references therein for the state of the art) concerning polynomial differential equations in the 
real plane remains open after more than a century. In particular, an upper bound for the number of limit 
cycles is not known even for quadratic vector fields in the plane. Another very important feature of many 
nonlinear dynamical systems is chaotic dynamics [1]. The best known chaotic system is the Lorenz system: a 
quadratic dynamical system in R3 which is known to have chaotic solutions (the “butterfly effect”, see [6]).

Nonlinear dynamical systems modeling interaction networks are usually systems of differential equations 
generated by reaction networks. The latter are seen as directed graphs living in the Euclidean space, called 
Euclidean embedded graphs (see [7]). In the context of mass-action kinetics, the qualitative dynamical prop-
erties of these systems are strongly related to the combinatorics of the corresponding Euclidean embedded 
graph that generates the system. In addition, the right-hand-side of such systems is given by polynomials 
with real coefficients, giving rise to fruitful connections with the field of algebraic geometry [8–10].

Actually, the same dynamical system (i.e. the same polynomial right hand side), can be generated by 
several distinct reaction networks (see for instance [11,12,3]). In other words, by studying several reaction 
networks that generate the same system, we might deduce important and useful dynamical behavior, that 
would not have been accessible to us via the initial network. In our present work, which is a follow-up of 
[11], we will use this important property.

In this paper we focus on complex balanced dynamical systems, which have been introduced in the 
fundamental paper by Horn and Jackson [13] in 1972. Complex balanced systems form a large class of 
nonlinear dynamical systems for which a remarkable amount of information is known. For example, Horn 
and Jackson proved the existence and uniqueness of positive equilibria in each stoichiometric compatibility 
class. In other words, up to conservation laws, complex balanced dynamical systems have a unique positive 
steady state; moreover, these steady states are locally asymptotically stable. In the last decades, complex 
balanced dynamical systems have been proven or conjectured to enjoy exceptionally strong dynamical 
properties, such as global stability in each stoichiometric compatibility class, impossibility of oscillations 
and chaotic dynamics, persistence, and permanence.

One of the current main open questions and motivation in the field of chemical reaction network theory 
is the Global Attractor Conjecture, which was stated in 1974 by Horn in [14]. For a recently proposed proof 
see [15]. The conjecture says that complex balanced mass-action dynamical systems are globally stable 
within each positive stoichiometric compatibility class, that is, they have a globally attracting point (up 
to conservation laws). See [7, Section 2.2]. The global attractor conjecture has been proven under several 
hypotheses: in the case where the dimension of the stoichiometric compatibility class is lower or equal to 
three, and in all dimensions if the Euclidean embedded graph is connected and in all dimensions in the case 
of strongly endotactic networks. See [3] and references therein for the state of the art.

Complex balanced dynamical systems have been recently called toric dynamical systems [10], due to their 
strong connections to combinatorial and computational algebraic geometry. If the parameters of the system 
verify certain algebraic conditions, then the corresponding system is complex balanced (i.e., toric). It was 
also shown that the moduli spaces of toric dynamical systems are toric varieties [10]. This is advantageous, 
since toric varieties (see [16]) have particularly nice computational and combinatorial features. However, for 
most networks, the set in parameter space that gives rise to toric systems has Lebesgue measure zero. We 
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will refer to this set of parameters as the toric locus of the network. Note that recently there has been an 
increasing interest on the study of the toric locus, see also [17].

Our main contribution is proving that the dynamical properties of toric (i.e., complex balanced) dynamical 
systems are true for a larger class of dynamical systems, that we call disguised toric dynamical systems, 
see Definition 2.1. Roughly speaking, we expand the toric locus from sets of Lebesgue measure zero in the 
positive orthant, to sets of positive measure. We also present an explicit algorithm (see Algorithm 8.2) 
that can be used systematically in order to find the disguised toric locus (Definition 2.2), given a reaction 
network.

Regarding the structure of the paper: in Section 1 and Section 2 we give the standard terminology. Next 
we introduce the notion of disguised toric dynamical systems.

Section 3 deals with the dynamical system generated by the complete graph consisting of three vertices. 
Here the toric locus is a codimension-1 semialgebraic variety inside the positive orthant. However, the 
disguised toric locus is the whole space of positive rate constants.

In Section 4 we focus on the dynamical system generated by the graph with four collinear vertices, that we 
call “the quadrilateral on a line”. In Theorem 4.1, we show that the parameter space can be decomposed in 
four chambers, and we study the corresponding dynamical behavior in each of these chambers. In particular, 
there are three chambers where the dynamical systems are complex balanced for every parameter values. 
However, in the fourth chamber there are parameter values for which the dynamical system is not disguised 
toric. Furthermore we give a complete characterization of the complex balanced dynamical systems belonging 
to this special chamber. That is, we give necessary and sufficient conditions for the systems in this chamber 
to be disguised toric: see Theorem 4.3. In the literature (see [18]) it was known that if the parameters lay 
on a certain hypersurface (the Segre variety in this case), then the system generated by the quadrilateral 
on a line is complex balanced. Our main result in Theorem 4.3 states that all the parameters above this 
Segre variety give rise to complex balanced dynamical systems. That is, we pass from a set of Lebesgue 
measure zero (a hypersurface) to a set of positive Lebesgue measure. Next, in Section 5 we study the multi-
stationarity region in the parameter space, which is delimited by the zero locus of a certain discriminant 
(Fig. 6). To this end, we use the notion of detailed balance and tools from real algebraic geometry, such as 
the discriminant of a real polynomial and Descartes’ rule of signs.

In Section 6 we consider a non-weakly reversible reaction network. Note that weak-reversibility is a 
necessary condition for obtaining a nonempty toric locus. However, as was shown in [11], the dynamical 
system generated by this network can be realized by other reaction networks, which might exhibit nicer 
combinatorial properties, such as weak reversibility. Using the latter together with algebraic tools such as 
quantifier elimination, we show that the disguised toric locus of the system turns out to be a set of positive 
measure in the parameter space.

Section 7 is dedicated to the generalization of our study. We prove that the equilibria in the single-sign-
change chambers for the “N -gon on a line” are detailed balanced, thus complex balanced.

In Section 8 we propose some systematic procedures one could follow in order to extend the toric locus 
to the disguised toric locus of a polynomial dynamical system: this is Algorithm 8.2. The main tools in 
the algorithm are properties of the Euclidean embedded graphs that generate the given dynamical system. 
The main idea is that one can add some degrees of freedom by introducing new positive real variables in 
the process of generating the same dynamical system using a different reaction network. Instances where 
we apply the steps of Algorithm 8.2 appear throughout our paper: see the triangle on a line (Section 3), 
the quadrilateral on a line (Section 4) or Section 6, where by using Algorithm 8.2 we manage to extend an 
empty toric locus to a disguised toric locus of positive Lebesgue measure.
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1. Preliminaries

In this section we present standard terminology and notations for the study of chemical reaction networks. 
We refer to the textbook [19] for a complete introduction to the subject.

Throughout this paper, by RE
>0 we denote tuples of real numbers indexed by elements of E. We use bold 

letters to refer multi-index objects as vectors and monomials.

Definition 1.1 ([7]). A Euclidean embedded graph (or E-graph for short) is a digraph (directed graph) G =
(V, E), where V ⊆ Rn is the set of vertices, E is the set of edges with no self-loops and at most one edge 
between a pair of ordered vertices. Given an edge (y, y′) ∈ E we also write y → y′ ∈ E. Moreover, the 
vertices y, y′ are called respectively the source and the product of the edge y → y′.

A reaction network can be regarded as an E-graph G = (V, E) where E is the set of reactions [7]. 
Sometimes, we will refer to an E-graph as a reaction network, in order to emphasize its applied side. To this 
end, we will also refer to vertices as complexes and to edges as reactions. So, the restriction on E ensures 
that there is no reaction from a complex to itself (with no self-loops) and there is at most one reaction from 
one complex to another (at most one edge between a pair of ordered vertices).

Definition 1.2. Given an E-graph G = (V, E) with V ⊆ Rn and k ∈ RE
>0, consider the function

FG,k(x) :=
∑

y→y′∈E

ky→y′xy(y′ − y) (1.1)

where, for y = (α1, . . . , αn) ∈ Rn, xy := xα1
1 · · ·xαn

n . The positive real number ky→y′ is a rate constant
corresponding to the reaction y → y′ and the dynamical system generated by G and k ∈ RE

>0 is the following 
dynamical system.

dx
d t

= FG,k(x). (1.2)

Note that, for V ⊆ Rn
≥0 Definition 1.2 corresponds to mass-action kinetics [19, page 28]. For V ⊆ Nn, 

in the setting of mass-action kinetics, the function FG,k(x) gives rise to a polynomial dynamical system in 
(1.2), which is the case for most practical applications. Moreover, in this case, the set of source vertices 
corresponds to the set of monomials appearing in FG,k(x).

Inspired by [20] and [11], we give the following definition:

Definition 1.3. A particular dynamical system

dx
d t

= f(x)

has a realization using an E-graph G = (V, E) if there exists k ∈ RE
>0 with

FG,k(x) = f(x) for all x ∈ Rn
≥0.
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Definition 1.4. Given an E-graph G = (V, E) and k ∈ RE
>0, the G-equidynamic locus of k is the set

V(G,k) := {k′ ∈ RE
>0 : FG,k(x) = FG,k′(x) for all x ∈ Rn

>0}.

Given a subset Ω ⊆ RE
>0, the G-dynamic completion of Ω is the set

V(G,Ω) :=
⋃

k∈Ω
V(G,k).

Fix an E-graph G = (V, E). We describe the G-equidynamic locus for a k ∈ RE
>0. Let S = {y1, . . . , yl}

be the set of sources of G with some fixed order. Let Ei = {yi → y ∈ E} be the set of reactions whose 
source is yi and set ni as the cardinal of Ei. Consider the n × ni matrix Ai whose columns are the vectors 
y − yi ∈ Ei with some fixed order. Given k ∈ RE

>0, consider the column vector ki = (kyi→y) ∈ REi
>0 with 

the same order as the matrix Ai. Now,

FG,k(x) =
l∑

i=1

(
Aiki

)
xyi ,

and it is straightforward to see that V(G, k) is the polyhedral cone

V(G,k) = k + kerA1 × · · ·× kerAl,

where we consider RE = RE1 × · · ·×REl and Ai as a linear map REi → Rn.

Definition 1.5. Given an E-graph G = (V, E) with V ⊆ Rn, the inflow at the vertex y0 ∈ V and the state 
x0 ∈ Rn

≥0 is the number

∑

y→y0∈E

ky→y0x0
y, (1.3)

and the outflow at y0 and x0 is

( ∑

y0→y∈E

ky0→y

)
x0

y0 . (1.4)

In terms of reaction networks the inflow can be interpreted as the total production of the complex y0 per 
unit of time when the reaction network is at the state x0. Similarly, the outflow corresponds to the total 
rate at which the complex y0 is being consumed.

Definition 1.6 ([13,3,10]). Given an E-graph G = (V, E) and k ∈ RE
>0, the couple (G, k) satisfies the complex 

balanced condition if there exists x0 ∈ Rn
>0 satisfying the equation

( ∑

y0→y∈E

ky0→y

)
x0

y0 =
∑

y→y0∈E

ky→y0x0
y (1.5)

for every complex y0 ∈ V . When such an x0 exists, the dynamical system (1.2) generated by (G, k) is called 
a toric dynamical system and x0 is called a complex balanced steady state of (1.2).
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Recall that, when it exists, a complex balanced steady state is a steady state. In fact, the existence of 
a single complex balanced steady state implies that every steady state is complex balanced [13]. Moreover, 
the steady states variety of a toric dynamical system is a toric variety [10].

In terms of reaction networks the complex balanced condition has a very clear interpretation. It is asking 
for the existence of a state x0 for which the inflow and the outflow are equal (or, in other words, are balanced) 
at every complex. That is, if a complex balanced steady state x0 exists, when the reaction network is at 
such state the total production of each complex is balanced with its total outflow.

The first to study toric dynamical systems, Horn and Jackson [13], called these systems complex balanced 
dynamical systems. The new terminology has been introduced in [10], where the authors studied these 
systems from the computational algebraic geometry point of view. Given an E-graph G, they showed that 
the space of parameters k for which the couple (G, k) satisfies the complex balance condition is a toric variety. 
It is well known that toric ideals (see [16]) have particularly nice algebraic and combinatorial properties: 
“the world is toric” [21, Section 8.3].

Remark 1.7. A necessary condition for a dynamical system to be complex balanced is the weak reversibility 
of the graph that generates it [13,19].

Definition 1.8 ([3,19]). Given a reversible E-graph G = (V, E) and k ∈ RE
>0, the couple (G, k) satisfies the 

detailed balanced condition if there exists x0 ∈ Rn
>0 that satisfies

ky0→yx0
y0 = ky→y0x0

y (1.6)

for every reaction y → y0 in E. When such an x0 exists, it is called a detailed balanced steady state.

Definition 1.9 ([3, Definition 2.7]). Given an E-graph G, denote by n the number of vertices, by l the number 
of its connected components, and by s the dimension of the stoichiometric compatibility class (that is, the 
vector subspace generated by the edges of G). Then the deficiency of G is the integer δ := n − l − s.

2. Disguised toric dynamical systems

In this section we introduce the main objects of study: disguised toric dynamical systems and the disguised 
toric locus of an E-graph.

Definition 2.1. Given a dynamical system

dx
d t

= f(x) on x ∈ Rn
≥0, (2.1)

we say that it is a disguised toric dynamical system if there exist an E-graph G = (V, E) and k ∈ RE
>0 such 

that

f(x) = FG,k(x) for all x ∈ Rn
≥0

and the couple (G, k) satisfies the complex balanced condition. When (2.1) is a disguised toric dynamical 
system, we also say that it has a complex balanced realization using the graph G.

We say that the dynamical system (2.1) has a detailed balanced realization if there exist an E-graph 
G = (V, E) and k ∈ RE

>0 such that

f(x) = FG,k(x) for all x ∈ Rn
≥0

and the couple (G, k) satisfies the detailed balanced condition.
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Definition 2.2. Given an E-graph G = (V, E), we define respectively the toric locus and the disguised toric 
locus of G as the sets

K(G) := {k ∈ RE
>0 | the system generated by (G,k) is toric},

K̂(G) := {k ∈ RE
>0 | the system generated by (G,k) is disguised toric}.

2.1. Goals and motivation

Given an E-graph G = (V, E), we are mostly interested in its toric and disguised toric locus.
A first trivial observation is that for every E-graph, K(G) ⊆ K̂(G), since every toric dynamical system 

is disguised toric.
According to [10, Theorem 9], if G is weakly reversible, then K(G) ⊆ RE

>0 is a semialgebraic variety of 
codimension δ, where δ is the deficiency of G (see Definition 1.9).

In particular, for every weakly reversible E-graphs with 0 deficiency, K(G) = K̂(G) = RE
>0 (see [19, 

Section 7.7]).
Most reaction networks (or E-graphs) coming from practical applications have positive deficiency. So, for 

these reaction networks the toric locus is usually of measure zero in the space of rate constants. That is 
the main problem with toric dynamical systems, they enjoy extremely pleasant dynamical properties but 
the chances for a particular dynamical system to be toric are really small. But from the point of view of 
dynamical systems, the dynamical systems generated by a k in the toric locus K(G) or in the disguised 
toric locus K̂(G) are completely equivalent and, as we will show, K̂(G) is a much larger set in many cases. 
For example, K̂(G) may have positive measure even when K(G) is empty (see Section 6).

The disguised toric locus of an E-graph has been indirectly introduced in [11], where the authors used 
analytical methods to study it. Our main goal here is, first to establish an explicit definition of disguised 
toric dynamical systems and disguised toric locus, and second to compute and to find approximations of 
K̂(G) by means of algebraic methods.

3. Triangle on a line

In this section, we study the E-graph G = (V, E) given by Fig. 1. It is the complete graph over the three 
vertices y1, y2, y3.

This is an example where K(G) ⊆ RE
>0 is a codimension-1 semialgebraic variety, but K̂(G) is the whole 

space of rate constants RE
>0. This example also outlines a procedure to determine K̂(G) where non explicit 

complex balanced realization is given. More precisely, we will show that for every k ∈ RE
>0, there exists 

k̂ ∈ RE
>0 such that (G, ̂k) satisfies the complex balanced condition and the systems generated by G, k and 

G, k̂ are equal. That is, this example shows that sometimes the system generated by some rate constants 
can have a complex balanced realization using the very same graph but different rate constants. In other 
words, we show that V(G, k) ∩K(G) '= ∅ for all k ∈ RE

>0.
Given a vector of rate constants k ∈ RE

>0, we simplify the notation kyi→yj to kij .
Following the combinatorial scheme established in [10], the equation on kij for the toric locus K(G) ⊆ RE

>0
is

K1K3 −K2
2 , (3.1)

where Ki are the maximal minors of the negative of the Laplacian of the graph G, which can be computed 
by means of the matrix-tree theorem. Namely,

K1 := k21k31 + k32k21 + k23k31;
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X1

X2

y1

y2

y3

Fig. 1. Triangle on a line.

X1

X2

y1

y2

y3

Fig. 2. Cycle on three vertices G∗.

K2 := k13k23 + k21k13 + k12k23;
K3 := k12k32 + k13k32 + k31k12.

Observe that equation (3.1) defines a toric variety in P 2. This is a general fact for E-graphs proved in [10]. 
In fact, this toric variety is the rational normal curve in P 2, and this is a general fact for strongly connected 
E-graphs contained in a hyperplane X1 + · · · + Xn = N , see [18, Proposition 5.2.1.]

Theorem 3.1. For the E-graph G = (V, E) given by Fig. 1, the disguised toric locus K̂(G) is the whole space 
of rate constants RE

>0.

Before proving Theorem 3.1 we reduce the E-graph G to have only one reaction per source. Observe that 
given k ∈ RE

>0 we may realize the system generated by (G, k) by a cycle directed graph over y1, y2, y3
(see Fig. 2). Indeed, consider the vectors

ui :=
∑

yi→yj∈E

kij(yj − yi).

Since k12(y2 − y1) and k13(y3 − y1) are positively proportional to 
(−2

2
)
, so is the vector u1. Let us denote 

by k∗1 ∈ R>0 the proportional factor, that is

u1 = k∗1

(
−2

2

)
.

Similarly, let us denote by k∗3 ∈ R>0 the proportional factor between u3 and 
( 1
−1

)
.

The situation for the vector u2 is slightly different. Let us assume it is different from zero. Depending 
on the values of k2j , it will be positively proportional to 

(−1
1
)

or to 
( 1
−1

)
. We assume that u2 is positively 

proportional to the later, the other case simply corresponds to a permutation of the formal variables X1, 
X2. So, let us denote by k∗2 ∈ R>0 the proportional factor.
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Now, consider the E-graph G∗ = (V, E∗) given by Fig. 2. Finally, by construction, the dynamical systems 
generated by G, k and by G∗, k∗ = (k∗1 , k∗2 , k∗3) ∈ RE∗

>0 are equal.

Proof of Theorem 3.1. Clearly, we just need to prove that the disguised toric locus K̂(G∗) is the whole 
RE∗

>0 = R3
>0.

Now, we will come back to the E-graph G. That is, we realize the system generated by G∗, k∗ using the 
graph G. Fix k∗ and consider the E-graph Ĝ = G and the rate constants k̂ given by

k̂32 := 1
1 + a

k∗3

k̂31 := a

2(1 + a)k
∗
3

k̂21 := k∗2 + b

k̂23 := b

k̂12 := 2 c

1 + c
k∗1

k̂13 := 1
1 + c

k∗1

(3.2)

where a, b, c > 0. Equations (3.2) are chosen so that the dynamical systems generated by G∗, k∗ and Ĝ, k̂
are equal for all a, b, c > 0.

The toric locus for Ĝ is given by equation (3.1) substituting kij by k̂ij . So, the pullback of the equation 
defining K(Ĝ) ⊆ RÊ

>0 by (3.2) is the following function ϕ(a, b, c) on a, b, c > 0:
(
k∗3(b + k∗2)

a + 1 + (ak∗3)(b + k∗2)
2(a + 1) + b(ak∗3)

2(a + 1)

)(
k∗1(b + k∗2)

c + 1 + bk∗1
c + 1 + b(2ck∗1)

c + 1

)
−

−
(

k∗1k
∗
3

(a + 1)(c + 1) + k∗3(2ck∗1)
(a + 1)(c + 1) + (ak∗3)(2ck∗1)

(2(a + 1))(c + 1)

)2
.

(3.3)

Now, if there exist a0, b0, c0 > 0 such that ϕ(a0, b0, c0) = 0, then (3.2) for a0, b0, c0 will give a complex 
balanced realization of the system generated by G∗, k∗ using the graph Ĝ. So to finish, we show that such 
a0, b0, c0 always exist regardless of k∗.

First observe that, taking b1 large enough (tending to infinity), there exist real numbers (a1, b1, c1) with 
a1, b1, c1 > 0 such that ϕ(a1, b1, c1) > 0 (the first term of ϕ grows to infinity and the second term is 
bounded).

Second, taking b2 small enough (tending to zero) and c2 large enough (tending to infinity), there exist 
(a2, b2, c2) with a2, b2, c2 > 0 such that ϕ(a2, b2, c2) < 0.

Hence, by the intermediate value theorem, there exist (a, b, c) such that ϕ(a, b, c) = 0, since the function 
ϕ is continuous and its domain is connected. !

Corollary 3.2. For every endotactic (see [22] for the definition) E-graph G′ = (V ′, E′) with the same three 
source vertices y1, y2, y3 and for every k′ ∈ RE′

>0, the generated dynamical system is disguised toric.

Proof. We can always realize the system generated by G′, k′ using the E-graph G∗ given by Fig. 2. That 
is, for every k′ ∈ RE′

>0, there are k∗ ∈ RE∗

>0 (which we have proved that are disguised toric) generating the 
same system. !

Remark 3.3. The same result (with essentially the same proof) remains true for every weakly reversible E-
graph with three vertices and deficiency one. More generally, the same is true for every endotactic network 
with the three source vertices and all vertices on a line.

4. Quadrilateral on a line

In this section, we completely determine the dynamics of the systems generated by the E-graph G = (V, E)
given by Fig. 3. It is the complete graph over the four vertices y1, y2, y3, y4.
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X1

X2

y1

y2

y3

y4

Fig. 3. Complete directed graph on 4 vertices.

This example outlines a procedure to find sufficient semialgebraic conditions on k ∈ RE
>0 for being in 

K̂(G). The procedure could be described as follows. For a given k ∈ RE
>0, realize the dynamical system 

generated by (G, k) using an E-graph Ĝ = (V̂ , Ê) where the detailed balance condition can be established. 
Then, pullback to k ∈ RE

>0 the equations of the detailed balance condition on k̂ ∈ RÊ
>0. So, the obtained 

semialgebraic set will be contained in K̂(G), since detailed balance dynamical systems are toric.
In fact, the previous procedure completely determines the disguised toric locus K̂(G) in many cases, for 

this example and in Section 7 for all the so called single-sign-change chambers. Nevertheless, in Section 6, 
we will show that it may fail.

Similarly to Section 3, we start reducing the E-graph G to an E-graph G∗ = (V, E∗) with one reaction 
per vertex. We do it systematically and aiming that the procedure will be easy to extrapolate to the more 
general E-graph of Section 7, the N-gone on a line.

For a given vector of rate constants k ∈ RE
>0, let us simplify kyi→yj to kij and consider the vectors

ui :=
∑

yi→yj∈E

kij(yj − yi).

The system generated by G, k is

d

dt

(
x1
x2

)
= u1x

3
1 + u2x

2
1x2 + u3x1x

2
2 + u4x

3
2 =

= (k12 + 2k13 + 3k14)
(−1

1
)
x3

1+
+ (k21 − k23 − 2k24)

( 1
−1

)
x2

1x2+
+ (2k31 + k32 − k34)

( 1
−1

)
x1x

2
2+

+ (3k41 + k43 + 2k42)
( 1
−1

)
x3

2.

The vectors u1, u4 are respectively positively proportional to 
(−1

1
)

and 
( 1
−1

)
. Let us denote by k∗1 , k

∗
4 ∈

R>0 the respective proportional factors, namely

k∗1 := k12 + 2k13 + 3k14;
k∗4 := 3k41 + 2k42 + k43.

Again, for the vectors u2, u3 the situation is slightly different, since their direction depends on the particular 
values of k ∈ RE

>0. Both vectors are always positively proportional to either 
(−1

1
)

or 
( 1
−1

)
. We denote 

respectively the positive proportional factor for each case by k∗2 and k∗3 , namely
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k∗2 :=
{
k21 − k23 − 2k24 if k21 − k23 − 2k24 > 0
−k21 + k23 + 2k24 otherwise

k∗3 :=
{

2k31 + k32 − k34 if 2k31 + k32 − k34 > 0
−2k31 − k32 + k34 otherwise.

So now, we have to distinguish four possible cases in order to realize the system generated by G, k by an 
E-graph with a reaction per source. This cases are summarized in Proposition 4.1 below.

Proposition 4.1. Consider the E-graph G = (V, E) given by Fig. 3. Consider a vector of rate constants 
k ∈ RE

>0 and consider k∗ = (k∗1 , . . . , k∗4) defined above. The dynamical system generated by G, k is equal to 
the system generated by k∗ and

1. the E-graph given by (A) in Fig. 4 if

{
k21 − k23 − 2k24 ≤ 0;
2k31 + k32 − k34 ≤ 0;

2. the E-graph given by (B) in Fig. 4 if

{
k21 − k23 − 2k24 ≥ 0;
2k31 + k32 − k34 ≤ 0;

3. the E-graph given by (C) in Fig. 4 if

{
k21 − k23 − 2k24 ≥ 0;
2k31 + k32 − k34 ≥ 0;

4. the E-graph given by (D) in Fig. 4 if

{
k21 − k23 − 2k24 ≤ 0;
2k31 + k32 − k34 ≥ 0.

Definition 4.2. We call respectively the regions in RE
>0 (= R12

>0, by abuse of notation) corresponding to 
each case of Proposition 4.1 the i-th chamber, and we denote them by C1, . . . , C4. We call single-sign-change 
chambers the chambers for which the direction in the sequence of vectors u1, . . . , u4 changes only one time; 
in this case these are the chambers C1, C2, C3.

Theorem 4.3. Consider the E-graph G = (V, E) given by Fig. 3. Consider a vector of rate constants k ∈ RE
>0

and consider k∗ = (k∗1 , . . . , k∗4) defined above. The dynamical system generated by G and k ∈ RE
>0 is disguised 

toric if and only if

1. the vector k belongs to the 1st chamber, or to the 2nd chamber, or to the 3rd chamber (i.e. these are the
single-sign-change chambers) or

2. the vector k belongs to the 4th chamber and

k∗3k
∗
2 ≤ k∗4k

∗
1 . (4.1)
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X1

X2

y1

y2

y3

y4

X1

X2

y1

y2

y3

y4

(A) Chamber C1.

X1

X2

y1

y2

y3

y4

X1

X2

y1

y2

y3

y4

(B) Chamber C2.

X1

X2

y1

y2

y3

y4

X1

X2

y1

y2

y3

y4

(C) Chamber C3.

X1

X2

y1

y2

y3

y4

X1

X2

y1

y2

y3

y4

(D) Chamber C4.

Fig. 4. The four chambers associated to the quadrilateral on a line. Chambers C1, C2, C3 are single-sign-change chambers. Chamber 
C4 is not a single-sign-change chamber because the direction of the vectors u1, . . . , u4 changes three times.

Proof. The first case is a particular case of a more general fact proved in Theorem 7.2.
Fix k in the 4th chamber C4. Then, the system generated by G, k is equal to the system generated by 

the E-graph G∗ given by (D) in Fig. 4 and k∗. Hence, we may restrict to the system generated by G∗, k∗.
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X1

X2

y1

y2

y3

y4

Fig. 5. Detailed balanced extension of C4.

Now, we consider the E-graph Ĝ given by Fig. 5, which contains the same source vertices as the E-graph 
G∗; we will obtain the desired result by considering the detailed balance conditions for Ĝ, as explained 
below. We also consider the rate constants k̂ given by

k̂12 := k∗1

k̂21 := k∗2 + a

k̂23 := a

k̂32 := b

k̂43 := k∗4

k̂34 := k∗3 + b

where a, b > 0. First we will show that, for every k∗ satisfying Equation (4.1), there exist a, b > 0 for which 
the couple (Ĝ, ̂k) satisfies the detailed balance condition (and then also the complex balanced condition). 
Second, we will show that if the system generated by G∗, k∗ is disguised toric, then the condition Equa-
tion (4.1) is necessarily satisfied.

The dynamical system generated by G∗ and k∗ is

dx1
d t

= −k∗12x
3
1 + k∗21x

2
1x2 − k∗34x1x

2
2 + k∗43x

3
2; (4.2)

dx2
d t

= −dx1
d t

. (4.3)

So, given a positive steady state (x̃1, ̃x2) ∈ R2
>0, the ratio α := x̃2

x̃1
> 0 satisfies the equation

k∗1 − αk∗2 − α2(αk∗4 − k∗3) = 0. (4.4)

From this equation and assumption Equation (4.1) it follows that

k∗3
k∗4

≤ α ≤ k∗1
k∗2

.

Hence, we may set b := αk∗4 − k∗3 and a := αb. It is trivial to check that the point (x̃1, ̃x2) satisfies the 
detailed balance conditions for the couple (Ĝ, ̂k) if and only if

k̂12

k̂21
= k̂23

k̂32
= k̂34

k̂43
= α,

which are satisfied for such values of a and b.
Now assume that Equation (4.1) is not satisfied. If the system generated by G∗ and k∗ is disguised toric, 

by [11, Theorem 4.7], we should be able to find a complex balanced realization using the complete directed 
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E-graph G given by Fig. 3. We will focus on the vertex y4, since we just need to check that the complex 
balanced condition fails at one vertex. Consider the following realization using the E-graph G′ = G and k′

given by

k′43 := a k′42 := 1
2b k′41 := 1

3(k∗4 − a− b) k′34 := k∗3 + a + b,

where a, b > 0 and a + b < k′43 (we just focus on the relevant rate constants).
Again, fix a positive steady state (x̃1, ̃x2) of the system generated by G∗ and k∗. If for this steady 

state we have k∗3 x̃1x̃2
2 < k∗4 x̃

3
2, then, by Equation (4.4), Equation (4.1) is satisfied. Hence, we assume that 

k∗3 x̃1x̃2
2 > k∗4 x̃

3
2. So, for the outflow at y4 we have

(k′43 + k′42 + k′41)x̃3
2 < k∗4 x̃

3
2 < k∗3 x̃1x̃

2
2 < k′34x̃1x̃

2
2,

and the inflow is greater than k′34x̃1x̃2
2. From this, we conclude that the complex balanced condition cannot 

be satisfied. !

5. Globally stable systems which are not disguised toric

In this section we discuss the difference between uniqueness of equilibria and the property of being 
disguised toric. In particular, we provide examples of dynamical systems which are globally stable but fail 
to be disguised toric. We study the qualitative behavior of the dynamical systems inside a fixed stoichiometric 
compatibility class, i.e., up to conservation laws. See [19, Definition 3.4.6.] for a definition.

Lemma 5.1. Consider the E-graph G∗ given by (D) of Fig. 4. The dynamical system generated by G, k∗ has 
exactly one equilibrium point in each stoichiometric compatibility class if and only if the following inequality 
is satisfied

(k∗3k∗2)2 − 4k∗4(k∗2)3 − 4(k∗3)3k∗1 − 27(k∗4k∗1)2 + 18k∗4k∗3k∗1k∗2 < 0. (5.1)

Proof. The dynamical system generated by G∗ and k is Equation (4.2). Since we are interested in the 
dynamics inside a fixed stoichiometric compatibility class, we have x1+x2 is constant (see Fig. 7), since d x2

d t =
−dx1

d t . Given a steady state of the system generated by G and k∗, the ratio α := x̃2
x̃1

satisfies Equation (4.4). 
Thus we are interested in the zeros of the cubic polynomial:

f(α) := k∗1 − k∗2α + k∗3α
2 − k∗4α

3.

The dynamical system (4.2) has no negative equilibria, since the cubic polynomial f has no negative 
real roots. This follows from Descartes’s rule of signs [23, Theorem 2.33] for counting positive roots of 
a real polynomial in one variable. Namely, we have the derivative f ′(α) = −k∗2 + 2k∗3α − 3k∗4α2. Since 
f ′(−α) = −k∗2 − 2k∗3α− 3k∗4α2, the number of sign-changes in the coefficients of f ′(−α) is zero, thus f ′ has 
no negative real roots. In addition, by Descartes’ rule of signs we obtain that f can either have one or three 
positive real roots, counted with multiplicity.

Since f is a cubic polynomial in α, with positive real coefficients k∗i , condition (5.1) is equivalent with 
the discriminant of f being negative, i.e., f has one real root and two complex conjugate roots. See [23, 
Subsection 4.1]. In other words, if (5.1) holds, then in each stoichiometric compatibility class there exists a 
unique positive equilibrium. !

Remark 5.2. The hypersurface k∗3k
∗
2 − k∗4k

∗
1 = 0 appears in this context in [18, page 74], where the author 

studied the toric locus of this reaction network. Here we prove that the disguised toric locus is the set 
k∗3k

∗
2 − k∗4k

∗
1 ≤ 0.
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Fig. 6. Two different perspectives of the zero locus of the discriminant ∆ = 0 (the grey hypersurface), in the positive orthant, 
where the equation (5.1) is scaled by setting k∗

1 = 1. For the positive parameters k situated above the discriminant surface and in 
the positive orthant, the dynamical system has exactly one equilibrium point. The dynamical systems corresponding to positive 
parameters k below the discriminant surface are multistationary. The beige surface is the Segre variety given by k∗

3k
∗
2 − k∗

4k
∗
1 = 0. 

All the parameters k on the surface and above it (4.1) give rise to complex balance dynamical systems. In particular, above the 
beige surface the dynamical systems are disguised toric. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

x1

x2

∆ < 0
x1

x2

∆ > 0

Fig. 7. The two-dimensional phase plane x1Ox2 for the system (4.2): if there exists a unique equilibrium (the red points), then 
the equilibrium is also a globally attracting point. This holds since each stoichiometric compatibility class (the segments where 
x + y = constant in R2

>0) is one-dimensional. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

We are working in the two-dimensional setting and with one-dimensional stoichiometric compatibility 
class. In addition, a simple computation shows that near the axes the direction of the vector field given by 
Equation (4.2) points towards the interior of a fixed stoichiometric compatibility class, as in Fig. 7. Thus if 
there exists a unique equilibrium, then this equilibrium is also a globally attracting point (see for example 
Fig. 7).

Hence for the points in the parameter space situated above the zero locus of the discriminant in Fig. 6
(where we dehomogenize the space of rate constants by setting k∗1 = 1), there exists a globally attracting 
fixed point for each stoichiometric compatibility class (i.e., up to conservation law).

In other words, the zero locus of the discriminant (the grey hypersurface), completely separates the 
globally stable dynamical systems (those corresponding to the parameters above the grey surface) and the 
multistationary dynamical systems (those corresponding to the parameters below the grey surface). Note 
that a dynamical system being multistationary or not is an important property of bio-chemical reaction 
networks (see [24]), since multistationarity can be translated into distinct responses of the cells, in function 
of their initial conditions (up to conservation law).

One can show that inequality (4.1) implies (5.1). This has the following interpretation: there are dy-
namical systems which have a single equilibrium in each stoichiometric compatibility class, but that fail 
to be disguised toric. This is because at the equilibrium point the complex balance conditions fail to be 
satisfied.
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X1

X2

y1 y2

y3y4

y5 y6

y7y8

Fig. 8. Four reactions that start at the corners of a rectangle: graph G, rates ki > 0.

X1

X2

y1 y2

y3y4

y5 y6

y7y8

Fig. 9. Complete graph over the sources of G: graph Ĝ, rates k̂i ≥ 0.

6. Filling an empty toric locus

In this section, we study the E-graph G = (V, E) given by Fig. 8, which is a generalization of [11, Example 
5.2]. Here, we consider

y1 :=
(

0
0

)

y5 := y1 +
(
αA

βB

)

y2 :=
(
A

0

)

y6 := y2 +
(
−αA

βB

)

y3 :=
(
A

B

)

y7 := y3 +
(
−αA

−βB

)

y4 :=
(

0
B

)

y8 := y4 +
(

αA

−βB

) (6.1)

with A, B > 0, α, β ≥ 0 and αβ > 0. When α, β > 0, the E-graph G is not weakly reversible and its toric 
locus K(G) is empty. But, as Corollary 6.2 shows, its disguised toric locus K̂(G) is a semialgebraic set of 
Lebesgue positive measure. Instead, when α = 0 or β = 0, the E-graph G is weakly reversible and its toric 
locus K(G) is not empty, it is a hypersurface in RE

>0. But now, K̂(G) = K(G), hence the disguised toric 
locus K̂(G) has measure zero (see Remark 6.3).

Following [11, Theorem 4.7], we consider the realization using the complete directed graph on the sources 
of G, as in Fig. 9.

Theorem 6.1. The dynamical system generated by the E-graph G = (V, E) given by Fig. 8 and k ∈ RE
>0 has 

a complex balanced realization using the E-graph Ĝ = (V̂ , Ê) given by Fig. 9 if and only if

(α− β

α + β

)2
<

k1k3
k2k4

<
(α + β

α− β

)2
. (6.2)
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Proof. Denote respectively by ki and k̂ij > 0 the rate of the reaction yi → yj in G and Ĝ. Fix rate constants 
k ∈ RE

>0 and consider rate constants k̂ ∈ RÊ
>0 given by

k̂12 := k1(α− a)
k̂13 := k1a

k̂14 := k1(β − a)

k̂21 := k2(α− b)
k̂23 := k2(β − b)
k̂24 := k2b

k̂31 := k3c

k̂32 := k3(β − c)
k̂34 := k3(α− c)

k̂41 := k4(β − d)
k̂42 := k4d

k̂43 := k4(α− d).
(6.3)

When

0 < a, b, c, d < min{α,β},

we have k̂ij > 0 and the systems generated by G, k and by Ĝ, ̂k are equal.
In [10, Theorem 9], the authors present a method to derive the equations defining the toric locus of a 

graph from its Laplacian and the nullspace of its Cayley matrix. Following this method, we computed the 
equations for the toric locus of Ĝ. It is given by a single equation

p(k̂) = 0,

where p(k̂) is an homogeneous polynomial of degree 6 and 346 terms, we do not reproduce it here. Observe 
that both the Laplacian and the nullspace of the Cayley matrix of Ĝ do not depend on A, B. Hence, the 
polynomial p(k̂) does not depend on A, B.

Evaluating the polynomial p(k̂) at the k̂ given by Equation (6.3), we obtain the equation

k1k2k3k4
(
k1k3(a + c− (α + β))2 − k2k4(b + d− (α + β))2

)
= 0. (6.4)

Since k1, . . . , k4 > 0, Equation (6.4) is equivalent to

k1k3
k2k4

=
(
b + d− (α + β)
a + c− (α + β)

)2
. (6.5)

The system generated by G, k has a toric realization using the graph Ĝ if and only if there exist 0 <
a, b, c, d < min{α, β} satisfying Equation (6.4) or, equivalently, Equation (6.5). Hence, in order to determine 
when such a realization exists, we need to find the relative maximum and minimum of the function

(
b + d− (α + β)
a + c− (α + β)

)2

restricted to 0 < a, b, c, d < min{α, β}. First assume that α '= β. The function f(x) = (x − (α + β))2
is a parabola with a double zero at x = α + β, which is bigger than 2 min{α, β}. Hence, in the region 
0 < x < 2 min{α, β}, its maximum is (α + β)2 at x = 0 and its minimum is (α − β)2 at x = 2 min{α, β}. 
Hence, the system generated by G, k has a toric realization using the graph Ĝ if

(α− β

α + β

)2
<

k1k3
k2k4

<
(α + β

α− β

)2
. (6.6)

For the case α = β, the reaction network G can always be realized using a single target network, where the 
single target is the intersection of the diagonals of the rectangle given by y1, . . . , y4. Hence, by [25] for all 
k1, . . . , k4 the system generated by G and k is disguised toric. Observe that, fixing β > 0 and considering 
the limit α → β of Equation (6.2), the Equation (6.4) imposes no restriction on k1, . . . , k4, which agrees 
with the previous fact. !
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Corollary 6.2. We have K̂(G) is the set of k1, . . . , k4 > 0 such that

(α− β

α + β

)2
≤ k1k3

k2k4
≤

(α + β

α− β

)2
.

Proof. By [11, Theorem 4.7], it is enough to look at the complete directed graph on the source vertices of 
G, i.e., Ĝ, while allowing some k̂ij = 0 (which practically means that we are focusing on Ĝ and its weakly 
reversible subgraphs). The result follows from Theorem 6.1, together with the remark that if one of the 
inequalities

(α− β

α + β

)2
≤ k1k3

k2k4
≤

(α + β

α− β

)2

is not strict, then we can just choose some k̂ij = 0 in (6.3). !

Remark 6.3. Observe that

(
α− β

α + β

)2

is the square of the tangent of the angle between the vectors (α, β) and (1, 1), which is a measure of how far 
is (αA, βB) of lying on one of the diagonal of the rectangle given by y1, . . . , y4. So, the worst case is when 
such an angle is π/4, that is, when α or β is zero. In this case, the network G is weakly reversible and its 
toric locus is k1k3 = k2k4, which is also its disguised toric locus since tan(π/4) = 1.

7. The N -gon on a line

In this section we study the complete E-graph G = (V, E) over the finite set V ⊆ R2 of nonnegative 
integer points on the line {X1 +X2 = N − 1} see Fig. 10. It corresponds to N vertices on a line. Following 
the construction and notation introduced in Section 4, given a vector of rate constants k ∈ RE

>0 we realize 
the dynamical system generated by G and k by an E-graph with one reaction per source. Now, there are N
vectors ui. The direction of the vectors u1 and uN does not depend on the values of k, but for every vector 
u2, . . . , uN−1 there are two possibilities. Hence, now we need to consider 2N−2 chambers in RE

>0, one for 
every possible sequence of directions of the vectors u2, . . . , uN−1, and, if in such a sequence there is a unique 
direction change, we call that chamber a single-sign-change chamber. So, there are N −2 single-sign-change 
chambers, one for each vector u2, . . . , uN−1.

In this section, Theorem 7.2 below shows, by means of algebraic methods, that for every k belonging to 
a single-sign-change chamber the system generated by G and k is disguised toric. So, the disguised toric 
locus K̂(G) contains at least N − 2 regions in RE

>0 of positive measure, while the toric locus K(G) has 
codimension N − 2, and therefore has Lebesgue measure zero (the codimension is given by the deficiency 
δ = N − 2 of G).

Remark 7.1. After a change of coordinates, given by the maximal minors of the negative of the Laplacian 
of G (see [10]), the toric locus K(G) is parametrized by the monomial map ν : P 1 → PN−1. That is, the 
toric locus is the rational normal curve in PN−1 (see [18, Proposition 5.2.1]).

Theorem 7.2. Consider the “N-gon on a line” network given by the G = (V, E) introduced above. Given 
k ∈ RE

>0 belonging to a single-sign-change chamber, the system generated by G and k is disguised toric.
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X2

y1

y2

y3

yN

yN−1

yN−2

Fig. 10. The N-gon on a line.

Proof. First, we assume that the direction change occurs at the vector uN−1. For example, for N = 4 that 
corresponds to (A) Chamber C1 of Fig. 4.

That is, first we show that every system generated by the E-graph G∗ = (V, E∗), where

E∗ := {yi → yi+1}i=1,...,N−1
⋃

{yN → yN−1},

is disguised toric; then the general case will follow straightforwardly.
Consider the E-graph Ĝ = (V, Ê) where

Ê := {yi → yi+1,yi+1 → yi}i=1,...,N−1.

The E-graph Ĝ is a minimal extension of G∗ where the detailed balanced conditions can be established. In 
fact, we will realize the system generated by G∗ and k∗ using the graph Ĝ in such a way that the detailed 
balanced condition for Ĝ will be satisfied regardless of the values of k∗.

Given k∗ ∈ RE∗

>0 and k̂ ∈ RÊ
>0 we simplify the notation k∗yi→yi±1 to k∗i and k̂yi→yj to k̂ij .

Fix a steady state (x̃0, ̃x1) of the system generated by G∗ and k∗. The ratio α := x̃0
x̃1

is a root of the 
polynomial

p(x) := k∗1x
N−1 + · · · + k∗N−1x− k∗N .

Consider k̂ ∈ RÊ
>0 given by

k̂12 := k∗1

k̂N N−1 := k∗N

k̂i i+1 := k∗i + k̂i i−1

k̂i i−1 := αk̂i−1 i

for every i = 2, . . . , N − 1. Now, the system generated by Ĝ and k̂ is equal to the one generated by G∗ and 
k∗. Indeed, for i = 2, . . . , N − 1, the coefficient of the monomial xN−i

0 xi−1
1 is

k̂i i+1

(
−1

1

)
+ k̂i i−1

(
1

−1

)
=

(
−k∗i
k∗i

)
.

Moreover, the point (x̃0, ̃x1) is a detailed balance steady state for the system generated by Ĝ, k̂ if and only 
if for every i = 1, . . . , N − 1
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k̂i+1 i = αk̂i i+1.

Hence, by the recursive definition of k̂i+1 i, we just need to check the case i = N − 1. Consider the sequence

qi := k̂N−i−1N−i,

for i = N − 1, . . . , 1. So, we have qN−2 = k∗1 and for i = N − 3, . . . , 0

qi = k∗i + qi+1α.

Hence, by Horner’s Method, αq0 = p(α) + k∗N and finally

αk̂N−1N = αq0 = k∗N = k̂N N−1. !

Remark 7.3. Another way one can prove this is by using the theory of single target networks. Note that the 
other chambers will have both disguised-toric and not-disguised-toric points because the presence of three 
or more sign changes allows us to get two or more equilibria, which rules out disguised-toric.

8. An algorithm for computing the disguised toric locus

We are now ready to give an algorithm to obtain the disguised toric locus of a reaction network.
First, we introduce some notation. By a cone, we mean a polyhedral cone. Consider two reaction networks 

G = (V, E), Ĝ = (V̂ , Ê). We consider the locus of k ∈ RE
>0 for which the dynamical system generated by 

(G, k) has a complex balanced realization using the graph Ĝ,

K̂(G, Ĝ) := {k ∈ RE
>0 : ∃ k̂ ∈ RÊ

>0 with FG,k(x) = FĜ,k̂(x) and (Ĝ, k̂) complex balanced}.

The set K̂(G, Ĝ) is the part of the disguised toric locus of G that can be obtained using the graph Ĝ. 
For example, for any network G, we have K̂(G, G) = V(G, K(G)). Another example, for the network G in 
Section 3 we showed that, for all k ∈ RE

>0, V(G, k) ∩K(G) '= ∅ which is equivalent to K̂(G) = K̂(G, G) =
RE

>0.
Given a y ∈ Rn, we denote by CG,y the positive cone generated by all the reaction vectors y → y′ of 

G (notice that, when y is not a source of G, then CG,y = {0}). We also consider the cone ΠG,Ĝ(y) ⊆ RÊ
>0

given by the condition on k̂ ∈ RÊ
>0

∑

y→y′∈Ĝ

k̂y→y′(y′ − y) ∈ CG,y,

and the cone

ΠG,Ĝ :=
⋂

y source of G or Ĝ

ΠG,Ĝ(y) ⊆ RÊ
>0.

Observe that 
∑

y→y′∈Ĝ k̂y→y′(y′−y) is the coefficient of xy in FĜ,k̂. So, the set ΠG,Ĝ is the locus (possibly 

empty) of k̂ ∈ RÊ
>0 for which the dynamical system generated by (Ĝ, ̂k) has a realization using the network 

G.
For example, vertex y1 in Fig. 9 is a source in both the blue (G) and the yellow (Ĝ) networks. For 

the yellow network, the coefficient of xy1 is a multiple of y5 − y1, but for the blue network it is a linear 
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combination of three vectors. Now, such a linear combination is a positive multiple of y5 − y1 if and only 
if k̂ ∈ ΠG,Ĝ(y1).

We are interested to parametrize ΠG,Ĝ, where by to parametrize we mean to give a surjective rational 
map. Observe that, since ΠG,Ĝ is an intersection of cones, it always admits a parametrization. Typically, 
we are interested in cases where G and Ĝ have the same sources and CG,y ⊆ CĜ,y for all source. So, 
dimRE

>0 ≤ dim ΠG,Ĝ and we may use as source for the parametrization some subspace X ⊆ RE
>0 ×Rm, for 

some m ≥ dim ΠG,Ĝ − dimRE
>0 and with the projection p : X → RE

>0 surjective. For example, consider 
again Fig. 9 with the blue (G) and the yellow (Ĝ) networks. Equations (6.3) define a parametrization 
ρ : X → Π(G, Ĝ) where X = RE

>0 ×Q with Q the open cube in R4 of side length min{α, β}.
Obviously, among all the parametrizations ρ : X → ΠG,Ĝ with X ⊆ RE

>0 × Rm and p : X → RE
>0

surjective, we are interested in those respecting the construction of FG,k and FĜ,k̂. To this intent, we 
introduce the following restrictions.

Fix a rational map ρ : X → ΠG,Ĝ with X ⊆ RE
>0 × Rm and with the projection X → RE

>0 being 
surjective. We call ρ mass-action faithful if, for all (k, α) ∈ X, setting k̂ := ρ(k, α) the couples (G, k) and 
(Ĝ, ̂k) generate the same dynamical system.

When ρ is mass-action faithful, we call it dynamically complete if, for all k̂ ∈ RÊ
>0, there is (k, α) ∈ X

such that ρ(k, α) ∈ V(Ĝ, ̂k). In other words, if for each dynamical system generated by Ĝ, there is (k, α) ∈ X

such that (G, k) also generates such a dynamical system. Notice that if ρ is surjective, then it is dynamically 
complete.

We call ρ a mass-action parametrization if it is both mass-action faithful and dynamically complete.
We call ρ target-surjective if, given k ∈ RE

>0 and k̂ ∈ RÊ
>0 generating the same dynamical systems, there 

exists α ∈ Rm such that (k, α) ∈ X and ρ(k, α) = k̂.
Now, we can state Theorem 8.1 on which our algorithm is based. Its proof follows straightforwardly from 

the definitions.

Theorem 8.1. Let G = (V, E) and Ĝ = (V̂ , Ê) be two E-graphs. Consider a rational map ρ : X → ΠG,Ĝ with 
X ⊆ RE

>0×Rm for some m and consider the projection p : X → RE
>0. If ρ is a mass-action parametrization, 

then

K̂(G, Ĝ) = V
(
G, p

(
ρ−1(V(Ĝ,K(Ĝ))

)))
= V(G, p(ρ−1(K̂(Ĝ, Ĝ)))).

Moreover, if ρ is also surjective, then

K̂(G, Ĝ) = V(G, p(ρ−1(K(Ĝ)))).

Finally, if ρ is also both surjective and target-surjective, then

K̂(G, Ĝ) = p(ρ−1(K(Ĝ))).

Algorithm 8.2. Input: two reaction networks G and Ĝ.
Output:

K̂(G, Ĝ)

Step 1. Find a surjective target-surjective mass-action parametrization

ρ : X → ΠG,Ĝ.

(For example, in Section 6, the map ρ is defined by the equations (6.3).)
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Step 2. Compute the equation on k̂ for the toric locus K(Ĝ) of Ĝ, either by eliminating the variables 
x1, . . . , xn from the complex balance conditions (1.5) or by means of the Matrix Tree Theorem (see [10]).
Step 3. Compute ρ−1(K(Ĝ)), which simply corresponds to substituting the components of ρ within the 
equations for K(Ĝ) ⊆ RÊ

>0. (See equation (3.3) for an example.)
Step 4. Project ρ−1(K̂(G)) ⊆ X to RE . This amounts to eliminating the parameters of Rm by means of 
quantifier elimination. (For example, in Section 6, equation (6.6) is the result of eliminating a, b, c, d from 
equation (6.4).)

Remark 8.3. Observe that, a surjective target-surjective mass-action parametrization ρ (from Step 1) can 
be quite intricate to get, or it can lead to a computationally unfeasible quantifier elimination in Step 4. As 
Theorem 8.1 highlights, the whole set K̂(G, Ĝ) can still be obtained with simpler ρ at expenses of computing 
some dynamical completions (see Definition 1.4).

Consider two reaction networks G = (V, E), Ĝ = (V̂ , Ê). Observe that from [11, Theorem 4.10] follows 
that

K̂(G) =
⋃

G′ weakly reversible subgraph of Gcomp

K̂(G,G′),

where Gcomp is the complete graph over the sources of G. So, in order to compute the whole disguised toric 
locus of G, we can apply the previous algorithm to all the subgraphs of Gcomp.

Moreover, notice that, when G′ is not weakly reversible, K̂(G, G′) = ∅. Hence,

K̂(G) =
⋃

G′ subgraph of Gcomp

K̂(G,G′).

So, in order to compute the whole disguised toric locus of G, we can apply the previous algorithm to all the 
subgraphs of Gcomp. But now, we will show that the previous algorithm can be adapted to compute

⋃

G′ subgraph of Ĝ

K̂(G, Ĝ)

with almost no additional computational cost. The main idea follows from the following observation: allowing 
some of the coordinates of k̂ to be zero is equivalent to considering the subgraph G′ corresponding to 
removing from the graph Ĝ the reactions corresponding to those vanishing coordinates. So, we simply need 
to replace RÊ

>0 by RÊ
≥0, and take care that all the limit cases behave as expected.

First, it is clear that when some of the coordinates of k̂ are zero, the complex balance conditions of 
the new subgraph G′ are the complex balance conditions of Ĝ evaluating those coordinates of k̂ to zero. 
Moreover, it is not hard to see that the equations of K(G′) ⊆ RE′

>0 are the equations of K(Ĝ) ⊆ RÊ
>0

evaluating those coordinates of k̂ to zero.
Now, we extend ΠG,Ĝ to contain the values of k̂ with some zero coordinates:

Π̂G,Ĝ =
⋂

y source of G or Ĝ

CG,y ∩ CĜ,y.

In order to find a parametrization ρ : X → Π̂G,Ĝ, notice that Π̂G,Ĝ may be closed or locally closed depending 
on the dimension and the relative positions of CG,y and CĜ,y; in each case so will be X.

Algorithm 8.4 (Computing the disguised toric locus).
Input: Two reaction networks G and Ĝ.
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Output:
⋃

G′ subgraph of Ĝ

K̂(G,G′).

Step 1. Find a surjective and target-surjective mass-action parametrization

ρ : X → Π̂G,Ĝ.

Step 2. Reproduce Algorithm 8.2 using this ρ.

Remark 8.5. Note that going from Algorithm 8.2 to 8.4 simply amounts to interchange the strict inequalities 
on the parameters of Rm defining the region X by non-strict inequalities.

Finally,

Algorithm 8.6 (Computing the whole disguised toric locus).
Input: A reaction network G.
Output: The disguised toric locus K̂(G) of G.

Apply Algorithm 8.4 to G and Ĝ = Gcomp.

Remark 8.7. Note that using Gcomp can be computationally unfeasible.
On the other hand, if in order to simplify our computations we choose ρ (and Ĝ) such that ρ fails to 

be surjective or target-surjective, then we may still obtain sufficient conditions on k such that (G, k) is 
disguised toric.
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