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Abstract 

 
The quantum-classical path integral (QCPI) is a rigorous formulation of nonadiabatic 
dynamics, where the dynamical interaction between a quantum system and its 
environment is captured consistently through classical trajectories driven by forces 
along quantum paths of the system. In this Letter we develop a small matrix 
decomposition (SMatQCPI) which eliminates the tensor storage requirements of the 
iterative QCPI algorithm. In the case of a system coupled to a harmonic bath, 
SMatQCPI provides fully quantum mechanical propagation which also reduces the 
computational cost to that of a single QCPI step. Further, the SMatQCPI matrices only 
need to account for quantum contributions to decoherence, allowing high efficiency in 
challenging regimes of incoherent dynamics. Overall, this new composite algorithm 
combines the best features of two powerful path integral formulations and offers a 
versatile tool for simulating condensed phase quantum dynamics.  
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 A number of recent advances in experimental techniques have enabled the characterization of 
molecular processes at an unprecedented level of spatial, frequency and temporal resolution. These 
developments have spurred intense theoretical efforts in the direction of developing methods for simulating 
the dynamics of large molecular systems accurately and reliably. Since many processes of interest are not 
adequately described by classical mechanics, simulation methods must be able to faithfully account for 
quantum mechanical effects, such as quantum dispersion, phase interference, tunneling and nonadiabaticity, 
in the time evolution of the nuclei. The steep increase in the cost of quantum mechanical calculations with 
the number of degrees of freedom presents a severe challenge. A large body of work has led to the 
development of many powerful simulation tools, but however, further developments are needed to address 
the quantum dynamics of complex processes in the condensed phase or biological environments.   

Among methods based on the Schrödinger equation, linearized semiclassical approximations,1-4 
forward-backward semiclassical dynamics5-7 and path integral Liouville dynamics8-9 offer very practical 
tools for simulating Born-Oppenheimer dynamics in large systems, and may be applied to discrete systems 
through the mapping Hamiltonian.4, 10-11 Methods designed for nonadiabatic dynamics include prescriptions 
designed to remedy the shortcomings of the Ehrenfest model, such as trajectory surface hopping and 
spawning,12-16 and approaches based on the quantum-classical Liouville equation,12,13 Accurate, fully 
quantum mechanical calculations are possible using the multiconfiguration time-dependent Hartree 
method,17-19 as well as approaches based on matrix product states20-21 and the density matrix renormalization 
group method.22-23  

Feynman’s path integral formulation24-25 is appealing because it does not require wavefunction 
storage. Another distinct advantage of the path integral is the ability to integrate out harmonic degrees of 
freedom analytically at any temperature.26 The drawbacks are the astronomical number of terms that must 
be summed to calculate the quantum mechanical amplitude, which in general cannot be sampled by 
stochastic methods,27 and the nonlocal character of the dynamics that results from eliminating harmonic 
environments.28 In this Letter we report the integration of two powerful real-time path integral methods, the 
quantum-classical path integral29-30 (QCPI) and the small matrix path integral31-32 (SMatPI) into an 
algorithm that offers versatility as well as improved performance, and (perhaps most importantly) which 
has low storage requirements.  

The SMatPI algorithm is based on the quasi-adiabatic propagator path integral (QuAPI) 
methodology33 for simulating the dynamics of a small system coupled to a harmonic bath, which has been 
used to simulate a wide variety of processes. The QuAPI algorithm decomposes the path integral for the 
system, which is augmented by a time-nonlocal influence functional, into a series of tensor multiplications 
that lead to iterative evaluation, with cost that scales linearly with propagation time. The main cost of the 
algorithm is associated with the QuAPI tensors which in principle involve 2Ln  elements and require the 
evaluation of 2 2Ln   terms in each iteration step,34-35 where n  is the number of system states and L is the 
bath-induced memory length in units of the path integral time step. (We note, however, that powerful 
filtering techniques can dramatically decrease these numbers in some regimes.) Recent work31-32 showed 
that the QuAPI tensors, which capture the correlations among path integral variables within the memory 
length, can be further decomposed through an analytically derived exact procedure, giving rise to an 
algorithm that involves a small number of 2 2n n  matrices. Elimination of tensor storage makes the SMatPI 
method applicable to multistate systems and reduces the total cost of the algorithm to that of a single QuAPI 
propagation step.  
 For the purpose of simulating processes in complex anharmonic environments, much progress can 
be made by resorting to classical trajectory treatments. The quantum-classical path integral (QCPI) is a 
rigorous formulation that emerges when the particles that comprise the environment are treated within the 
semiclassical stationary phase approximation. As such, QCPI captures the system-solvent interaction 
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correctly, without resorting to Ehrenfest-type averages36 or invoking ad hoc assumptions. Further, the 
coherence-damping effects from the solvent arise entirely from destructive interference of phases obtained 
from the interaction of the system with the solvent,37 in full atomistic detail.38  
 Combining the QCPI and SMatPI algorithms can benefit both methods in distinct ways: (i) SMatPI 
may be used to eliminate tensor storage in the HBR-QCPI algorithm. (ii) In the case of a harmonic bath, 
the QCPI propagators, which are accurate over larger time steps and allow convergence with shorter 
memory compared to QuAPI, may be used within the SMatPI algorithm to facilitate convergence. 

Consider a small quantum mechanical system, described by the Hamiltonian 0H , which interacts 
with a general (anharmonic) environment (e.g. a solvent) described by the phase space variables ,q p  
through the potential  sol ,V s q . The isolated system is described in terms of n discrete states i , which 
diagonalize the coordinate operator39-40 with eigenvalues i . Observables pertaining to the quantum system 
are conveniently obtained from the reduced density matrix (RDM), 
 

0

ˆ ˆ/ /( 0)
sol 0 sol 0ˆTr (0)N N

N

iHt iHtN
N Ns s

s e s s e s  

    ,                                     (0.1) 

 
where sol (0)  is the initial density operator of the solvent and kt k t   is the time in units of the path 
integral time step t .  The QCPI expression for the system RDM has the form 
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where W is the Wigner transform41 of sol (0)  and 
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involves a sum of phases along all forward-backward system paths { }ks , 
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Here the reference propagators 

0 0

refKq p  are given by 
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where 

0 0

refUq p  is the time evolution operator for the time-dependent Hamiltonian 
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along the particular “reference” trajectory, and 

0 0 0 1( , , , )Ns s s  q p  is the QCPI-discretized net forward-
backward action integral that corresponds to 

0 0

refH H q p . The reference Hamiltonian 
0 0

refHq p  augments the 
system by the external time-varying field from the system-solvent interaction along a classical trajectory 

ref ref( , )q p . The remaining action 
0 0

q p  arises from the “force” exerted on the solvent by the quantum 
system (the “back-reaction”). This force is imparted on the solvent through frequent changes of potential 
surface along each system path, which modify the solvent trajectory. The phase space integral in Eq. (0.2) 
is evaluated by Monte Carlo methods.42 Each quantum path in Eq. (0.6) specifies a unique sequence of 
forces (i.e. system states) and thus gives rise to a different solvent trajectory, generally resulting in a total 
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of 2Nn trajectories from each 0 0,q p . The iterative formulation of QCPI30 restricts trajectory branching to 
the memory interval L t  and propagates Eq. (0.3) using tensors with 2Ln  elements. 

While many choices are possible for the reference Hamiltonian, and the iterative QCPI algorithm 
can significantly benefit from physically motivated reference trajectories,43-44 for simplicity we restrict 
attention to the simple “classical path” reference,30 where the trajectories are obtained by solving the 
classical equations of motion for the solvent Hamiltonian on a fixed state of the quantum system. With the 
classical path reference and within the harmonic back-reaction (HBR) approximation45-46 the phase function 
is independent of trajectory initial conditions and is given by the expression 
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where k k    are the QuAPI47-discretized influence functional coefficients34 derived from the solvent 
correlation function.48 Eq. (0.6) captures the back-reaction phase implicitly, without the need to account for 
trajectory branching.45 Thus, the HBR-QCPI algorithm requires only a single classical trajectory per initial 
condition 0 0,q p , and iteration may be performed by the QuAPI algorithm35 for the time-dependent system 
Hamiltonian49 

0 0

refHq p  (where only the imaginary parts of the k k    coefficients are utilized). Thus, the 
iterative HBR-QCPI algorithm formally requires storage of tensors comprising 2Ln  elements and involves 

2 1( )Ln   operations at each iteration step for each trajectory initial condition. Path filtering criteria50-52 and 
matrix product based singular value decompositions53 may be used to drastically trim the size of the QuAPI 
tensors. Significant savings are derived by rewriting the HBR-QCPI expression in blip/sojourn variables, 

k k ks s s    , 1
2 ( )k k ks s s   , taking advantage of the form of Eq. (0.6). Even without excluding any 

paths, the blip representation54-55 reduces the cost of the full algorithm to 2 1( 1)Ln n   . Furthermore, 
contributions from forward-backward paths with multiple blips are exponentially damped and often 
negligible, allowing additional speedup by large factors.  
 For each 0 0,q p , the HBR-QCPI expression is isomorphic to that of the QuAPI-discretized path 
integral for a system-bath Hamiltonian with a time-dependent system. As such, the HBR-QCPI expression 
lends itself to the SMatPI decomposition.56 In this case the memory length is determined by the imaginary 
part of the influence functional alone, which corresponds to the strictly quantum mechanical component of 
decoherence57 and in many situations is shorter than the full memory. Further, integration with respect to 
trajectory initial conditions leads to additional memory damping through classical decoherence,57 which is 
treated exactly and thus does not require a fine time discretization. With these ideas we formulate the 
SMatQCPI algorithm described below. 

Consider the 2 2n n  matrix  ( 0)
0 0,NQ q p  for all possible final and initial states, where the 

superscript labels the corresponding times Nt  and 0t . The SMatPI decomposition leads to the following 
expression for propagation beyond the memory length:56 
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where ( )NmM  are 2 2n n  matrices that are constructed from the full path integral expression with the 
discretized influence functional. The entanglement of the path integral variables is encoded in the SMatPI 
matrices, which tend to decrease in magnitude with the separation between time points and eventually 
become negligible. The procedure for evaluating the SMatPI matrices in the presence of time-dependent 
fields58 scales as 2 1( )Ln  , and in the blip representation the scaling reduces to 2 1( 1)Ln n   . While the 
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number of operations is similar to that in the original HBR-QCPI, no tensors need to be stored in the 
SMatQCPI algorithm, extending the feasibility of the method to longer memory and multistate systems. 

Next we focus on the special case of a harmonic bath, 
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where the mode frequencies and coupling parameters are collectively specified by the spectral density 
function ( )J .59 Consider the amplitude that corresponds to the product of reference propagators and the 
Wigner phase space function. With the small path integral time step required in discretized path integral 
methods, the reference propagators contain phases which, upon integration with respect to the phase space 
variables, produce the classical decoherence component of the influence functional.29 This structure implies 
that the SMatPI decomposition applies not only to the quantum influence function, but also to its integrated 
form, i.e. the entire RDM, whose SMatQCPI decomposition becomes 
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The SMatPI matrices in this expression do not depend on trajectory initial conditions and thus are evaluated 
only once. We also note that it is possible to include residual memory using the extended algorithm.56 At 
each propagation step beyond memory (i.e. for ext1, ,N L L  ) the RDM is first obtained using Eq. (0.9)
, then readjusted with the inclusion of influence functional coefficients 0N . The inclusion of memory 
beyond L does not incur additional costs, thus the value of extL  may be as large as desired. 

Eq. (0.9) is very similar to the original SMatPI expression, but the SMatQCPI matrices include 
only the imaginary part of the influence functional, which corresponds to memory of a strictly quantum 
mechanical origin and tends to be less prominent than its classical counterpart, allowing a larger path 
integral time step and reaching convergence with smaller values of L. Thus, the SMatQCPI expression for 
a harmonic bath combines the advantages of the QCPI and SMatPI formulations into a powerful algorithm, 
which is applicable to long-memory processes and multistate systems.  
 While these potential benefits seem appealing, an obvious concern is that the SMatPI algorithm, 
which is based on matrices obtained through precisely defined and highly accurate procedures, may not 
tolerate the statistical error associated with QCPI components. We answer this question by applying the 
algorithm to four models with diverse dynamical characteristics. Our results indicate that the SMatQCPI 
algorithm is robust and leads to stable results, which can even be smoother than those obtained from QCPI 
calculations. Interestingly, in all illustrations (which correspond to diverse phenomena in the physical 
chemistry literature, involving multiple quantum states of the system and spanning various regimes of the 
condensed phase environment) the composite SMatQCPI algorithm emerges as a considerably superior 
method both in terms of computational cost and storage compared to at least one and in some cases both of 
its constituent formulations.  

Each model that follows is based on the Hamiltonian given by Eq. (0.8). All SMatQCPI calculations 
are performed with a total of 15,000 trajectory initial conditions sampled by Monte Carlo, and the 
population results have a statistical uncertainty of about 0.01. In three of the models we choose a spectral 
density of the Ohmic form,60  

 



6 
 

 
c/

2
1

2( )
n

e   
 

 





J                                                       (0.10) 

 
which peaks at a frequency c , and where the parameter   quantifies the system-bath coupling strength. 

The first two models comprise symmetric two-level systems (TLS) with  
 

 0
ˆ 1 2 2 1H                                                              (0.11) 

 
and 2 1 2   . In Figure 1 we show the time evolution of the initially populated state in a symmetric TLS 
strongly coupled to a slow bath with c  , 2   at an intermediate temperature, 1  . The bath is 
initially equilibrated with respect to the populated TLS state. These parameters give rise to long-lived 
memory, presenting a challenge to path integral methods. Recent SMatPI calculations56 obtained converged 
results using 18L   and ext 100L   with 0.25t  . The SMatQCPI calculation converged much faster, 
using 7L  , ext 80L  , and required about 10 times less effort. 
 

 
Fig. 1.  Time evolution of initially populated states for a TLS coupled to a slow harmonic bath 

with c  , 2   and 1  . The bath is initially equilibrated with respect to the 
initially populated state. Black line: converged SMatPI results with 18L   and 

ext 100L  . SMatQCPI results with 7L   are shown with dashed lines and circles. 
Dashed green line: no extended memory. Dashed blue line: ext 20L  . Red circles: 

ext 80L  .  

 

In the second TLS example we use parameters pertaining to the ferrocene-ferrocenium (see Figure 
2) charge transfer in liquid hexane, which is accompanied by a significant solvent rearrangement. Earlier 
work38 reported full QCPI simulations in a solvent containing 66 hexane molecules (1320 atoms) interacting 
through the CHARMM force field,61 and concluded that the process is strongly nonexponential. Further, 
QCPI calculations performed on a system-bath model that used the energy gap correlation function obtained 
from molecular dynamics simulations to map the anharmonic solvent on a harmonic bath produced 
indistinguishable results, confirming the quantitative validity of Gaussian response for this system. 

The coupling between the two charge states is 32 cm-1. The bath was initially equilibrated with 
respect to the donor state. The spectral density of the harmonic bath that describes the effects of the hexane 
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solvent on the charge transfer system is shown in the inset of Fig. 2. The large solvent reorganization energy 
of this system (which exceeds the donor-acceptor coupling by about an order of magnitude), along with the 
strong coupling of solvent modes in the very low frequency region and several prominent peaks in the 
spectral density, necessitate a small path integral time step and lead to a very long memory, presenting a 
challenge to most available methods. Convergence of the QCPI calculations was possible only with the use 
of the dynamically consistent state hopping (DCSH) trajectory branching scheme.44  

 
 

 
Fig. 2.  Donor state population for the two-state system-bath model that describes the ferrocene-ferrocenium 

charge transfer complex in liquid hexane at 300 K. The inset shows the spectral density of the effective 
harmonic bath. The bath is initially equilibrated with respect to the populated system state. The black 
line shows the DCSH-QCPI results from Ref. 38 Red markers show the SMatQCPI results with 

ext30, 100, 24.2 fsL L t    . The estimated Monte Carlo error is about 0.01. 
 

Fig. 2 shows the SMatQCPI results for the donor population at 300 K and compares to those 
obtained using the DCSH-QCPI algorithm. The SMatQCPI calculation used a path integral time step of 

24.2fst  . This large time step was enabled by the use of trajectory-based reference propagators in QCPI. 
However, the SMatQCPI results were obtained with simple bath reference trajectories on the donor state. 
Since the present calculation does not take advantage of the DCSH reference, it requires the inclusion of 
much longer memory. The converged results attained with 30L  , ext 100L   are in excellent agreement 
with the DCSH-QCPI results. This agreement is remarkable, given the very different nature of reference 
trajectories and branch selection in the considerably more involved DCSH-QCPI algorithm. In spite of the 
much longer memory included, the converged SMatQCPI results were obtained with much less effort in 
comparison to the DCSH-QCPI calculation. Specifically, the acceleration achieved by the SMatQCPI 
method was over a factor of 50. Further, the SMatQCPI results in Fig. 2 are smoother than those obtained 
with the DCSH-QCPI algorithm, and required no storage of system paths. 
 Next, we investigate the performance of the SMatQCPI method in the underdamped regime. The 
SMatPI algorithm is extremely efficient in this regime, and the use of QCPI is not expected to offer a 
significant advantage. However, it is important to test the robustness of the SMatQCPI algorithm in this 
regime as well, as the presence of Monte Carlo error in the SMatPI matrices could affect the stability of the 
propagation algorithm in situations of long-lived oscillatory evolution beyond the memory interval. 
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In Figure 3 we present results on symmetric and asymmetric three-state models described by the 
Hamiltonian 

 0 1 2 3
ˆ 1 2 2 1 2 3 3 2 1 1 2 2 3 3H                                (0.12) 

with parameters that exhibit underdamped dynamics. Initially the population of the system is in state 1 and 
the bath is equilibrated with respect to this state. The system-bath interaction parameters are specified by 

1 2 20, 1, 2     , c 7.5   , 0.1  , and the temperature 1  . This model is characteristic of 
coherent energy transfer in a molecular trimer.  
 

 

Fig. 3.  Dynamics of a three-level system coupled to a bath in the coherent regime with 
c 7.5   , 0.1  and 1  . The populations of states 1,2 and 3 are shown in 

blue, green and orange/red, respectively. SMatPI results are plotted as lines, while 
markers show the analogous SMatQCPI results. All results use 4, 0.25L t   . 
(a) Symmetric three level system  1 2 3 0     . (b) Asymmetric three-level 
system  1 2 30.8 , , 0       . 

 
 

Fig. 3a shows the populations for a symmetric three-state system ( 1 2 3 0     ). This weakly-
coupled, high-frequency bath is effectively at a low temperature ( c 7.5   ), thus this parameter set is in 
the coherent regime. The dynamics of this system is largely underdamped, and the ensuing population is 
oscillatory up to long evolution times. The equilibrium values of the two edge state populations are lower 
than the population of state 2, reflecting the composition of the ground eigenstate. The SMatQCPI results 
converged with 4L  , 0.25t   and are in excellent agreement with fully converged SMatPI results. 
Not surprisingly, the effects of quantum memory are just as important as their classical counterparts in this 
parameter regime,57 thus the QCPI reference does not shorten the required memory. Fig. 3b shows results 
for an asymmetric arrangement of the site energies, 1 0.8   , 2   , 3 0  , state 2 represents a low-
lying bridge. Again, large amplitude oscillatory features are observed initially, but they are much shorter 
lived in this case due to the energetic separation of the states. The agreement between SMatPI and 
SMatQCPI results is excellent here as well. 

Last, we illustrate the algorithm on a six-state vibronic model. Such models are often constructed 
for exciton dimers. The Hamiltonian has two electronic states, labeled 1 and 2, which interact according to 
Eq. (0.11) and which are coupled to the usual dissipative bath and also to a special vibrational mode of 
coordinate Q and frequency 3Q    according to the Hamiltonian 
 

(a) (b) 
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where the coupling parameter C is such that the Huang-Rhys factor of the mode is 0.05S  . These 
parameters are representative of intramolecular vibrations relevant to the exciton dynamics of chromophore 
dimers. We treat this mode as a part of the system Hamiltonian using three harmonic oscillator basis states, 
such that the composite vibronic system Hamiltonian comprises a total of six states. We use a moderate 
peak frequency of the bath, c 3   , a moderately large system-bath coupling parameter 0.8  , and 
monitor the dynamics at a temperature that corresponds to 0.5  .  
 

 
Fig. 4.  Electronic state population for a vibronic six-state system. Black line: SMatPI results 

with 0.3, 6t L   . Red markers: SMatQCPI results with 0.4, 3t L   . The 
inset shows the population over a longer period (red), along with the expectation value 
of the coordinate of the vibronic mode (blue). SMatPI and SMatPI results are 
indistinguishable. 

 

Figure 4 shows the population of the electronic state 1 after summing over the basis states of the 
vibronic mode. Persistent small-amplitude oscillations owing to the vibronic mode are observed following 
the initial rapid decay of the population, which gradually phase out on a much longer time scale shown in 
the inset. We also show the average coordinate of the vibronic mode, which is seen to oscillate for very 
long times, while slowly losing amplitude to the continuous bath. We note that the energy exchange process 
is very slow because the vibronic mode is coupled to the bath only indirectly through the electronic system. 
The SMatPI results converged with a time step 0.3t   and a memory parameter 6L  . Because of the 
exact treatment of classical memory in the QCPI reference propagators, the SMatQCPI results converged 
with 0.4t   and 3L  . In this case the SMatQCPI calculation was considerably faster than SMatPI.  
 In conclusion, SMatQCPI combines the best features of the QCPI and SMatPI algorithms into a 
simple, yet powerful method which eliminates the storage demands of iterative HBR-QCPI calculations. 
The model calculations presented above show that the algorithm is stable and highly accurate in all 
parameter regimes. When used on system-bath Hamiltonians the SMatQCPI algorithm yields exact, fully 
quantum mechanical results. By avoiding the full path evaluation at each iteration step, SMatQCPI reduces 
the computational effort of iterative HBR-QCPI by a factor equal to the number of propagation time steps. 
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Further, the SMatQCPI matrices only need to account for quantum decoherence, leading to shorter effective 
memory and faster convergence compared to SMatPI in the incoherent regime. The elimination of tensor 
storage, along with the very significant increase of efficiency in comparison to the HBR-QCPI and SMatPI 
algorithms, suggest that the SMatQCPI will be the method of choice for simulating the dynamics of 
multistate systems in challenging regimes, where earlier methods may be prohibitively expensive.  
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