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ABSTRACT. The structure of invariant regions and globally attracting regions
is fundamental to understanding the dynamical properties of reaction network
models. We describe an explicit construction of the minimal invariant regions
and minimal globally attracting regions for dynamical systems consisting of
two reversible reactions, where the rate constants are allowed to vary in time
within a bounded interval.

1. Introduction. Reaction networks are ubiquitous in several mathematical mod-
els arising in biology, physics and chemistry. These models often incorporate dif-
ferential equations with polynomial or power-law right hand sides [18] of the form
given by

dx “ s
E = Z k;x®v; (1)
i=1
where © = (21,22, ..., x,) € R, 8;,v; € R”, and ¥ := ¥z ..a¥n.
Associated with such dynamical systems is a property called persistence which
implies that no species can go extinct, i.e., liminf 2;(¢) > 0 for all i. The property
of persistence is related to some of the most important open problems in reaction
network theory, such as the Persistence Conjecture and the Global Attractor Con-
jecture. Several special cases of these conjectures have been proved in the last few
years, but many important problems are still open [2, 9, 12, 15]. It is therefore
important to analyze invariant regions and globally attracting regions for these
systems.
In general rate constants associated with reactions can vary in some range due
to the change in environment like the change in pressure, temperature or external
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signals, etc. Mathematically, this means that the rate constants k;(t) are functions
of time. In particular, if we set constraints on the rate constants to lie in a bounded
interval, these systems are called variable-k dynamical systems. For example, con-
sider the following network
Ea(t
y e ox
ka(t)
ka(t
x 20 9y
k)4(t)

If the rate constants satisfy e < ki (t), k2(t), k3(t), ka(t) < L, then the dynamical

(2)

systems generated by networks like (2) are called variable-k dynamical systems. In
this paper, we give an explicit construction of the minimal invariant regions and
minimal globally attracting regions for variable-k dynamical systems generated by
two dimensional reversible reaction networks similar to network (2) described above.

This paper is structured as follows: In Section 2, we introduce the notions of
persistence, permanence and uncertainty regions. In Section 3, we formally define
the notions of minimal invariant regions and the minimal globally attracting re-
gions for our dynamical systems. In Section 4, we give an explicit construction of
the minimal invariant region and the minimal globally attracting region for two
dimensional variable-k dynamical systems.

2. E-graphs, Persistence and Permanence. A reaction network is a directed
graph G = (V, E), with a finite set of vertices V' C R™ and a set of edges E C V x V.
Such a graph is also called an Fuclidean embedded graph (or E-graph) [5]. If there
is an edge from the vertex y to the vertex y’ in an E-graph, we will also denote
this by the reaction y — y’ (i.e, the reactions are just the edges of G). We will
say that an E-graph G = (V, E) is reversible if for every edge y — v’, there exists
an edge y' — y. We will say that an E-graph is weakly reversible if every edge
is part of a cycle. The reaction vector of a reaction y — 4’ is the vector y' — y.
The span of the reaction vectors is the stoichiometric subspace S of G, i.e., it is
given by S = {span(y’ —y)|y — v’ € E}. If we fix some xyg € RZ; then the
stoichiometric compatibility class (denoted by C) corresponding to @g is given by
C= ($0 + S) HRZO'

Every reaction network generates a family of dynamical systems on the positive
orthant. If we assume mass-action kinetics [1, 21, 22, 13, 23], the dynamical systems
generated by a reaction network are given by

dx
G- 2 Ry - ) (3)

y—y'€E

where ky_,,» > 0 is the rate constant of the reaction y — y’. In general, rate
constants can be time-dependent to accommodate the uncertainty introduced by
external influences. In this case, the reaction network generates non-autonomous
dynamical systems given by

dx
G 2 ety - ) (4)
y—y' ek

In particular, if the rate constants corresponding to the reactions are allowed to take
values in the bounded interval [e, %] for some € > 0, then the dynamical systems
they generate are called variable-k dynamical systems [9, 4].
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We now define some important dynamical properties of reaction networks.

Definition 2.1 (Persistence). Consider a dynamical system of the form (4). This
dynamical system is said to be persistent if for any initial condition x(0) € RZ,
the solution x(t) of (4) satisfies

liminf @;(t) > 0 (5)

t—Tmax

for all i = 1,2, ...,n where Ty,ax is the maximal time for which the solution exists.

Definition 2.2 (Permanence). Consider a dynamical system of the form (4). This
dynamical system is said to be permanent if for each stoichiometric compatibility
class C, there exists a compact set D C C and a time T > 0 such that for any
solution @(t) of (4) with «(0) € C, we have z(t) € D for all t > T..

Definition 2.3 (Detailed balance). Consider a dynamical system of the form (4)
generated by a reversible E-graph G = (V, E). This dynamical system is said to be
detailed balanced if there exists xy € R, such that the following holds for every
reversible reaction y = y’ € E:

Definition 2.4 (Complex balance). Consider a dynamical system of the form (4)
generated by an E-graph G = (V| E). This dynamical system is said to be complex
balanced if there exists &y € RZY; such that the following holds for every vertex
yel:

Z ky sy = Z ky’ﬁyxg/~ (7)

y—y'eE y' —yekE

In what follows, we state some of the most important open problems in reaction
network theory [9]:

1. Persistence conjecture: Any dynamical system generated by a weakly re-
versible E-graph is persistent.

2. Extended Persistence conjecture: Any variable-k dynamical system gen-
erated by an endotactic E-graph is persistent.

3. Permanence conjecture: Any dynamical system generated by a weakly
reversible E-graph is permanent.

4. Extended Permanence conjecture: Any variable-k dynamical system gen-

d by an endotactic E-graph is permanent.

la above conjectures are very closely related to the Global Attractor Con-
jecture, which states that complex balanced dynamical systems have a globally at-
tracting fixed point [8]. In particular, the proof of any one of these four conjectures
would also imply a proof of the Global Attractor Conjecture [8, 19, 20]. Several
special cases of these conjectures have been proved. Craciun, Nazarov and Pan-
tea [9] have proved the extended permanence conjecture in two dimensions. This
has been extended by Pantea [15] to the case of E-graphs with two dimensional
stoichiometric subspace. Anderson [2] has proved the Global Attractor Conjecture
for E-graphs consisting of a single connected component. Gopalkrishnan, Miller
and Shiu [12] have shown that variable-k dynamical systems generated by strongly
endotactic E-graphs are permanent. A fully general proof of the Global Attractor
Conjecture has recently been proposed by Craciun [4]. An essential component of
the proof relies on building invariant regions for certain dynamical systems. In this
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paper, we give an explicit construction of the minimal invariant regions and min-
imal globally attracting regions for variable-k dynamical systems generated by two
reversible reactions.

Definition 2.5 (Uncertainty region). Consider the reversible reaction
k1 (¢) ! /
aX +b0Y =—d X +bY (8)
ka(t)

Now consider the variable-k dynamical systems generated by this reversible reaction
if we choose rate constants as follows:

1. kl(t) = ¢ and ]ﬂg(t) = l.

€

2. ki(t) =L and ko(t) = €.

€

The condition for these dynamical systems to be detailed balanced gives the curves
b’ —b 2 .a—a’ b’ —b 1.,.a—a’

Y = e and y = ZT respectively. The wuncertainty region cor-
responding to the reaction (8) is the region enclosed between the curves yb/*b =
2279 and y?' b = e%a:a_a/.

Definition 2.6 (Attracting directions of an uncertainty region). Consider an un-
certainty region corresponding to the reaction given by

k@), /
aX +bY == d X +VY (9)

ka(t)
Note that this uncertainty region divides the positive orthant into three connected
components, as shown in Figure 1. For components that lie outisde the uncertainty
region, the attracting direction is the direction perpendicular to the line (b —b)y =
(a’ —a)z and points towards this uncertainty region. Within the uncertainty region,
the attracting direction is perpendicular to the line (' —b)y = (¢’ —a)z (i.e. parallel
to the reaction vector). The exact direction will be determined by the choice of rate
constants in (9).

Remark 1. It is easy to see in Figure 1 that, for networks that consist of a single re-
versible reaction, the blue regions are minimal globally attracting regions. Moreover,
any line segment obtained as the intersection between a blue region and a stoichio-
metric compatibility class is a minimal invariant region. Our goal in this paper
is to solve this problem for the simplest nontrivial case: the case of two reversible
reactions.

3. Variable-k reaction systems given by two reversible reactions. Consider
the reaction network G that consists of two reversible reactions:

aX +b0Y =a, X +bY

/ / (10)
as X + baY = al X + b,y

for some choice of real numbers a;,a}, by, b, as, ay, by, by > 0.

Remark 2. In Definition 2.1 we introduced the maximal time of existence Ty, .y for
a solution of a dynamical system. In this paper our focus is on dynamical systems
generated by two reversible reactions. For such systems the solutions are bounded
and exist for all time, i.e., Tyax = 00 [9].

In what follows, we will denote by GYariablek the set of all variable-k dynamical
systems generated by G. Also, if (t) is a solution of a dynamical system contained
in Gyariablek then we simply say that x(t) is a solution of GYariablesk,
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F1GURE 1. Attracting directions corresponding to the uncertainty
region of a reversible reaction. On the left we show the case where
the reaction has negative slope, and on the right we show the case
where the reaction has positive slope.

Remark 3. We will assume that the rate constant functions k;(t) in Equation 4.1
are piecewise continuous functions of time (i.e., the set of discontinuities is a discrete
set of points t; < t3 < ... < tr < ..., such that k; is continuous on any interval of
the form (tg,tx+1) and all the side-limits exist.) In particular, this implies that the
solutions x(t) of G¥*riablek depend continuously on their initial conditions.

Definition 3.1. Let x(t) be a solution of G¥¥iaPlek with initial condition (0) €
RZ,. The omega-limit of this solution is the set w(x(t)) = {z € RY : there is an

increasing sequence of times (¢ )pensuch that lim ¢, = oo and lim =(t,) = z}.
h—o0 h—o00

Definition 3.2. A set Qv . € RZ is said to be a closed invariant region of

Grariable-k if i jg closed and for any solution (t) of grariablek with (0) € Qv 1,
we have a(1) € Oy .

min,inv . . ..
i forall £ > 0. A set Q) s said to be the minimal
closed invariant region of G¥*iablek if for any closed invariant region Quariable-k, We
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FIGURE 2. An example of uncertainty regions corresponding to
the reaction network described in (10). Here we illustrate the case
where the slopes of both reaction vectors are negative. We will

always represent in red the uncertainty region of the reaction a; X +
k(¢
bY é ai X + b)Y, and in blue the uncertainty region of the
ko (t)
. ks(®) ,
reaction ae X + boY —= a5 X + b5Y.
ka(t)

have Q000 C Quariable-k.  For simplicity, instead of minimal closed invariant

region we will simply say minimal invariant region.

Definition 3.3. A set Q&°P « € R, is said to be a globally attracting region of

. variable- X
Grariable-lc if for any solution @(t) of Grariablek with 2(0) € RZ, we have w(z(t)) C
Q%:;lijabl.e—k' A set Qﬁgﬁﬁ;ﬁ}:k is said to be the minimal globally attracting region
of Fgar‘able‘k if for any globally attracting region Qariable-k, We have Qg’;ﬁfgﬁﬁk C
glo
QVariable—k‘

Definition 3.4. Given two points P,Q € RZ,, we say P ~ @ if there is a solution
x(t) of Grariablek guch that x(0) = P and for every ¢ > 0 there exists a T that
satisfies ||z(T) — Q|| <&.

4. Minimal invariant region and minimal globally attracting region for
variable-k dynamical systems generated by two reversible reactions. Ac-
cording to how we choose the parameters ay,al, b1, b}, as, ab, ba, by, we get the fol-
lowing cases that correspond to various configurations of the uncertainty regions.
(i) Both reaction vectors with negative slopes; one with slope less than —1 and

Bb g and 272 <« 1,
1

a’ —ay al,—as

the other with slope greater than —1: —1 <

. . . b—by  by—b

(ii) Both reaction vectors with slopes between 0 and —1: —1 < E,_ﬁ, E?_—azz < 0.
1 2

b —b1 b5 —bs

al—ax ap—asz

< —1 and < —1.

(iii) Both reaction vectors with slopes less than —1:

(iv) Both reaction vectors with positive slopes: ab,l le > 0 and % > 0.
1 2
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(v) One reaction vector with positive slope and the other with slope between —1
and 0: =2 > 0 and —1 < 2= <.
2—az a

al —
(vi) Ome reaction vector with positive slope and the other with slope less than —1:
by —b b, —b
az_az > 0 and a,i_all < —1.

(c) Case (iii). (D) Case (iv).

FI1GURE 3. Uncertainty regions corresponding to two reversible re-
actions in case (i)-(iv).

Figure 3 illustrates the uncertainty regions corresponding to cases (i)-(iv).
Throughout this paper, the analysis for cases (i)-(iv) will be similar, while, for
simplicity, in cases (v) and (vi) we will make the additional assumption that € is
small enough. In subsection 4.1 we will discuss how to construct the minimal invari-
ant region and minimal globally attracting region for cases (i)-(iv). For simplicity,
we will only consider case (i), i.e. both reaction vectors with negative slopes; one

b, —bs
0«'1—0«1 < 0

with slope less than —1 and the other with slope greater than —1: —1 <

and 2:;%2"; < —1; the analysis for other cases will proceed analogously. Throughout

the next subsection, all references to the dynamical system will be with respect to
case (i).

4.1. Cases (i)-(iv). In the following lemma we show that fixing the rate constants
to certain values also fixes the omega-limit points of the trajectories corresponding
to the variable-k dynamical system generated by two reversible reactions.
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FIGURE 4. Uncertainty regions corresponding to two reversible re-
actions. Regions Rap, Rgc, Rep, Rpa, Rapcp are also marked
on the figure. Note that the curves C; and Cs are interchangeable,
depending on the sign of a} — ay; similarly the curves C3 and Cy are
interchangeable, depending on the sign of b} — b;.

Lemma 4.1. Consider the dynamical systems in GY*aPlek “anqd consider the fol-
lowing curves (see Fig. 4 for an example):

C: m“ll_“lybll_bl = eiz
’ ’
Cs : xa,l_alyb,l_bl — €2,
C3: pt2—02ybo—be — 2,
3 !’ y /
as—az, by, —b 1
Cy:xt2%2yP202 = 5

€
Let A be the intersection point of the curves Co and Cy4, B be the intersection point
of the curves C1 and Cyq, C be the intersection point of the curves C; and C3 and D
be the intersection point of the curves Co and Cs. Denote by x(t) any solution of
gyariablesk yyith (0) € R2,. Then we have the following:

(i) If k1(t) =, kg( ) =1 ks(t)=1 k4( ) =¢€ for all t, thentli)m x(t
(oo}
(1) If kq(t ka(t) = €, ks3(t) k4(t) = € for all t, then hm x(t
(iii) If ki(t) = - kg(t) =g, kg(t) €, k4(t) L for all t, then 2‘/hm x(t
—00
(iv) If k(¢ ka(t) = =, k3(t) ka(t) = 1 ¢ for allt, then tlim x(t
Proof. In case (i), note that the point A is the intersection of the curves 91— iy
= 6% and 2%~ ‘12yb2‘_b2 = 62. If ki(t) = i,kz( ) =€ ks(t) = i,k4( ) = ¢, then the
point A becomes a detailed balanced equilibrium, since ki(t)z®1y" = kg(t)x“/lybll
and ks(t)z®y? = ky(t)z%yb. Then it follows from [9] that tli}m z(t) = A. The
oo

other cases are analogous. O

)=
) )=
) )=
)= ) =

b —bs

Constructing the set M.. Consider the intersection points A, B,C, D as de-
scribed in Lemma 4.1. Figure 4 illustrates these points. Since we are only dealing
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with cases (i)-(iv) as described in Section 4.1 (where the slopes of both reaction vec-
tors have the same sign), the uncertainty regions corresponding to the two reversible
reactions are as described in Figure 3. In cases (i)-(iii), the attracting directions
at points A, B, C, D have negative slopes; on the other hand, the tangents to the
curves Cy,Ca,C3,Cy at points A, B, C, D all have positive slopes. Therefore the cone’
formed by the attracting directions at points B and D contains the region Rapcp,
while the cone formed by the attracting directions at points A and C' is contained
in the region Rapcp. In case (iv), the cone formed by the attracting directions
at points B and D is contained in the region Rapcp; while the cone formed by
the attracting directions at points A and C' contains the region Ragcp. As re-
marked before, we will restrict our analysis to case (i), and the other cases will
follow analogously.

Starting from points B and D we construct four special trajectory curves, by
choosing rate constants such that the points A and C become globally attracting
points (like in Lemma 4.1 (¢) and (4i¢)). The region enclosed by these four trajec-
tories is M. (see Fig. 5).

FiGURE 5. We will prove that the minimal invariant region and
the minimal globally attracting region of GY*1#Ple=F ig given by the
set M. enclosed by the trajectory curves starting from B and D
and converging to the points A and C.

Proposition 1. We have M, C RapU Rgc URcp URpa U Rapep-

Proof. Consider a solution z(t) of G¥a1ablek with 2(0) = D. The dynamical system
it generates is given by

. / !
T\ a1, by a’ b a; —ai az, by aly bl az — a2
(y) = (""" — ka()a"y" ) (b,l —b1> + (Ra(®)z*2y" — ka(t)z*2y™?) (b; _b2>

If we choose rate constants ki(t) = €,ka(t) = 1,ks(t) = 1, ky(t) = €, then by
Lemma 4.1 we get tlim x(t) = A. We now show that this trajectory stays inside the
—00

1Here, by the word “cone” we mean the convex cone generated by the two attracting directions.
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S%:le < 0 and < —1.
Therefore, within the region Rp4, the trajectory is confined to a cone formed by
/ /
v = (a} o and vy = (a? — a2 as shown in Figure 6.
by — by bl — b

Denote by O the origin. Due to our choice of rate constants, on the curve OD the
attracting direction of the blue uncertainty region is inactive. The only contribution
on this curve is due to the attracting direction of the red uncertainty region, which
sends the trajectory to the interior of OAD. Therefore, this trajectory cannot
cross the curve OD. We show that it also cannot cross the curves OA and DA.
For contradiction, assume that the trajectory intersects OA at a point P. Note
that since the point P lies on the curve Cy, we have ks(t)z®2y?? = ky(t)z%2yb.
Therefore, the only contribution to the vector field at the point P is due to the
attracting direction of the blue uncertainty region (shown as vy in Figure 6) which
points towards the region O AD; this contradicts our assumption that our trajectory
reaches P. A similar argument shows that the trajectory cannot cross the curve
DA. Repeating this for the other parts of the boundary of M., we get that M, C
RapURpcURep U Rpa, as required. O

by —bs
al—ao

region Rp4. Since we are in case (i), we have —1: —1 <

FIGURE 6. The direction of the trajectory from D to A is confined
to the cone formed by vectors v; and vo. In particular, this means
that this trajectory lies in the region Rp4 (shown in light orange
color).

Proposition 2. The set M. is an invariant region for any dynamical system in
gvariable-k
: .

Proof. To show that M. is an invariant region, it suffices to show that on the
boundary of M., the vector field points towards the interior of M, [14, 3]. Towards
this, consider the dynamical system generated by (10)

(z) = (ki ()ay" — ks(t)2%iy") (ab% o ) + ()

’ / ! —_
(ks()a®=y® — ka(t)asy' ) <?f - 52) (12)
2 2
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Let
!/ i
a; —ay Qg — a2
v = and vy = . 13
! (b’l—b1> ? <b’2—b2) (13)
Then Equation (11) can be written as

(5) = (s — ka0 v (v~ ki) v 10

We will show that on the boundary of M. consisting of the trajectory from D to
A, the vector field points towards the interior of M,. The proof for other parts of
the boundary of M, will follow analogously. From Lemma 4.1, the trajectory from
D to A is given by the following system of ODEs.

) 1 ’ / 1 ’ ’
<§) _ <€xa1yb1 _ Exthy 1)/01 + (exazylm _ ex‘”y 2>’Ug (15)
D—A

(where we have used the fact that ki (t) = €, ko(t) = 1, ks(t) = 1, ks(t) = €). Let n
denote the inward pointing normal to the trajectory given by Equation (15). We

will show that
T
.l -n>0 16
<y> B (16)
Note that

L 1 ’ ’ 1 ! ’
(x> ‘n = |:(6xa1yb1 _ :calyl”)m + (xazybz — ex®y 2>’Ugj| .n=20 (17)
Y D—A € €

Since within region OAD, the trajectory of the dynamical system is confined
to the cone formed by vectors v, and vs (as shown in Figure 6), we get vy -n >
Oand vy - n < 0. Noting that € < ki (t), k2(t), k3(t), ka(t) < L, we have

’ ’ 1 ’ ’
(kl(t)xalybl - kg(t)x‘“ybl)m ‘n > (ex“lybl — —zh yb1>v1 ‘n (18)
€
and
az, b al, bl L s b aly, b
k3(t)z®2y”? — ky(t)z®2y”? Jvg -n > | —2®y”? —ex®y”? Jvg-n (19)
€
Adding Equations (18) and (19) and using Equation (17), we get that

Kkl(t)xalybl — ko (t)z™ yb’1>v1 + <k3 )z — ky(t) yb’z>v2] n>0 (20)
as required. O

Remark 4. Note that Proposition 2 shows that M., is an invariant region for
eo > 0. For all € < ¢, the inequalities given by Equations (18), (19) and (20)
become strict and hence the net vector field along the boundary of M, points
strictly onto its interior.

Remark 5. Consider points Py, Py, P3 € ]R2>0. If we have P; ~» P, and P, ~~ Ps,
then we have P; ~» P3. This is due to the fact the rate constants are assumed to be
piecewise continuous functions of time and the solutions of these dynamical systems
depend continuously on their initial conditions (see Remark 3).

Proposition 3. If P, € M., then P, ~ Py for any P, € R2>O.

Proof. We proceed by case analysis. (Refer to Figures 4 and 5).
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(i) Py € Rapcp: Then P; is the intersection of the curves kpx®iy®t = klxa/lybll
and kgx®yb? = kgaca/2 yb/2 for some constants € < ki, ko, k3, kg < % Choosing
k1(t) = ki,ka(t) = ko,ks(t) = ks, ka(t) = k4, we get that P is detailed
balanced for these choice of rate constants. Noting that the dynamical system
is two-dimensional, it follows from [9] that Py ~ Ps.

(ii) Py € M\ Rapcp: Without loss of generality, assume that the point P, lies in
the region OAD (similar arguments will work in the other regions). Consider
a trajectory a(t) of this dynamical system with (0) = P; and choose rate
constants ki(t) = €,ka(t) = L, ks3(t) = €,ks(t) = L as in Lemma 4.1 so that
lim x(t) = D.

t—o00

Construct a line through Ps, in the attracting direction of the blue un-
certainty region. Note that the points D and A are on opposite sides of
this line. Denote by ) the intersection point between this line and the
curve DA. (Here the curve DA refers to one that lies on the boundary
of M.). Now starting close to D on the DA curve, choose rate constants
ki(t) = eko(t) = L ks(t) = L, ka(t) = ¢, so that tlirgo x(t) = A. Let
(Z(t),9(t)) denote this trajectory. Let T be the time when (Z(T),3(T)) = Q.
After time T, set the rate constants of the reaction corresponding to the red
uncertainty region such that ks(t)Z(t)®§(t)?2 = ky(t)2(t)%24(t)%2. (Note that
this is possible since we are in the red uncertainty region.) This means the
only vector field at point @ is due to the attracting direction of the blue
uncertainty region. Trace this trajectory till we get to the point P,. From
Remark 5, we get that P, ~~ Ps.

O

Theorem 4.2. The set M. is the minimal invariant region of GYariablek,

Proof. Note that Proposition 2 shows that M, is an invariant region for any dy-
namical system generated by the reaction network in Equation (10). To show that
M is the minimal invariant region, we prove that M, is contained in every invari-
ant region of the dynamical system. This follows from Proposition 3 as follows. Let
M be any invariant region and pick some Z € M and some X € M,.. Construct
trajectories from Z that come closer and closer to X. Since M is invariant, this
gives rise to points in M at arbitrarily small distance to X. Since M is closed, it
follows that X € M, and therefore M, C M. O

4.2. Cases (v)-(vi). The goal of this section is to construct the region M. for
cases (v) and (vi), where one reaction vector has positive slope and the other has
negative slope. Figure 3 illustrates the uncertainty regions corresponding to cases
(i)-(iv).

In what follows, we present the analysis of case (v); the analysis for case (vi) is
completely analogous.

Consider the reaction network given in (10). The dynamical system it generates
is given by

. / !
T\ _ a1, by a’ by a; —ai az, by aly bl as — az
(y) = (kl(t)x Y ka(t)z"ty ) (b'l _ bl) + (k3(t)x Y ka(t)z"y ) (blz - bz)

For convenience, we will denote py = a; —aj,q1 = b} — by, p2 = as — ab, g2 =
by, — ba. Without loss of generality, assume that py = a1 —a} > ¢1 = b} — b1 > 0,
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(A) Case (v). (B) Case (vi).

FIGURE 7. Uncertainty regions corresponding to two reversible re-
actions in case (v)-(vi).

p2 = ag —ah < 0, gg = by — by > 0. Consider the following intersection points as
shown in Figure 7.
(i) Ayt = e%xpl and y? = 6%#’2.
(i) B:y® = eaP andy® = LaP2.
(iii) C:y? = 22P1 and y®2 = e2aP2.
(iv) D:y® = ZaP andy® = 2P,
Table 1 shows the slopes of the tangents to the boundary of the uncertainty
regions at their intersection points. We split our analysis into three subcases de-
pending on the sign of p1 + p2 — ¢1 — go.

TABLE 1. Slope of the tangents at the intersection of uncertainty
regions in the limit e — 0

2(=p1+pata1—42)
il »q1 ﬂe P1d2— P24l

2(=p1+p2ta1—a2)
IX"D P2 ¢ prap—paa1

2(=p1 —p2ta91+42)
%1 »q1 ﬂe P1d2—P24d1

m

m

m

m%z,qz pﬁe%:—;l};ﬂﬁ
m

m

m

m

2(p1 —p2—aq1+492)
Té}’ql ﬂe P1d2 —P24d1

2(p1 —p2—a1+4q2)
Iézyqz P2 ™ praz—paa1

2(p1tpr2—a1—a2)
P1,91 D1 —
Ple praz—paay
D q1

2(p1 tpPa—a1—a2)
P2,92 | P2 ¢ praz—poar
D g2

Case (a): p1+p2—q1 —q2 < 0.

In this case, note that mi}'® — —oo and m{?'** — 0 as € — 0. Since
the slope of the tangent to the lower red curve varies continuously as we
traverse from along the curve D to C, there exists a point E at which the
slope of the tangent to the red curve has the same slope as the attracting

direction of the blue uncertainty region. We construct trajectories of this
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dynamical system starting from the point E that go towards C' and D.
We now claim that both these trajectories stay inside the region R(CD).
Figure 8 illustrates this point.

We show that the trajectory cannot cross the curve OC. For contra-
diction, assume that the trajectory intersects OC' at point P. Note that
since the point P lies on the boundary of the blue uncertainty region, the
vector field at point P is given by the red attracting direction which points
towards the interior of the region Rop. We now show that the trajectory
cannot cross the curves EC and ED. For contradiction, assume that the
trajectory intersects EC at point P’. Note that the slope of the tangents
to the lower red curve increase monotonically from E to C. Therefore,
the net vector field at point P’ which is in the blue attracting direction
points towards the interior of the region Rop. A similar argument can
be used to show that the trajectory cannot intersect the curve ED.

FIGURE 8. In subcase (a), there exists a point E on the curve
from D to C where the slope of the tangent to the red curve has
the same slope as the attracting direction of the blue uncertainty
region. The boundary of M. in this region is given by trajectories
that start from F and go towards C' and D.

We now show that the trajectory cannot cross the curve OD. One can

a2
calculate the coordinate of E to be the following: zp = (—51—%) e

P2
6_7’23‘12,yE = (—gi—%) 7% ~s: . In the discussion that follows,
please refer Figure 9. Extend the tangent at E so that it meets OD
at point H. Let F' be the point on the curve OD, where slope of the
tangent is equal to the slope of the attracting direction corresponding
to the red uncertainty region. The coordinate of F' is given by the fol-

JE S _P1__
P1—41 2 P1—41 2 2 2

= — q192 T T ot
€P1—U Y = — il42 €P1—91 P1 ' 41,
p1p2

3 . — _ 9142
lowing: =g ( Dipe

We now show that yp is lesser than the y-coordinate of the point H.

Sir;ce pL+p2—q —q < 0and p; > ¢, we have —p23q2 < plqu

—i)re] =
P1—q1 P1
p%[PlyF + q1zF — P1YE — (1TE| — —pll(plyE + qzg) ase — 0. Note

- p% + q%. Therefore, we get yp — (=L )zr — [yp — (
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that —pll(plyE + qizp) <0, therefore we get yp + Z—iilfp <yg+ g—i;z:E as
e — 0.

FIGURE 9. In the same setting as in Fig. 8, we now focus on relative
positions of some important attracting directions lines. The point
F is chosen such that the slope of the tangent line to the curve OD
at F'is the same as the slope of the attraction direction of the red
uncertainty region.

Given the cone formed by the attracting directions in region FH D, the
trajectory always remains in the region EH D. Note that the slope of the
tangents to the upper blue curve increases monotonically from O to D,
the red attracting direction will point towards the interior of the region
Rep from F to D. Suppose that the trajectory meets the curve OD at
the point P’. Since yr is lesser than the y-coordinate of the point H, we
get that the red attracting direction will point towards the interior of the
region Rop from H to D. In particular, at P’, the vector field points
towards the interior of the region Rop. As a consequence, the trajectory
cannot cross OD.

We now prove that there exists trajectories from A to D and from B
to C which stay inside the regions Rap and Rp¢ respectively. Note that
the slope of the tangents to the upper blue curve at A and D given by
mb " and mi) " satisfy mf " — oo and m';*" — oo as € — 0. Further,
the slope of the tangents to the upper blue curve increase monotonically
from D to A. For contradiction, assume that the trajectory from A to
D intersects the curve AD at point P. Then the vector field at point P
is given by the attracting direction corresponding to the lower red curve,
which points towards the interior of the region Rap.

Note that inside the region R4p, the trajectory from A to D is confined
to the relevant cone formed by the attracting directions of the uncertainty
regions. Therefore the trajectory cannot intersect the upper red curve
from A to above it. We now show that the trajectory also cannot intersect
the lower red curve from D to upwards. Further, the slopes of the tangents
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FIGURE 10. Boundary of M, for subcase(a) in cases (v)-(vi).

to the lower red curve decrease monotonically from D to upwards. For
contradiction, assume that the trajectory from A to D intersects the lower
red curve from D to upwards at point P’. The vector field at P’ is given
by the blue attracting direction, which points towards the region Ryp. A
similar argument can be made to show that the trajectory from B to C'
stays inside the region Rpc.

We now show how to construct the boundary of M. in the region Rap.
Note that the slopes of the tangents to upper red curve satisfy mf>" —
—oo and miz? — 0 as € — 0. Consider the two trajectory that starts
at A and ends at B and the trajectory that starts at B and ends at A.
We will consider the outer union of these trajectories. We show that the
intersection of these two trajectories cannot lie in the region ABC'D. Note
that in the limit € — 0, on the curve AB, the slope of the tangent changes
continuously on the interval (—oo,0). The blue attracting direction has a
fixed negative slope given by —%. Therefore, both trajectories from the
point A to the point B and from the point B to the point A will enter
the blue uncertainty region. Let us assume that they intersect at point
M. We will show that the trajectories AM and M B will form a part
of the boundary of M.. To show this, we will prove that the point M
lies outside the region ABCD. The trajectories from A to B and from
B to A are initially both outside the region ABCD. To enter the region
ABCD, we need the slope of the tangent to the upper red curve to be
greater than —fl’—i for the trajectory from A to B, and to be < —% for the
trajectory from B to A. Since this cannot be achieved simultaneously, the
intersection of the trajectories AB and BA cannot be inside the region
ABCD.

(b) p1+p2—q1 —q2 > 0.

In this case, we have from Table 1, mi"" —  oco,mi?

— —oo,mp " = co,mip* = —co,m" = 0,mE? — 0,m) " —

0,m5® — 0 as € — 0. This is analogous to the subcase (a) and we
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can show that for ¢ small enough, the boundary of M. is given by the
following trajectories:

1. From A to B.

2. There exists a point E on the curve BC such that the slope of the
tangent to the blue curve has the same slope as the attracting direc-
tion of the red uncertainty region. Now construct trajectories from
E to B and E to C.

3. From C to D.

4. Outer union of the trajectories from A to D and D to A.

(¢) p1+p2—q1—ge = 0, this will be a combination of the previous situations.

From Table 1, we have the following: mfp™ = mp® = 2 and
mip? = my® = 2’—;. Let F be a point on the lower red curve CD

such that the tangent at E has the same slope as the blue attracting
direction, and E’ be a point on the upper red curve AB such that the
tangent at E’ has the same slope as the blue attracting direction. Let
us assume that the slope of the tangent on the lower red curve at point
C is k. Note that the slopes of the tangents decrease monotonically on
the curve CD in the range [k, Z—;]. Similarly, on the upper curve AB, the
slopes of the tangents decrease monotonically in the range [5—2, %], where
A is some positive constant. Therefore, there is at most one point E or £’
on the red curves AB or CD. When ¢ is small enough, we can construct
the boundary of M., where the upper trajectory between A and B is like
case (a) while the lower trajectory between C and D is like case (b); or
the upper trajectory between A and B is like case (b) while the lower
trajectory between C' and D is like case (a). Similarly on the blue curves
AD and BC, we have atmost one special point F' or F’, where the slope
of the tangent is same as the slope of the red attracting direction. The
construction of the boundary of M, then proceeds in identical fashion as
described above.

Theorem 4.3. For small enough €, the set M. is the minimal invariant region of
gvariable—k
: .

Proof. The proof proceeds in identical fashion to Proposition 2 and Theorem 4.2.
O

In what follows next, we show that for e small enough, M, is also the minimal
globally attracting region. Towards this, we need to analyze the points amongst
(A, B,C, D), that are end points of trajectories which form the boundary of M.. In
particular, for every € > 0, we are interested in the angle that the trajectories that
form the boundary of M, make when they meet at the globally attracting points.
To make this analysis work, it is useful to linearize the dynamical system and study
the eigenvalues of the corresponding Jacobian. The next proposition makes this
precise.

The Jacobian corresponding to the dynamical system (10) is given by J =

Ju i where
Jor Jao

’ ’
Ji = (a] — ay)arkiz® " y® — (a] — ay)a) kox® " 1y"

!’ /
+ (ab — ag)angz”*lyb"’ — (ab — a2)a’2k4ma271yb2.
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(a) — a1)brkyz®yPr 1 — (a) — al)bllkgmallybll_l
(

+

)b
ay — ag)bokszr®y b2—1 — (ay — az)by k/’4$a,23/bl2_
/
1 (

Jor = (b, = by)arkiz® 1y — (b — by)a) ko™ 1yt 1)

+ (b — by)agksz®™ 1yt — (b — by)ahksx® 1y

Jag = (b, — by)bykyz®y® ~1 — (b, — by )b, ka1

+ (b, = ba)baksz®y? 1 — (bl — bo)bykga 2y
Proposition 4. Consider case (i) and the trajectory from D to A. (A similar anal-
ysis will apply to other cases). Let J = ji j;z be the Jacobian corresponding

to the linearized dynamical system of this trajectory at point A. As e varies, J can
only have equal eigenvalues at finitely many points.

Proof. Note that for J to have equal eigenvalues, it has to satisfy
(Ji1 + J22)? = 4(J11Jaz — J12J21) (22)

From Lemma 4.1, the point A is the intersection of the following curves

71,(1/1 ybll — 61,(11 ybl
(23)
a bz _ 1 a' J
ex?y’? = —g2y°2
€
Solving Equations (22) and (23), we get a quasi-polynomial equation in €, which has
finitely many roots. Therefore, the number of points where J has equal eigenvalues

are finite. ]

The next proposition says that for trajectories that form the boundary of M.,
certain directions are forbidden.

Proposition 5. Consider case (i) and the trajectory from D to A. (A similar anal-
Jin Ji2
Jo1 Ja2
to the linearized dynamical system of this trajectory at point A. Then the trajectory
approaches the point A along the slower (smaller in magnitude) eigendirection of
the Jacobian J.

Proof. Note that the the trajectory approaches the point A along the slower(smaller
in magnitude) eigendirection unless it lies on the faster (larger in magnitude)
eigendirection. We show that the trajectory cannot approach the point A along
the faster eigendirection. In particular, we show that the faster eigendirection lies
in the second or fourth quadrant centred at A (refer to Figure 6), which is forbidden
by Proposition 1.

It is known [11, Theorem 14.3.4] that given a detailed balanced dynamical system
with a positive steady state ¢*, the Jacobian is symmetric with respect to the inner
product given by u * w = “1“’1 + =222, There is a change of basis transformation

that takes the Jacobian J in the standard basis to the Jacobian J* that is symmetric

ysis will apply to other cases). Let J = ( be the Jacobian corresponding

*
with respect to this inner product, given by J* = P~'JP where P = ( 031 OC*>
2

Note that signs of each element of J is unchanged by this transformation. Using
Lemma 4.1 and the Jacobian given by Equation (21), the off-diagonal elements J;2
and Jo1 of the Jacobian at A are given by the following
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o Jiz = (aﬁ*al)/bléﬂfalyblflf(ai*al)bﬁﬁx‘l;yb/ﬁl+(a§*az)b2%$“2ybrl*
(ahy — ag)bhex®2yb2—L.
o Jy = (b —b1)ay %x‘“_lybl — (b —bl)a’lex“/l_lybll + (4 —bg)agéxarlyb2 —
(b — by)apex>~ "y
At point A, we have %w‘“ybl = ex™ ybll and %x‘”yb? = ex®yP2. Since we are in case
(1), we have (aj—a1)(b1—b}) > 0 and (ab—a2)(ba—b5) > 0. Therefore, we get J12 > 0
and J2; > 0. This implies that Jj5 = J5; > 0. The eigenvector corresponding to the

J1=J3=A
smaller eigenvalue for a symmetric 2 x 2 matrix is given by e; = ( 2*1 12 where

A= \/(Jfl — J3,)2 +4J*3,. Since Jug‘;ﬁ < 0, this eigenvector points either in
the second or fourth quadrant. Transforrilzing this eigenvector to the standard basis
using P~ 'e; does not change the sign of the elements of the eigenvector. Therefore,
the vector corresponding to the faster eigendirection lies either in the second or
fourth quadrant centred at A, and we are done. O

Theorem 4.4. For small enough €, the set M. is a globally attracting region of
gvariable—k
: .

Proof. Let ¢y be small enough so that the region M., can be constructed according
to the procedure described in Section 4.1. Note that M. varies continuously as a
function of €. In addition, we have U M, = R2>0- Let ¢ be small enough so
e€(0,€e0]
that the region M., ¢ can still be constructed. Let @(t) be a solution of GYariable-k
with 2(0) € R%. Since U Meic = R%,, one can choose €; with 0 < €1 < €
€€(0,e0+¢]
such that x(0) € U M. We will prove that x(t) € M., for a large enough

e€ler,e0+(]
t

Towards this, let OM. denote the boundary of M.. Define a function T' :

U oM, — [ L ,1} so that I'(z,y) = % if (z,y) € M. We will show
e€ler,e0+(] €0+ C “

that T'(x(t)) < L for a large enough ¢. Let us assume that this is not true. By
€0

Proposition 2, we know that the sets I'"! (O 1] = M, and I'! (0 1] = M.,

' € ) €1

are invariant. This implies that T'(z(t)) € [%7 é} for all ¢t > 0.

Note that the function I is differentiable everywhere except maybe on boundary
of M, where trajectories end or where trajectories can start or intersect. We will
handle these cases separately. We will denote the curve that contains such points

where T is not differentiable by C;(e).

Case I. Consider points on the boundary of M. where trajectories can start or
intersect. Note that in this case, the angle made by M. along C; is always greater
than 7 no matter what e is (this follows from analyzing cases (v) and (vi)). We
will use some machinery from convex analysis. Towards this, for each curve Cj,
let Tj; and Tjs be two functions such that T = T; on one side of C; and T =
T, on the other side. We now consider the following cases. We let —Y(x) =
max(—"T;i(x), —Y;2(x)) in a neighbourhood of the curve C;. Defining Y(x) this
way ensures that Y(z) is lower C' [17, 16]. The subgradient of Y (x) along Cj(e) is
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given by
O (z) = {yVTji(x) + (1 =) Tja() | v € [0,1]}. (24)

Using the continuity of T, we can apply the chain rule of gradients [17, Theorem
10.6] to get

AT ox)(t) C {z - &(t)] = € IT(a(t))}. (25)

Note that Proposition 2 shows that M, is invariant, i.e., the vector field along its
boundary points towards the interior of M.. Consider a compact neighbourhood
K of the curve C;. Since K is compact, there is a § > 0 such that - VY;; < —¢
and @ - VY s < —d on K. From (24), we get that there exists a ¢ > 0 such that
z-x(t) < —=d <0forall z€ dY(x(t)) in K. Using (25), we get
sup (T o x)(t) < —0. (26)
>0
Since T is lower C, one can apply the mean value theorem [17, Theorem 10.48] to
T o x(t) to get that there is a 7 € [0, 7]

T(z(t)) — T(2(0)) = tay for some a; € (Y o x)(7). (27)
Since ay < §, this implies that on K, we have
T(x(t)) < YT(x(0)) — dt (28)
for all ¢ > 0. This contradicts the fact that T(x(t)) € [%, i} for all ¢ > 0.

Case II. Consider points on the boundary of M, that are end points of trajectories.
In this case, the angle made by M. along C; can be equal to or different from =
depending on whether the eigenvalues of the Jacobian are equal or not. From
Proposition 4, we know that the set of points when the eigenvalues of the Jacobian
are equal is finite. Let (€1, €, ...., ;) be the set such that for each €; in (e, €a, ..., €),
the boundary of M., contains end points of trajectories where the Jacobian has
equal eigenvalues. For each such ¢;, contruct a small enough annular region around
M, . Note that since the annular region is a compact set, by continuity there exists
a 0o such that @ - AT < —dp. Between the annular regions, the function Y(x)
is C'. Therefore there exists a §; such that @ - AY < —§;. Therefore, we have
& - AT < min(—dg, —d1). We can now repeat the procedure as in Case I to get
our desired conclusion. The only case that remains to be resolved when we have
distinct eigenvalues is when we start along the faster eigen direction. However, this
case does not occur due to Proposition 5. O

Theorem 4.5. For small enough €, the set M. is the minimal globally attracting
region of Gyariablek,

Proof. Theorem 4.4 shows that M, is a globally attracting region. We now show
that it is the minimal globally attracting region, i.e., it is contained in every globally
attracting region. Towards this, consider a an arbitrary point Q € M.. We will
show that @ lies in the omega-limit point of some trajectory of G¥ariablek - Consider
P, € M. such that P, # Q. From Proposition 3, we have P, ~» P, for any
P € R2>0~ Choose some 17 > 0. Then there exists a time t; and trajectory x(t)
with x(0) = P, such that ||z(t1) — Q|| < m1. Choose 1y > 0. Using Proposition 3
again, we get that there exists a time ¢} > ¢; and a trajectory starting at «(¢;) such
that ||z(t]) — P]| < n}. Now choose 12 > 0 such that 72 < n;. Using Proposition 3
again, we get that there exists a time t5 > t] and trajectory starting at (¢]) such
that ||xz(t2) — Q|| < n2. Repeating this procedure generates a trajectory x(¢) and
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a sequence 71 > 12 > ... > 1 such that lim N = 0 and a sequence of times
th1 < to < ... <t such that khrn tr, = 00 and hm x(tx) = Q. This implies that Q

lies in the omega—hmlt of this trajectory. O

5. Special cases. The goal of this section is to handle the special cases that we
have not considered in our analysis so far. More precisely, these are: (i) dynam-
ical systems corresponding to two reversible reactions with conservation laws, (ii)
dynamical systems corresponding to two reversible reactions, where one of the re-
action vectors is parallel to an axis, and (iii) dynamical systems corresponding to
two reversible reactions, where both reaction vectors are parallel to the axes. We
present their analysis below:

1. Dynamical systems corresponding to two reversible reactions with conser-
vation laws: The analysis for this case is similar to the case when there is
only one reaction. The minimal invariant region and the minimal globally
attracting region M. in this cases is exactly as given in Remark 1.

2. Dynamical systems corresponding to two reversible reactions, where one
of the reaction vectors is parallel to an axis: A typical depiction of the
uncertainty regions in this case is shown in Figure 1la. The analysis
is identical to cases (i)-(iv) discussed in Section 3. In particular, the
boundary of M. is generated by trajectories starting from points B and
D and existing at points A and C' as shown in Figure 11a. The region
enclosed by this boundary is the minimal invariant region and the minimal
globally attracting region M..

(A) Uncertainty regions correspond- (B) Uncertainty regions correspond-
ing to two reversible reactions, ing to two reversible reactions,
where one of the reaction vectors is where both reaction vectors are par-
parallel to an axis. The set M. is allel to the axes. The set M. is the
also shown. rectangle ABCD.

3. Dynamical systems corresponding to two reversible reactions, where both
the reaction vectors are parallel to the ares: The uncertainty regions in
this case are depicted in Figure 11b. The minimal invariant region and the
minimal globally attracting region M. is given by the intersection of the
two uncertainty regions, which is a rectangle as depicted in Figure 11b.
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6. Discussion. In this paper, we have constructed minimal invariant regions and
minimal globally attracting regions for variable-k dynamical systems generated by
networks possessing two reversible reactions. In this special case, the minimal in-
variant region coincides with the minimal globally attracting region. Of course,
these regions are also invariant and globally attracting regions for the correspond-
ing fixed-k mass-action systems.

In previous work [10] we have constructed minimal invariant regions and minimal
globally attracting regions for general toric differential inclusions [7, 4] in two dimen-
sions. Therefore, since large classes of mass-action systems can be embedded [6, 5]
into toric differential inclusions, this provides some invariant regions and some glob-
ally attracting regions (but not necessarily minimal ones) for many variable-k and
fixed-k mass-action systems with any number of reactions, even if they are not
reversible, as long as they can be embedded into toric differential inclusions. In
particular, this applies to all weakly reversible and to all endotactic networks in
two dimensions.

We have only considered here variable-k dynamical systems with two reversible
reactions; this is the simplest nontrivial case for this class of problems, and we regard
the results obtained here as a proof-of-concept for future work in this area. Numer-
ical simulations suggest that the analysis of the more general case with arbitrary
number of reversible reactions can be significantly more complicated. Similarly, nu-
merical simulations for the construction of minimal invariant regions and minimal
globally attracting regions for fixed-k dynamical systems suggest that this problem
might also be quite difficult, in general. We think that these are very interesting
avenues for future work.
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