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Abstract

Since its selection as the method of the year in 2013, single-cell technologies have
become mature enough to provide answers to complex research questions. With the
growth of single-cell profiling technologies, there has also been a significant increase in
data collected from single-cell profilings, resulting in computational challenges to process
these massive and complicated datasets. To address these challenges, deep learning
(DL) is positioned as a competitive alternative for single-cell analyses besides the
traditional machine learning approaches. Here we survey a total of 25 DL algorithms and
their applicability for a specific step in the single cell RNA-seq processing pipeline.
Specifically, we establish a unified mathematical representation of variational
autoencoder, autoencoder, generative adversarial network, and supervised DL models,
compare the training strategies and loss functions for these models, and relate the loss
functions of these models to specific objectives of the data processing step. Such a
presentation will allow readers to choose suitable algorithms for their particular objective
at each step in the pipeline. We envision that this survey will serve as an important
information portal for learning the application of DL for scRNA-seq analysis and inspire
innovative uses of DL to address a broader range of new challenges in emerging multi-

omics and spatial single-cell sequencing.
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Key points:

Single cell RNA sequencing technology generates a large collection of transcriptomic
profiles of up to millions of cells, enabling biological investigation of hidden expression
functional structures or cell types, predicting their effects or responses to treatment more
precisely, or utilizing subpopulations to address unanswered hypotheses.

Twenty-five deep learning-based approaches for single cell RNA seq data analysis are
systematically reviewed in this paper according to the challenge they address and their
roles in the analysis pipeline.

A unified mathematical description of the surveyed DL models is presented and the
specific model features were discussed when reviewing each approach.

A comprehensive summary of the evaluation metrics, comparison algorithms, and

datasets by each approach is presented.

Keywords: deep learning; single-cell RNA-seq; imputation; dimensionality reduction; clustering;

batch correction; cell type identification; functional prediction; visualization
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1. Introduction

Single cell sequencing technology has been a rapidly developing area to study genomics,
transcriptomics, proteomics, metabolomics, and cellular interactions at the single cell
level for cell-type identification, tissue composition, and reprogramming [1, 2].
Specifically, sequencing of the transcriptome of single cells, or single-cell RNA-
sequencing (scRNA-seq), has become the dominant technology in many frontier research
areas such as disease progression and drug discovery [3, 4]. One particular area where
scRNA-seq has made a tangible impact is cancer, where scRNA-seq is becoming a
powerful tool for understanding invasion, intratumor heterogeneity, metastasis, epigenetic
alterations, detecting rare cancer stem cells, and therapeutic response [5, 6]. Currently,
scRNA-seq is applied to develop personalized therapeutic strategies that are potentially
useful in cancer diagnosis, therapy resistance during cancer progression, and the survival
of patients [5, 7]. The scRNA-seq has also been adopted to combat COVID-19 to
elucidate how the innate and adaptive host immune system miscommunicates, worsening

the immunopathology produced during the viral infection [8, 9].

These studies have led to a massive amount of scCRNA-seq data deposited to public
databases such as the 10X single-cell gene expression dataset, Human Cell Atlas, and
Mouse Cell Atlas. Expressions of millions of cells from 18 species have been collected
and deposited, waiting for further analysis (Single Cell Expression Atlas, EMBL-EBI,
October 2021), . On the other hand, due to biological and technical factors, scRNA-seq
data presents several analytical challenges related to its complex characteristics like

missing expression values, high technical and biological variance, noise and sparse gene
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coverage, and elusive cell identities [1]. These characteristics make it difficult to directly
apply commonly used bulk RNA-seq data analysis techniques and have called for novel
statistical approaches for scRNA-seq data cleaning and computational algorithms for data
analysis and interpretation. To this end, specialized scRNA-seq analysis pipelines such
as Seurat [10] and Scanpy [11], along with a large collection of task-specific tools, have
been developed to address the intricate technical and biological complexity of sScCRNA-

seq data.

Recently, deep learning has demonstrated its significant advantages in natural language
processing and speech and facial recognition with massive data [12-14]. Such
advantages have initiated the application of DL in scRNA-seq data analysis as a
competitive alternative to conventional machine learning (ML) approaches for uncovering
cell clustering [15, 16], cell type identification [15, 17], gene imputation [18-20], and batch
correction [21] in scRNA-seq analysis. Compared to conventional ML approaches, DL is
more powerful in capturing complex features of high-dimensional scRNA-seq data. It is
also more versatile, where a single model can be trained to address multiple tasks or
adapted and transferred to different tasks. Moreover, DL training scales more favorably
with the number of cells in scRNA-seq data size, making it particularly attractive for
handling the ever-increasing volume of single cell data. Indeed, the growing body of DL-
based tools has demonstrated DL’s exciting potential as a learning paradigm to

significantly advance the tools we use to interrogate scRNA-seq data.
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In this paper, we present a comprehensive review of the recent advances of DL methods
for solving the challenges in scRNA-seq data analysis (Table 1) from the quality control,
normalization/batch effect correction, dimensionality reduction, visualization, feature
selection, and data interpretation by surveying deep learning papers published up to April
2021. In order to maintain high quality for this review, we choose not to include any
(bio)archival papers, although a proportion of these manuscripts contain important new
findings that would be published after completing their peer-reviewed process. Previous
efforts to review the recent advances in ML methods focused on efficient integration of
single cell data [22, 23]. A recent review of DL applications on single cell data has
summarized 21 DL algorithms that might be deployed in single cell studies [24]. It also
evaluated the clustering and data correction effect of these DL algorithms using 11

datasets.

In this review, we focus more on the DL algorithms with a much detailed explanation and
comparison. Further, to better understand the relationship of each surveyed DL model
with the overall scRNA-seq analysis pipeline, we organize the surveys according to the
challenge they address and discuss these DL models following the analysis pipeline. A
unified mathematical description of the surveyed DL models is presented and the specific
model features are discussed when reviewing each method. This will also shed light on
the modeling connections among the surveyed DL methods and the recognization of the
uniqueness of each model. Besides the models, we also summarize the evaluation
matrics used by these DL algorithms and methods that each DL algorithm was compared

with. The online location of the code, the development platform, the used datasets for
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each method are also cataloged to facilitate their utilization and additional effort to
improve them. Finally, we also created a companion online version of the paper at

https://huang-ai4medicine-lab.github.io/survey-of-DL-for-scRNA-seq-

analysis/qitbook/ _book, which includes expanded discussion as well as a survey of

additional methods. We envision that this survey will serve as an important information
portal for learning the application of DL for scRNA-seq analysis and inspire innovative
use of DL to address a broader range of new challenges in emerging multi-omics and

spatial single-cell sequencing.

2. Overview of the scRNA-seq processing pipeline
Various scRNA-seq techniques (like SMART-seq, Drop-seq, and 10X genomics

sequencing) [25, 26] are available nowadays with their sets of advantages and
disadvantages. Despite the differences in the scRNA-seq techniques, the data content
and processing steps of scCRNA-seq data are quite standard and conventional. A typical
scRNA-seq dataset consists of three files: genes quantified (gene IDs), cells quantified
(cellular barcode), and a count matrix (number of cells x number of genes), irrespective
of the technology or pipeline used. A series of essential steps in the scRNA-seq data
processing pipeline and optional tools for each step with both ML and DL approaches are

illustrated in Fig. 1.

With the advantage of identifying each cell and unique molecular identifiers (UMIs) for
expressions of each gene in a single cell, scRNA-seq data are embedded with increased
technical noise and biases [27]. Quality control (QC) is the first and the key step to filter

out dead cells, double-cells, or cells with failed chemistry or other technical artifacts. The
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most commonly adopted three QC covariates include the number of counts (count depth)
per barcode identifying each cell, the number of genes per barcode, and the fraction of

counts from mitochondrial genes per barcode [28].

Normalization is designed to eliminate imbalanced sampling, cell differentiation, viability,
and many other factors. Approaches tailored for scRNA-seq have been developed
including the Bayesian-based method coupled with spike-in, or BASICS [29],
deconvolution approach, scran [30], and scTransfrom in Seurat where regularized
Negative Binomial Regression was proposed [31]. Two important steps, batch correction
and imputation, will be carried out if required by the analysis.

e Batch Correction is a common source of technical variation in high-throughput sequencing
experiments due to variant experimental conditions such as technicians and experimental time,
imposing a major challenge in scRNA-seq data analysis. Batch effect correction algorithms
include detection of mutual nearest neighbors (MNNs) [32], canonical correlation analysis
(CCA) with Seurat [33], and Harmony algorithm through cell-type representation [34].

o Imputation step is necessary to handle high sparsity data matrix, due to missing value or
dropout in scRNA-seq data analysis. Several tools have been developed to “impute” zero

values in scRNA-seq data, such as SCRABBLE [35], SAVER [36] and scimpute [37].

Dimensionality reduction and visualization are essential steps to represent
biologically meaningful variations and high dimensionality with significantly reduced
computational cost. Dimensionality reduction methods, such as principal component
analysis (PCA), are widely used in scRNA-seq data analysis to achieve that purpose.
More advanced nonlinear approaches that preserve the topological structure and avoid

overcrowding in lower dimension representation, such as LLE [38] (used in SLICER [39]),

10



10

11

12

13

14

15

16

17

18

19

20

21

22

tSNE [40], and UMAP [41], have also been developed and adopted as a standard in

single-cell data visualization.

Clustering analysis is a key step to identify cell subpopulations or distinct cell types to
unravel the extent of heterogeneity and their associated cell-type-specific markers.
Unsupervised clustering is frequently used to categorize cells into clusters according to
their similarity often measured in the aforementioned dimensionality-reduced
representations. Some of popular algorithms include the community detection algorithm
Louvain [42] and Leiden [43], and data-driven dimensionality reduction followed with k-

Means cluster by SIMLR [44].

Feature selection is another important step in single-cell RNA-seq analysis to select a
subset of genes, or features, for cell-type identification and functional enrichment of each
cluster. This step is achieved by differential expression analysis designed for scRNA-seq,
such as MAST that used linear model fitting and likelihood ratio testing [45]; SCDE that
adopted a Bayesian approach with a Negative Binomial model for gene expression and
Poisson process for dropouts [46], or DEsingle that utilized a Zero-Inflated Negative

Binomial model to estimate the dropouts [47].

Besides these key steps, downstream analyses include cell type identification,

coexpression analysis, prediction of perturbation response, where DL has also been

applied. Other advanced analyses including trajectory inference and velocity and

11
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pseudotime analysis are not discussed here because most of the approaches on these

topics are non-DL based.

3. Overview of common deep learning models for scRNA-seq analysis

We start our review by introducing the general formulations of widely used deep learning
models. As most of the tasks including batch correction, dimensionality reduction,
imputation, and clustering are unsupervised learning tasks, we will give special attention
to unsupervised models including variational autoencoder (VAE), the autoencoder (AE),
or generative adversarial networks (GAN). We will also discuss the general supervised
and transfer learning formulations, which find their applications in cell type predictions
and functional studies. We will discuss these models in the context of scRNA-seq,
detailing the different features and training strategies of each model and bringing attention

to their uniqueness.

3.1. Variational Autoencoder

Let x,, represent a G x 1 vector of expression levels (UMl counts or normalized, log-
transformed expression) of G genes in cell n, where p(x,,| vyn ayn) follows some
distribution (e.g., zero-inflated negative binomial (ZINB) or Gaussian), where v,, and a4,

are distribution parameters (e.g., mean, variance, or dispersion) (Fig. 2A). We consider

v4n to be of particular interest (e.g., the mean counts) and is thus further modeled by a

decoder neural network Dg (Fig. 2A) as
Vp = DB(Zn'Sn)' (1)
where the gth element of v, is vy, and 6 is a vector of decoder weights, z, € R4

represents a latent representation of gene expression and is used for visualization and

12
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clustering and s,, is an observed variable (e.g., the batch ID). For VAE, z, is commonly
assumed to follow a multivariate standard Normal prior, i.e., p(z,) = N(0,1;) with I
being a d x d identity matrix. Further, a,, of p(x,n| vyn, @4n) is @ nuisance parameter,
which has a prior distribution p(a,,) and can be either estimated or marginalized in
variational inference. Now define © = {6, a,, vn,g}. Then, p(x,n| vyn, az,) and (1)

together define the likelihood p(x,|z,, s,, ©).

The goal of training is to compute the maximum likelihood estimate of @

0,,, = argmaxg Y.N_,logp(x,|s,, ®) ~ argmaxg Y N_, L(0©), (2)
where L(0) is the evidence lower bound (ELBO),
£(0) = By(z x5, 0)108P(Xn|Zn, 51, ©)] — Dy [q(Z 2, 50, Olp(Z)],  (3)
and q(z,|x,, s,) is an approximate to p(z,|x,, s,) and assumed as
4(Za|%0,50) = W (B, diag( 03,)). (4)
with {, , 6% } given by an encoder network E, (Fig. 2A) as
{1z, 6%,} = Ep(xn, 5, (5)
where ¢ is the weights vector. Now, ® = {6, ¢, a,,, ¥n, g} and equation (2) is solved by
the stochastic gradient descent approach while a model is trained.
All the surveyed papers that deploy VAE follow this general modeling process.
However, a more general formulation has a loss function defined as
L(®) = —L(®) + ¥i-1 1Ly (0), (6)
where L,Vk =1,...,K are losses for different functions (clustering, cell type prediction,
etc) and A,s are the Lagrange multipliers. With this general formulation, for each paper,

we examined the specific choices of data distribution p(x,,| vyn, @,,) that define £(0),

13
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different L, designed for specific functions, and how the decoder and encoder were

applied to model different aspects of scRNA-seq data.

3.2. Autoencoders

AEs learn the low dimensional latent representation z,, € R% of expression x,,. The AE
includes an encoder E,4 and a decoder Dy (Fig. 2B) such that
Zy = Ed)(xn); X, = Dg(2,), (7)

where @ = {0, ¢} are encoder and decoder weight parameters and x, defines the
parameters (e.g. mean) of the likelihood p(x,|0®) (Fig. 2B) and is often considered as
imputed and denoised expressions. Additional design can be included in an AE model
for batch correction, clustering, and other objectives.

The training of an AE model is generally carried out by stochastic gradient descent
algorithms to minimize the loss similar to Eq. (6) except L(0) = —logp(x,|0). When
p(x,|0) is the Gaussian, L£(0®) becomes the mean square error (MSE) loss

L(©®) =Xn-yllx, — %yll3. (8)

Because different AE models differ in their AE architectures and loss functions, we will
discuss the specific architecture and loss functions for each reviewed DL model in Section

4.

3.3. Generative adversarial networks
GANs have been used for imputation, data generation, and augmentation of the scRNA-

seq analysis. Without loss of generality, the GAN, when applied to scRNA-seq, is designed

to learn how to generate gene expression profiles from p,., the distribution of x,,. The

14
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vanilla GAN consists of two deep neural networks [48]. The first network is the
generator Gy(z,, y,) with parameter 8, a noise vector z,, from the distribution p, and a
class label y (e.g. cell type) and is trained to generate x, a "fake" gene expression (Fig.
2C). The second network is the discriminator network Dy, with parameters ¢y, trained to
distinguish the "real" x from fake x; (Fig. 2C). Both networks, G4 and Dy are trained to
outplay each other, resulting in a minimax game, in which G, is forced by D4 to produce
better samples, which, when converge, can fool the discriminator Dy , thus becoming
samples from p,. The vanilla GAN suffers heavily from training instability and mode
collapsing[49]. To that end, Wasserstein GAN (WGAN) [49] was developed with the

WGAN loss [50]:

L(e) = H;]EJIX Zﬁ:l Dap(xn) - 11\1]=1 DQ)D(GH (Zn' yn)) (9)

Additional terms can also be added to equation (9) to constrain the functions of the
generator. Training based on the WGAN loss in Eq. (9) amounts to a min-max
optimization, which iterates between the discriminator and the generator, where each
optimization is achieved by a stochastic gradient descent algorithm through back-

propagation. The WGAN requires Dy to be K-Lipschitz continuous [50], which can be

satisfied by adding the gradient penalty to the WGAN loss [49]. Once the training is done,

the generator G, can be used to generate gene expression profiles of new cells.

3.4. Supervised deep learning models
Supervised deep learning models, including deep neural networks (DNN), convolutional

neural network (CNN), and capsule networks (CapsNet), have been used for cell type

15
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identifications [51-53] and functional predictions [54]. The general supervised deep
learning model F takes x,, as an input and outputs p(y,|x,), the probability of phenotype
label y,, (e.g. a cell type) as
Pnlxn) = F(xy), (10)

where F can be DNN, CNN, or CapsNet. We omit the discussion of DNN and CNN as they
are widely used in different applications and there are many excellent surveys on them
[55]. We will focus our discussion on CasNet next.
A CasNet takes an expression x,, to first form a feature extraction network (consisting of
L parallel single-layer neural networks) followed by a classification capsule network. Each
of the L parallel feature extraction layers generates a primary capsule u;, € R% as

w, = ReLUWp,x,) VI =1,...,L, (11)
where W, , € R%*¢ is the weight matrix. Then, the primary capsules are fed into the

capsule network to compute K label capsules v, € R%, one for each label, as

L

vk = SquaSh (Z Cleklul> Vk ES 1, ...,K, (12)

l

where squash is the squashing function [56] to normalize the magnitude of its input vector
to be less than one, Wy, is another trainable weight matrix, and ¢,; VI =1, ..., L, are the
coupling coefficients that represent the probability distribution of each primary capsule’s
impact on the predicted label k. Parameters c,; are not trained but computed through the
dynamic routing process proposed in the original capsule networks [52]. The magnitude
of each capsule v, represents the probability of predicting label k for input x,,. Once

trained, the important primary capsules for each label and then the most significant genes

16
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for each important primary capsule can be used to interpret biological functions associated
with the prediction.

The training of the supervised models for classification overwhelmingly minimizes the
cross-entropy loss by stochastic gradient descent computed by a back-propagation

algorithm.

4. Survey of deep learning models for scRNA-seq analysis

In this section, we survey applications of DL models for scRNA-seq analysis. To better
understand the relationship between the problems that each surveyed work addresses
and the key challenges in the general scRNA-seq processing pipeline, we divide the
survey into sections according to steps in the scRNA-seq processing pipeline illustrated
in Fig. 1. For each DL model, we present the model details under the general model
framework introduced in Section 3 and discuss the specific loss functions. We also survey
the evaluation metrics and summarize the evaluation results. To facilitate cross-
references of the information, we summarized all algorithms reviewed in this section in
Table 1 and tabulated the datasets and evaluation metrics used in each paper in Tables
2 & 3. We also listed in Fig. 3 all other algorithms against which each surveyed method
evaluated, highlighting the extensiveness that these algorithms were assessed for their

performance.

4.1. Imputation

4.1.1. DCA: deep count autoencoder

17
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DCA [18] is an AE for imputation (Figs. 2B, 4B) and has been integrated into the Scanpy

framework.
Model. DCA models UMI counts with missing values using the ZINB distribution
p(xgn] ©) = 1, 6(0) + (1 — 7y )NB(Vyn, agn), forg =1,..G;n =1, ...\, (13)

where §(-) is a Dirac delta function, NB(:,-) denotes the negative binomial distribution,

and w

gV,

g g, TEpresenting dropout rate, mean, and dispersion, respectively, are

functions of the output (x,,) of the decoder in the DCA as follows,
T, = sigmoid(W  X,,); v, = exp(W,X,); a, = exp(WX,), (14)

where W, W, and W, are additional weights to be estimated. The DCA encoder and
decoder follow the general AE formulation as in Eq. (7) but the encoder takes the
normalized, log-transformed expression as input. To train the model, DCA uses a

constrained log-likelihood as the loss function
L(®) = X3-1 X5-1(—logp(xgn| ©) + An},), (15)

with® ={0,¢, W, W, W,}. Once the DCA is trained, the mean counts v,, are used as

the denoised and imputed counts for cell n.

Results. For evaluation, DCA was compared to other methods using simulated data
(using Splatter R package), and real bulk transcriptomics data from a developmental C.
elegans time-course experiment was used with added simulating single-cell specific
noise. Gene expression was measured from 206 developmentally synchronized young
adults over a twelve-hour period (C. elegans). Single-cell specific noise was added in

silico by genewise subtracting values drawn from the exponential distribution such that

18
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80% of values were zeros. The paper analyzed the Bulk contains less noise than single-
cell transcriptomics data and can thus aid in evaluating single-cell denoising methods by
providing a good ground truth model. The authors also did a comparison of other methods
including SAVER [36], sclmpute [37], and MAGIC[57]. DCA denoising recovered original
time-course gene expression pattern while removing single-cell specific noise. Overall,
DCA demonstrated the strongest recovery of the top 500 genes most strongly associated
with development in the original data without noise; DCA was shown to outperform other
existing methods in capturing cell population structure in real data using PBMC, CITE-
seq, runtime scales linearly with the number of cells.

4.1.2. SAVER-X: single-cell analysis via expression recovery harnessing external
data

SAVER-X [58] is an AE model (Figs. 2B, 4B) developed to denoise and impute scRNA-

seq data with transfer learning from other data resources.

Model. SAVER-X decomposes the variation in the observed counts x, with missing
values into three components: i) predictable structured component representing the
shared variation across genes, ii) unpredictable cell-level biological variation and gene-
specific dispersions, and iii) technical noise. Specifically, x,, is modeled as a Poisson-

Gamma hierarchical model,

p(xgn| G)) = Poisson(lnxén), p(xén|vgn, ag) = Gamma(vgn, agvgn), (16)
where [, is the sequencing depth of cell , v,,, is the mean, and «, is the dispersion. This

Poisson-Gamma mixture is an equivalent expression to the NB distribution and thus, the

ZINB distribution as Eq. (13) is adopted to model missing values.

19
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The loss is similar to Eq. (15). However, v, is initially learned by an AE pre-trained
using external datasets from an identical or similar tissue and then transferred to x,, to be
denoised. Such transfer learning can be applied to data between species (e.g., human
and mouse in the study), cell types, batches, and single-cell profiling technologies. After
Vgn is inferred, SAVER-X generates the final denoised data %, by an empirical Bayesian
shrinkage.

Results. SAVER-X was applied to multiple human single-cell datasets of different
scenarios: i) T-cell subtypes, ii) a cell type (CD4+ regulatory T cells) that was absent from
the pretraining dataset, iii) gene-protein correlations of CITE-seq data, and iv) immune
cells of primary breast cancer samples with a pretraining on normal immune cells.
SAVER-X with pretraining on HCA and/or PBMCs outperformed the same model without
pretraining and other denoising methods, including DCA [28], scVI[17], scimpute [37], and
MAGIC [57]. The model achieved promising results even for genes with very low UMI
counts. SAVER-X was also applied for a cross-species study in which the model was pre-
trained on a human or mouse dataset and transferred to denoise another. The results
demonstrated the merit of transferring public data resources to denoise in-house scRNA-
seq data even when the study species, cell types, or single-cell profiling technologies are

different.

4.1.3. Deeplmpute: Deep neural network Imputation
Deeplmpute [20] imputes genes in a divide-and-conquer approach, using a bank of DNN

models (Fig. 4A) with 512 output, each to predict gene expression levels of a cell.

Model. For each dataset, Deeplmpute selects to impute a list of genes or highly variable

genes (variance over mean ratio, default = 0.5). Each sub-neural network aims to
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understand the relationship between the input genes and a subset of target genes. Genes
are first divided into N random subsets of 512 target genes. For each subset, a two-layer
DNN is trained where the input includes genes that are among the top 5 best-correlated
genes to target genes but not part of the target genes in the subset. The loss is defined

as the weighted MSE

L(®) = Xxn(x, — %p)?, (17)
which gives higher weights to genes with higher expression values.
Result. Deeplmpute had the highest overall accuracy and offered shorter computation
time with less demand on computer memory than other methods like MAGIC, Drimpute,
Scimpute, SAVER, VIPER, and DCA. Using simulated and experimental datasets (Table
2), Deeplmpute showed benefits in improving clustering results and identifying
significantly differentially expressed genes. Deeplmpute and DCA, show overall
advantages over other methods and between which Deeplmpute performs even better.
The properties of Deeplmpute contribute to its superior performance include 1) a divide-
and-conquer approach which contrary to an autoencoder as implemented in DCA,
resulting in a lower complexity in each sub-model and stabilizing neural networks, and 2)
the subnetworks are trained without using the target genes as the input which reduces

overfitting while enforcing the network to understand true relationships between genes.

4.1.4. LATE: Learning with AuToEncoder
LATE [59] is an AE (Figs. 2B, 4B) whose encoder takes the log-transformed expression

as input.
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Model. LATE sets zeros for all missing values and generates the imputed expressions.
LATE minimizes the MSE loss as Eq. (8). One issue is that some zeros could be real and
reflect the actual lack of expressions.

Result. Using synthetic data generated from pre-imputed data followed by random
dropout selection at different degrees, LATE outperforms other existing methods like
MAGIC, SAVER, DCA, scVI, particularly when the ground truth contains only a few or no
zeros. However, when the data contain many zero expression values, DCA achieved a
lower MSE than LATE, although LATE still has a smaller MSE than scVI. This result
suggests that DCA likely does a better job identifying true zero expressions, partly
because LATE does not make assumptions on the statistical distributions of the single-
cell data that potentially have inflated zero counts.

4.1.5. scGMAI

Technically, scGMAI [60] is a model for clustering but it includes an AE (Figs. 2B, 4B) in

the first step to combat dropout.

Model. To impute the missing values, scGMAI applies an AE like LATE to reconstruct
log-transformed expressions with dropout but chooses a smoother Softplus activation
function instead. The MSE loss as in Eq. (8) is adopted.

After imputation, scGMAI uses fast independent component analysis (ICA) on the
AE reconstructed expressions to reduce the dimension and then applies a Gaussian
mixture model on the ICA reduced data to perform the clustering.
Results. To assess the performance, the AE in scGMAI was replaced by five other
imputation methods including SAVER [36], MAGIC [57], DCA [28], sclmpute [37], and

CIDR[61]. A scGMAI implementation without AE was also compared. Seventeen scRNA-
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seq data (part of them are listed in Tables 2b & ¢ as marked) were used to evaluate cell
clustering performances. The results indicated that the AEs significantly improved the

clustering performance in eight of seventeen scRNA-seq datasets.

4.1.6. sclGANs
Imputation approaches based on information from cells with similar expressions suffer

from oversmoothing, especially for rare cell types. sclGANs [19] is a GAN-based
imputation algorithm (Figs. 2C, 4E), which overcomes this problem by training a GAN

model to generate samples with imputed expressions.

Model. sclGAN takes the image-like reshaped gene expression data x,, as input. The
model follows a BEGAN [62] framework, which replaces the GAN discriminator D with a
function R, to compute the reconstruction MSE. Then, the Wasserstein distance loss

between the reconstruction errors between the real and generated samples are computed

L(6,®) = max Yn=1Rap (X)) = XN=1 Rop (Go (Ea (%), ), (18)

This framework forces the model to meet two computing objectives, i.e. reconstructing the
real samples and discriminating between real and generated samples. Proportional
Control Theory was applied to balance these two goals during the training [63].

After training, the decoder Gg is used to generate new samples of a specific cell
type. Then, the k-nearest neighbors (KNN) approach is applied to the real and generated
samples to impute the real samples’ missing expressions.

Results. sclGANs was first tested on simulated samples with different dropout rates.
Performance of rescuing the correct clusters was compared with 11 existing imputation

approaches including DCA, Deeplmpute, SAVER, sclmpute, MAGIC, etc. sclGANs
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reported the best performance for all metrics. sclGAN was next evaluated for its ability to
correctly cluster cell types on the Human brain scRNA-seq data, which showed superior
performance than existing methods again. sclGANs was then evaluated for identifying
cell-cycle states using scRNA-seq datasets from mouse embryonic stem cells. The
results showed that sclGANs outperformed competing existing approaches for recovering
subcellular states of cell cycle dynamics. sclGANs were further shown to improve the
identification of differentially expressed genes and enhance the inference of cellular
trajectory using time-course scRNA-seq data from the differentiation from H1 ESC to
definitive endoderm cells (DEC). Finally, sclGAN was also shown to scale to scRNA-seq

methods and data sizes.

4.2. Batch effect correction

4.2.1. BERMUDA: Batch Effect ReMoval Using Deep Autoencoders
BERMUDA [64] deploys a transfer-learning method (Figs. 2B, 4B) to remove the batch

effect. It performs correction to the shared cell clusters among batches and therefore

preserves batch-specific cell populations.

Model. BERMUDA is an AE that takes normalized, log-transformed expression as input.

Its consists of two parts as

L(®) = L(®) + ALMMD(O)a (19)
where L£(0) is the MSE loss and Ly is the maximum mean discrepancy (MMD) [65]
loss that measures the differences in distributions between pairs of similar cell clusters

shared among batches as:

Lump(©®) = Xy iaip Migjain i, MMD (2, 2i\ 5, ), (20)
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where z; ; is the latent variable of x; ;, the input expression of a cell from cluster j of batch

g
i, M ;.i,j, is 1if cluster i, of batch j, and cluster i, of batch j, are determined to be
similar by MetaNeighbor [66] and 0, otherwise. The MMD equals zero when the
underlying distributions of the observed samples are the same.

Results. BERMUDA was shown to outperform other methods like mnnCorrect [32],
BBKNNI[67], Seurat [10], and scVI [17] in removing batch effects on simulated and human
pancreas data while preserving batch-specific biological signals. BERMUDA provides
several improvements compared to existing methods: 1) capable of removing batch
effects even when the cell population compositions across different batches are vastly
different; and 2) preserving batch-specific biological signals through transfer-learning

which enables discovering new information that might be hard to extract by analyzing

each batch individually.

4.2.2. DESC: batch correction based on clustering
DESC [68] is an AE model (Figs. 2B, 4B) that removes batch effect through clustering

with the hypothesis that batch differences in expressions are smaller than true biological
variations between cell types, and, therefore, properly performing clustering on cells
across multiple batches can remove batch effects without the need to define batches

explicitly.

Model. DESC has a conventional AE architecture. Its encoder takes normalized, log-
transformed expression and uses decoder output, X, as the reconstructed gene
expression, which is equivalent to a Gaussian data distribution with x,, being the mean.
The loss function is similar to Eq. (19) and except that the second loss L. is the clustering
loss that regularizes the learned feature representations to form clusters as in the deep
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embedded clustering [69]. The model is first trained to minimize £(0) only to obtain the
initial weights before minimizing the combined loss. After the training, each cell is
assigned with a cluster ID.

Results. DESC was applied to the macaque retina dataset, which includes animal level,
region level, and sample-level batch effects. The results showed that DESC is effective
in removing the batch effect, whereas CCA [33], MNN [32], Seurat 3.0 [10], scVI [17],
BERMUDA [64], and scanorama [70] were all sensitive to batch definitions. DESC was
then applied to human pancreas datasets to test its ability to remove batch effects from
multiple scRNA-seq platforms and yielded the highest ARl among the comparing
approaches mentioned above. When applied to human PBMC data with interferon-beta
stimulation, where biological variations are compounded by batch effect, DESC was
shown to be the best in removing batch effect while preserving biological variations.
DESC was also shown to remove batch effect for the monocytes and mouse bone marrow
data and DESC was shown to preserve the pseudotemporal structure. Finally, DESC
scales linearly with the number of cells, and its running time is not affected by the

increasing number of batches.

4.2.3. iMAP: Integration of Multiple single-cell datasets by Adversarial Paired-style
transfer networks
iMAP [71] combines AE (Figs. 2B, 4B) and GAN (Figs. 2C, 4E) for batch effect removal.

It is designed to remove batch biases while preserving dataset-specific biological

variations.
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Model. iMAP consists of two processing stages, each including a separate DL model. In
the first stage, a special AE, whose decoder combines the output of two separate
decoders Dy and Dy, is trained such that

Zy = Eg(xn); Ry = Dg(Zn, Sy) = Relu(Do, (51) + Do, (Zn, 51)) (21)
where s, is the one-hot encoded batch number of cell n. Dy can be understood as
decoding the batch noise, whereas Dy, reconstructs batch-removed expression from the
latent variable z,,. The training minimizes the loss in Eq. (19) except the 2" loss is the
content loss

Le(0) = ¥N_i12, — Ep(Do(Zn ). (22)

where §,, is a random batch number. Minimizing L.(®) further ensures the reconstructed
expression x,, would be batch agnostic and has the same content as x,,.

However, due to the limitation of AE, this step is still insufficient for batch removal.
Therefore, a second stage is included to apply a GAN model to make expression
distributions of the shared cell type across different baches indistinguishable. To identified
the shared cell types, a mutual nearest neighbors (MNN) strategy adapted from [32] was
developed to identify MNN pairs across batches using batch effect independent z,, as

opposed to x,,. Then, a mapping generator G, is trained using MNN pairs based on GAN
such that x = G(,G(xff)), where x% and x*) are the MNN pairs from batch S and an

anchor batch A. The WGAN-GP loss as in Eq. (9) was adopted for the GAN training. After
training, G, is applied to all cells of a batch to generate batch-corrected expression.

Results: iIMAP was first tested on benchmark datasets from human dendritic cells and

Jurkat and 293T cell lines and then human pancreas datasets from five different
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platforms. All the datasets contain both batch-specific cells and batch-shared cell types.
iIMAP was shown to separate the batch-specific cell types but mix batch shared cell types
and outperformed 9 other existing batch correction methods including Harmony, scVI,
fastMNN, Seurat, etc. IMAP was then applied to the large-scale Tabula Muris datasets
containing over 100K cells sequenced from two platforms. iMAP could not only reliably
integrate cells from the same tissues but identify cells from platform-specific tissues.
Finally, iIMAP was applied to datasets of tumor-infiltrating immune cells and shown to
reduce the dropout ratio and the percentage of ribosomal genes and non-coding RNAs,
thus improving detection of rare cell types and ligand-receptor interactions. iMAP scales
with the number of cells, showing minimal time cost increase after the number of cells

exceeds thousands. Its performance is also robust against model hyperparameters.

4.3. Dimensionality reduction, latent representation, clustering, and data
augmentation

Dimensionality reduction is indispensable for many type of scRNA-seq data analysis,
considering the limited number of cell types in each biospecimen. Furthermore, biological
processes of interests often involve the complex coordination of many genes, therefore,
latent representation which capture biological variation in reduced dimensions are useful
in interpreting experiment conditions and cell heterogeneity. Both AE- and VAE-based
are capable of learning latent representations. VAE-based models have the benefit of
regularity of the latent space and generative factors. The GAN-based models can produce
augmented data that may in return to enhance the clustering, e.g., due to low

representation of certain cell types.

4.3.1. Dimensionality reduction by AEs with gene-interaction constrained architecture
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This study [72] considers AEs (Figs. 2B, 4B) for learning the low-dimensional
representation and specifically explores the benefit of incorporating prior biological

knowledge of gene-gene interactions to regularize the AE network architecture.

Model. Several AE models with single or two hidden layers that incorporate gene
interactions reflecting transcription factor (TF) regulations and protein-protein interactions
(PPIs) are implemented. The models take normalized, log-transformed expressions and
follow the general AE structure, including dimension-reducing and reconstructing layers,
but the network architectures are not symmetrical. Specifically, gene interactions are
incorporated such that each node of the first hidden layer represented a TF or a protein
in the PPI; only genes that are targeted by TFs or involved in the PPI were connected to

the node. Thus, the corresponding weights of E4 and Dy are set to be trainable and

otherwise fixed at zero throughout the training process. Both unsupervised (AE-like) and
supervised (cell-type label) learning were studied.

Results. Regularizing encoder connections with TF and PPI information considerably
reduced the model complexity by almost 90% (7.5-7.6M to 1.0-1.1M). The clusters formed
on the data representations learned from the models with or without TF and PPI
information were compared to those from PCA, NMF, independent component analysis
(ICA), t-SNE, and SIMLR [44]. The model with TF/PPI information and 2 hidden layers
achieved the best performance by five of the six measures and the best average
performance. In terms of the cell-type retrieval of single cells, the encoder models with
and without TF/PPI information achieved the best performance in 4 and 3 cell types,
respectively. PCA yielded the best performance in only 2 cell types. The DNN model with

TF/PPI information and 2 hidden layers again achieved the best average performance
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across all cell types. In summary, this study demonstrated a biologically meaningful way
to regularize AEs by the prior biological knowledge for learning the representation of

scRNA-seq data for cell clustering and retrieval.

4.3.2. Dhaka: a VAE-based dimension reduction model.
Dhaka [73] was proposed to reduce the dimension of scRNA-seq data for efficient

stratification of tumor subpopulations.

Model. Dhaka adopts a general VAE formulation (Figs. 2A, 4C). It takes the normalized,
log-transformed expressions of a cell as input and outputs the low-dimensional

representation.

Result. Dhaka was first tested on the simulated dataset. The simulated dataset contains
500 cells, each including 3K genes, clustered into 5 different clusters with 100 cells each.
The clustering performance was compared with other methods including t-SNE, PCA,
SIMLR, NMF, an autoencoder, MAGIC, and scVIl. Dhaka was shown to have an ARI
higher than most other comparing methods. Dhaka was then applied to the
Oligodendroglioma data and could separate malignant cells from non-malignant
microglia/macrophage cells. It also uncovered the shared glial lineage and differentially
expressed genes for the lineages. Dhaka was also applied to the Glioblastoma data and
revealed an evolutionary trajectory of the malignant cells where cells gradually evolve
from a stemlike state to a more differentiated state. In contrast, other methods failed to
capture this underlying structure. Dhaka was next applied to the Melanoma cancer
dataset [74] and uncovered two distinct clusters that showed the intra-tumor

heterogeneity of the Melanoma samples. Dhaka was finally applied to copy number
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variation data [75] and shown to identify one major and one minor cell clusters, of which

other methods could not find.

4.3.3. scvis: a VAE for capturing low-dimensional structures
scvis [76] is a VAE network (Figs. 2A, 4C) that learns the low-dimensional

representations capture both local and global neighboring structures in scRNA-seq data.
Model: scvis adopts the generic VAE formulation described in section 3.1. However, it has
a unique loss function defined as

L(®) = —L(0) + AL.(0), (23)
where £(0) is ELBO as in Eq. (3) and L; is a regularizer using non-symmetrized t-SNE

objective function [76], which is defined as

Djli

L(0) = §V=1 Z?’=1,j¢i Dji log a,

(24)
where i and j are two different cells, p; ; measures the local cell relationship in the data

space, and q;;; measures such relationship in the latent space. Because t-SNE algorithm

preserves the local structure of high dimensional space, L. learns local structures of cells.
Results. scvis was tested on the simulated data and outperformed t-SNE in a nine-
dimensional space task. scvis preserved both local structure and global structure. The
relative positions of all clusters were well kept but outliers were scattered around clusters.
Using simulated data and comparing to t-SNE, scvis generally produced consistent and
better patterns among different runs while t-SNE could not. scvis also presented good
results on adding new data to an existing embedding, with median accuracy on new data
at 98.1% for K= 5 and 94.8% for K= 65, when train K cluster on original data then test the

classifier on new generated sample points. The scvis was subsequently tested on four
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real datasets including metastatic melanoma, oligodendroglioma, mouse bipolar and
mouse retina datasets. In each dataset, scvis was showed to preserve both the global

and local structure of the data.

4.3.4. scVAE: VAE for single-cell gene expression data
scVAE [77] includes multiple VAE models (Figs. 2A, 4C) for denoising gene expression

levels and learning the low-dimensional latent representation of cells. It investigates

different choices of the likelihood functions in the VAE model to model different data sets.

Model. scVAE is a conventional fully connected network. However, different distributions
have been discussed for p(x,y,| vyn, @y,) to model different data behaviors. Specifically,
scVAE considers Poisson, constrained Poisson, and negative binomial distributions for
count data, piece-wise categorical Poisson for data including both high and low counts,
and zero-inflated version of these distributions to model missing values. To model
multiple modes in cell expressions, a Gaussian mixture is also considered for
q(z,|x,, s,), resulting in a GMVAE. The inference process still follows that of a VAE as
discussed in section 3.1.

Results. scVAEs were evaluated on the PBMC data and compared with factor analysis
(FA) models. The results showed that GMVAE with negative binomial distribution
achieved the highest lower bound and ARI. Zero-inflated Poisson distribution performed
the second best. All scVAE models outperformed the baseline linear factor analysis
model, which suggested that a non-linear model is needed to capture single-cell genomic
features. GMVAE was also compared with Seurat and shown to perform better using the
withheld data. However, scVAE performed no better than scVI [17] or scvis [76], both are
VAE models.
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4.3.5. VASC: VAE for scRNA-seq
VASC [78] is another VAE (Figs. 2A, 4C) for dimension reduction and latent

representation but it models dropout.

Model: VASC'’s input is the log-transformed expression but rescaled in the range [0,1]. A
dropout layer (dropout rate of 0.5) is added after the input layer to force subsequent layers
to learn to avoid dropout noise. The encoder network has three layers fully connected
and the first layer uses linear activation, which acts like an embedded PCA
transformation. The next two layers use the ReLU activation, which ensures a sparse and
stable output. This model's novelty is the zero-inflation layer (ZI layer), which is added

after the decoder to model scRNA-seq dropout events. The probability of dropout event

is defined as e~** where % is the recovered expression value obtained by the decoder
network. Since back-propagation cannot deal with a stochastic network with categorical
variables, a Gumbel-softmax distribution [79] is introduced to address the difficulty of the
Zl layer. The loss function of the model takes the form L = L£(@) + AL, (@), where L is
the binary entropy because the input is scaled to [0 1], andLg,; a loss performed using KL
divergence on the latent variables. After the model is trained, the latent code can be used
as the dimension-reduced feature for downstream tasks and visualization.

Results. VASC was compared with PCA, t-SNE, ZIFA, and SIMLR on 20 datasets. In the
study of embryonic development from zygote to blast cells, all methods roughly re-
established the development stages of different cell types in the dimension-reduced
space. However, VASC showed the better performance to model embryo developmental
progression. In the Goolam, Biase and Yan datasets, scCRNA-seq data were generated
through embryonic development stages from zygote to blast, VASC re-established
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development stage from 1, 2, 4, 8, 16 to blast, while other methods failed. In the Pollen,
Kolodziejczyk, and Baron dataset, VASC formed an appropriate cluster, either with
homogeneous cell type, preserved proper relative positions, or minimal batch influence.
Interestingly, when tested on the PBMC dataset, VASC was shown to identify the major
global structure (B cells, CD4+, CD8+ T cells, NK cells, Dendritic cells), and detect subtle
differences within monocytes (FCGR3A+ vs CD14+ monocytes), indicating the capability
of VASC handling a large number of cells or cell types. Quantitative clustering
performance in NMI, ARI, homogeneity and completeness was also performed. VASC
always ranked top two in all the datasets. In terms of NMI and ARI, VASC best performed

on 15 and 17 out of 20 datasets, respectively.

4.3.6. scDeepCluster
scDeepCluster [80] is an AE network (Figs. 2B, 4B) that simultaneously learns feature

representation and performs clustering via explicit modeling of cell clusters as in DESC.

Model: Similar to DCA, scDeepCluster adopts a ZINB distribution for x,, as in Eq. (13)
and (15). The loss is similar to Eq. (19) except that the first term is the negative log-
likelihood of the ZINB data distribution as defined in Eq. (15) and the second L. is a
clustering loss performed using KL divergence as in DESC algorithm. Compared to csvis,
scDeepcluster focuses more on clustering assignment due to the KL divergence.

Results. scDeepCluster was first tested on the simulation data and compared with other
seven methods including DCA [18], two multi-kernel spectral clustering methods MPSSC
[81] and SIMLR [44], CIDR [61], PCA + k-mean, scvis [76] and DEC[82]. In different
dropout rate simulations, scDeepCluster significantly outperformed the other methods
consistently. In signal strength, imbalanced sample size, and scalability simulations,
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scDeepcluster outperformed all other algorithms and scDeepCluster and most notably
advantages for weak signals, robust against different data imbalance levels and scaled
linearly with the number of cells. scDeepCluster was then tested on four real datasets
(10X PBMC, Mouse ES cells, Mouse bladder cells, Worm neuron cells) and shown to
outperform all other comparing algorithms. Particularly, MPSSC and SIMLR failed to

process the full datasets due to quadratic complexity.

4.3.7. cscGAN: Conditional single-cell generative adversarial neural networks
cscGAN [83] is a GAN model (Figs. 2C, 4E) designed to augment the existing scRNA-
seq samples by generating expression profiles of specific cell types or subpopulations.
Model. Two models, csGAN and cscGAN, were developed following the general
formulation of WGAN described in section 3.3. The difference between the two models
is that cscGAN is a conditional GAN such that the input to the generator also includes a
class label y or cell type, i.e. ¢;(z,y). The projection-based conditioning (PCGAN)
method [84] was adopted to obtain the conditional GAN. For both models, the generator
(three layers of 1024, 512, and 256 neurons) and discriminator (three layers of 256, 512,
and 1024 neurons) are fully connected DNNs.

Results: The performance of scGAN was first evaluated using PBMC data. The generated
samples were shown to capture the desired clusters and the real data's regulons.
Additionally, the AUC performance for classifying real from generated samples by a
Random Forest classifier only reached 0.65, performance close to 0.5. Finally, sScGAN's
generated samples had a smaller MMD than those of Splatter, a state-of-the-art SCRNA-
seq data simulator [85]. Even though a large MMD was observed for scGAN when
compared with that of SUGAR, another scRNA-seq simulator, SUGAR [86] was noted
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for prohibitively high runtime and memory. scGAN was further trained and assessed on
the bigger mouse brain data and shown to model the expression dynamics across tissues.
Then, the performance of cscGAN for generating cell-type-specific samples was
evaluated using the PBMC data. cscGAN was shown to generate high-quality scRAN-
seq data for specific cell types. Finally, the real PBMC samples were augmented with the
generated samples. This augmentation improved the identification of rare cell types and

the ability to capture transitional cell states from trajectory analysis.

4.4. Multi-functional models

Given the versatility of AE and VAE in addressing different scRAN-seq analysis
challenges, DL models possessing multiple analysis functions have been developed. We

survey these models in this section.

4.4.1. scVI: single-cell variational inference

scVI [17] is designed to address a range of fundamental analysis tasks, including batch

correction, visualization, clustering, and differential expression.
Model. scVI is a VAE (Figs. 2A, 4C) that models the counts of each cell from different
batches. scVI adopts a ZINB distribution for x,,

p(xgn|7rgn, Ly, Vgn, a) =1y, 6(0) + (1 - ngn)NB(angn, ag), (25)

which is defined similarly as Eq (14) in DCA, except that L,, denotes the scaling factor for
cell n, which follows a log-Normal (logV') prior as p(Ly) = logN (u,, 0Z,), therefore, v,
represents the mean counts normalized by L,,. Now, let s,, € {0,1}% be the batch ID of cell

n with B being the total number of batches. Then, v,, and 7, are further modeled as
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functions of the d-dimension latent variable z,, € R% and the batch ID s,, by the decoder
networks Do and Dgy_ as

Vi = Do, (2, $1), Tn = Do, (Zn,Sp), (26)
where the gth element of v, and =, are v, and n,, respectively, and 6., and 6, are the
decoder weights. Note that the lower layers of the two decoders are shared. For inference,
both z, and L, are considered as latent variables and therefore q(x,,s,) =
q(z,1x,, 5)q(L, x5, s,) is a mean-field approximate to the intractable posterior

distribution p(z,, L,,|x,, s,) and

q(z,|x,, 8,) = ]\f(uzn, diag(a%n)),
(27)

q(Lnlxn'Sn) = lOgN (”Ln' diag(a,%n)),
whose means and variances {u, ,0% } and {u, ,0? } are defined by the encoder
networks E, and E; applied to x,, and s,, as

{nz,,0% } = Ep, (xn,50),
(28)

{#i02,} = Eg, (20, 50)
where ¢,, and ¢, are the encoder weights. Note that, like the decoders, the lower layers
of the two encoders are also shared. Overall, the model parameters to be estimated by
the variational optimization is © = {0,,, 0. ¢, ¢L,ag}. After inference, z,, are used for
visualization and clustering. v,, provides a batch-corrected, size-factor normalized
estimate of gene expression for each gene g in each cell n. An added advantage of the
probabilistic representation by scVI is that it provides a natural probabilistic treatment of

the subsequent differential analysis, resulting in lower variance in the adopted hypothesis

tests.
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Results: scVI was evaluated for its scalability, the performance of imputation. For
scalability, ScVI was shown to be faster than most nonDL algorithms and scalable to
handle twice as many cells as nonDL algorithms with a fixed memory. For imputation,
ScVI, together with other ZINB-based models, performed better than methods using
alternative distributions. However, it underperformed for the dataset (HEMATO) with
fewer cells. For the latent space, scVI was shown to provide a comparable stratification
of cells into previously annotated cell types. Although scVI failed to ravel SIMLR, it is
among the best in capturing biological structures (hierarchical structure, dynamics, etc.)
and recognizing noise in data. For batch correction, it outperforms ComBat. For
normalizing sequencing depth, the size factor inferred by scVI was shown to be strongly
correlated with the sequencing depth. Interestingly, the negative binomial distribution in
the ZINB was found to explain the proportions of zero expressions in the cells, whereas

the zero probability my, is found to be more correlated with alignment errors. For

differential expression analysis, scVI was shown to be among the best.

4.4.2. LDVAE: linearly decoded variational autoencoder

LDVAE [87] is an adaption of scVI to improve the model interpretability but it still benefits
from the scalability and efficiency of scVI. Also, this formulation applies to general VAE

models and thus is not restricted to sScRNA-seq analysis.

Model. LDVAE follows scVI's formulation but replaces the decoder Dy in Eq. (26) by a

linear model

v, =Wz, (29)
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where W € R%*¢ is the weight matrix. Being the linear decoder provides interpretability in
the sense that the relationship between latent representation z,, and gene expression v,,
can be readily identified. LDVAE still follows the same loss and non-linear inference
scheme as scVI.

Results. LDVAE’s latent variable z,, could be used for clustering of cells with similar
accuracy as a VAE. Although LDVAE had a higher reconstruction error than VAE, due
to the linear decoder, the variations along the different axes of z,, establish direct linear
relationships with input genes. As an example from analyzing mouse embryo scRNA-seq,
Z1,, the second element of z,,, is shown to relate to simultaneous variations in the
expression of gene Pou5f1 and Tdgf1. In contrast, such interpretability would be
intractable without approximation for a VAE. LDVAE was also shown to induce fewer
correlations between latent variables and to improve the grouping of the regulatory

programs. LDVAE is capable to scale to a large dataset with ~2M cells.

4.4.3. SAUCIE
SAUCIE [15] is an AE (Figs. 2B, 4B) designed to perform multiple functions, including
clustering, batch correlation, imputation, and visualization. SAUCIE is applied to the

normalized data instead of count data.

Model. SAUCIE includes multiple model components designed for different functions.
1. Clustering: SAUCIE first introduced a "digital" binary encoding layer h¢ € {0,1} in the
decoder D that functions to encode the cluster ID. To learn this encoding, an entropy

loss is introduced

Lp = Yi-1 Dr logpy, (30)
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where p,, is the probability (proportion) of activation on neuron k by the previous layer.
Minimizing this entropy loss promotes sparse neurons, thus forcing a binary encoding.

To encourage clustering behavior, SAUCIE also introduced an intracluster loss as

L= ) l=-%" (31)
i,j:hf=hf§
which computes the distance L. between the expressions of a pair of cells (¥;, X;)

that have the same cluster ID (h; = k).

2. Batch correction: To correct the batch effect, an MMD loss is introduced to measure

the differences in terms of the distribution between batches in the latent space

Ly = Y1 1eref MMD (215, 7)), (32)
where B is the total number of batches and z,.. is the latent variable of an arbitrarily
chosen reference batch.

3. Imputation and visualization: The output of the decoder is taken by SAUCIE as an
imputed version of the input gene expression. To visualize the data without performing
an additional dimension reduction directly, the dimension of the latent variable z,, is
forced to 2.

Training the model includes two sequential runs. In the first run, an autoencoder is trained

to minimize the loss L, + AzLg with L, being the MSE reconstruction loss defined in (9)

so that a batch-corrected, imputed input X can be obtained at the output of the decoder.

In the second run, the bottleneck layer of the encoder from the first run is replaced by a

2-D latent code for visualization and a digital encoding layer is also introduced. This model

takes the cleaned x as the input and is trained for clustering by minimizing the loss L, +
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ApLp + AcLo . After the model is trained, ¥ is the imputed, batch-corrected gene
expression. The 2-D latent code is used for visualization and the binary encoder encodes
the cluster ID.

Results. SAUCIE was evaluated for clustering, batch correction, imputation, and
visualization on both simulated and real scRNA-seq and scCyToF datasets. The
performance was compared to minibatch kmeans, Phenograph [88] and 22 for clustering;
MNN [32] and canonical correlation analysis (CCA) [33] for batch correction; PCA,
Monocle2 [89], diffusion maps, UMAP [90], tSNE [91] and PHATE [92] for visualization;
MAGIC [57], sclmpute [37] and nearest neighbors completion (NN completion) for
imputation. Results showed that SAUCIE had a better or comparable performance with
other approaches. Also, SAUCIE has better scalability and faster runtimes than any of
the other models. SAUCIE's results on the scCyToF dengue dataset were further
analyzed in greater detail. SAUCIE was able to identify subtypes of the T cell populations

and demonstrated distinct cell manifold between acute and healthy subjects.

4.4.4. scScope:
scScope [93] is an AE (Figs. 2B, 4D) with recurrent steps designed for imputation and

batch correction.

Model. scScope has the following model design for batch correction and imputation.
1. Batch correction: A batch correction layer is applied to the input expression as
x¢ = ReLu(x, — Bu,), (33)
where and ReLU is the RelLu activation function, B € R¢*X is the batch correction
matrix, u, € {0,1}¥*1 is an indicator vector with entry 1 indicates the batch of the input,
and K is the total number of batches.
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2. Recursive imputation: Instead of using the reconstructed expression x,as the imputed
expression like in SAUCIE, scScope adds an imputer to X,, to recursively improve the
imputation result. The imputer is a single-layer autoencoder, whose decoder performs
the imputation as

%, = P[D/(2,)], (34)
where Z,, is the output of the imputer encoder, D, is the imputer decoder, and P, is a
masking function that set the elements in X, that correspond to the non-missing
values to zero. Then, %,, will be fed back to fill the missing value in the batch corrected

input as x5 + X,,, which will be passed on to the main autoencoder. This recursive
imputation can iterate multiple cycles as selected.

The loss function is defined as

r@=y 12”’3' x5 — 2112, (35)

where T is the total number of recursion, xf is the reconstructed expression at tth
recursion, P, is another masking function that forces the loss to compute only the non-
missing values in x,.

Results. scScope was evaluated for its scalability, clustering, imputation, and batch
correction. It was compared with PCA, MAGIC, ZINB-WaVE, SIMLR, AE, scVI, and DCA.
For scalability and training speed, scScope was shown to offer scalability (for >100K cells)
with high efficiency (faster than most of the approaches). For clustering results, scScope
outperformed most of the algorithms on small simulated datasets but offered similar
performance on large simulated datasets. For batch correction, scScope performed

comparably with other approaches but with faster runtime. For imputation, scScope
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produced smaller errors consistently across a different range of expression. scScope was

further shown to be able to identify rear cell populations from a large mix of cells.

4.5. Automated cell type identification
scRNA-seq can catalog cell types in complex tissues under different conditions. However,

the commonly adopted manual cell typing approach based on known markers is time-
consuming and less reproducible. We survey deep learning models of automated cell

type identification.

4.5.1. DigitalDLSorter
DigitalDLSorter [51] was proposed to identify and quantify the immune cells infiltrated in

tumors captured in bulk RNA-seq, utilizing single-cell RNA-seq data.

Model. DigitalDLSorter is a 4-layer DNN (Fig. 4A) (2 hidden layers of 200 neurons each
and an output of 10 cell types). The DigitalDLSorter is trained with two single-cell
datasets: breast cancers [94] and colorectal cancers [95]. For each cell, it is determined
to be tumor cell or non-tumor cell using RNA-seq based CNV method [94], followed by
using xCell algorithm [96] to determine immune cell types for non-tumor cells. Different
pseudo bulk (from 100 cells) RNA-seq datasets were prepared with known mixture
proportions to train the DNN. The output of DigitalDLSorter is the predicted proportions
of cell types in the input bulk sample.

Result. DigitalDLSorter was first tested on simulated bulk RNA-seq samples.
DigitalDLSorter achieved excellent agreement (linear correlation of 0.99 for colorectal
cancer, and good agreement in quadratic relationship for breast cancer) at predicting cell

types proportion. The proportion of immune and nonimmune cell subtypes of test bulk
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TCGA samples was predicted by DigitalDLSorter and the results showed a very good
correlation to other deconvolution tools including TIMER [94], ESTIMATE [97], EPIC [98]
and MCPCounter [99]. Using DigitalDLSorter predicted CD8+ (good prognosis for overall
and disease-free survival) and Monocytes-Macrophages (MM, indicator for protumoral
activity) proportions, it is found that patients with higher CD8+/MM ratio had better survival
for both cancer types than those with lower CD8+/MM ratio. Both EPIC and MCPCounter

yielded non-significant survival associations using their cell proportion estimate.

4.5.2. scCapsNet
scCapsNet [52] is an interpretable capsule network designed for cell type prediction. The

paper showed that the trained network could be interpreted to inform marker genes and

regulatory modules of cell types.

Model. scCapsNet takes log-transformed, normalized expressions as input and follows
the general CapsNet model described in Section 3.4. Capsule v, represents the
probability of a single cell x,, belonging to cell type k, which will be used for cell-type
classification. Once trained, the interpretation of marker genes and regulatory modules
can be achieved by determining first the important primary capsules for each cell type
and then the most significant genes for each important primary capsule (identified based
on c; directly). To determine the genes that are important for an important primary
capsule [, genes are ranked base on the scores of the first principal component
computed from the columns of Wp; in Eq. (15) and then the markers are obtained by a
greedy search along with the ranked list for the best classification performance.

Results. scCapsNet’s performance was evaluated on human PBMCs [100] and mouse
retinal bipolar cells [101] datasets and shown to have comparable accuracies (99% and
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97% respectively) with DNN and other popular ML algorithms (SVM, random forest, LDA
and nearest neighbor). However, the interpretability of scCapsNet was demonstrated
extensively. First, examining the coupling coefficients for each cell type showed that only
a few primary capsules have high values and thus are effective. Subsequently, a set of
core genes were identified for each effective capsule using the greedy search on the PC-
score ranked gene list. GO enrichment analysis showed that these core genes were
enriched in cell-type-related biological functions. Mapping the expression data into space
spanned by PCs of the columns of W;; corresponding to all core genes uncovered
regulatory modules that would be missed by the T-SNE of gene expressions, which
demonstrated the effectiveness of the embeddings learned by scCapsNet in capturing

the functionally important features.

4.5.3. netAE: network-enhanced autoencoder

netAE [102] is a VAE-based semi-supervised cell type prediction model (Figs. 2A, 4C)
that deals with scenarios of having a small number of labeled cells.
Model. netAE works with UMI counts and assumes a ZINB distribution for x,,, as in Eq.
(25) in scVI. However, netAE adopts the general VAE loss as in Eq. (6) with two function-
specific loss as

L(®) = —L(0) + A1 Xnes Q(zn) + A2 Xnes, logf (Vnlzn), (36)
where S is a set of indices for all cells and S;is a subset of S for only cells with cell type
labels, Q is modified Newman and Girvan modularity [103] that quantifies cluster strength
using z,, f is the softmax function, and y,, is the cell type label. The second loss in Eq.
(36) functions as a clustering constraint and the last term is the cross-entropy loss that
constrains the cell type classification.
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Results: netAE was compared with popular dimension reduction methods including scVI,
ZIFA, PCA and AE as well as a semi-supervised method scANVI [104]. For different
dimensionality reduction methods, cell type classification from latent features of cells was
carried out using KNN and logistic regression. The effect of different labeled samples
sizes on classification performance was also investigated, where the sample size varied
from as few as 10 cells to 70% of all cells. Among 3 test datasets (mouse brain cortex,
human embryo development, and mouse hematopoietic stem and progenitor cells),
netAE outperformed most of the baseline methods. Latent features were visualized using
t-SNE and cell clusters by netAE were tighter than those by other embedding spaces.
netAE also showed consistency of better cell-type classification with improved cell type
clustering. This suggested that the latent spaces learned with added modularity constraint
in the loss helped identify clusters of similar cells. Ablation study by removing each of the
three loss terms in Eq. (36) showed a drop of cell-type classification accuracy, suggesting

all three were necessary for the optimal performance.

4.5.4. scDGN - supervised adversarial alignment of single-cell RNA-seq data

scDGN [53], or Single Cell Domain Generalization Network (Fig. 4G), is a domain
adversarial network that aims to accurately assign cell types of single cells while
performing batch removal (domain adaptation) at the same time. It benefits from the
superior ability of domain adversarial learning to learn representations that are invariant
to technical confounders.

Model. scDGN takes the log-transformed, normalized expression as the input and has

three main modules: i) an encoder (E4(x,)) for dimension reduction of scRNA-seq data,
ii) cell-type classifier, Cy, (Es(x,)) with parameters ¢, and iii) domain (batch)
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discriminator, Dy (E¢(xn)). The model has a Siamese design and the training takes a

pair of cells (x;,x,), each from the same or different batches. The encoder network

contains two hidden layers with 1146 and 100 neurons. Cy, . classifies the cell type and
Dy, predicts whether x; and x, are from the same batch or not. The overall loss is

denoted by

L b, $0) = Le (Coc (Ep(20))) = AL (D, (Ep (1)) Dy, (E(x2))).  (37)

where L is the cross-entropy loss, L, is a contrastive loss as described in [105]. Notice
that (37) has an adversarial formulation and minimizing this loss maximizes the
misclassification of cells from different batches, thus making them indistinguishable.

Similar to GAN training, scDGN is trained to iteratively solve: ¢, = argming L(¢, d¢, ¢p)

and ((}5, $C) = argmin¢,¢,cL(¢, b, (750).

Results. scDGN was tested for classifying cell types and aligning batches ranging in size
from 10 to 39 cell types and from 4 to 155 batches. The performance was compared to a
series of deep learning and traditional ML methods, including Lin et al. DNN [72], CaSTLe
[106], MNN [32], scVI [17], and Seurat [10]. scDGN outperformed all other methods in the
classification accuracy on a subset of scQuery datasets (0.29), PBMC (0.87), and 4 of
the six Seurat pancreatic datasets (0.86 - 0.95). PCA visualization of the learned data
representations demonstrated that scDGN overcame the batch differences and clearly
separated cell clusters based on cell types, while other methods were vulnerable to batch
effects. In summary, scDGN is a supervised adversarial alignment method to eliminate

the batch effect of sScRNA-seq data and create cleaner representations of cell types.

4.6. Biological function prediction
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Predicting biological functions and responses to treatment at single cell level or cell types
is critical to understand cellular system functioning and potent responses to stimulations.
DL models are capable of capture gene-gene relationship and their property in the latent
space. Several surveyed models demonstrate exciting results to learn complex biological

functions and outcomes.

4.6.1. CNNC: convolutional neural network for coexpression
CNNC [54] is proposed to infer causal interactions between genes from scRNA-seq data.

Model. CNNC is a Convolutional Neural Network (CNN) (Fig. 4F), one of the most popular
DL models. CNNC takes expression levels of two genes from many cells and transforms
them into a 32 x 32 image-like normalized empirical probability function (NEPDF), which
measures the probabilities of observing different coexpression levels between the two
genes. CNNC includes 6 convolutional layers, 3 max-pooling layers, 1 flatten layer, and
one output layer. All convolution layers have 32 kernels of size 3x3. Depending on the
application, the output layer can be designed to predict the state of interaction (Yes/No)
between the genes or the causal interaction between the input genes (no interaction,
gene A regulates gene B, or gene B regulates gene A).

Result. CNNC was trained to predict transcription factor (TF)-Gene interactions using the
mESC data from scQuery [107], where the ground truth interactions were obtained from
the ChiP-seq dataset from the GTRD database [108]. The performance was compared
with DNN, count statistics [109], and mutual information-based approach [110]. CNNC
was shown to have more than 20% higher AUPRC than other methods and reported
almost no false-negative for the top 5% predictions. CNNC was also trained to predict the
pathway regulator-target gene pairs. The positive regulator-gene pairs were obtained

48



10

11

12

13

14

15

16

17
18

19
20

21

22

23

24

from KEGG [111], Reactome [112], and negative samples were genes pairs that
appeared in pathways but do not interacted. CNNC was shown to have better
performance of predicting regulator-gene pairs on both KEGG and Reactome pathways
than other methods including Pearson correlation, count statistics, GENIE3 [113], Mutual
information, Bayesian directed network (BDN), and DREMI [110]. CNNC was also
applied for causality prediction between two genes, that is if two genes regulate each
other and if they do, which gene is the regulator. The ground truth causal relationships
were also obtained from the KEGG and Reactome datasets. Again, CNNC reported better
performance than BDN, the common method developed to learn casual relationships from
gene expression data. CNNC was finally trained to assign 3 essential cell functions (cell
cycle, circadian rhythm, and immune system) to genes. This is achieved by training
CNNC to predict pairs of genes from the same function (e.g. Cell Cycle defined by
mSigDB from gene set enrichment analysis (GSEA) [114]) as 1 and all other pairs as 0.
The performance was compared with “guilt by association” and DNN, and CNNC was
shown to have more than 4% higher AUROC and reported all positives for the top 10%

predictions.

4.6.2. scGen, a generative model to predict perturbation response of single cells
across cell types
scGen [115] is designed to learn cellular responses to certain perturbations such as drug

treatment and gene knockout from single-cell expression data, and then predict cellular
responses to the same perturbation for a new sample or a new cell type. The novelty of
scGen is that it learns the cellular response in the latent space instead of the expression

data space.
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Model. ScGen follows the general VAE (Figs. 2A, 4C) for scRNA-seq data but uses the
“latent space arithmetics” to learn perturbations' response. Given scRNA-seq samples of
perturbed (denoted as p) and unperturbed cells (denoted as unp), a VAE model is trained.
Then, the latent space representation z,, and z,,,,,, are obtained for the perturbed and
unperturbed cells. Following the notion that VAE could map nonlinear operations (e.g.,
perturbation) in the data space to linear operations in the latent space, ScGen estimates
the response in the latent space as 6 = z,, — z,,,,, Where Z. is the average representation
of samples from the same cell type or different cell types. Then, given the latent

representation z’,,,,, of an unperturbed cell for a new sample from the same or different

cell type, the latent representation of the corresponding perturbed cell can be predicted
as z',=z',,, + 8. The expression of the perturbed cell can also be estimated by feeding
z', into the VAE decoder. The scGen can also be expanded to samples and treatment
across two species (using orthologues between species). When scGen is trained for
species 1 (s1) with both perturbed and unperturbed cells and species 2 (s2) with only

unperturbed cells, the latent code for the perturbed cells from s> can be predicted as
zg,, = ;(Zsl,p + Zs, unp + 85 + 8,) where 8, = z;_,n, — 25, , Captures the response of

perturbation and &, = z;, — z, represents the difference between species.

1

Result. scGen was applied to predict perturbation of out-of-samples response in human
PBMCs data, and scGen showed a higher average correlation (R?= 0.948) between
predicted and real data for six cell types [116]. Compared with other methods including
CVAE [117], style transfer GAN [118], linear approaches based on vector arithmetics (VA)
similar in [119] and PCA+VA, scGen predicted full distribution of ISG15 gene (strongest

regulated gene by IFN-B) response to IFN- 3 [116], while others might predict mean
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(CAVE and style transfer GAN) but failed to produce the full distribution. scGen was also
tested on predicting the intestinal epithelial cells’ response to infections [120]. For early
transit-amplifying cells, scGen showed good prediction (R?=0.98) for both
Heligmosomoides polygyrus and Salmonella infections. Finally, scGen was evaluated for
perturbation across species using scRNA-seq data set by Hagai et al. [121], which
comprises bone marrow-derived mononuclear phagocytes from mice, rats, rabbits, and
pigs perturbed with lipopolysaccharide (LPS). scGen’s predictions of LPS perturbation

responses were shown to be highly correlated (R?= 0.91) with the real responses.

5. Conclusions

We systematically survey 25 DL models according to the challenges they address. We
categorize major DL model statements into VAE, AE, and GAN with a unified mathematic
formulation in Section 3 (graphic model representation in Fig. 2), which will guide readers
to focus on the DL model selection, training strategies, and loss functions in each
algorithm. Specifically, the differences in loss functions are highlighted in each DL model’s
applications to meet specific objectives. DL/ML models that 25 surveyed models are
evaluated against are presented in Fig. 3, providing a straightforward way for readers to
pick up the most suitable DL model at a specific step for their own scRNA-seq data
analysis. All evaluation methods are listed in Table 3, as we foresee Table 3 to be an
easy recipe book for researchers to establish their scRNA-seq pipeline. In addition, a
summary of all the 25 DL models concerning their DL models, evaluation metrics,
implementation environment, downloadable source codes, features, and application

notes is presented in Table 1a and 1b. Taken together, this survey provides a rich
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resource to select a DL model for proper research applications, and we expect to inspire
new DL model developments for scRNA-seq analysis.

One advantage of DL for scRNA-seq repeatedly demonstrated in many of these
surveyed papers is DL’s ability to scale to a large number of cells, thanks to the stochastic
gradient descent algorithm. For imputation, DCA shows linear scalability with the number
of cells, and scl GAN and Deeplnpute are demonstrated to scale to 100K cells while non-
DL algorithms including SAVER and SCRABBLE fail due to excessive memory usage
and runtime [19]. A similar favorable scalability result has been echoed for batch
normalization by DESC and iMAP, clustering by scDeepCluster, and multi-functional
analysis by scVI, LDVAE, SAUCIE, and scScope. Overall, the advantage of DL in
scalability becomes more apparent over non-DL approaches after the number of cells
exceeds thousands. However, many of these comparisons exclude the time for
determining DL models’ hyperparameters. Although iIMAP shows that the model is robust
against model hyperparameters, determinination of optimal hyperparameters in DL
models has not been comprehensively studied for these scRNA-seq tasks.

This review focuses on surveying common DL models, such as AE, VAE, and GAN,
and their model variations or combinations to address single-cell data analysis
challenges. With the advancement of multi-omics single-cell technologies, new single-cell
data types and DL models will be introduced to the single-cell analysis pipeline, such as
cyTOF using SAUCIE [15], spatial transcriptome using DNN [122], and CITE-seq that
simultaneously generates read counts for surface protein expression along with gene
expression [123, 124]. Other than 3 most common unsupervised DL models using AE,

VAE, and GAN, this review also discusses supervised network frameworks including
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CapsNet (e.g. scCapsNet [52]), CNN (e.g. CNNC [54]), and domain adaption learning
(e.g. scDGN [53]). It is expected that more DL models and learning paradigms will be
developed and implemented for the most challenging steps for scRNA-seq data, including
but not limited to, multi-omics data integration and data interpretation. For example,
integrating protein-protein interaction graphs into DL models has been shown for its
advantages of biological knowledge and nonlinear interactions embedded in the graphs
[125-127]. Indeed, a recently published scRNA-seq analysis pipeline, scGNN [128],
incorporates 3 iterative autoencoders (including one graph autoencoder) and successfully
demonstrated Alzheimer’'s disease-related neural development and differentiation
mechanisms. We expect that our careful organization of this review will provide a basic
understanding of DL models for scRNA-seq and inspire innovative applications of DL

models for single cell analysis.
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Figure Captions

Figure 1. Single cell data analysis steps for both conventional ML methods
(bottom) and DL methods (top). Depending on the input data and analysis objectives,
major scRNA-seq analysis steps are illustrated in the center flow chart (color boxes) with
conventional ML approaches along with optional analysis modules below each analysis
step. Deep learning approaches are categorized as Deep Neural Network, Generative
Adversarial Network, Variational Autoencoder, and Autoencoder. For each DL approach,

optional algorithms are listed on top of each step.

Figure 2. Graphical models of the major surveyed DL models including A)

Variational Autoencoder B) Autoencoder; and C) Generative Adversarial Network

Figure 3. Algorithm comparison grid. DL methods surveyed in the paper are listed on
the left-hand side, and some in the column. Algorithms selected to compare in each DL

method are marked by “®” at each cross-point.

Figure 4. DL model network illustration. A) Deep neural network, B) Autoencoder, C)
Variational autoencoder, D) Autoencoder with recursive imputer, E) Generative
adversarial network, F) Convolutional neural network, and G) Domain adversarial neural

network.
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Tables

Table 1a. Deep Learning algorithms reviewed in the paper

App Algorithm Models Evaluation Environment Codes Refs
Imputation
Keras, o .
DCA AE DREMI Tensorflow, https.//mthub(.:caom/themlab/d [18]
scanpy =
https://qgithub.com/jingshuw/
SAVER-X AE+TL t-SNE, ARI R/sctransfer SAVERX [58]
Deeplmpute DNN MSE, Pearson’s correlation Keras/Tensorf https:/{mthub.com/lanaqarm [20]
low ire/Deeplmpute
https://qithub.com/audreyqy
LATE AE MSE Tensorflow fU/LATE [59]
https://qithub.com/QUST-
scGAMI AE NMI, ARI, HS and CS Tensorflow AIBBDRC/ScGMAI/ [60]
sclGANs GAN ARI, ACC, AUC, and F-score PyTorch hitps://qithub.com/xuyungan [19]
a/sclGANs
Batch correction
BERMUDA AE+TL KBET, the entropy of Mixing, S| PyTorch  nitos:/ q'tg‘gmcﬁgﬁxwa”"/ B (64]
DESC AE ARI, KL Tensorflow h“DS:”q'th“%;’gm’e'eozzr/d [68]
iMAP AE+GAN KBET, LISI PyTorch hitps:// q'th‘f\;’ fgm’ Swordli 7y
Clustering, latent representation, dimension reduction, and data augmentation
Dhaka VAE ARI, Spearman Correlation Keras/Tensorf https://qﬂhub_.com/Mlcrosoft (73]
low Genomics/Dhaka
scvis VAE KNN preservation, log-likelihood Tensorflow https://_b itbucket.org/jerry00/ [76]
scvis-dev/src/master/
SCVAE VAE ARI Tensorflow ~ ups/ q'thusécgm/ SCVae/SC 177
https://qithmcom/wanq-
VASC VAE NMI, ARI, HS, and CS H5py, keras research/VASC [78]
scDeepCluster AE ARI, NMI, clustering accuracy Keras, hitps://qgithub.com/tiqump/sc [80]
Scanpy DeepCluster
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Scipy, https://github.com/imsb-
cscGAN GAN t-SNE, marker genes, MMD, AUC Tensorflow uke/SCGAN [83]
Multi-functional models (IM: imputation, BC: batch correction, CL: clustering)
IM: L1 distance; CL: ARI, NMI, SI; PyTorch https:/github.com/YoseflLab
scv VAE BC: Entropy of Mixing Anndata [scvi-tools [17]
[scvi-tools
IM: R? statistics; CL: SI; Httos/aithub Kiish
SAUCIE AE BC: modified kBET; Visualization:  Tensorflow ps-//giinub.COM/ANSNNAs 15
Precision/Recall wamyLab/SAUCIE/ 1l
SCSCODe AE IM:Reconstruction errors; Tensorflow,  https://github.com/Altschule 93]
P BC: Entropy of mixing; CL: ARI Scikit-learn rWu-Lab/scScope
Cell type Identification
DigitalDLSorter DNN Pearson correlation R/Python/Ke  https://github.com/cartof/digit [51]
ras alDL Sorter
Tensorflow scCaps
Cell-type Prediction accuracy, t- https://aithub.com/LeoZDong
netAE VAE SNE for visualization pyTorch NetAE [102]
Prediciton accurac https://github.com/SongweiG
scDGN DANN Yy pyTorch /ScDGN [53]
Function analysis
Keras, https://github.com/xiaoyeye/
CNNC CNN AUROC, AUPRC, and accuracy Tensorflow CNNC [54]
scGen VAE Correlation, visualization Tensorflow https://q|thu£)dcg%m/thelslab/s [115]

DL Model keywords: AE: autoencoder, AE+TL: autoencoder with transfer learning, AE: variational autoencoder, GAN: Generative adversarial
network, CNN: convolutional neural network, DNN: deep neural network, DANN: domain adversarial neural network, CapsNet: capsule neural

network
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Table 1b. Comparison of Deep Learning algorithms reviewed in the paper

App Algorithm

Feature

Application notes

Imputation

DCA

SAVER-X

Deeplmpute

LATE

scGAMI

sclGANs

Batch correction

Strongest recovery of the top 500 genes
Choices of noise models, including NB,
and ZINB

Outperform other existing methods in
capturing cell population structure

Pretraining from existing data sets
(transfer learning)

Decomposes the variation into three
components

Divide-and-conquer approach, using a
bank of DNN models

Reduced complexity by learning smaller
sub-network

Minimized overfitting by removing target
genes from input

Takes the log-transformed expression as
input

No explicit distribution assumption on
input data

A model designed for clustering but it
includes an AE

Uses fast independent component
analysis algorithm: FastICA

Trains a GAN model to generate
samples with imputed expressions

AE integrated into the Scanpy framework
High scalability of AE, up to millions of cells
This method was compared to SAVER, scimpute, and MAGIC

SAVER-X pretraining on PBMCs outperformed other denoising methods,
including DCA, scVI, scimpute, and MAGIC
SAVER-X was also applied for cross-species analysis

Deeplmpute had the highest overall accuracy and offered shorter
computation time than other methods like MAGIC, Drimpute, Scimpute,
SAVER, VIPER, and DCA

Deeplmpute showed benefits in improving clustering results and
identifying significantly differentially expressed genes

Scalable and faster training time

LATE outperforms other existing methods like MAGIC, SAVER, DCA,
scVI, particularly when the ground truth contains only a few or no zeros
Better scalability than DCA and scVI up to 1.3 million cells with 10K genes

Significantly improved the clustering performance in eight of seventeen
selected scRNA-seq datasets
scGMI’s scalability needs to be improved

This framework forces the model to reconstruct the real samples and
discriminate between real and generated samples.

Best reported performance in clustering compared to DCA, Deeplmpute,
SAVER, scimpute, MAGIC

Scalable over 100K cells, also robust to small datasets

BERMUDA

Preserves batch-specific biological
signals through transfer-learning
Preserves batch-specific cell populations

Outperform other methods like mnnCorrect, BBKNN, Seurat, and scVI

Removes batch effects even when the cell population compositions
across different batches are vastly different

Scalable by using mini-batch gradient descent algorithm during training
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DESC

iIMAP

Removes batch effect through clustering
with the hypothesis that batch
differences in expressions are smaller
than true biological variations

Does not require explicit batch
information for batch removal

iMAP combines AE and GAN for batch
effect removal

It consists of two processing stages,
each including a separate DL model

DESC is effective in removing the batch effect, whereas CCA, MNN,
Seurat 3.0, scVI, BERMUDA, and scanorama were sensitive to batch
definitions

DESC is biologically interpretable and can reveal both discrete and
pseudo-temporal structures of cells

Small memory footprint and GPU enabled

iIMAP was shown to separate the batch-specific cell types but mix batch
shared cell types and outperformed other existing batch correction
methods including Harmony, scVI, fastMNN, Seurat

Capable handling datasets from Smart-seq2 and 10X Genomics platforms
Demonstrated the stability over hyperparameters, and scalability for
thousands of cells.

Clustering, latent representation, dimension reduction, and data augmentation

Dhaka

scvis

scVAE

VASC

scDeepCluster

It was proposed to reduce the dimension
of scRNA-seq data for efficient
stratification of tumor subpopulations

VAE network that learns low-dimensional
representations

Capture both local and global
neighboring structures

scVAE includes multiple VAE models for
denoising gene expression levels and
learning the low-dimensional latent
representation

Gaussian Mixture VAE (GMVAE) with
negative binomial distribution achieved
the highest lower bound and ARI

Another VAE for dimension reduction
and latent representation

Explicitly model dropout with a Zero-
inflated layer

AE network that simultaneously learns
feature representation and performs
clustering via explicit modeling of cell
clusters

Dhaka was shown to have an ARI higher than most other comparing
methods including t-SNE, PCA, SIMLR, NMF, an autoencoder, MAGIC,
and scVI

Dhaka can represent an evolutionary trajectory

scvis was tested on the simulated data and outperformed t-SNE
scvis is much more scalable than BH t-SNE (t-SNE takes O(M log(M))
time and O(M log(M)) space) for very large dataset (>1 million cells)

GMVAE was also compared with Seurat and shown to perform better,
however, scVAE performed no better than scVI or scvis
Algorithm applicable to large datasets with million cells

VASC was compared with PCA, t-SNE, ZIFA, and SIMLR on 20 datasets
In the study of embryonic development from zygote to blast cells, VASC
shthe owed better performance to model embryo developmental
progression

VASC is reported to handle a large number of cells or cell types
Demonstrated model stability

It was tested on the simulation data with different dropout rates and
compared with DCA, MPSSC and SIMLR CIDR, PCA + k-mean, scvis and
DEC significantly outperforming them

Running time of scDeepCluster scales linearly with the number of cells,
suitable for large scRNA-seq datasets
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cscGAN

Multi-functional models

It was designed to augment the existing
scRNA-seq samples by generating
expression profiles of specific cell types
or subpopulations

The cscGAN learns the expression
patterns of a specific subpopulation (few
cells), and simultaneously learns the
cells from all populations (a large number
of cells).

cscGAN was shown to generate high-quality scRAN-seq data for specific
cell types.

The augmentation in this method improved the identification of rare cell
types and the ability to capture transitional cell states from trajectory
analysis

Better scalability than SUGAR (Synthesis Using Geometrically Aligned
Random-walks)

Capable re-establish developmental trajectories through pseudo-time
analysis via cscGAN data augmentation

scVI

LDVAE

SAUCIE

scScope

Cell type Identification

Designed to address a range of
fundamental analysis tasks, including
batch correction, visualization, clustering,
and differential expression

Integrated a normalization procedure and
batch correction

Adaption of scVI to improve the model
interpretability

It is applied to the normalized data
instead of count data

AE with recurrent steps designed for
imputation and batch correction

ScVI was shown to be faster than most non-DL algorithms and scalable to
handle twice as many cells as non-DL algorithms with a fixed memory

For imputation, ScVI, together with other ZINB-based models, performed
better than methods using alternative distributions

Similar scalability as DCA

For LDVAE the variations along the different axes of the latent variable
establish direct linear relationships with input genes.

Results showed that SAUCIE had a better or comparable performance
with other approaches

SAUCIE has better scalability and faster runtimes than any of the other
models

Applications with single-cell CyTOF datasets

It was compared with PCA, MAGIC, ZINB-WaVE, SIMLR, AE, scVI, and
DCA

Efficiently identify cell subpopulations from complex datasets with high
dropout rates, large numbers of subpopulations and rare cell types

For scalability and training speed, scScope was shown to offer scalability
(for >100K cells) with high efficiency (faster than most of the approaches)

DigitalDLSorter

scCapsNet

A deconvolution model with 4-layer DNN
Designed to identify and quantify the
immune cells infiltrated in tumors
captured in bulk RNA-seq, utilizing
single-cell RNA-seq data

It takes log-transformed, normalized
expressions as input and follows the
general CapsNet model

DigitalDLSorter achieved excellent agreement (linear correlation of 0.99
for colorectal cancer, and good agreement in quadratic relationship for
breast cancer) at predicting cell type proportion.

Interpretable capsule network designed for cell type prediction
scCapsNet makes the deep-learning black box transparent through the
direct interpretation of internal parameters
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netAE

scDGN

Function analysis

VAE-based semi-supervised cell type
prediction model

Aiming at learning a low dimensional
space from which the original space can
be accurately reconstructed

scDGN takes the log-transformed,
normalized expression as the input
Supervised domain adversarial network

Deals with scenarios of having a small number of labeled cells.
netAE outperformed most of the baseline methods including scVI, ZIFA,
PCA and AE as well as a semi-supervised method scANVI

scDGN was tested for classifying cell types and aligning batches
scDGN outperformed many deep learning and traditional machine
learning methods in classification accuracy, including DNN, CaSTLe,
MNN, scVI, and Seurat

CNNC

scGen

CNNC takes expression levels of two
genes from many cells and transforms
them into a 32 x 32 image-like
normalized empirical probability function
Inferring causal interactions between
genes from scRNA-seq

ScGen follows the general VAE for
scRNA-seq data but uses the “latent
space arithmetics” to learn perturbations'
response

Designed to learn cell response to
certain perturbation (drug treatment,
gene knockout, etc)

CNNC outperforms prior methods for inferring TF—gene and protein—
protein interactions, causality inference, and functional assignments
Was shown to have more than 20% higher AUPRC than other methods
and reported almost no false-negative for the top 5% predictions

Compared with other methods including CVAE, style transfer GAN, linear

approaches based on vector arithmetics(VA) and PCA+VA, scGen

predicted full distribution of ISG15 gene (strongest regulated gene by IFN-

b) response to IFN- b

scGen can be used to translate the effect of a stimulation trained in study

A to how stimulated cells would look in study B, given a control sample
set

Abbreviation: NB: negative binomial distribution; ZINB: zero-inflated negative binomial distribution; TF: Transcription factor;
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Table 2a: Simulated single-cell data/algorithms

Title Algorithm # Cells Simulation methods Reference
DCA, Deepimpute,
PERMUDA, -
Splatter scDeepCluster, ScVI, 2000 Splatter/R [85]
scScope, solo
CIDR sclGAN 50 CIDR simulation [61]
Hierarchical model of
NB+dropout Dhaka 500 NB/Gamma + random dropout
1076 CCLE bulk RNAseq +
Bu':eRNA' SAUCIE 1076 dropout conditional on the
9 expression level
SIMLR scScope 1 million SIMLR, high-dimensional data [44]
generated from latent vector
Generating high dimensional
SUGAR cscGAN 3000 data that follows a low [86]
dimensional manifold
Table 2b: Human single-cell data sources used by different DL algorithms
Title Algorithm Cell origin # Cells Data Sources Reference
DCA
SAVER-X
68k PBMCs  LATE, SCVAE, Blood 68,579 10X Single Cell Gene
scCapsNet,
scDGN
Human DCA hESCs 1,876 GSE102176 [129]
pluripotent
Cord blood
CITE-seq SAVER-X mononuclear 8,005 GSE100866 [130]
cells
Midbrain and .
Dopaminergic Brain/ embryo
N SAVER-X ventral 1,977 GSE76381 [131]
euron . :
midbrain cells
Development
Immune cell,
HCA SAVER-X Human Cell 500,000 HCA data portal
Atlas
Immune cell in
Breast tumor SAVER-X tumor micro- 45,000 GSE114725 [132]
environment
Deeplmpute, Embryonic 10X Single Cell Gene
293T cells iMAP kidney 13,480 Expression Datasets
Deeplmpute, Blood/ 10X Single Cell Gene
Jurkat iIMAP lymphocyte 3,200 Expression Datasets
ESC, Time- SCGAN ESC 350, 758 GSE75748 [133]
course
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Baron-Hum-1

Baron-Hum-2

Camp

CEL-seq2

Darmanis

Tirosh-brain

Patel

Li
Tirosh-skin

xenograft 3,
and 4

Petropoulos

Pollen
Xin

Yan

PBMC3k

CyTOF,
Dengue

CyTOF,
ccRCC

CyTOF, breast
Chung, BC

Li, CRC

Pancreatic
datasets

Kang, PBMC

scGMAI, VASC

scGMAI, VASC
scGMAI, VASC

PERMUDA,
DESC

scGMAI,
sclGAN, VASC

Dhaka, scvis

Dhaka

scGMAI, VASC

scvis
Dhaka
VASC/netAE

scGMAI, VASC

scGMAI, VASC

scGMAI, VASC
VASC, scVI

SAUCIE

SAUCIE

SAUCIE
DigitalDLSorter

DigitalDLSorter

scDGN

scGen

Pancreatic
islets

Pancreatic
islets
Liver cells

Pancreas/Islet
s of
Langerhans

Brain/cortex

Oligodendrogli
oma

Primary
glioblastoma
cells

Blood

melanoma

Breast tumor

Human
embryos

Pancreatic
cells

(G_’ B" 6')
embryonic
stem cells
Blood
Dengue
infection

Immunue
profile of 73
ccRCC
patients

3 patients

Breast tumor
Colorectal
cancer
Pancreas

PBMC
stimulated by
INF-B

1,937

1,724

303

466

>4800

875
561
4645
~250
1,529

348

1,600

124

2,700

11 M, ~42
antibodies

3.5M, ~40
antibodies

515

2,591

14693

~15,000

GSM2230757
GSM2230758

GSE96981

GSEB85241

GSE67835

GSE70630

GSE57872

GSE146974
GSE72056

EGAS00001002170
E-MTAB-3929

SRP041736

GSE81608

GSE36552
SRPO73767

Cytobank, 82023

Cytobank: 875

Flow Repository: FR-
FCM-ZYJP

GSE75688
GSE81861

SeuratData

GSE96583

[134]

[134]

[135]

[136]

[137]

[138]

[139]

[68]
[74]

[140]

[141]

[142]

[143]
[100]

[15]

[144]

[132]
[94]

[99]

[116]
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Table 2c: Mouse single-cell data sources used by different DL algorithms

Title Algorithm Cell origin # Cells Data Sources Reference
. 10x: Single Cell
Brain cells : :
from E18 mice DCA, SAUCIE Brain Cortex 1,306,127 Gene Expression
Datasets
Midbrain and
Dopaminergic Ventral
Neuron SAVER-X Midbrain 1907 GSE76381 [131]
Development
Mouse cell SAVER-X 405,796 GSE108097 [145]
10x: Single Cell
neuron9k Deeplmpute Cortex 9128 Gene Expression
Datasets
Mouse Visual .
Cortex Deeplmpute Brain cortex 114601 GSE102827 [146]
murine . .
epidermis Deeplmpute Epidermis 1422 GSE67602 [147]
loid LATE
pr’:g:n‘i’t'ors DESC, Bone marrow 2,730 GSE72857 [148]
SAUCIE
Cell-cycle sclGAN mESC 288 E-MTAB-2805 [149]
A single-cell :
survey Intestine 7721 GSE92332 [120]
Tabula Muris iMAP Mouse cells >100K
Baron-Mou-1 VASC Pancreas 822 GSM2230761 [134]
Biase sCcGMAI, VASC Embg?:{r SMA 56 GSE57249 [150]
Biase ScGMAI, VASC Embr‘g’;’ Fluidi 90 GSE59892 [150]
Deng scGMAI, VASC Liver 317 GSE45719 [151]
VASC
Klein scDeepCluster Stem Cells 2,717 GSE65525 [152]
sclGAN
Goolam VASC Mouse Embryo 124 E-METAB-3321 [153]
Kolodziejczyk VASC mESC 704 E-MTAB-2600 [154]
Usoskin VASC Lumbar 864 GSE59739 [155]
VASC, scVI, Cortex
Zeisel SAUCIE, hi ocam’ us 3,005 GSE60361 [156]
netAE PP P
Bladder cells  scDeepCluster Bladder 12,884 GSE129845 [157]
HEMATO scVI Blood cell >10,000 GSE89754 [158]
retinal bipolar scVl, . -
cells scCapsNet retinal 25,000 GSE81905 [101]
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N —

[c BEN[o) QU 1N

SAUCIE

Embryo at 9 embryos from
time points HDAVE E65t0E85 110912
Embryo at 9 embryos from -
time points LDAVE E95t0E135 2 Millons
200K, ~38
CYTOF, SAUCIE  Mouse thymus  ipodies

hematopoietic
Nestorowa netAE stem and 1,920
progenitor cells

Infected with
small

intestinal scGen Salmonella 1,957
h . and worm H.
epithelium
polygyrus

GSE87038 [159]
GSE119945 [160]
Cytobank: 52942 [161]
GSE81682 [162]
GSE92332 [120]

Table 2d: Single-cell data derived from other species

Title Algorithm Species Tissue # Cells SRA/GEO Reference
W”g{;:}'m“ scDeepCluster elegéns Neuron 4,186 GSE98561 [163]
Cross
species, Mouse, mt;?rr:)?/v- 5,000 to 13 accessions
s_tlmulatlon scGen rat, rab_blt, derived 10,00_0 in [121]
with LPS and and pig hadocvte /species ArrayExpress
dsRNA phagocy

1. Processed data is available at https://github.com/ttgump/scDeepCluster/tree/master/scRNA-seq%20data

Table 2e: Large single-cell data source used by various algorithms

Title Sources

Notes

10X Single-cell https://support.10xgenomics.com/single-

gene expression a . n seq dataset generated using 10X
dataset cell-gene-expression/datasets system
Compendium of scRNA-seq data from
Tabula Muris https://tabula-muris.ds.czbiohub.org/ mouspe q
HCA https://data.humancellatlas.org/ Human single-cell atlas
https://figshare.com/s/865e694ad06d585  \1ouse sinale-cell atlas
MCA 7dbab, or GSE108097 9
A web server cell type matching and
y / key gene visualization. It is also a
scQuery hitps://sequery.cs.cmu.edu source for scRNA-seq collection
(processed with common pipeline)
s D ) . List of datasets, including PBMC and
euratData https://github.com/satijalab/seurat-data  hyman pancreatic islet cells
cytoBank https://cytobank.org/ Community of big data cytometry

Contains large collection of scRNA-
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Table 3. Evaluation metrics used in surveyed DL algorithms

Evaluation Method

Equations

Explanation

Pseudobulk RNA-seq

Mean squared error
(MSE)

Pearson correlation

Spearman correlation

Entropy of accuracy, Hacc
[21]

Entropy of purity, Hpur [21]

Entropy of mixing [32]

Mutual Information (MI)
[164]

Normalized Mutual
Information (NMI) [165]

1 n
MSE = Ez(xi - 56'\1')2
i=1

cov(X,Y)

Ox Oy

Pxy =

cov(ry, 1y)
Ps = Pryry = —(— -

OryOry

M Ni

Hace = = Mzzpl( 1) log (pi(x))

i=1 j=
N M;
Z q

i=1 j=1

C
E= Z p; log(p;)
i=1

%) log (a:(x;))

Zlv—‘

[l vl

.
MIQUV) = > Py (i,)) log (W%
=1 j=1 Utv
2 x MI(U,V)
NMI(U,V) =

[HWU) +H(V)]

)

Average of normalized (log2-transformed) scRNA-seq counts
across cells is calculated and then correlation coefficient
between the pseudobulk and the actual bulk RNA-seq profile of
the same cell type is evaluated.

MSE assesses the quality of a predictor, or an estimator, from a
collection of observed data x, with £ being the predicted values.

where cov() is the covariance, ox and oy are the standard
deviation of X and Y, respectively.

The Spearman correlation coefficient is defined as the Pearson
correlation coefficient between the rank variables, where rx is
the rank of X.

Measures the diversity of the ground-truth labels within each
predicted cluster group. pi(x;) (or gi(x;)) are the proportions of
cells in the j" ground-truth cluster (or predicted cluster) relative
to the total number of cells in the /" predicted cluster (or ground-
truth clusters), respectively.

Measures the diversity of the predicted cluster labels within each
ground-truth group

This metric evaluates the mixing of cells from different batches
in the neighborhood of each cell. C is the number of batches,
and p; is the proportion of cells from batch i among N nearest
cells.

where Py (i) = Wi and P,(j) = | ’| . Also, define the joint

distribution probablhty is PUV(l,]) = |U;—V’| The Ml is a measure

of mutual dependency between two cluster assignments U and
V.

where H(U) = ¥ Py (i) log(Py (i), H(V) = X P, (i) log(P,(i)). The
NMI is a normalization of the M| score between 0 and 1.
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Kullback—Leibler (KL)
divergence [166]

Jaccard Index

Fowlkes-Mallows Index
for two clustering
algorithms (FM)

Rand index (RI)

Adjusted Rand index
(ARI) [167]

Silhouette index

Maximum Mean
Discrepancy (MMD) [65]

k-Nearest neighbor
batch-effect test (kBET)
[168]

Local Inverse Simpson’s
Index (LISI) [34]

_ P(x)
D (P1Q) = ;P(x)log G
UV _|unv]
J, )_[UUVJ
. TP TP
= |TP+FP TP+ FN

RI = (a+b)/ (’21)

AR = RI — E[RI]
"~ max(RI) — E[RI]
S(i) = b(i) —a(i)

" max (a(i), b(i))

MMD(F,p,q) = sup||u, — kgl
fer

L
K _ (N — k- f)?
ary = _—
n kf'l

2
~Xi_1

=1

11
ZONS M CIO)

where discrete probability distributions P and Q are defined on

the same probability space . This relative entropy is the
measure for directed divergence between two distributions.

0=J(U,V)=1.J=1ifclusters Uand V are the same. If U are V
are empty, J is defined as 1.

TP as the number of pairs of points that are present in the same
cluster in both U and V; FP as the number of pairs of points that
are present in the same cluster in U but not in V; FN as the
number of pairs of points that are present in the same cluster in
V but not in U; and TN as the number of pairs of points that are
in different clusters in both U and V.

Measure of constancy between two clustering outcomes, where
a (or b) is the count of pairs of cells in one cluster (or different
clusters) from one clustering algorithm but also fall in the same
cluster (or different clusters) from the other clustering algorithm.

ARl is a corrected-for-chance version of RI, where E[R]] is the
expected Rand Index.

where a(i) is the average dissimilarity of " cell to all other cells
in the same cluster, and b(/) is the average dissimilarity of " cell
to all cells in the closest cluster. The range of s(i) is [-1,1], with
1 to be well-clustered and -1 to be completely misclassified.

MMD is a non-parametric distance between distributions based
on the reproducing kernel Hilbert space, or, a distance-based
measure between two distribution p and q based on the mean
embeddings x4 and yq in a reproducing kernel Hilbert space F.

Given a dataset of N cells from L batches with N, denoting the
number of cells in batch [, N, is the number of cells from batch I

in the k-nearest neighbors of cell n, f; is the global fraction of

cells in batch [, or f; = % and X2, denotes the X? distribution

with L — 1 degrees of freedom. It uses a X?-based test for
random neighborhoods of fixed size to determine the
significance (“well-mixed”).

This is the inverse Simpson’s Index in the k-nearest neighbors
of cell n for all batches, where p(l) denotes the proportion of
batch [ in the k-nearest neighbors. The score reports the
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Homogeneity

Completeness

V-Measure [169]

Precision, recall

Accuracy

F1-score

AUC, RUROC

HS =1 — H(PUIV))
H(P(D))

. H(P(VIU))
H(P(V))

_(1+P)HS X CS
B~ BHC+CS
TP

,recall =

. P
Precision = m

TP+TN

Accuracy = N

2 Precision - Recall

1= Precision + Recall

True positive rate

1

05
False positive rate

TP +FN

effective number of batches in the k-nearest neighbors of cell n.

where H() is the entropy, and U is the ground-truth assignment
and Vis the predicted assignment. The HS range from 0 to 1,
where 1 indicates perfectly homogeneous labeling.

Its values range from O to 1, where 1 indicates all members from

a ground-truth label are assigned to a single cluster.

where gindicates the weight of HS. V-Measure is symmetric, i.e.

switching the true and predicted cluster labels does not change
V-Measure.

TP: true positive, FP: false positive, FN, false negative.

N: all samples tested, TN: true negative

A harmonic mean of precision and recall. It can be extended to
Fz where 3 is a weight between precision and recall (similar to
V-measure).

Area Under Curve (grey area). Receiver operating
characteristic (ROC) curve (red line). A similar measure can be
performed on the Precision-Recall curve (PRC), or AUPRC.
Precision-Recall curves summarize the trade-off between the
true positive rate and the positive predictive value for a
predictive model (mostly for an imbalanced dataset).
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DigitalDLSorter,

. Deep Neural Networks scCapsNgt, scDGN CNL\IC
o
% Generative Adversarial Network SC|GAN§, iIMAP CSC(EAN
E’ multi-functional scVI, LDAVE
o
= Dhaka, scvis
§ Variational Autoencoder SCVAE, VASC net.AE scG.en
g multi-functional SAUCIE, scScope
a DCA, Deeplmpute, LATE, scGAMI,
Autoencoder SAVER-X, BERMUDA, DESC SCDeeEC|USter
; . Dimensionality ;
Alignment : Normalization - Cell-type SR Functional
(Cell Ranger, Alvin) Pre-processing (BASICS, scran) Rgﬂll:t:gr?:g& Identification Visualization Analysis
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methods

Doublet Detection
(DoubletFinder, Scrublet)
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(CellChat, etc)
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A Deep Feedforward Neural Network
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