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Abstract 1 

Since its selection as the method of the year in 2013, single-cell technologies have 2 

become mature enough to provide answers to complex research questions. With the 3 

growth of single-cell profiling technologies, there has also been a significant increase in 4 

data collected from single-cell profilings, resulting in computational challenges to process 5 

these massive and complicated datasets. To address these challenges, deep learning 6 

(DL) is positioned as a competitive alternative for single-cell analyses besides the 7 

traditional machine learning approaches. Here we survey a total of 25 DL algorithms and 8 

their applicability for a specific step in the single cell RNA-seq processing pipeline. 9 

Specifically, we establish a unified mathematical representation of variational 10 

autoencoder, autoencoder, generative adversarial network, and supervised DL models, 11 

compare the training strategies and loss functions for these models, and relate the loss 12 

functions of these models to specific objectives of the data processing step. Such a 13 

presentation will allow readers to choose suitable algorithms for their particular objective 14 

at each step in the pipeline. We envision that this survey will serve as an important 15 

information portal for learning the application of DL for scRNA-seq analysis and inspire 16 

innovative uses of DL to address a broader range of new challenges in emerging multi-17 

omics and spatial single-cell sequencing. 18 

  19 
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Key points: 1 

• Single cell RNA sequencing technology generates a large collection of transcriptomic 2 

profiles of up to millions of cells, enabling biological investigation of hidden expression 3 

functional structures or cell types, predicting their effects or responses to treatment more 4 

precisely, or utilizing subpopulations to address unanswered hypotheses.  5 

• Twenty-five deep learning-based approaches for single cell RNA seq data analysis are 6 

systematically reviewed in this paper according to the challenge they address and their 7 

roles in the analysis pipeline. 8 

• A unified mathematical description of the surveyed DL models is presented and the 9 

specific model features were discussed when reviewing each approach.   10 

• A comprehensive summary of the evaluation metrics, comparison algorithms, and 11 

datasets by each approach is presented.  12 

 13 

Keywords: deep learning; single-cell RNA-seq; imputation; dimensionality reduction; clustering; 14 

batch correction; cell type identification; functional prediction; visualization 15 
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 1 

1. Introduction 2 

Single cell sequencing technology has been a rapidly developing area to study genomics, 3 

transcriptomics, proteomics, metabolomics, and cellular interactions at the single cell 4 

level for cell-type identification, tissue composition, and reprogramming [1, 2]. 5 

Specifically, sequencing of the transcriptome of single cells, or single-cell RNA-6 

sequencing (scRNA-seq), has become the dominant technology in many frontier research 7 

areas such as disease progression and drug discovery [3, 4]. One particular area where 8 

scRNA-seq has made a tangible impact is cancer, where scRNA-seq is becoming a 9 

powerful tool for understanding invasion, intratumor heterogeneity, metastasis, epigenetic 10 

alterations, detecting rare cancer stem cells, and therapeutic response [5, 6]. Currently, 11 

scRNA-seq is applied to develop personalized therapeutic strategies that are potentially 12 

useful in cancer diagnosis, therapy resistance during cancer progression, and the survival 13 

of patients [5, 7]. The scRNA-seq has also been adopted to combat COVID-19 to 14 

elucidate how the innate and adaptive host immune system miscommunicates, worsening 15 

the immunopathology produced during the viral infection [8, 9].  16 

 17 

These studies have led to a massive amount of scRNA-seq data deposited to public 18 

databases such as the 10X single-cell gene expression dataset, Human Cell Atlas, and 19 

Mouse Cell Atlas. Expressions of millions of cells from 18 species have been collected 20 

and deposited, waiting for further analysis (Single Cell Expression Atlas, EMBL-EBI, 21 

October 2021), . On the other hand, due to biological and technical factors, scRNA-seq 22 

data presents several analytical challenges related to its complex characteristics like 23 

missing expression values, high technical and biological variance, noise and sparse gene 24 
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coverage, and elusive cell identities [1]. These characteristics make it difficult to directly 1 

apply commonly used bulk RNA-seq data analysis techniques and have called for novel 2 

statistical approaches for scRNA-seq data cleaning and computational algorithms for data 3 

analysis and interpretation. To this end, specialized scRNA-seq analysis pipelines such 4 

as Seurat [10] and Scanpy [11], along with a large collection of task-specific tools, have 5 

been developed to address the intricate technical and biological complexity of scRNA-6 

seq data.  7 

 8 

Recently, deep learning has demonstrated its significant advantages in natural language 9 

processing and speech and facial recognition with massive data [12-14]. Such 10 

advantages have initiated the application of DL in scRNA-seq data analysis as a 11 

competitive alternative to conventional machine learning (ML) approaches for uncovering 12 

cell clustering [15, 16], cell type identification [15, 17], gene imputation [18-20],  and batch 13 

correction [21] in scRNA-seq analysis. Compared to conventional ML approaches, DL is 14 

more powerful in capturing complex features of high-dimensional scRNA-seq data. It is 15 

also more versatile, where a single model can be trained to address multiple tasks or 16 

adapted and transferred to different tasks. Moreover, DL training scales more favorably 17 

with the number of cells in scRNA-seq data size, making it particularly attractive for 18 

handling the ever-increasing volume of single cell data.  Indeed, the growing body of DL-19 

based tools has demonstrated DL’s exciting potential as a learning paradigm to 20 

significantly advance the tools we use to interrogate scRNA-seq data.   21 

 22 
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In this paper, we present a comprehensive review of the recent advances of DL methods 1 

for solving the challenges in scRNA-seq data analysis (Table 1) from the quality control, 2 

normalization/batch effect correction, dimensionality reduction, visualization, feature 3 

selection, and data interpretation by surveying deep learning papers published up to April 4 

2021. In order to maintain high quality for this review, we choose not to include any 5 

(bio)archival papers, although a proportion of these manuscripts contain important new 6 

findings that would be published after completing their peer-reviewed process. Previous 7 

efforts to review the recent advances in ML methods focused on efficient integration of 8 

single cell data [22, 23]. A recent review of DL applications on single cell data has 9 

summarized 21 DL algorithms that might be deployed in single cell studies [24]. It also 10 

evaluated the clustering and data correction effect of these DL algorithms using 11 11 

datasets.  12 

 13 

In this review, we focus more on the DL algorithms with a much detailed explanation and 14 

comparison. Further, to better understand the relationship of each surveyed DL model 15 

with the overall scRNA-seq analysis pipeline, we organize the surveys according to the 16 

challenge they address and discuss these DL models following the analysis pipeline. A 17 

unified mathematical description of the surveyed DL models is presented and the specific 18 

model features are discussed when reviewing each method. This will also shed light on 19 

the modeling connections among the surveyed DL methods and the recognization of the 20 

uniqueness of each model. Besides the models, we also summarize the evaluation 21 

matrics used by these DL algorithms and methods that each DL algorithm was compared 22 

with. The online location of the code, the development platform,  the used datasets for 23 
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each method are also cataloged to facilitate their utilization and additional effort to 1 

improve them. Finally, we also created a companion online version of the paper at 2 

https://huang-ai4medicine-lab.github.io/survey-of-DL-for-scRNA-seq-3 

analysis/gitbook/_book, which includes expanded discussion as well as a survey of 4 

additional methods. We envision that this survey will serve as an important information 5 

portal for learning the application of DL for scRNA-seq analysis and inspire innovative 6 

use of DL to address a broader range of new challenges in emerging multi-omics and 7 

spatial single-cell sequencing.  8 

 9 

2. Overview of the scRNA-seq processing pipeline 10 

Various scRNA-seq techniques (like SMART-seq, Drop-seq, and 10X genomics 11 

sequencing) [25, 26] are available nowadays with their sets of advantages and 12 

disadvantages. Despite the differences in the scRNA-seq techniques, the data content 13 

and processing steps of scRNA-seq data are quite standard and conventional. A typical 14 

scRNA-seq dataset consists of three files: genes quantified (gene IDs), cells quantified 15 

(cellular barcode), and a count matrix (number of cells x number of genes), irrespective 16 

of the technology or pipeline used.  A series of essential steps in the scRNA-seq data 17 

processing pipeline and optional tools for each step with both ML and DL approaches are 18 

illustrated in Fig. 1. 19 

 20 

With the advantage of identifying each cell and unique molecular identifiers (UMIs) for 21 

expressions of each gene in a single cell, scRNA-seq data are embedded with increased 22 

technical noise and biases [27]. Quality control (QC) is the first and the key step to filter 23 

out dead cells, double-cells, or cells with failed chemistry or other technical artifacts. The 24 
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most commonly adopted three QC covariates include the number of counts (count depth) 1 

per barcode identifying each cell, the number of genes per barcode, and the fraction of 2 

counts from mitochondrial genes per barcode [28].  3 

 4 
Normalization is designed to eliminate imbalanced sampling, cell differentiation, viability, 5 

and many other factors.  Approaches tailored for scRNA-seq have been developed 6 

including the Bayesian-based method coupled with spike-in, or BASiCS [29], 7 

deconvolution approach, scran [30], and scTransfrom in Seurat where regularized 8 

Negative Binomial Regression was proposed [31].  Two important steps, batch correction 9 

and imputation, will be carried out if required by the analysis. 10 

• Batch Correction is a common source of technical variation in high-throughput sequencing 11 

experiments due to variant experimental conditions such as technicians and experimental time, 12 

imposing a major challenge in scRNA-seq data analysis. Batch effect correction algorithms 13 

include detection of mutual nearest neighbors (MNNs) [32], canonical correlation analysis 14 

(CCA) with Seurat [33], and Harmony algorithm through cell-type representation [34].  15 

• Imputation step is necessary to handle high sparsity data matrix, due to missing value or 16 

dropout in scRNA-seq data analysis. Several tools have been developed to “impute” zero 17 

values in scRNA-seq data, such as SCRABBLE [35], SAVER [36] and scImpute [37]. 18 

Dimensionality reduction and visualization are essential steps to represent 19 

biologically meaningful variations and high dimensionality with significantly reduced 20 

computational cost. Dimensionality reduction methods, such as principal component 21 

analysis (PCA), are widely used in scRNA-seq data analysis to achieve that purpose. 22 

More advanced nonlinear approaches that preserve the topological structure and avoid 23 

overcrowding in lower dimension representation, such as LLE [38] (used in SLICER [39]), 24 
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tSNE [40], and UMAP [41], have also been developed and adopted as a standard in 1 

single-cell data visualization.  2 

 3 

Clustering analysis is a key step to identify cell subpopulations or distinct cell types to 4 

unravel the extent of heterogeneity and their associated cell-type-specific markers. 5 

Unsupervised clustering is frequently used to categorize cells into clusters according to 6 

their similarity often measured in the aforementioned dimensionality-reduced 7 

representations. Some of popular algorithms include the community detection algorithm 8 

Louvain [42] and Leiden [43], and data-driven dimensionality reduction followed with k-9 

Means cluster by SIMLR [44]. 10 

 11 

Feature selection is another important step in single-cell RNA-seq analysis to select a 12 

subset of genes, or features, for cell-type identification and functional enrichment of each 13 

cluster. This step is achieved by differential expression analysis designed for scRNA-seq, 14 

such as MAST that used linear model fitting and likelihood ratio testing [45]; SCDE that 15 

adopted a Bayesian approach with a Negative Binomial model for gene expression and 16 

Poisson process for dropouts [46], or DEsingle that utilized a Zero-Inflated Negative 17 

Binomial model to estimate the dropouts [47].  18 

 19 

Besides these key steps, downstream analyses include cell type identification, 20 

coexpression analysis, prediction of perturbation response, where DL has also been 21 

applied. Other advanced analyses including trajectory inference and velocity and 22 
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pseudotime analysis are not discussed here because most of the approaches on these 1 

topics are non-DL based.  2 

 3 
3. Overview of common deep learning models for scRNA-seq analysis  4 

We start our review by introducing the general formulations of widely used deep learning 5 

models. As most of the tasks including batch correction, dimensionality reduction, 6 

imputation, and clustering are unsupervised learning tasks, we will give special attention 7 

to unsupervised models including variational autoencoder (VAE), the autoencoder (AE), 8 

or generative adversarial networks (GAN). We will also discuss the general supervised 9 

and transfer learning formulations, which find their applications in cell type predictions 10 

and functional studies. We will discuss these models in the context of scRNA-seq, 11 

detailing the different features and training strategies of each model and bringing attention 12 

to their uniqueness.  13 

 14 
3.1. Variational Autoencoder  15 

Let !!  represent a " × 1 vector of expression levels (UMI counts or normalized, log-16 

transformed expression) of "  genes in cell % , where	 '()"!*	+"!, -"!.  follows some 17 

distribution	(e.g., zero-inflated negative binomial (ZINB) or Gaussian), where 	+"!	and -"!  18 

are distribution parameters (e.g., mean, variance, or dispersion) (Fig. 2A). We consider 19 

+"! to be of particular interest (e.g., the mean counts) and is thus further modeled by a 20 

decoder neural network /# (Fig. 2A) as  21 

 0! = /#(3!, 4!), (1) 

where the 6 th element of 0!  is +"!  and 7  is a vector of decoder weights, 3! ∈ ℝ$  22 

represents a latent representation of gene expression and is used for visualization and 23 
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clustering and 4! is an observed variable (e.g., the batch ID).  For VAE, 3! is commonly 1 

assumed to follow a multivariate standard Normal prior, i.e., '(3!) = :(0, <$) with <$ 2 

being a = × = identity matrix. Further, -"!  of '()"!*	+"!, -"!. is a nuisance parameter, 3 

which has a prior distribution '(-"!. and can be either estimated or marginalized in 4 

variational inference. Now define > = ?7, -!"	∀%, 6A . Then, '()"!*	+"!, -"!.  and (1) 5 

together define the likelihood  '(!!|3!, 4!, >).  6 

 7 
The goal of training is to compute the maximum likelihood estimate of >  8 

 >C%& = argmax' 	∑ log '(!!|4!, >) ≈ argmax' 	∑ ℒ(>)(
!)*

(
!)* , (2) 

where ℒ(>) is the evidence lower bound (ELBO),  9 

 ℒ(>) = E+,3!-!!, 4!, >.[log '(!!|3!, 4!, >)] − //&[R(3!|!!, 4!, >)‖'(3!)], (3) 

and R(3!|!!, 4!) is an approximate to '(3!|!!, 4!) and assumed as  10 

 R(3!|!!, 4!) = 	: TU0!, =VW6(	X1!
2 .Y, (4) 

with ?U0!, X1!
2 A given by an encoder network Z3 (Fig. 2A) as 11 

 ?U0!, X1!
2 A = Z3(!!, 4!), (5) 

where [	is the weights vector. Now, > = ?7,[, -!"	∀%, 6A and equation (2) is solved by 12 

the stochastic gradient descent approach while a model is trained.  13 

All the surveyed papers that deploy VAE follow this general modeling process. 14 

However, a more general formulation has a loss function defined as 15 

 \(>) = −ℒ(>) + ∑ ^4\4(>)
/
4)* , (6) 

where  \4∀_ = 1,… , a are losses for different functions (clustering, cell type prediction, 16 

etc) and ^4s are the Lagrange multipliers. With this general formulation, for each paper, 17 

we examined the specific choices of data distribution '()"!*	+"!, -"!. that define ℒ(>), 18 
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different \4  designed for specific functions, and how the decoder and encoder were 1 

applied to model different aspects of scRNA-seq data. 2 

  3 

 4 

3.2. Autoencoders  5 

AEs learn the low dimensional latent representation 3! ∈ ℝ$ of expression !!. The AE 6 

includes an encoder Z3 and a decoder /# (Fig. 2B) such that 7 

 3! = Z3(!!);  !b! =	/#(3!), (7) 

where > = {7,[}  are encoder and decoder weight parameters and !b!  defines the 8 

parameters (e.g. mean) of the likelihood '(!!|>) (Fig. 2B) and is often considered as 9 

imputed and denoised expressions.  Additional design can be included in an AE model 10 

for batch correction, clustering, and other objectives.  11 

The training of an AE model is generally carried out by stochastic gradient descent 12 

algorithms to minimize the loss similar to Eq. (6) except ℒ(>) = − log '(!!|>). When 13 

'(!!|>) is the Gaussian,  ℒ(>) becomes the mean square error (MSE) loss 14 

 ℒ(>) 	= ∑ ‖!! − !b!‖2
2(

!)* . (8) 

Because different AE models differ in their AE architectures and loss functions, we will 15 

discuss the specific architecture and loss functions for each reviewed DL model in Section 16 

4.   17 

 18 

3.3. Generative adversarial networks  19 

GANs have been used for imputation, data generation, and augmentation of the scRNA-20 

seq analysis. Without loss of generality, the GAN, when applied to scRNA-seq, is designed 21 

to learn how to generate gene expression profiles from '5 , the distribution of !! . The 22 
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vanilla GAN consists of two deep neural networks [48]. The first network is the 1 

generator	"#(3!, e!) with parameter 7, a noise vector 3!  from the distribution '0  and a 2 

class label e (e.g. cell type) and is trained to generate !6, a "fake" gene expression (Fig. 3 

2C). The second network is the discriminator network /3" with parameters [7, trained to 4 

distinguish the "real" ! from fake !6 (Fig. 2C). Both networks, "# and /3" are trained to 5 

outplay each other, resulting in a minimax game, in which "# is forced by /3" to produce 6 

better samples, which, when converge, can fool the discriminator /3" , thus becoming 7 

samples from '5 . The vanilla GAN suffers heavily from training instability and mode 8 

collapsing[49]. To that end, Wasserstein GAN (WGAN) [49] was developed with the 9 

WGAN loss [50]:   10 

 \(7) = max
ø"

∑ /ø"(!!)
(
!)* − ∑ /ø"("9(3!, e!).

(
!)* . (9) 

 11 

Additional terms can also be added to equation (9) to constrain the functions of the 12 

generator. Training based on the WGAN loss in Eq. (9) amounts to a min-max 13 

optimization, which iterates between the discriminator and the generator, where each 14 

optimization is achieved by a stochastic gradient descent algorithm through back-15 

propagation. The WGAN requires /3" 	 to be K-Lipschitz continuous [50], which can be 16 

satisfied by adding the gradient penalty to the WGAN loss [49]. Once the training is done, 17 

the generator "ø# can be used to generate gene expression profiles of new cells.  18 

 19 

3.4. Supervised deep learning models 20 

Supervised deep learning models, including deep neural networks (DNN), convolutional 21 

neural network (CNN), and capsule networks (CapsNet), have been used for cell type 22 
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identifications [51-53] and functional predictions [54]. The general supervised deep 1 

learning model f takes !! as  an input and outputs '(e!|!!), the probability of phenotype 2 

label e! (e.g. a cell type) as  3 

 '(e!|!!) = f(!!), (10) 

where f can be DNN, CNN, or CapsNet. We omit the discussion of DNN and CNN as they 4 

are widely used in different applications and there are many excellent surveys on them 5 

[55]. We will focus our discussion on CasNet next.   6 

A CasNet takes an expression !! to first form a feature extraction network (consisting of 7 

\ parallel single-layer neural networks) followed by a classification capsule network. Each 8 

of the \ parallel feature extraction layers generates a primary capsule g: ∈ ℝ$$ as 9 

 g: = hi\j(k;,:!!.	∀l = 1,… , \, (11) 

where k;,: ∈ ℝ$$×>  is the weight matrix. Then, the primary capsules are fed into the 10 

capsule network to compute a label capsules m4 ∈ ℝ$%, one for each label, as 11 

 
m4 = 4RnW4ℎ pqr4:k4:g:

&

:

s	∀_ = 1,… , a, (12) 

where 4RnW4ℎ is the squashing function [56] to normalize the magnitude of its input vector 12 

to be less than one, k4: is another trainable weight matrix, and r4: 	∀	l = 1,… , \, are the 13 

coupling coefficients that represent the probability distribution of each primary capsule’s 14 

impact on the predicted label _.  Parameters r4: are not trained but computed through the 15 

dynamic routing process proposed in the original capsule networks [52]. The magnitude 16 

of each capsule m4  represents the probability of predicting label _  for input !! . Once 17 

trained, the important primary capsules for each label and then the most significant genes 18 
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for each important primary capsule can be used to interpret biological functions associated  1 

with the prediction. 2 

 The training of the supervised models for classification overwhelmingly minimizes the 3 

cross-entropy loss by stochastic gradient descent computed by a back-propagation 4 

algorithm. 5 

 6 

4. Survey of deep learning models for scRNA-seq analysis  7 

In this section, we survey applications of DL models for scRNA-seq analysis. To better 8 

understand the relationship between the problems that each surveyed work addresses 9 

and the key challenges in the general scRNA-seq processing pipeline,  we divide the 10 

survey into sections according to steps in the scRNA-seq processing pipeline illustrated 11 

in Fig. 1. For each DL model, we present the model details under the general model 12 

framework introduced in Section 3 and discuss the specific loss functions. We also survey 13 

the evaluation metrics and summarize the evaluation results. To facilitate cross-14 

references of the information, we summarized all algorithms reviewed in this section in 15 

Table 1 and tabulated the datasets and evaluation metrics used in each paper in Tables 16 

2 & 3. We also listed in Fig. 3 all other algorithms against which each surveyed method 17 

evaluated, highlighting the extensiveness that these algorithms were assessed for their 18 

performance.  19 

 20 

4.1. Imputation 21 

 22 

4.1.1. DCA: deep count autoencoder  23 
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DCA [18] is an AE for imputation (Figs. 2B, 4B) and has been integrated into the Scanpy 1 

framework. 2 

Model. DCA models UMI counts with missing values using the ZINB distribution  3 

'()"!|	>. = t"!u(0) + (1 − t"!.vw(+"!, -"!., for 6 = 1,…"; % = 1,…v, (13) 

where u(⋅) is a Dirac delta function,	vw(⋅,⋅) denotes the negative binomial distribution, 4 

and  t"!, +"!, -"! , representing dropout rate, mean, and dispersion, respectively, are 5 

functions of the output (!b!) of the decoder in the DCA  as follows, 6 

y! = 4V6z{V=(k?!b!);	m! = exp(k@!b!) ; �! = exp(kA!b!), (14) 

where  k?, k@, and kA are additional weights to be estimated. The DCA encoder and 7 

decoder follow the general AE formulation as in Eq. (7) but the encoder takes the 8 

normalized, log-transformed expression as input. To train the model, DCA uses a 9 

constrained log-likelihood as the loss function  10 

 \(>) = ∑ ∑ (−l{6'()"!|	>. + ^t"!2 .>
")*

(
!)* , (15) 

with > = {	7,[,k? ,k@,kA}. Once the DCA is trained, the mean counts m! are used as 11 

the denoised and imputed counts for cell %. 12 

Results. For evaluation, DCA was compared to other methods using simulated data 13 

(using Splatter R package), and real bulk transcriptomics data from a developmental C. 14 

elegans time-course experiment was used with added simulating single-cell specific 15 

noise. Gene expression was measured from 206 developmentally synchronized young 16 

adults over a twelve-hour period (C. elegans). Single-cell specific noise was added in 17 

silico by genewise subtracting values drawn from the exponential distribution such that 18 
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80% of values were zeros. The paper analyzed the Bulk contains less noise than single-1 

cell transcriptomics data and can thus aid in evaluating single-cell denoising methods by 2 

providing a good ground truth model. The authors also did a comparison of other methods 3 

including SAVER [36], scImpute [37], and MAGIC[57]. DCA denoising recovered original 4 

time-course gene expression pattern while removing single-cell specific noise. Overall, 5 

DCA demonstrated the strongest recovery of the top 500 genes most strongly associated 6 

with development in the original data without noise; DCA was shown to outperform other 7 

existing methods in capturing cell population structure in real data using PBMC, CITE-8 

seq, runtime scales linearly with the number of cells. 9 

4.1.2. SAVER-X: single-cell analysis via expression recovery harnessing external 10 
data 11 

SAVER-X [58] is an AE model (Figs. 2B, 4B) developed to denoise and impute scRNA-12 

seq data with transfer learning from other data resources.  13 

Model. SAVER-X decomposes the variation in the observed counts !!  with missing 14 

values into three components: i) predictable structured component representing the 15 

shared variation across genes, ii) unpredictable cell-level biological variation and gene-16 

specific dispersions, and iii) technical noise. Specifically,  )"! is modeled as a Poisson-17 

Gamma hierarchical model, 18 

'()"!|	>. = Ä{V44{%(l!)"!B .,       '()"!B *+"!, -". = "WzzW(+"!, -"+"!2 ., (16) 

where l! is the sequencing depth of cell n, +"! is the mean, and -" is the dispersion. This 19 

Poisson-Gamma mixture is an equivalent expression to the NB distribution and thus, the 20 

ZINB distribution as Eq. (13) is adopted to model missing values.  21 
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The loss is similar to Eq. (15). However, +"! is initially learned by an AE pre-trained 1 

using external datasets from an identical or similar tissue and then transferred to !! to be 2 

denoised. Such transfer learning can be applied to data between species (e.g., human 3 

and mouse in the study), cell types, batches, and single-cell profiling technologies. After 4 

+"! is inferred, SAVER-X generates the final denoised data )Å"! by an empirical Bayesian 5 

shrinkage.   6 

Results. SAVER-X was applied to multiple human single-cell datasets of different 7 

scenarios: i) T-cell subtypes, ii) a cell type (CD4+ regulatory T cells) that was absent from 8 

the pretraining dataset, iii) gene-protein correlations of CITE-seq data, and iv) immune 9 

cells of primary breast cancer samples with a pretraining on normal immune cells. 10 

SAVER-X with pretraining on HCA and/or PBMCs outperformed the same model without 11 

pretraining and other denoising methods, including DCA [28], scVI[17], scImpute [37], and 12 

MAGIC [57]. The model achieved promising results even for genes with very low UMI 13 

counts. SAVER-X was also applied for a cross-species study in which the model was pre-14 

trained on a human or mouse dataset and transferred to denoise another. The results 15 

demonstrated the merit of transferring public data resources to denoise in-house scRNA-16 

seq data even when the study species, cell types, or single-cell profiling technologies are 17 

different. 18 

 19 
4.1.3. DeepImpute: Deep neural network Imputation 20 

DeepImpute [20] imputes genes in a divide-and-conquer approach, using a bank of DNN 21 

models (Fig. 4A) with 512 output, each to predict gene expression levels of a cell.  22 

Model. For each dataset, DeepImpute selects to impute a list of genes or highly variable 23 

genes (variance over mean ratio, default = 0.5). Each sub-neural network aims to 24 
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understand the relationship between the input genes and a subset of target genes. Genes 1 

are first divided into v random subsets of 512 target genes. For each subset, a two-layer 2 

DNN is trained where the input includes genes that are among the top 5 best-correlated 3 

genes to target genes but not part of the target genes in the subset. The loss is defined 4 

as the weighted MSE  5 

 ℒ(>) 	= ∑!!(!! − !b!)2, (17) 

which gives higher weights to genes with higher expression values.  6 

Result. DeepImpute had the highest overall accuracy and offered shorter computation 7 

time with less demand on computer memory than other methods like MAGIC, DrImpute, 8 

ScImpute, SAVER, VIPER, and DCA. Using simulated and experimental datasets (Table 9 

2), DeepImpute showed benefits in improving clustering results and identifying 10 

significantly differentially expressed genes. DeepImpute and DCA, show overall 11 

advantages over other methods and between which DeepImpute performs even better. 12 

The properties of DeepImpute contribute to its superior performance include 1) a divide-13 

and-conquer approach which contrary to an autoencoder as implemented in DCA, 14 

resulting in a lower complexity in each sub-model and stabilizing neural networks, and 2) 15 

the subnetworks are trained without using the target genes as the input which reduces 16 

overfitting while enforcing the network to understand true relationships between genes. 17 

 18 
4.1.4. LATE: Learning with AuToEncoder  19 

LATE [59] is an AE (Figs. 2B, 4B) whose encoder takes the log-transformed expression 20 

as input.  21 
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Model.  LATE sets zeros for all missing values and generates the imputed expressions. 1 

LATE minimizes the MSE loss as Eq. (8). One issue is that some zeros could be real and 2 

reflect the actual lack of expressions.  3 

Result. Using synthetic data generated from pre-imputed data followed by random 4 

dropout selection at different degrees, LATE outperforms other existing methods like 5 

MAGIC, SAVER, DCA, scVI, particularly when the ground truth contains only a few or no 6 

zeros. However, when the data contain many zero expression values, DCA achieved a 7 

lower MSE than LATE, although LATE still has a smaller MSE than scVI.  This result 8 

suggests that DCA likely does a better job identifying true zero expressions, partly 9 

because LATE does not make assumptions on the statistical distributions of the single-10 

cell data that potentially have inflated zero counts. 11 

4.1.5. scGMAI 12 
Technically, scGMAI [60] is a model for clustering but it includes an AE (Figs. 2B, 4B) in 13 

the first step to combat dropout.  14 

Model.  To impute the missing values, scGMAI applies an AE like LATE to reconstruct 15 

log-transformed expressions with dropout but chooses a smoother Softplus activation 16 

function instead. The MSE loss as in Eq. (8) is adopted.  17 

After imputation, scGMAI uses fast independent component analysis (ICA) on the 18 

AE reconstructed expressions to reduce the dimension and then applies a Gaussian 19 

mixture model on the ICA reduced data to perform the clustering.  20 

Results. To assess the performance, the AE in scGMAI was replaced by five other 21 

imputation methods including SAVER [36], MAGIC [57], DCA [28], scImpute [37], and 22 

CIDR[61]. A scGMAI implementation without AE was also compared. Seventeen scRNA-23 
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seq data (part of them are listed in Tables 2b & c as marked) were used to evaluate cell 1 

clustering performances. The results indicated that the AEs significantly improved the 2 

clustering performance in eight of seventeen scRNA-seq datasets. 3 

 4 
4.1.6. scIGANs 5 
Imputation approaches based on information from cells with similar expressions suffer 6 

from oversmoothing, especially for rare cell types. scIGANs [19]  is a GAN-based 7 

imputation algorithm (Figs. 2C, 4E), which overcomes this problem by training a GAN 8 

model to generate samples with imputed expressions.  9 

Model.  scIGAN takes the image-like reshaped gene expression data !! as input. The 10 

model follows a BEGAN [62] framework, which replaces the GAN discriminator / with a 11 

function hø& to compute the reconstruction MSE.  Then, the Wasserstein distance loss 12 

between the reconstruction errors between the real and generated samples are computed  13 

 \(7,Ç) = max
ø&

∑ hø&(!!)
(
!)* −∑ hø&("9(ZC(!!), e)

(
!)* , (18) 

This framework forces the model to meet two computing objectives, i.e. reconstructing the 14 

real samples and discriminating between real and generated samples.  Proportional 15 

Control Theory was applied to balance these two goals during the training [63].  16 

After training, the decoder "9 is used to generate new samples of a specific cell 17 

type. Then, the k-nearest neighbors (KNN) approach is applied to the real and generated 18 

samples to impute the real samples’ missing expressions.   19 

Results. scIGANs was first tested on simulated samples with different dropout rates. 20 

Performance of rescuing the correct clusters was compared with 11 existing imputation 21 

approaches including DCA, DeepImpute, SAVER, scImpute, MAGIC, etc. scIGANs 22 
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reported the best performance for all metrics. scIGAN was next evaluated for its ability to 1 

correctly cluster cell types on the Human brain scRNA-seq data, which showed superior 2 

performance than existing methods again. scIGANs was then evaluated for identifying 3 

cell-cycle states using scRNA-seq datasets from mouse embryonic stem cells. The 4 

results showed that scIGANs outperformed competing existing approaches for recovering 5 

subcellular states of cell cycle dynamics. scIGANs were further shown to improve the 6 

identification of differentially expressed genes and enhance the inference of cellular 7 

trajectory using time-course scRNA-seq data from the differentiation from H1 ESC to 8 

definitive endoderm cells (DEC). Finally, scIGAN was also shown to scale to scRNA-seq 9 

methods and data sizes.   10 

 11 
4.2. Batch effect correction   12 

 13 
4.2.1. BERMUDA: Batch Effect ReMoval Using Deep Autoencoders 14 

BERMUDA [64] deploys a transfer-learning method (Figs. 2B, 4B) to remove the batch 15 

effect. It performs correction to the shared cell clusters among batches and therefore 16 

preserves batch-specific cell populations. 17 

Model.  BERMUDA is an AE that takes normalized, log-transformed expression as input. 18 

Its consists of two parts as  19 

 \(>) = ℒ(>) 	+ ^\%%D(>), (19) 

where ℒ(>) is the MSE loss and \%%D is the maximum mean discrepancy (MMD) [65] 20 

loss that measures the differences in distributions between pairs of similar cell clusters 21 

shared among batches as: 22 

\%%D(>) = ∑ ÉE',F',E(,F(E',E(,F',F( ÉÉ/(3E',F' , 3E(,F(), (20) 
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where 3E,F	 is the latent variable of !E,F, the input expression of a cell from cluster Ñ of batch 1 

V, ÉE',F',E(,F( is 1 if cluster VH of batch ÑH  and cluster VI of batch ÑI are determined to be 2 

similar by MetaNeighbor [66] and 0 , otherwise. The ÉÉ/  equals zero when the 3 

underlying distributions of the observed samples are the same.  4 

Results. BERMUDA was shown to outperform other methods like mnnCorrect [32], 5 

BBKNN[67], Seurat [10], and scVI [17] in removing batch effects on simulated and human 6 

pancreas data while preserving batch-specific biological signals. BERMUDA provides 7 

several improvements compared to existing methods: 1) capable of removing batch 8 

effects even when the cell population compositions across different batches are vastly 9 

different; and 2) preserving batch-specific biological signals through transfer-learning 10 

which enables discovering new information that might be hard to extract by analyzing 11 

each batch individually. 12 

 13 
4.2.2. DESC: batch correction based on clustering 14 

DESC [68] is an AE model (Figs. 2B, 4B) that removes batch effect through clustering 15 

with the hypothesis that batch differences in expressions are smaller than true biological 16 

variations between cell types, and, therefore, properly performing clustering on cells 17 

across multiple batches can remove batch effects without the need to define batches 18 

explicitly.    19 

Model. DESC has a conventional AE architecture. Its encoder takes normalized, log-20 

transformed expression and uses decoder output, !b!  as the reconstructed gene 21 

expression, which is equivalent to a Gaussian data distribution with !b! being the mean.  22 

The loss function is similar to Eq. (19) and except that the second loss \J is the clustering 23 

loss that regularizes the learned feature representations to form clusters as in the deep 24 
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embedded clustering [69]. The model is first trained to minimize ℒ(>) only to obtain the 1 

initial weights before minimizing the combined loss. After the training, each cell is 2 

assigned with a cluster ID.  3 

Results. DESC was applied to the macaque retina dataset, which includes animal level, 4 

region level, and sample-level batch effects. The results showed that DESC is effective 5 

in removing the batch effect, whereas CCA [33], MNN [32], Seurat 3.0 [10], scVI [17], 6 

BERMUDA [64], and scanorama [70] were all sensitive to batch definitions. DESC was 7 

then applied to human pancreas datasets to test its ability to remove batch effects from 8 

multiple scRNA-seq platforms and yielded the highest ARI among the comparing 9 

approaches mentioned above. When applied to human PBMC data with interferon-beta 10 

stimulation, where biological variations are compounded by batch effect, DESC was 11 

shown to be the best in removing batch effect while preserving biological variations. 12 

DESC was also shown to remove batch effect for the monocytes and mouse bone marrow 13 

data and DESC was shown to preserve the pseudotemporal structure.  Finally, DESC 14 

scales linearly with the number of cells, and its running time is not affected by the 15 

increasing number of batches. 16 

 17 
4.2.3. iMAP: Integration of Multiple single-cell datasets by Adversarial Paired-style 18 

transfer networks 19 

iMAP [71] combines AE (Figs. 2B, 4B) and GAN (Figs. 2C, 4E) for batch effect removal. 20 

It is designed to remove batch biases while preserving dataset-specific biological 21 

variations.  22 
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Model.  iMAP consists of two processing stages, each including a separate DL model. In 1 

the first stage, a special AE, whose decoder combines the output of two separate 2 

decoders /#)and /#*, is trained such that 3 

 3! = Z3(!!);  !b! = /#(3!, 4!) = hi\n(/#)(4!) + /#*(3!, 4!)), (21) 

where 4!  is the one-hot encoded batch number of cell %.  /#)  can be understood as 4 

decoding the batch noise, whereas /#* reconstructs batch-removed expression from the 5 

latent variable 3!. The training minimizes the loss in Eq. (19) except the 2nd loss is the 6 

content loss 7 

 \K(>) = 	∑ Ö3! − Z3(/#(3!, 4̃!).Ö2
2(

!)* , (22) 

where 4̃! is a random batch number. Minimizing \K(>) further ensures the reconstructed 8 

expression !b! would be batch agnostic and has the same content as !!.  9 

However, due to the limitation of AE, this step is still insufficient for batch removal. 10 

Therefore, a second stage is included to apply a GAN model to make expression 11 

distributions of the shared cell type across different baches indistinguishable. To identified 12 

the shared cell types, a mutual nearest neighbors (MNN) strategy adapted from [32] was 13 

developed to identify MNN pairs across batches using batch effect independent 3! as 14 

opposed to !!. Then, a mapping generator "## is trained using MNN pairs based on GAN 15 

such that !!
(M) = "##T!!

(O)Y, where !!
(P) and !!

(M) are the MNN pairs from batch á and an 16 

anchor batch à. The WGAN-GP loss as in Eq. (9) was adopted for the GAN training. After 17 

training, "## is applied to all cells of a batch to generate batch-corrected expression.    18 

Results: iMAP was first tested on benchmark datasets from human dendritic cells and 19 

Jurkat and 293T cell lines and then human pancreas datasets from five different 20 
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platforms. All the datasets contain both batch-specific cells and batch-shared cell types. 1 

iMAP was shown to separate the batch-specific cell types but mix batch shared cell types 2 

and outperformed 9 other existing batch correction methods including Harmony, scVI, 3 

fastMNN, Seurat, etc. iMAP was then applied to the large-scale Tabula Muris datasets 4 

containing over 100K cells sequenced from two platforms. iMAP could not only reliably 5 

integrate cells from the same tissues but identify cells from platform-specific tissues. 6 

Finally, iMAP was applied to datasets of tumor-infiltrating immune cells and shown to 7 

reduce the dropout ratio and the percentage of ribosomal genes and non-coding RNAs, 8 

thus improving detection of rare cell types and ligand-receptor interactions. iMAP scales 9 

with the number of cells, showing minimal time cost increase after the number of cells 10 

exceeds thousands. Its performance is also robust against model hyperparameters. 11 

 12 
4.3. Dimensionality reduction, latent representation, clustering, and data 13 

augmentation 14 

Dimensionality reduction is indispensable for many type of scRNA-seq data analysis, 15 

considering the limited number of cell types in each biospecimen. Furthermore, biological 16 

processes of interests often involve the complex coordination of many genes, therefore, 17 

latent representation which capture biological variation in reduced dimensions are useful 18 

in interpreting experiment conditions and cell heterogeneity. Both AE- and VAE-based 19 

are capable of learning latent representations. VAE-based models have the benefit of 20 

regularity of the latent space and generative factors. The GAN-based models can produce 21 

augmented data that may in return to enhance the clustering, e.g., due to low 22 

representation of certain cell types. 23 

 24 
4.3.1. Dimensionality reduction by AEs with gene-interaction constrained architecture  25 
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This study [72] considers AEs (Figs. 2B, 4B) for learning the low-dimensional 1 

representation and specifically explores the benefit of incorporating prior biological 2 

knowledge of gene-gene interactions to regularize the AE network architecture.  3 

Model. Several AE models with single or two hidden layers that incorporate gene 4 

interactions reflecting transcription factor (TF) regulations and protein-protein interactions 5 

(PPIs) are implemented. The models take normalized, log-transformed expressions and 6 

follow the general AE structure, including dimension-reducing and reconstructing layers, 7 

but the network architectures are not symmetrical. Specifically, gene interactions are 8 

incorporated such that each node of the first hidden layer represented a TF or a protein 9 

in the PPI; only genes that are targeted by TFs or involved in the PPI were connected to 10 

the node. Thus, the corresponding weights of Z3  and /#  are set to be trainable and 11 

otherwise fixed at zero throughout the training process. Both unsupervised (AE-like) and 12 

supervised (cell-type label) learning were studied.   13 

Results. Regularizing encoder connections with TF and PPI information considerably 14 

reduced the model complexity by almost 90% (7.5-7.6M to 1.0-1.1M). The clusters formed 15 

on the data representations learned from the models with or without TF and PPI 16 

information were compared to those from PCA, NMF, independent component analysis 17 

(ICA), t-SNE, and SIMLR [44]. The model with TF/PPI information and 2 hidden layers 18 

achieved the best performance by five of the six measures and the best average 19 

performance. In terms of the cell-type retrieval of single cells, the encoder models with 20 

and without TF/PPI information achieved the best performance in 4 and 3 cell types, 21 

respectively. PCA yielded the best performance in only 2 cell types. The DNN model with 22 

TF/PPI information and 2 hidden layers again achieved the best average performance 23 
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across all cell types. In summary, this study demonstrated a biologically meaningful way 1 

to regularize AEs by the prior biological knowledge for learning the representation of 2 

scRNA-seq data for cell clustering and retrieval. 3 

 4 

4.3.2. Dhaka: a VAE-based dimension reduction model.  5 

Dhaka [73] was proposed to reduce the dimension of scRNA-seq data for efficient 6 

stratification of tumor subpopulations.  7 

Model.  Dhaka adopts a general VAE formulation (Figs. 2A, 4C). It takes the normalized, 8 

log-transformed expressions of a cell as input and outputs the low-dimensional 9 

representation. 10 

Result. Dhaka was first tested on the simulated dataset. The simulated dataset contains 11 

500 cells, each including 3K genes, clustered into 5 different clusters with 100 cells each. 12 

The clustering performance was compared with other methods including t-SNE, PCA, 13 

SIMLR, NMF, an autoencoder, MAGIC, and scVI. Dhaka was shown to have an ARI 14 

higher than most other comparing methods. Dhaka was then applied to the 15 

Oligodendroglioma data and could separate malignant cells from non-malignant 16 

microglia/macrophage cells. It also uncovered the shared glial lineage and differentially 17 

expressed genes for the lineages. Dhaka was also applied to the Glioblastoma data and 18 

revealed an evolutionary trajectory of the malignant cells where cells gradually evolve 19 

from a stemlike state to a more differentiated state. In contrast, other methods failed to 20 

capture this underlying structure. Dhaka was next applied to the Melanoma cancer 21 

dataset [74] and uncovered two distinct clusters that showed the intra-tumor 22 

heterogeneity of the Melanoma samples. Dhaka was finally applied to copy number 23 
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variation data [75] and shown to identify one major and one minor cell clusters, of which 1 

other methods could not find. 2 

 3 

4.3.3. scvis: a VAE for capturing low-dimensional structures  4 

scvis [76] is a VAE network (Figs. 2A, 4C) that learns the low-dimensional 5 

representations capture both local and global neighboring structures in scRNA-seq data.  6 

Model: scvis adopts the generic VAE formulation described in section 3.1.	However, it has 7 

a unique loss function defined as   8 

 \(>) = −ℒ(>) + ^\K(>), (23) 

where ℒ(>) is ELBO as in Eq. (3) and \K is a regularizer using non-symmetrized t-SNE 9 

objective function [76], which is defined as  10 

 \K(>) = ∑ ∑ 'F|E log
R+|-
++|-

(
F)*,FSE

(
E)* , (24) 

where V and Ñ are two different cells, 'E|F measures the local cell relationship in the data 11 

space, and RF|E measures such relationship in the latent space. Because t-SNE algorithm 12 

preserves the local structure of high dimensional space,  \K learns local structures of cells.  13 

Results.  scvis was tested on the simulated data and outperformed t-SNE in a nine-14 

dimensional space task. scvis preserved both local structure and global structure. The 15 

relative positions of all clusters were well kept but outliers were scattered around clusters. 16 

Using simulated data and comparing to t-SNE, scvis generally produced consistent and 17 

better patterns among different runs while t-SNE could not. scvis also presented good 18 

results on adding new data to an existing embedding,  with median accuracy on new data 19 

at 98.1% for K= 5 and 94.8% for K= 65, when train K cluster on original data then test the 20 

classifier on new generated sample points. The scvis was subsequently tested on four 21 
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real datasets including metastatic melanoma, oligodendroglioma, mouse bipolar and 1 

mouse retina datasets. In each dataset, scvis was showed to preserve both the global 2 

and local structure of the data. 3 

 4 
4.3.4. scVAE: VAE for single-cell gene expression data  5 
scVAE [77] includes multiple VAE models (Figs. 2A, 4C) for denoising gene expression 6 

levels and learning the low-dimensional latent representation of cells. It investigates 7 

different choices of the likelihood functions in the VAE model to model different data sets.  8 

Model. scVAE is a conventional fully connected network. However, different distributions 9 

have been discussed for '()"!*	+"!, -"!. to model different data behaviors. Specifically, 10 

scVAE considers Poisson, constrained Poisson, and negative binomial distributions for 11 

count data, piece-wise categorical Poisson for data including both high and low counts, 12 

and zero-inflated version of these distributions to model missing values.  To model 13 

multiple modes in cell expressions, a Gaussian mixture is also considered for 14 

R(3!|!!, 4!), resulting in a GMVAE.  The inference process still follows that of a VAE as 15 

discussed in section 3.1.       16 

Results. scVAEs were evaluated on the PBMC data and compared with factor analysis 17 

(FA) models. The results showed that GMVAE with negative binomial distribution 18 

achieved the highest lower bound and ARI. Zero-inflated Poisson distribution performed 19 

the second best. All scVAE models outperformed the baseline linear factor analysis 20 

model, which suggested that a non-linear model is needed to capture single-cell genomic 21 

features. GMVAE was also compared with Seurat and shown to perform better using the 22 

withheld data. However, scVAE performed no better than scVI [17] or scvis [76], both are 23 

VAE models.  24 
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 1 
4.3.5. VASC: VAE for scRNA-seq 2 
VASC [78] is another VAE (Figs. 2A, 4C) for dimension reduction and latent 3 

representation but it models dropout.     4 

Model: VASC’s input is the log-transformed expression but rescaled in the range [0,1]. A 5 

dropout layer (dropout rate of 0.5) is added after the input layer to force subsequent layers 6 

to learn to avoid dropout noise. The encoder network has three layers fully connected 7 

and the first layer uses linear activation, which acts like an embedded PCA 8 

transformation. The next two layers use the ReLU activation, which ensures a sparse and 9 

stable output. This model's novelty is the zero-inflation layer (ZI layer), which is added 10 

after the decoder to model scRNA-seq dropout events. The probability of dropout event 11 

is defined as iT5U
*
 where )Å is the recovered expression value obtained by the decoder 12 

network. Since back-propagation cannot deal with a stochastic network with categorical 13 

variables, a Gumbel-softmax distribution [79] is introduced to address the difficulty of the 14 

ZI layer. The loss function of the model takes the form \	 = 	ℒ(>) + ^\/&(>), where ℒ is 15 

the binary entropy because the input is scaled to [0 1], and\/& a loss performed using KL 16 

divergence on the latent variables. After the model is trained, the latent code can be used 17 

as the dimension-reduced feature for downstream tasks and visualization. 18 

Results. VASC was compared with PCA, t-SNE, ZIFA, and SIMLR on 20 datasets. In the 19 

study of embryonic development from zygote to blast cells, all methods roughly re-20 

established the development stages of different cell types in the dimension-reduced 21 

space. However, VASC showed the better performance to model embryo developmental 22 

progression. In the Goolam, Biase and Yan datasets, scRNA-seq data were generated 23 

through embryonic development stages from zygote to blast, VASC re-established 24 
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development stage from 1, 2, 4, 8, 16 to blast, while other methods failed. In the Pollen,  1 

Kolodziejczyk, and Baron dataset, VASC formed an appropriate cluster, either with 2 

homogeneous cell type, preserved proper relative positions, or minimal batch influence.  3 

Interestingly, when tested on the PBMC dataset, VASC was shown to identify the major 4 

global structure (B cells, CD4+, CD8+ T cells, NK cells, Dendritic cells), and detect subtle 5 

differences within monocytes (FCGR3A+ vs CD14+ monocytes), indicating the capability 6 

of VASC handling a large number of cells or cell types.  Quantitative clustering 7 

performance in NMI, ARI, homogeneity and completeness was also performed. VASC 8 

always ranked top two in all the datasets. In terms of NMI and ARI, VASC best performed 9 

on 15 and 17 out of 20 datasets, respectively.  10 

 11 

4.3.6. scDeepCluster 12 

scDeepCluster [80] is an AE network (Figs. 2B, 4B) that simultaneously learns feature 13 

representation and performs clustering via explicit modeling of cell clusters as in DESC. 14 

Model:  Similar to DCA, scDeepCluster adopts a ZINB distribution for !!	as in Eq. (13) 15 

and (15).	The loss is similar to	Eq. (19) except that the first term is the negative log-16 

likelihood of the ZINB data distribution as defined in Eq. (15) and the second  \J is a 17 

clustering loss performed using KL divergence as in DESC algorithm. Compared to csvis, 18 

scDeepcluster focuses more on clustering assignment due to the KL divergence.  19 

Results. scDeepCluster was first tested on the simulation data and compared with other 20 

seven methods including DCA [18], two multi-kernel spectral clustering methods MPSSC 21 

[81] and SIMLR [44], CIDR [61], PCA + k-mean, scvis [76] and DEC[82]. In different 22 

dropout rate simulations, scDeepCluster significantly outperformed the other methods 23 

consistently. In signal strength, imbalanced sample size, and scalability simulations, 24 



   
 

   
 

35 

scDeepcluster outperformed all other algorithms and scDeepCluster and most notably 1 

advantages for weak signals, robust against different data imbalance levels and scaled 2 

linearly with the number of cells. scDeepCluster was then tested on four real datasets 3 

(10X PBMC, Mouse ES cells, Mouse bladder cells, Worm neuron cells) and shown to 4 

outperform all other comparing algorithms. Particularly, MPSSC and SIMLR failed to 5 

process the full datasets due to quadratic complexity. 6 

 7 

4.3.7. cscGAN: Conditional single-cell generative adversarial neural networks  8 

cscGAN [83] is a GAN model (Figs. 2C, 4E) designed to augment the existing scRNA-9 

seq samples by generating expression profiles of specific cell types or subpopulations. 10 

Model.  Two models, csGAN and cscGAN, were developed following the general 11 

formulation of WGAN described in section 3.3.  The difference between the two models 12 

is that cscGAN is a conditional GAN such that the input to the generator also includes a 13 

class label e  or cell type, i.e.  [>(3, e) . The projection-based conditioning (PCGAN) 14 

method [84] was adopted to obtain the conditional GAN. For both models, the generator 15 

(three layers of 1024, 512, and 256 neurons) and discriminator (three layers of 256, 512, 16 

and 1024 neurons) are fully connected DNNs. 17 

Results: The performance of scGAN was first evaluated using PBMC data. The generated 18 

samples were shown to capture the desired clusters and the real data's regulons. 19 

Additionally, the AUC performance for classifying real from generated samples by a 20 

Random Forest classifier only reached 0.65, performance close to 0.5. Finally, scGAN's 21 

generated samples had a smaller MMD than those of Splatter, a state-of-the-art scRNA-22 

seq data simulator [85]. Even though a large MMD was observed for scGAN when 23 

compared with that of SUGAR, another scRNA-seq simulator, SUGAR [86]  was noted 24 
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for prohibitively high runtime and memory. scGAN was further trained and assessed on 1 

the bigger mouse brain data and shown to model the expression dynamics across tissues.  2 

Then, the performance of cscGAN for generating cell-type-specific samples was 3 

evaluated using the PBMC data. cscGAN was shown to generate high-quality scRAN-4 

seq data for specific cell types.  Finally, the real PBMC samples were augmented with the 5 

generated samples. This augmentation improved the identification of rare cell types and 6 

the ability to capture transitional cell states from trajectory analysis.  7 

 8 
4.4. Multi-functional models 9 
Given the versatility of AE and VAE in addressing different scRAN-seq analysis 10 

challenges, DL models possessing multiple analysis functions have been developed.  We 11 

survey these models in this section.  12 

4.4.1. scVI: single-cell variational inference  13 
scVI [17] is designed to address a range of fundamental analysis tasks, including batch 14 

correction, visualization, clustering, and differential expression.  15 

Model. scVI  is a VAE (Figs. 2A, 4C) that models the counts of each cell from different 16 

batches. scVI adopts a ZINB distribution for )"! 17 

'()"!*t"!, \!, +"!, -. = t"!u(0) + (1 − t"!.vw(\!+"!, -"., (25) 

which is defined similarly as Eq (14) in DCA, except that \! denotes the scaling factor for 18 

cell %, which follows a log-Normal (l{6:) prior as '(\!) = l{6:(ä&! , ã&!
2 ., therefore, å"! 19 

represents the mean counts normalized by \!. Now, let 4! ∈ {0,1}V be the batch ID of cell 20 

% with w being the total number of batches. Then, +"!  and t"  are further modeled as 21 
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functions of the =-dimension latent variable 3! ∈ ℝ$ and the batch ID 4! by the decoder 1 

networks /#. and /#/ as  2 

 0! = /#.(3!, 4!),  y! = /#/(3!, 4!), (26) 

where the 6th element of 0! and y! are +"!	and t", respectively, and 	7W , and 7? are the 3 

decoder weights. Note that the lower layers of the two decoders are shared. For inference, 4 

both 3!  and \!  are considered as latent variables and therefore R()!, 4!) =5 

R(3!|!!, 4!)R(\!|!!, 4!)	 is a mean-field approximate to the intractable posterior 6 

distribution '(3!, \!|!!, 4!) and   7 

 R(3!|!!, 4!) = 	: TU0!, =VW6(	X1!
2 .Y,  

R(\!|!!, 4!) =  l{6: TU&!, =VW6(	X&!
2 .Y, 

(27) 

whose means and variances ?U0!, X1!
2 A  and ?U&!, X&!

2 A  are defined by the encoder 8 

networks Z1 and Z& applied to !! and 4! as 9 

   ?U0!, X1!
2 A = Z30(!!, 4!),    

?U&!, X&!
2 A = Z31(3!, 4!) 

(28) 

where 	[0 , and [& are the encoder weights. Note that, like the decoders, the lower layers 10 

of the two encoders are also shared. Overall, the model parameters to be estimated by 11 

the variational optimization is > = ?7W , 7? , [0 , [& , -"A. After inference, 3!  are used for 12 

visualization and clustering. +"!  provides a batch-corrected, size-factor normalized 13 

estimate of gene expression for each gene 6 in each cell %.  An added advantage of the 14 

probabilistic representation by scVI is that it provides a natural probabilistic treatment of 15 

the subsequent differential analysis, resulting in lower variance in the adopted hypothesis 16 

tests.  17 
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Results: scVI was evaluated for its scalability, the performance of imputation. For 1 

scalability, ScVI was shown to be faster than most nonDL algorithms and scalable to 2 

handle twice as many cells as nonDL algorithms with a fixed memory. For imputation, 3 

ScVI, together with other ZINB-based models, performed better than methods using 4 

alternative distributions. However, it underperformed for the dataset (HEMATO) with 5 

fewer cells. For the latent space, scVI was shown to provide a comparable stratification 6 

of cells into previously annotated cell types. Although scVI failed to ravel SIMLR, it is 7 

among the best in capturing biological structures (hierarchical structure, dynamics, etc.) 8 

and recognizing noise in data. For batch correction, it outperforms ComBat. For 9 

normalizing sequencing depth, the size factor inferred by scVI was shown to be strongly 10 

correlated with the sequencing depth. Interestingly, the negative binomial distribution in 11 

the ZINB was found to explain the proportions of zero expressions in the cells, whereas 12 

the zero probability t"!  is found to be more correlated with alignment errors. For 13 

differential expression analysis, scVI was shown to be among the best.     14 

 15 
4.4.2. LDVAE: linearly decoded variational autoencoder  16 
LDVAE [87] is an adaption of scVI to improve the model interpretability but it still benefits 17 

from the scalability and efficiency of scVI.  Also, this formulation applies to general VAE 18 

models and thus is not restricted to scRNA-seq analysis. 19 

Model.  LDVAE follows scVI’s formulation but replaces the decoder /#. in Eq. (26) by a 20 

linear model 21 

 0! = k3!, (29) 
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where k ∈ ℝ$×> is the weight matrix. Being the linear decoder provides interpretability in 1 

the sense that the relationship between latent representation 3! and gene expression 0! 2 

can be readily identified. LDVAE still follows the same loss and non-linear inference 3 

scheme as scVI.  4 

Results. LDVAE’s latent variable 3!  could be used for clustering of cells with similar 5 

accuracy as a VAE.  Although LDVAE had a higher reconstruction error than VAE, due 6 

to the linear decoder, the variations along the different axes of 3! establish direct linear 7 

relationships with input genes. As an example from analyzing mouse embryo scRNA-seq, 8 

ç*,! , the second element of 3! , is shown to relate to simultaneous variations in the 9 

expression of gene Ä{n5è1  and ê=6è1 . In contrast, such interpretability would be 10 

intractable without approximation for a VAE.  LDVAE was also shown to induce fewer 11 

correlations between latent variables and to improve the grouping of the regulatory 12 

programs. LDVAE is capable to scale to a large dataset with ~2M cells.   13 

  14 
4.4.3. SAUCIE 15 

SAUCIE [15] is an AE (Figs. 2B, 4B) designed to perform multiple functions, including 16 

clustering, batch correlation, imputation, and visualization. SAUCIE is applied to the 17 

normalized data instead of count data.   18 

Model. SAUCIE includes multiple model components designed for different functions. 19 

1. Clustering: SAUCIE first introduced a "digital" binary encoding layer ëJ ∈ {0,1}X in the 20 

decoder / that functions to encode the cluster ID. To learn this encoding, an entropy 21 

loss is introduced    22 

 \D = ∑ '4 	 log '4
/
4)* , (30) 
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where '4 is the probability (proportion) of activation on neuron _ by the previous layer. 1 

Minimizing this entropy loss promotes sparse neurons, thus forcing a binary encoding. 2 

To encourage clustering behavior, SAUCIE also introduced an intracluster loss as 3 

 \Y = q Ö!bE − !bFÖ
2

E,F:[-
2)[+

2
, 

(31) 

 which computes the distance \Y between the expressions of a pair of cells (!bE , !bF) 4 

that have the same cluster ID (ℎE
J = ℎF

J).  5 

 6 

2. Batch correction: To correct the batch effect, an MMD loss is introduced to measure 7 

the differences in terms of the distribution between batches in the latent space 8 

 \V = ∑ ÉÉ/(3\]6 ,
V
:)*,:S\]6 3:), (32) 

where w is the total number of batches and 3\]6 is the latent variable of an arbitrarily 9 

chosen reference batch.  10 

3. Imputation and visualization: The output of the decoder is taken by SAUCIE as an 11 

imputed version of the input gene expression. To visualize the data without performing 12 

an additional dimension reduction directly, the dimension of the latent variable 3! is 13 

forced to 2.     14 

Training the model includes two sequential runs. In the first run, an autoencoder is trained 15 

to minimize the loss \^ + ^V\V with \^ being the MSE reconstruction loss defined in (9) 16 

so that a batch-corrected, imputed input !í can be obtained at the output of the decoder. 17 

In the second run, the bottleneck layer of the encoder from the first run is replaced by a 18 

2-D latent code for visualization and a digital encoding layer is also introduced. This model 19 

takes the cleaned !í as the input and is trained for clustering by minimizing the loss \^ +20 
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^D\D + ^Y\Y . After the model is trained, )ì  is the imputed, batch-corrected gene 1 

expression. The 2-D latent code is used for visualization and the binary encoder encodes 2 

the cluster ID.  3 

Results. SAUCIE was evaluated for clustering, batch correction, imputation, and 4 

visualization on both simulated and real scRNA-seq and scCyToF datasets. The 5 

performance was compared to minibatch kmeans, Phenograph [88] and 22 for clustering; 6 

MNN [32] and canonical correlation analysis (CCA) [33] for batch correction; PCA, 7 

Monocle2 [89], diffusion maps, UMAP [90], tSNE [91] and PHATE [92] for visualization; 8 

MAGIC [57], scImpute [37]  and nearest neighbors completion (NN completion) for 9 

imputation. Results showed that SAUCIE had a better or comparable performance with 10 

other approaches. Also, SAUCIE has better scalability and faster runtimes than any of 11 

the other models. SAUCIE's results on the scCyToF dengue dataset were further 12 

analyzed in greater detail. SAUCIE was able to identify subtypes of the T cell populations 13 

and demonstrated distinct cell manifold between acute and healthy subjects.     14 

 15 
4.4.4. scScope:  16 
scScope [93] is an AE (Figs. 2B, 4D) with recurrent steps designed for imputation and 17 

batch correction.   18 

Model. scScope has the following model design for batch correction and imputation.  19 

1. Batch correction: A batch correction layer is applied to the input expression as  20 

 !!J = hi\n(!! − îgJ), (33) 

where and hi\j is the ReLu activation function, î ∈ ℝ>×/  is the batch correction 21 

matrix, gJ ∈ {0,1}/×_	is an indicator vector with entry 1 indicates the batch of the input, 22 

and a is the total number of batches.  23 
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2. Recursive imputation: Instead of using the reconstructed expression !b!as the imputed 1 

expression like in SAUCIE, scScope adds an imputer to !b! to recursively improve the 2 

imputation result. The imputer is a single-layer autoencoder, whose decoder performs 3 

the imputation as  4 

 !bC! = Ä̀ ï/`(3Åñ!.ó, (34) 

where 3Åñ!  is the output of the imputer encoder, /` is the imputer decoder, and Ä̀  is a 5 

masking function that set the elements in !bC!  that correspond to the non-missing 6 

values to zero. Then, !bC! will be fed back to fill the missing value in the batch corrected 7 

input as !!J + !bC!, which will be passed on to the main autoencoder.  This recursive 8 

imputation can iterate multiple cycles as selected.  9 

The loss function is defined as  10 

 ℒ(>) =q q‖Ä̀T[!!J − !b!K ]‖
2 ,

a

K)*

(

!)*
 (35) 

where ê  is the total number of recursion, !b!K  is the reconstructed expression at ò th 11 

recursion,  Ä̀T is another masking function that forces the loss to compute only the non-12 

missing values in !!J . 13 

Results. scScope was evaluated for its scalability, clustering, imputation, and batch 14 

correction. It was compared with PCA, MAGIC, ZINB-WaVE, SIMLR, AE, scVI, and DCA. 15 

For scalability and training speed, scScope was shown to offer scalability (for >100K cells) 16 

with high efficiency (faster than most of the approaches). For clustering results, scScope 17 

outperformed most of the algorithms on small simulated datasets but offered similar 18 

performance on large simulated datasets. For batch correction, scScope performed 19 

comparably with other approaches but with faster runtime. For imputation, scScope 20 
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produced smaller errors consistently across a different range of expression. scScope was 1 

further shown to be able to identify rear cell populations from a large mix of cells. 2 

 3 
4.5. Automated cell type identification 4 
scRNA-seq can catalog cell types in complex tissues under different conditions. However, 5 

the commonly adopted manual cell typing approach based on known markers is time-6 

consuming and less reproducible. We survey deep learning models of automated cell 7 

type identification.  8 

 9 
 10 
4.5.1. DigitalDLSorter 11 
DigitalDLSorter [51] was proposed to identify and quantify the immune cells infiltrated in 12 

tumors captured in bulk RNA-seq, utilizing single-cell RNA-seq data.  13 

Model. DigitalDLSorter is a 4-layer DNN (Fig. 4A) (2 hidden layers of 200 neurons each 14 

and an output of 10 cell types). The DigitalDLSorter is trained with two single-cell 15 

datasets: breast cancers [94] and colorectal cancers [95]. For each cell, it is determined 16 

to be tumor cell or non-tumor cell using RNA-seq based CNV method [94], followed by 17 

using xCell algorithm [96] to determine immune cell types for non-tumor cells. Different 18 

pseudo bulk (from 100 cells) RNA-seq datasets were prepared with known mixture 19 

proportions to train the DNN. The output of DigitalDLSorter is the predicted proportions 20 

of cell types in the input bulk sample.   21 

Result. DigitalDLSorter was first tested on simulated bulk RNA-seq samples. 22 

DigitalDLSorter achieved excellent agreement (linear correlation of 0.99 for colorectal 23 

cancer, and good agreement in quadratic relationship for breast cancer) at predicting cell 24 

types proportion. The proportion of immune and nonimmune cell subtypes of test bulk 25 
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TCGA samples was predicted by DigitalDLSorter and the results showed a very good 1 

correlation to other deconvolution tools including TIMER [94], ESTIMATE [97], EPIC [98] 2 

and MCPCounter [99]. Using DigitalDLSorter predicted CD8+ (good prognosis for overall 3 

and disease-free survival) and Monocytes-Macrophages (MM, indicator for protumoral 4 

activity) proportions, it is found that patients with higher CD8+/MM ratio had better survival 5 

for both cancer types than those with lower CD8+/MM ratio. Both EPIC and MCPCounter 6 

yielded non-significant survival associations using their cell proportion estimate. 7 

 8 
4.5.2. scCapsNet 9 
scCapsNet [52] is an interpretable capsule network designed for cell type prediction. The 10 

paper showed that the trained network could be interpreted to inform marker genes and 11 

regulatory modules of cell types.  12 

Model.  scCapsNet takes log-transformed, normalized expressions as input and follows 13 

the general CapsNet model described in Section 3.4. Capsule m4  represents the 14 

probability of a single cell !! belonging to cell type _, which will be used for cell-type 15 

classification. Once trained, the interpretation of marker genes and regulatory modules 16 

can be achieved by determining first the important primary capsules for each cell type 17 

and then the most significant genes for each important primary capsule (identified based 18 

on r4:  directly). To determine the genes that are important for an important primary 19 

capsule  l , genes are ranked base on the scores of the first principal component 20 

computed from the columns of k;,: in Eq. (15) and then the markers are obtained by a 21 

greedy search along with the ranked list for the best classification performance.  22 

Results. scCapsNet’s performance was evaluated on human PBMCs [100] and mouse 23 

retinal bipolar cells [101] datasets and shown to have comparable accuracies (99% and 24 



   
 

   
 

45 

97% respectively) with DNN and other popular ML algorithms (SVM, random forest, LDA 1 

and nearest neighbor). However, the interpretability of scCapsNet was demonstrated 2 

extensively. First, examining the coupling coefficients for each cell type showed that only 3 

a few primary capsules have high values and thus are effective. Subsequently, a set of 4 

core genes were identified for each effective capsule using the greedy search on the PC-5 

score ranked gene list. GO enrichment analysis showed that these core genes were 6 

enriched in cell-type-related biological functions.  Mapping the expression data into space 7 

spanned by PCs of the columns of k;,:  corresponding to all core genes uncovered 8 

regulatory modules that would be missed by the T-SNE of gene expressions, which 9 

demonstrated the effectiveness of the embeddings learned by scCapsNet in capturing 10 

the functionally important features.    11 

 12 
4.5.3. netAE: network-enhanced autoencoder 13 
netAE [102] is a VAE-based semi-supervised cell type prediction model (Figs. 2A, 4C) 14 

that deals with scenarios of having a small number of labeled cells.  15 

Model. netAE works with UMI counts and assumes a ZINB distribution for )"! as in Eq. 16 

(25) in scVI. However, netAE adopts the general VAE loss as in Eq. (6) with two function-17 

specific loss as  18 

 \(>) = −ℒ(>) + ^* ∑ ô(3!)!∈P + ^2∑ l{6è(e!|3!)!∈P1 , (36) 

where á is a set of indices for all cells and á&is a subset of á for only cells with cell type 19 

labels, ô is modified Newman and Girvan modularity [103] that quantifies cluster strength 20 

using 3!, è is the softmax function, and e! is the cell type label. The second loss in Eq. 21 

(36) functions as a clustering constraint and the last term is the cross-entropy loss that 22 

constrains the cell type classification.  23 
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Results: netAE was compared with popular dimension reduction methods including scVI, 1 

ZIFA, PCA and AE as well as a semi-supervised method scANVI [104]. For different 2 

dimensionality reduction methods, cell type classification from latent features of cells was 3 

carried out using KNN and logistic regression.  The effect of different labeled samples 4 

sizes on classification performance was also investigated, where the sample size varied 5 

from as few as 10 cells to 70% of all cells. Among 3 test datasets (mouse brain cortex, 6 

human embryo development, and mouse hematopoietic stem and progenitor cells), 7 

netAE outperformed most of the baseline methods.  Latent features were visualized using 8 

t-SNE and cell clusters by netAE were tighter than those by other embedding spaces. 9 

netAE also showed consistency of better cell-type classification with improved cell type 10 

clustering. This suggested that the latent spaces learned with added modularity constraint 11 

in the loss helped identify clusters of similar cells. Ablation study by removing each of the 12 

three loss terms in Eq. (36) showed a drop of cell-type classification accuracy, suggesting 13 

all three were necessary for the optimal performance.  14 

 15 
4.5.4. scDGN - supervised adversarial alignment of single-cell RNA-seq data 16 
scDGN [53], or Single Cell Domain Generalization Network (Fig. 4G), is a domain 17 

adversarial network that aims to accurately assign cell types of single cells while 18 

performing batch removal (domain adaptation) at the same time. It benefits from the 19 

superior ability of domain adversarial learning to learn representations that are invariant 20 

to technical confounders.  21 

Model. scDGN takes the log-transformed, normalized expression as the input and has 22 

three main modules: i) an encoder (Z3(!!)) for dimension reduction of scRNA-seq data, 23 

ii) cell-type classifier, ö33 TZ3(!!)Y  with parameters [Y , and iii) domain (batch) 24 
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discriminator, /3" TZ3(!!)Y. The model has a Siamese design and the training takes a 1 

pair of cells (!*, !2), each from the same or different batches. The encoder network 2 

contains two hidden layers with 1146 and 100 neurons. ö33 classifies the cell type and 3 

/3"  predicts whether !*  and !2  are from the same batch or not. The overall loss is 4 

denoted by 5 

 \([,[Y , [7) = \Y õö33 TZ3(!*)Yú − ^\D õ/3" TZ3(!*)Y , /3" TZ3(!2)Yú, (37)	

where \Y is the cross-entropy loss,  \D is a contrastive loss as described in [105]. Notice 6 

that (37) has an adversarial formulation and minimizing this loss maximizes the 7 

misclassification of cells from different batches, thus making them indistinguishable.  8 

Similar to GAN training, scDGN is trained to iteratively solve: [CD = argmin34\([C,[CY , [7. 9 

and ([C,[CY. = argmin3,33\([,[Y , [CD.. 10 

Results. scDGN was tested for classifying cell types and aligning batches ranging in size 11 

from 10 to 39 cell types and from 4 to 155 batches. The performance was compared to a 12 

series of deep learning and traditional ML methods, including Lin et al. DNN [72], CaSTLe 13 

[106], MNN [32], scVI [17], and Seurat [10]. scDGN outperformed all other methods in the 14 

classification accuracy on a subset of scQuery datasets (0.29), PBMC (0.87), and 4 of 15 

the six Seurat pancreatic datasets (0.86 - 0.95). PCA visualization of the learned data 16 

representations demonstrated that scDGN overcame the batch differences and clearly 17 

separated cell clusters based on cell types, while other methods were vulnerable to batch 18 

effects. In summary, scDGN is a supervised adversarial alignment method to eliminate 19 

the batch effect of scRNA-seq data and create cleaner representations of cell types.  20 

 21 
4.6. Biological function prediction 22 
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Predicting biological functions and responses to treatment at single cell level or cell types 1 

is critical to understand cellular system functioning and potent responses to stimulations. 2 

DL models are capable of capture gene-gene relationship and their property in the latent 3 

space. Several surveyed models demonstrate exciting results to learn complex biological 4 

functions and outcomes. 5 

 6 

4.6.1. CNNC: convolutional neural network for coexpression 7 

CNNC [54] is proposed to infer causal interactions between genes from scRNA-seq data.   8 

Model. CNNC is a Convolutional Neural Network (CNN) (Fig. 4F), one of the most popular 9 

DL models. CNNC takes expression levels of two genes from many cells and transforms 10 

them into a 32 x 32 image-like normalized empirical probability function (NEPDF), which 11 

measures the probabilities of observing different coexpression levels between the two 12 

genes. CNNC includes 6 convolutional layers, 3 max-pooling layers, 1 flatten layer, and 13 

one output layer. All convolution layers have 32 kernels of size 3x3.  Depending on the 14 

application, the output layer can be designed to predict the state of interaction (Yes/No) 15 

between the genes or the causal interaction between the input genes (no interaction, 16 

gene A regulates gene B, or gene B regulates gene A).   17 

Result. CNNC was trained to predict transcription factor (TF)-Gene interactions using the 18 

mESC data from scQuery [107], where the ground truth interactions were obtained from 19 

the ChIP-seq dataset from the GTRD database [108]. The performance was compared 20 

with DNN, count statistics [109], and mutual information-based approach [110].  CNNC 21 

was shown to have more than 20% higher AUPRC than other methods and reported 22 

almost no false-negative for the top 5% predictions. CNNC was also trained to predict the 23 

pathway regulator-target gene pairs. The positive regulator-gene pairs were obtained 24 
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from KEGG [111], Reactome [112], and negative samples were genes pairs that 1 

appeared in pathways but do not interacted. CNNC was shown to have better 2 

performance of predicting regulator-gene pairs on both KEGG and Reactome pathways 3 

than other methods including Pearson correlation, count statistics, GENIE3 [113], Mutual 4 

information, Bayesian directed network (BDN), and DREMI [110].  CNNC was also 5 

applied for causality prediction between two genes, that is if two genes regulate each 6 

other and if they do, which gene is the regulator. The ground truth causal relationships 7 

were also obtained from the KEGG and Reactome datasets. Again, CNNC reported better 8 

performance than BDN, the common method developed to learn casual relationships from 9 

gene expression data. CNNC was finally trained to assign 3 essential cell functions (cell 10 

cycle, circadian rhythm, and immune system) to genes. This is achieved by training 11 

CNNC to predict pairs of genes from the same function (e.g. Cell Cycle defined by 12 

mSigDB from gene set enrichment analysis (GSEA) [114]) as 1 and all other pairs as 0. 13 

The performance was compared with “guilt by association” and DNN, and CNNC was 14 

shown to have more than 4% higher AUROC and reported all positives for the top 10% 15 

predictions.  16 

 17 
4.6.2. scGen, a generative model to predict perturbation response of single cells 18 

across cell types 19 

scGen [115] is designed to learn cellular responses to certain perturbations such as drug 20 

treatment and gene knockout from single-cell expression data, and then predict cellular 21 

responses to the same perturbation for a new sample or a new cell type. The novelty of 22 

scGen is that it learns the cellular response in the latent space instead of the expression 23 

data space. 24 
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Model. ScGen follows the general VAE (Figs. 2A, 4C) for scRNA-seq data but uses the 1 

“latent space arithmetics” to learn perturbations' response. Given scRNA-seq samples of 2 

perturbed (denoted as p) and unperturbed cells (denoted as unp), a VAE model is trained.  3 

Then, the latent space representation 3R  and 3c!R  are obtained for the perturbed and 4 

unperturbed cells. Following the notion that VAE could map nonlinear operations (e.g., 5 

perturbation) in the data space to linear operations in the latent space, ScGen estimates 6 

the response in the latent space as  ü = 3†R − 3†c!R, where 3†⋅ is the average representation 7 

of samples from the same cell type or different cell types. Then,  given the latent 8 

representation 3Bc!R	 of an unperturbed cell for a new sample from the same or different 9 

cell type, the latent representation of the corresponding perturbed cell can be predicted 10 

as 3BR=3Bc!R	 + ü. The expression of the perturbed cell can also be estimated by feeding 11 

3BR into the VAE decoder. The scGen can also be expanded to samples and treatment 12 

across two species (using orthologues between species). When scGen is trained for 13 

species 1 (s1) with both perturbed and unperturbed cells and species 2 (s2) with only 14 

unperturbed cells, the latent code for the perturbed cells from s2 can be predicted as 15 

3O*,R =
*

2
(çO),R + çO*,c!R + uO + uR.  where üR = çO),c!R − çO),R  captures the response of 16 

perturbation and üO = çO) − çO* represents the difference between species.  17 

Result. scGen was applied to predict perturbation of out-of-samples response in human 18 

PBMCs data, and scGen showed a higher average correlation (R2= 0.948) between 19 

predicted and real data for six cell types [116]. Compared with other methods including 20 

CVAE [117], style transfer GAN [118], linear approaches based on vector arithmetics (VA) 21 

similar in [119] and PCA+VA, scGen predicted full distribution of ISG15 gene (strongest 22 

regulated gene by IFN-b) response to IFN- b [116], while others might predict mean 23 
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(CAVE and style transfer GAN) but failed to produce the full distribution. scGen was also 1 

tested on predicting the intestinal epithelial cells’ response to infections [120]. For early 2 

transit-amplifying cells, scGen showed good prediction (R2=0.98) for both 3 

Heligmosomoides polygyrus and Salmonella infections. Finally, scGen was evaluated for 4 

perturbation across species using scRNA-seq data set by Hagai et al. [121], which 5 

comprises bone marrow-derived mononuclear phagocytes from mice, rats, rabbits, and 6 

pigs perturbed with lipopolysaccharide (LPS). scGen’s predictions of LPS perturbation 7 

responses were shown to be highly correlated (R2 = 0.91) with the real responses.  8 

 9 

5. Conclusions 10 

We systematically survey 25 DL models according to the challenges they address. We 11 

categorize major DL model statements into VAE, AE, and GAN with a unified mathematic 12 

formulation in Section 3 (graphic model representation in Fig. 2), which will guide readers 13 

to focus on the DL model selection, training strategies, and loss functions in each 14 

algorithm. Specifically, the differences in loss functions are highlighted in each DL model’s 15 

applications to meet specific objectives.  DL/ML models that 25 surveyed models are 16 

evaluated against are presented in Fig. 3, providing a straightforward way for readers to 17 

pick up the most suitable DL model at a specific step for their own scRNA-seq data 18 

analysis. All evaluation methods are listed in Table 3, as we foresee Table 3 to be an 19 

easy recipe book for researchers to establish their scRNA-seq pipeline. In addition, a 20 

summary of all the 25 DL models concerning their DL models, evaluation metrics, 21 

implementation environment, downloadable source codes, features, and application 22 

notes is presented in Table 1a and 1b. Taken together, this survey provides a rich 23 
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resource to select a DL model for proper research applications, and we expect to inspire 1 

new DL model developments for scRNA-seq analysis. 2 

 One advantage of DL for scRNA-seq repeatedly demonstrated in many of these 3 

surveyed papers is DL’s ability to scale to a large number of cells, thanks to the stochastic 4 

gradient descent algorithm. For imputation, DCA shows linear scalability with the number 5 

of cells, and scIGAN and DeepInpute are demonstrated to scale to 100K cells while non-6 

DL algorithms including SAVER and SCRABBLE fail due to excessive memory usage 7 

and runtime [19]. A similar favorable scalability result has been echoed for batch 8 

normalization by DESC and iMAP, clustering by scDeepCluster, and multi-functional 9 

analysis by scVI, LDVAE, SAUCIE, and scScope. Overall, the advantage of DL in 10 

scalability becomes more apparent over non-DL approaches after the number of cells 11 

exceeds thousands. However, many of these comparisons exclude the time for 12 

determining DL models’ hyperparameters. Although iMAP shows that the model is robust 13 

against model hyperparameters, determinination of optimal hyperparameters in DL 14 

models has not been comprehensively studied for these scRNA-seq tasks.    15 

    This review focuses on surveying common DL models, such as AE, VAE, and GAN, 16 

and their model variations or combinations to address single-cell data analysis 17 

challenges. With the advancement of multi-omics single-cell technologies, new single-cell 18 

data types and DL models will be introduced to the single-cell analysis pipeline, such as 19 

cyTOF using SAUCIE [15], spatial transcriptome using DNN [122], and CITE-seq that 20 

simultaneously generates read counts for surface protein expression along with gene 21 

expression [123, 124]. Other than 3 most common unsupervised DL models using AE, 22 

VAE, and GAN, this review also discusses supervised network frameworks including 23 
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CapsNet (e.g. scCapsNet [52]), CNN (e.g. CNNC [54]), and domain adaption learning 1 

(e.g. scDGN [53]). It is expected that more DL models and learning paradigms will be 2 

developed and implemented for the most challenging steps for scRNA-seq data, including 3 

but not limited to, multi-omics data integration and data interpretation. For example, 4 

integrating protein-protein interaction graphs into DL models has been shown for its 5 

advantages of biological knowledge and nonlinear interactions embedded in the graphs 6 

[125-127]. Indeed, a recently published scRNA-seq analysis pipeline, scGNN [128], 7 

incorporates 3 iterative autoencoders (including one graph autoencoder) and successfully 8 

demonstrated Alzheimer’s disease-related neural development and differentiation 9 

mechanisms. We expect that our careful organization of this review will provide a basic 10 

understanding of DL models for scRNA-seq and inspire innovative applications of DL 11 

models for single cell analysis. 12 
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Figure Captions 1 

Figure 1. Single cell data analysis steps for both conventional ML methods 2 

(bottom) and DL methods (top). Depending on the input data and analysis objectives, 3 

major scRNA-seq analysis steps are illustrated in the center flow chart (color boxes) with 4 

conventional ML approaches along with optional analysis modules below each analysis 5 

step. Deep learning approaches are categorized as Deep Neural Network, Generative 6 

Adversarial Network, Variational Autoencoder, and Autoencoder. For each DL approach, 7 

optional algorithms are listed on top of each step. 8 

 9 

Figure 2. Graphical models of the major surveyed DL models including A) 10 

Variational Autoencoder B) Autoencoder; and C) Generative Adversarial Network  11 

 12 

Figure 3. Algorithm comparison grid. DL methods surveyed in the paper are listed on 13 

the left-hand side, and some in the column. Algorithms selected to compare in each DL 14 

method are marked by “n” at each cross-point.  15 

 16 

Figure 4. DL model network illustration. A) Deep neural network, B) Autoencoder, C) 17 

Variational autoencoder, D) Autoencoder with recursive imputer, E) Generative 18 

adversarial network, F) Convolutional neural network, and G) Domain adversarial neural 19 

network.  20 

 21 

 22 
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Tables 1 

 2 
Table 1a. Deep Learning algorithms reviewed in the paper 3 

App Algorithm Models Evaluation Environment Codes Refs 

Imputation 

 DCA AE DREMI 
Keras, 

Tensorflow, 
scanpy 

https://github.com/theislab/d
ca [18]  

 SAVER-X AE+TL t-SNE, ARI R/sctransfer https://github.com/jingshuw/
SAVERX [58]  

 DeepImpute DNN MSE, Pearson’s correlation Keras/Tensorf
low 

https://github.com/lanagarm
ire/DeepImpute [20]  

 LATE AE MSE Tensorflow https://github.com/audreyqy
fu/LATE [59]  

 scGAMI AE NMI, ARI, HS and CS Tensorflow https://github.com/QUST-
AIBBDRC/scGMAI/ [60] 

 scIGANs GAN ARI, ACC, AUC, and F-score PyTorch https://github.com/xuyungan
g/scIGANs [19] 

Batch correction 
 BERMUDA AE+TL kBET, the entropy of Mixing, SI PyTorch https://github.com/txWang/B

ERMUDA  [64]  

 DESC AE ARI, KL Tensorflow https://github.com/eleozzr/d
esc  [68] 

 iMAP AE+GAN kBET, LISI PyTorch https://github.com/Svvord/i
MAP  [71] 

Clustering, latent representation, dimension reduction, and data augmentation 
 Dhaka VAE ARI, Spearman Correlation Keras/Tensorf

low 
https://github.com/Microsoft

Genomics/Dhaka  [73] 

 scvis VAE KNN preservation, log-likelihood Tensorflow https://bitbucket.org/jerry00/
scvis-dev/src/master/  [76] 

 scVAE VAE ARI Tensorflow https://github.com/scvae/sc
vae  [77] 

 VASC VAE NMI, ARI, HS, and CS H5py, keras https://github.com/wang-
research/VASC  [78] 

 scDeepCluster AE ARI, NMI, clustering accuracy Keras, 
Scanpy 

https://github.com/ttgump/sc
DeepCluster  [80] 
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 cscGAN GAN t-SNE, marker genes, MMD, AUC Scipy, 
Tensorflow 

https://github.com/imsb-
uke/scGAN  [83] 

Multi-functional models (IM: imputation, BC: batch correction, CL: clustering) 

 scVI VAE 
IM: L1 distance; CL: ARI, NMI, SI; 

BC: Entropy of Mixing 
PyTorch, 
Anndata 

https://github.com/YosefLab
/scvi-tools  [17]  

 LDVAE VAE Reconstruction errors Part of scVI https://github.com/YosefLab
/scvi-tools  [87] 

 SAUCIE AE 
IM: R2 statistics; CL: SI;  

BC: modified kBET; Visualization: 
Precision/Recall 

Tensorflow https://github.com/Krishnas
wamyLab/SAUCIE/  [15]  

 scScope AE 
IM:Reconstruction errors;  

BC: Entropy of mixing; CL: ARI 
Tensorflow, 
Scikit-learn 

https://github.com/Altschule
rWu-Lab/scScope  [93] 

Cell type Identification  
 DigitalDLSorter DNN Pearson correlation R/Python/Ke

ras 
https://github.com/cartof/digit

alDLSorter  [51] 

 scCapsNet CapsNet Cell-type Prediction accuracy Keras, 
Tensorflow 

https://github.com/wanglf19/
scCaps  [52] 

 netAE VAE 
Cell-type Prediction accuracy, t-

SNE for visualization pyTorch https://github.com/LeoZDong
/netAE  [102] 

 scDGN DANN Prediciton accuracy pyTorch https://github.com/SongweiG
e/scDGN [53] 

      

Function analysis 
 CNNC CNN AUROC, AUPRC, and accuracy Keras, 

Tensorflow 
https://github.com/xiaoyeye/

CNNC  [54] 

 scGen VAE Correlation, visualization Tensorflow https://github.com/theislab/s
cgen  [115] 

DL Model keywords: AE: autoencoder, AE+TL: autoencoder with transfer learning, AE: variational autoencoder, GAN: Generative adversarial 1 
network, CNN: convolutional neural network, DNN: deep neural network, DANN: domain adversarial neural network, CapsNet: capsule neural 2 
network 3 
 4 
  5 
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Table 1b. Comparison of Deep Learning algorithms reviewed in the paper 1 
App Algorithm Feature Application notes 

Imputation  
DCA • Strongest recovery of the top 500 genes  

• Choices of noise models, including NB, 
and ZINB 

• Outperform other existing methods in 
capturing cell population structure 

• AE integrated into the Scanpy framework 
• High scalability of AE, up to millions of cells 
• This method was compared to SAVER, scImpute, and MAGIC 

 
SAVER-X • Pretraining from existing data sets 

(transfer learning) 
• Decomposes the variation into three 

components 

• SAVER-X pretraining on PBMCs outperformed other denoising methods, 
including DCA, scVI, scImpute, and MAGIC 

• SAVER-X was also applied for cross-species analysis 

 
DeepImpute • Divide-and-conquer approach, using a 

bank of DNN models 

• Reduced complexity by learning smaller 
sub-network 

• Minimized overfitting by removing target 
genes from input 

• DeepImpute had the highest overall accuracy and offered shorter 
computation time than other methods like MAGIC, DrImpute, ScImpute, 
SAVER, VIPER, and DCA  

• DeepImpute showed benefits in improving clustering results and 
identifying significantly differentially expressed genes 

• Scalable and faster training time 
 

LATE • Takes the log-transformed expression as 
input 

• No explicit distribution assumption on 
input data 

• LATE outperforms other existing methods like MAGIC, SAVER, DCA, 
scVI, particularly when the ground truth contains only a few or no zeros 

• Better scalability than DCA and scVI up to 1.3 million cells with 10K genes 

 
scGAMI • A model designed for clustering but it 

includes an AE 
• Uses fast independent component 

analysis algorithm: FastICA 

• Significantly improved the clustering performance in eight of seventeen 
selected scRNA-seq datasets 

• scGMI’s scalability needs to be improved 

 
scIGANs • Trains a GAN model to generate 

samples with imputed expressions 
• This framework forces the model to reconstruct the real samples and 

discriminate between real and generated samples.   
• Best reported performance in clustering compared to DCA, DeepImpute, 

SAVER, scImpute, MAGIC 
• Scalable over 100K cells, also robust to small datasets 

Batch correction  
BERMUDA • Preserves batch-specific biological 

signals through transfer-learning 
Preserves batch-specific cell populations 

• Outperform other methods like mnnCorrect, BBKNN, Seurat, and scVI   
• Removes batch effects even when the cell population compositions 

across different batches are vastly different 
• Scalable by using mini-batch gradient descent algorithm during training  
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 DESC • Removes batch effect through clustering 
with the hypothesis that batch 
differences in expressions are smaller 
than true biological variations 

• Does not require explicit batch 
information for batch removal 

• DESC is effective in removing the batch effect, whereas CCA, MNN, 
Seurat 3.0, scVI, BERMUDA, and scanorama were sensitive to batch 
definitions 

• DESC is biologically interpretable and can reveal both discrete and 
pseudo-temporal structures of cells 

• Small memory footprint and GPU enabled 

 iMAP • iMAP combines AE and GAN for batch 
effect removal 

• It consists of two processing stages, 
each including a separate DL model 

• iMAP was shown to separate the batch-specific cell types but mix batch 
shared cell types and outperformed other existing batch correction 
methods including Harmony, scVI, fastMNN, Seurat 

• Capable handling datasets from Smart-seq2 and 10X Genomics platforms 
• Demonstrated the stability over hyperparameters, and scalability for 

thousands of cells. 

Clustering, latent representation, dimension reduction, and data augmentation 
 Dhaka • It was proposed to reduce the dimension 

of scRNA-seq data for efficient 
stratification of tumor subpopulations 

• Dhaka was shown to have an ARI higher than most other comparing 
methods including t-SNE, PCA, SIMLR, NMF, an autoencoder, MAGIC, 
and scVI 

• Dhaka can represent an evolutionary trajectory 

 scvis • VAE network that learns low-dimensional 
representations 

• Capture both local and global 
neighboring structures 

• scvis was tested on the simulated data and outperformed t-SNE 
• scvis is much more scalable than BH t-SNE (t-SNE takes O(M log(M)) 

time and O(M log(M)) space) for very large dataset (>1 million cells)  

 scVAE • scVAE includes multiple VAE models for 
denoising gene expression levels and 
learning the low-dimensional latent 
representation 

• Gaussian Mixture VAE (GMVAE) with 
negative binomial distribution achieved 
the highest lower bound and ARI 

• GMVAE was also compared with Seurat and shown to perform better, 
however, scVAE performed no better than scVI or scvis 

• Algorithm applicable to large datasets with million cells 

 
VASC • Another VAE for dimension reduction 

and latent representation  
• Explicitly model dropout with a Zero-

inflated layer 

• VASC was compared with PCA, t-SNE, ZIFA, and SIMLR on 20 datasets  
• In the study of embryonic development from zygote to blast cells, VASC 

shthe owed better performance to model embryo developmental 
progression 

• VASC is reported to handle a large number of cells or cell types 
• Demonstrated model stability 

 scDeepCluster • AE network that simultaneously learns 
feature representation and performs 
clustering via explicit modeling of cell 
clusters 

• It was tested on the simulation data with different dropout rates and 
compared with DCA, MPSSC and SIMLR CIDR, PCA + k-mean, scvis and 
DEC significantly outperforming them 

• Running time of scDeepCluster scales linearly with the number of cells, 
suitable for large scRNA-seq datasets 
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cscGAN • It was designed to augment the existing 

scRNA-seq samples by generating 
expression profiles of specific cell types 
or subpopulations 

• The cscGAN learns the expression 
patterns of a specific subpopulation (few 
cells), and simultaneously learns the 
cells from all populations (a large number 
of cells). 

• cscGAN was shown to generate high-quality scRAN-seq data for specific 
cell types.   

• The augmentation in this method improved the identification of rare cell 
types and the ability to capture transitional cell states from trajectory 
analysis 

• Better scalability than SUGAR (Synthesis Using Geometrically Aligned 
Random-walks) 

• Capable re-establish developmental trajectories through pseudo-time 
analysis via cscGAN data augmentation 

Multi-functional models 
 scVI • Designed to address a range of 

fundamental analysis tasks, including 
batch correction, visualization, clustering, 
and differential expression 

• Integrated a normalization procedure and 
batch correction  

• ScVI was shown to be faster than most non-DL algorithms and scalable to 
handle twice as many cells as non-DL algorithms with a fixed memory 

• For imputation, ScVI, together with other ZINB-based models, performed 
better than methods using alternative distributions 

• Similar scalability as DCA  

 LDVAE • Adaption of scVI to improve the model 
interpretability  

• For LDVAE the variations along the different axes of the latent variable 
establish direct linear relationships with input genes. 

 SAUCIE • It is applied to the normalized data 
instead of count data 

• Results showed that SAUCIE had a better or comparable performance 
with other approaches 

• SAUCIE has better scalability and faster runtimes than any of the other 
models 

• Applications with single-cell CyTOF datasets 

 scScope • AE with recurrent steps designed for 
imputation and batch correction 

• It was compared with PCA, MAGIC, ZINB-WaVE, SIMLR, AE, scVI, and 
DCA 

• Efficiently identify cell subpopulations from complex datasets with high 
dropout rates, large numbers of subpopulations and rare cell types 

• For scalability and training speed, scScope was shown to offer scalability 
(for >100K cells) with high efficiency (faster than most of the approaches) 

Cell type Identification   
DigitalDLSorter • A deconvolution model with 4-layer DNN 

• Designed to identify and quantify the 
immune cells infiltrated in tumors 
captured in bulk RNA-seq, utilizing 
single-cell RNA-seq data 

• DigitalDLSorter achieved excellent agreement (linear correlation of 0.99 
for colorectal cancer, and good agreement in quadratic relationship for 
breast cancer) at predicting cell type proportion. 

 
scCapsNet • It takes log-transformed, normalized 

expressions as input and follows the 
general CapsNet model 

• Interpretable capsule network designed for cell type prediction 
• scCapsNet makes the deep-learning black box transparent through the 

direct interpretation of internal parameters 
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 netAE • VAE-based semi-supervised cell type 
prediction model 

• Aiming at learning a low dimensional 
space from which the original space can 
be accurately reconstructed  

• Deals with scenarios of having a small number of labeled cells. 
• netAE outperformed most of the baseline methods including scVI, ZIFA, 

PCA and AE as well as a semi-supervised method scANVI 

 scDGN • scDGN takes the log-transformed, 
normalized expression as the input 

• Supervised domain adversarial network 

• scDGN was tested for classifying cell types and aligning batches  
• scDGN outperformed many deep learning and traditional machine 

learning methods in classification accuracy, including DNN, CaSTLe, 
MNN, scVI, and Seurat 

Function analysis 
 CNNC • CNNC takes expression levels of two 

genes from many cells and transforms 
them into a 32 x 32 image-like 
normalized empirical probability function 

• Inferring causal interactions between 
genes from scRNA-seq 

• CNNC outperforms prior methods for inferring TF–gene and protein–
protein interactions, causality inference, and functional assignments 

• Was shown to have more than 20% higher AUPRC than other methods 
and reported almost no false-negative for the top 5% predictions 

 scGen • ScGen follows the general VAE for 
scRNA-seq data but uses the “latent 
space arithmetics” to learn perturbations' 
response 

• Designed to learn cell response to 
certain perturbation (drug treatment, 
gene knockout, etc) 

• Compared with other methods including CVAE, style transfer GAN, linear 
approaches based on vector arithmetics(VA) and PCA+VA, scGen 
predicted full distribution of ISG15 gene (strongest regulated gene by IFN-
b) response to IFN- b 

• scGen can be used to translate the effect of a stimulation trained in study 
A to how stimulated cells would look in study B, given a control sample 
set 

Abbreviation: NB: negative binomial distribution; ZINB: zero-inflated negative binomial distribution; TF: Transcription factor;  1 
 2 
 3 
 4 
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Table 2a: Simulated single-cell data/algorithms 1 
Title Algorithm #  Cells Simulation methods Reference 

Splatter 
DCA, DeepImpute, 

PERMUDA, 
scDeepCluster, scVI, 

scScope, solo 

~2000 Splatter/R [85]  

CIDR sclGAN 50 CIDR simulation [61]  

NB+dropout Dhaka 500 Hierarchical model of 
NB/Gamma + random dropout   

Bulk RNA-
seq SAUCIE 1076 

1076 CCLE bulk RNAseq + 
dropout conditional on the 

expression level 
 

SIMLR scScope 1 million SIMLR, high-dimensional data 
generated from latent vector [44]  

SUGAR cscGAN 3000 
Generating high dimensional 
data that follows a low 
dimensional manifold 

[86] 

 2 
Table 2b: Human single-cell data sources used by different DL algorithms 3 

Title Algorithm Cell origin #  Cells Data Sources Reference 

68k PBMCs 

DCA 
SAVER-X 

LATE, scVAE, 
scDeepCluster, 
scCapsNet, 
scDGN 

Blood 68,579 10X Single Cell Gene 
Expression Datasets  

Human 
pluripotent DCA hESCs 1,876 GSE102176 [129] 

CITE-seq SAVER-X 
Cord blood 
mononuclear 

cells 
8,005 GSE100866 [130] 

Midbrain and 
Dopaminergic 

Neuron 
Development 

SAVER-X 
Brain/ embryo 

ventral 
midbrain cells 

1,977 GSE76381 [131]  

HCA SAVER-X 
Immune cell, 
Human Cell 
Atlas 

500,000 HCA data portal  

Breast tumor SAVER-X 
Immune cell in 
tumor micro-
environment 

45,000 GSE114725 [132] 

293T cells 
DeepImpute, 

iMAP 
Embryonic 
kidney 13,480 10X Single Cell Gene 

Expression Datasets  

Jurkat 
DeepImpute, 

iMAP 
Blood/ 

lymphocyte 3,200 10X Single Cell Gene 
Expression Datasets  

ESC, Time-
course scGAN ESC 350, 758 GSE75748 [133] 
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Baron-Hum-1 scGMAI, VASC Pancreatic 
islets 1,937 GSM2230757 [134] 

Baron-Hum-2 scGMAI, VASC Pancreatic 
islets 1,724 GSM2230758 [134] 

Camp scGMAI, VASC Liver cells 303 GSE96981 [135] 

CEL-seq2 PERMUDA, 
DESC 

Pancreas/Islet
s of 

Langerhans 
 GSE85241 [136] 

Darmanis scGMAI, 
sclGAN, VASC Brain/cortex 466 GSE67835 [137] 

Tirosh-brain Dhaka, scvis Oligodendrogli
oma >4800 GSE70630  [138]  

Patel Dhaka 
Primary 

glioblastoma 
cells 

875 GSE57872 [139] 

Li scGMAI, VASC Blood 561 GSE146974 [68]  

Tirosh-skin scvis melanoma 4645 GSE72056 [74]  

xenograft 3, 
and 4 Dhaka Breast tumor  ~250 EGAS00001002170 [140]  

Petropoulos VASC/netAE Human 
embryos 1,529  E-MTAB-3929  

Pollen scGMAI, VASC  348 SRP041736 [141]  

Xin scGMAI, VASC 
Pancreatic 
cells 

(α-, β-, δ-) 
1,600 GSE81608 [142] 

Yan scGMAI, VASC embryonic 
stem cells 124 GSE36552 [143] 

PBMC3k VASC, scVI Blood 2,700 SRP073767 [100] 

CyTOF, 
Dengue SAUCIE Dengue 

infection 
11 M, ~42 
antibodies  Cytobank, 82023 [15] 

CyTOF, 
ccRCC SAUCIE 

Immunue 
profile of 73 
ccRCC 
patients 

3.5 M, ~40 
antibodies Cytobank: 875 [144] 

CyTOF, breast SAUCIE 3 patients  Flow Repository: FR-
FCM-ZYJP [132] 

Chung, BC DigitalDLSorter Breast tumor 515 GSE75688 [94] 

Li, CRC DigitalDLSorter Colorectal 
cancer 2,591 GSE81861 [95] 

Pancreatic 
datasets scDGN Pancreas 14693 SeuratData  

Kang, PBMC scGen 
PBMC 

stimulated by 
INF-b 

~15,000 GSE96583 [116] 

 1 
 2 
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Table 2c: Mouse single-cell data sources used by different DL algorithms 1 
Title Algorithm Cell origin #  Cells Data Sources Reference 

Brain cells 
from E18 mice DCA, SAUCIE Brain Cortex 1,306,127 

 10x: Single Cell 
Gene Expression 

Datasets 
 

Midbrain and 
Dopaminergic 

Neuron 
Development 

SAVER-X Ventral 
Midbrain 1907  GSE76381 [131] 

Mouse cell 
atlas SAVER-X  405,796  GSE108097 [145] 

neuron9k  DeepImpute Cortex 9128 
10x: Single Cell 
Gene Expression 

Datasets 
 

Mouse Visual 
Cortex DeepImpute Brain cortex 114601  GSE102827 [146] 

murine 
epidermis DeepImpute Epidermis 1422  GSE67602 [147] 

myeloid 
progenitors 

LATE 
DESC, 
SAUCIE 

Bone marrow 2,730  GSE72857 [148] 

Cell-cycle sclGAN mESC 288 E-MTAB-2805 [149] 
A single-cell 
survey  Intestine 7721 GSE92332 [120] 

Tabula Muris iMAP Mouse cells >100K   

Baron-Mou-1 VASC Pancreas 822  GSM2230761 [134] 

Biase scGMAI, VASC Embryos/SMA
RTer 56  GSE57249 [150] 

Biase scGMAI, VASC Embryos/Fluidi
gm 90  GSE59892 [150] 

Deng scGMAI, VASC Liver 317  GSE45719 [151] 

Klein 
VASC 

scDeepCluster 
sclGAN 

Stem Cells 2,717  GSE65525 [152] 

Goolam VASC Mouse Embryo 124 E-METAB-3321 [153] 

Kolodziejczyk VASC mESC 704 E-MTAB-2600 [154] 

Usoskin VASC Lumbar 864  GSE59739 [155] 

Zeisel 
VASC, scVI, 
SAUCIE, 
netAE 

Cortex, 
hippocampus 3,005  GSE60361 [156] 

Bladder cells scDeepCluster Bladder 12,884  GSE129845 [157] 

HEMATO scVI Blood cell >10,000 GSE89754 [158] 
retinal bipolar 

cells 
scVI, 

scCapsNet retinal ~25,000  GSE81905 [101] 
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SAUCIE 

Embryo at 9 
time points LDAVE embryos from 

E6.5 to E8.5 116,312 GSE87038 [159] 

Embryo at 9 
time points LDAVE embryos from 

E9.5 to E13.5 ~2 millions GSE119945 [160] 

CyTOF,  SAUCIE Mouse thymus 200K, ~38 
antibodies Cytobank: 52942  [161] 

Nestorowa netAE 
hematopoietic 
stem and 

progenitor cells 
1,920 GSE81682 [162] 

small 
intestinal 
epithelium 

scGen 

Infected with 
Salmonella 
and worm H. 
polygyrus  

1,957 GSE92332 [120] 

 1 
 2 
Table 2d: Single-cell data derived from other species 3 

Title Algorithm Species Tissue #  Cells SRA/GEO Reference 
Worm neuron 

cells1 scDeepCluster C. 
elegans Neuron 4,186 GSE98561 [163] 

Cross 
species, 
stimulation 
with LPS and 
dsRNA 

scGen 
Mouse, 
rat, rabbit, 
and pig 

bone 
marrow-
derived 
phagocyte  

5,000 to 
10,000 
/species 

13 accessions 
in 

ArrayExpress 
[121]  

1. Processed data is available at https://github.com/ttgump/scDeepCluster/tree/master/scRNA-seq%20data 4 
 5 
 6 
 7 
Table 2e: Large single-cell data source used by various algorithms 8 

Title Sources Notes 
10X Single-cell 
gene expression 

dataset 
https://support.10xgenomics.com/single-
cell-gene-expression/datasets 

Contains large collection of scRNA-
seq dataset generated using 10X 
system 

Tabula Muris  https://tabula-muris.ds.czbiohub.org/ 
Compendium of scRNA-seq data from 
mouse 

HCA https://data.humancellatlas.org/  Human single-cell atlas 

MCA https://figshare.com/s/865e694ad06d585
7db4b, or GSE108097 

Mouse single-cell atlas 

scQuery https://scquery.cs.cmu.edu/  

A web server cell type matching and 
key gene visualization. It is also a 
source for scRNA-seq collection 
(processed with common pipeline)  

SeuratData https://github.com/satijalab/seurat-data  
List of datasets, including PBMC and 
human pancreatic islet cells  

cytoBank https://cytobank.org/  Community of big data cytometry 

 9 
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Table 3. Evaluation metrics used in surveyed DL algorithms 
Evaluation Method Equations Explanation 

Pseudobulk RNA-seq  

Average of normalized (log2-transformed) scRNA-seq counts 
across cells is calculated and then correlation coefficient 
between the pseudobulk and the actual bulk RNA-seq profile of 
the same cell type is evaluated.  

Mean squared error 
(MSE) !"# =

1
&
'()! − )+!)"
#

!$%
 

MSE assesses the quality of a predictor, or an estimator, from a 
collection of observed data x, with )+ being the predicted values. 

   

Pearson correlation -&,( =	
/01(2, 4)
5&5(

 
where cov() is the covariance, sX and sY are the standard 
deviation of X and Y, respectively.  

Spearman correlation -) = -*!,*" =	
/01(6&, 6()
5*!5*"

 
The Spearman correlation coefficient is defined as the Pearson 
correlation coefficient between the rank variables, where rX is 
the rank of X. 

Entropy of accuracy, Hacc 
[21] 7+,, = −

1
!
''8!9)-: log >8!9)-:?

.#

-$%

/

!$%
 

Measures the diversity of the ground-truth labels within each 
predicted cluster group. pi(xj) (or qi(xj)) are the proportions of 
cells in the jth ground-truth cluster (or predicted cluster) relative 
to the total number of cells in the ith predicted cluster (or ground-
truth clusters), respectively.  

Entropy of purity, Hpur [21] 701* = −
1
@
''A!9)-: log >A!9)-:?

/#

-$%

.

!$%
 

Measures the diversity of the predicted cluster labels within each 
ground-truth group 

Entropy of mixing [32] # ='8! log(8!)
2

!$%
 

This metric evaluates the mixing of cells from different batches 
in the neighborhood of each cell. C is the number of batches, 
and 8! is the proportion of cells from batch B among N nearest 
cells. 

Mutual Information (MI) 
[164] !C(D, E) =''F34(B, G) log H

F34(B, G)
F3(B)F4(G)

I

|4|

-$%

|3|

!$%
 

where F3(B) =
|3#|
. 	 and F4(G) =

64$6
. . Also, define the joint 

distribution probability is F34(B, G) =
63#∩4$6

. . The MI is a measure 
of mutual dependency between two cluster assignments U and 
V. 

Normalized Mutual 
Information (NMI) [165] @!C(D, E) =

2 ×!C(D, E)
[7(D) + 7(E)]

 where 7(D) = ∑F3(B) log9F3(B): , 7(E) = ∑F4(B) log9F4(B):. The 
NMI is a normalization of the MI score between 0 and 1. 
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Kullback–Leibler (KL) 
divergence [166] 

P89(F||R) ='F())log	(
F())
R())

)
:∈<

 
where discrete probability distributions P and Q  are defined on 
the same probability space c.  This relative entropy is the 
measure for directed divergence between two distributions.  

Jaccard Index S(D, E) =
⌊D ∩ E⌋
⌊D ∪ E⌋

 
0 ≤ J(U,V) ≤ 1. J = 1 if clusters U and V are the same. If U are V 
are empty, J is defined as 1.  

Fowlkes-Mallows Index 
for two clustering 
algorithms (FM) 

X! =	Y
ZF

ZF + XF
×

ZF
ZF + X@

 

TP as the number of pairs of points that are present in the same 
cluster in both U and V; FP as the number of pairs of points that 
are present in the same cluster in U but not in V; FN as the 
number of pairs of points that are present in the same cluster in 
V but not in U; and TN as the number of pairs of points that are 
in different clusters in both U and V. 

Rand index (RI) [C = (\ + ])/ >
&
2? 

Measure of constancy between two clustering outcomes, where 
a (or b) is the count of pairs of cells in one cluster (or different 
clusters) from one clustering algorithm but also fall in the same 
cluster (or different clusters) from the other clustering algorithm.  

Adjusted Rand index 
(ARI) [167] _[C = 	

[C − #[[C]
max([C) − #[[C]

 
ARI is a corrected-for-chance version of RI, where E[RI] is the 
expected Rand Index. 

Silhouette index c(B) =
](B) − \(B)

max	(\(B), ](B))
 

where a(i) is the average dissimilarity of ith cell to all other cells 
in the same cluster, and b(i) is the average dissimilarity of ith cell 
to all cells in the closest cluster. The range of s(i) is [−1,1], with 
1 to be well-clustered and -1 to be completely misclassified.  

Maximum Mean 
Discrepancy (MMD) [65] 

!!P(X, 8, A) = 	 cd8
=∈>

ef0 − f?e= 
MMD is a non-parametric distance between distributions based 
on the reproducing kernel Hilbert space, or, a distance-based 
measure between two distribution p and q based on the mean 
embeddings µp and µq in a reproducing kernel Hilbert space F. 

k-Nearest neighbor 
batch-effect test (kBET) 
[168] 

\#@ =g
(@#A

@ − h ∙ jA)"

h ∙ jA

9

A$%

	~29B%
"  

Given a dataset of @ cells from l batches with @A denoting the 
number of cells in batch m, @#A@  is the number of cells from batch m 
in the k-nearest neighbors of cell &, fl is the global fraction of 
cells in batch m, or jA =

.%

. ,  and  29B%
"  denotes the 2" distribution 

with l − 1 degrees of freedom. It uses a 2"-based test for 
random neighborhoods of fixed size to determine the 
significance (“well-mixed”). 

Local Inverse Simpson’s 
Index (LISI) [34] 

1
"(#) =

1
%!=1$ #&(')$!

 
This is the inverse Simpson’s Index in the k-nearest neighbors 
of cell & for all batches, where 8(m) denotes the proportion of 
batch m in the k-nearest neighbors. The score reports the 
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effective number of batches in the k-nearest neighbors of cell &. 

Homogeneity 7" = 1 −
7(F(D|E))

79F(D):
 

where H() is the entropy, and U is the ground-truth assignment 
and V is the predicted assignment. The HS range from 0 to 1, 
where 1 indicates perfectly homogeneous labeling. 

Completeness n" = 1 −
79F(E|D):

79F(E):
 Its values range from 0 to 1, where 1 indicates all members from 

a ground-truth label are assigned to a single cluster. 

V-Measure [169] EC =
(1 + o)7" × n"
o7n + n"

 
where b indicates the weight of HS. V-Measure is symmetric, i.e. 
switching the true and predicted cluster labels does not change 
V-Measure. 

Precision, recall F6p/BcB0& = 	
ZF

ZF + XF
, 6p/\mm = 	

ZF
ZF + X@

 TP: true positive, FP: false positive, FN, false negative.  

Accuracy _//d6\/q = 	
ZF + Z@

@
 N: all samples tested, TN: true negative 

F1-score X% =	
2	F6p/BcB0& ∙ [p/\mm
F6p/BcB0& + [p/\mm

 
A harmonic mean of precision and recall. It can be extended to 
XC where o is a weight between precision and recall (similar to 
V-measure).  

AUC, RUROC 

 

Area Under Curve (grey area).  Receiver operating 
characteristic (ROC) curve (red line). A similar measure can be 
performed on the Precision-Recall curve (PRC), or AUPRC. 
Precision-Recall curves summarize the trade-off between the 
true positive rate and the positive predictive value for a 
predictive model (mostly for an imbalanced dataset). 
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