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ABSTRACT  
 
The number of Electric Vehicles (EV) has increased significantly in the past decades due to its 
advantages including emission reduction and improved energy efficiency. However, the adoption 
of EV could lead to overloading the grid and degrading the power quality of the distribution 
system. It also demands an increase in the number of EV charging stations. To meet the charging 
needs of 15 million EVs by the year 2030 with limited charging stations, prediction of charging 
needs and reallocating charging resources are in emerging needs. In this study, long short-term 
memory (LSTM) and autoregressive and moving average models (ARMA) models were applied 
to predict charging loads with temporal profiles from 3 charging stations. Prediction accuracy was 
applied to evaluate the performance of the models. The LSTM models demonstrated a significant 
performance improvement compared to ARMA models. The results from this study lay a 
foundation to efficiently manage charge resources.   
 
INTRODUCTION 
 
The adoption of electric vehicles is growing very fast due to their many advantages such as 
emission reduction and increased energy efficiency (Xiong, Wang, Chu, & Gadh, 2018). 
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However, this increased adoption has negative impacts and risks on the resiliency of the power 
grid by overloading it and inflating the demand peaks (Mu, Wu, Jenkins, Jia, & Wang, 2014). 
These new system load peaks may degrade the power quality of the distribution system and 
cause voltage drops (Foley, Tyther, Calnan, & Ó Gallachóir, 2013).  

In the year 2020, level 3 (DC fast charging), level 2 (240V with 16-40A), and level 1 
(120V) EV supply equipment are 49.6%, 12%, and 38.2%, respectively, of all charging points. 
More charging stations are expected to meet the need of serving 15million EVs by the year 2030 
in the United States. Therefore, there is a growing demand for developing effective management 
strategies for the large-scale integration of EVs. Different algorithms have been developed to 
address the following questions: 1) improving energy-efficient EV routing with or without 
recharging (Artmeier, Haselmayr, Leucker, & Sachenbacher, 2010)-(Storandt, 2012), 2) 
calculating reachable locations from a certain starting point given an initial battery level 
(Storandt & Funke, 2012), 3) enhancing the use of supercapacitors with machine learning and 
data mining techniques to maximize the range of EVs (Ermon, Xue, Gomes, & Selman, 2013), 
and 4) routing EVs to charging station where the least congestion exists, considering drivers’ 
final destination and amount of electricity to charge (Weerdt, Gerding, Stein, Robu, & Jennings, 
2013)-(Qin & Zhang, 2011). Besides, many methods have been developed to schedule and 
control the charging of EVs. This allows peaks and possible overloads of the electricity network 
to be avoided while minimizing electricity cost (Ma, Callaway, & Hiskens, 2013; Sundström & 
Binding, 2010; Vandael, Boucké, Holvoet, Craemer, & Deconinck, 2011). 

However very limited research effort has been dedicated to predicting energy 
consumptions of EV charging stations partially due to the complexity of the problem including 
the location of charging stations, the number of EVs in the vicinity, cost, travel planning, and 
period for a full charging. Most of all, one challenge is the availability of EV charging data. We 
have collected hourly energy consumption for 3 EV charging stations on the campus of the 
University of Texas at San Antonio for 2 years. The data is a typical time series representing the 
energy consumption for each EV charging station with respect to time. Time series analysis 
algorithms have been widely studied with statistical approaches such as auto-correlation, random 
walk, moving average, autoregressive process, and integrated autoregressive and moving average 
(ARIMA) (Ho & Xie, 1998). However, the order of such models and embedded noises will give 
inaccurate predictions. Meanwhile, deep learning methods have shown extraordinary 
performance on prediction systems with nonlinear properties in nature (Hochreiter & 
Schmidhuber, 1997; Schmidhuber, 2015). Specifically, the LSTM approach as an excellent 
method for temporal predictions has been applied in this study to analyze the collected EV 
charging data to predict short-term energy consumptions. 
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METHODS  

Preliminary data process.  
The dataset used in this study was acquired from 3 charging stations on the campus of the 
University of Texas at San Antonio. The raw datasets were collected by the city energy utility 
provider with observations ranging from 02/06/2012 to 05/14/2019, accounting for a total of 8095 
hourly observations. To focus on normal workday charging patterns, all data on holidays, spring, 
summer, and winter breaks were filtered due to the distinct patterns. To illustrate the latest charging 
loads, the time-series data from 01/08/2018 to 05/14/2019 was used and plotted in Figure 1. The 
pre-processed data consisted of 750 hourly observations.  
 

 
Figure 1. Illustration of hourly energy consumption of 3 charging stations with respect to 

time. The time point was represented by the number of observations in a given period. 
 
The data is normalized as  𝑥𝑛𝑜𝑟𝑚 =

𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
   by using the minimum and maximum scaler to 

accelerate the network convergence and decrease training time. The variable, 𝑥𝑛𝑜𝑟𝑚 represents the 
normalized value, 𝑥 represents an original value, 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 represents the minimum and 
maximum value in the dataset, correspondingly.  
 
Description of LSTM model.  
The long short-term memory model is an extension of Recurrent Neural Networks (RNN) models 
without the vanishing gradient problem. The LSTM model will determine the importance of input 
data and is more robust for long-term dependency problems compared with the RNN models. 
LSTM models include input, hidden, and output layers (Hochreiter & Schmidhuber, 1997). There 
may exist multiple cells in the hidden layer of the LSTM model and each cell is typically made up 
of 3 gates, namely the forget gate, input gate, and output gate. These gates will determine the 
output of a cell based on the input, activation function, and memory of a cell. Weights in the 
network will be adjusted by optimizing/reducing the loss function and iterations will be repeated 
until the desired performance is achieved. 
 
Training of LSTM model. 



 – 4 –   

The pre-processed 750 hourly observations served as input data to establish the LSTM models 
following the rule of 80% data for training and 20% for testing. Different time steps, 1, 5, and 15, 
were used to determine how long the memory will be used to predict the output of the model. A 
total of 150 hours of energy consumption are predicted as the output of the models. A flow chart 
of the LSTM model design is shown in Figure 2. 

 
Figure 2. LSTM model framework 

 
Model evaluation 
Evaluation metrics such as Mean Average Error (MAE) = 1

𝑁
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦̂𝑖), Root Mean Square 

Error (RMSE) = √ 
1

𝑁
∑𝑛

𝑖=1 (𝑦̂𝑖 − 𝑦𝑖)2, and Goodness of Fit (R-squared) 𝑅2 = 1 −
∑𝑛

𝑖=1 (𝑦̂𝑖−𝑦𝑖)2

∑𝑛
𝑖=1 (𝑦̂𝑖−𝑦𝑖)2′ 

were applied to compare LSTM models and a traditional ARIMA model, where 𝑛 represents the 
total number of data points, 𝑦𝑖 represents the actual values and 𝑦̂ represents the predicted values. 
The MAE and RMSE have the same evaluation principle: the smaller they are, the better the model. 
On the other hand, the R-squared metric ranges from 0 to 1. The closer it is to 1, the better the 
model.  
 
RESULTS 

The parameters for each timestep (1, 5, 15) LSTM model are tuned by the grid search method. All 
LSTM models showed convergence of the loss function. Each LSTM model has 70 runs with 
different initial conditions. Setups of LSTM models and averaged performances of the 70 runs for 
1-step, 5-step, and 15-step LSTM models are presented for comparison as shown in Table 1.  
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MAE, RMSE, and R2 of 1-step, 5-step, and 15-step LSTM models were shown in Table 2. 
It can be seen that the EV charging pattern demonstrated dependence on a relatively short period 
since 1-step and 5-step LSTM models have R2 close to 1. The 1-step LSTM model has smaller 
MAE and RMSE compared against 5-step and 15-step LSTM models. Specifically, the 15 timestep 
LSTM model demonstrated a significant drop in the performance, suggesting prediction on energy 
consumption can be generated with a short memory. Besides, 15-step LSTM models converge in 
more epochs while 1-step LSTM converges very fast. 
 

The worst performance comes from the ARIMA model with R2=0.18, suggesting a 
significant performance improvement of LSTM models as shown in (Figure 3 and Figure 4). 
 

Table 1. Model setup and averaged R2 performance of LSTM models 
Timestep Optimizer Input Neurons Epochs Batch Size STD Mean(R2)  

1 Adam 1000 20 20 0.0011 0.9991 
5 Adam 800 29 30 0.0089 0.9844 
15 Adam 1000 100 10 0.1630 0.7164 

 
 

Table 2. Evaluation results on LSTM models with single and multiple steps 
Timestep Metrics LSTM 

 MAE 0.0231 
1 RMSE 0.0409 
 R2 0.9999 
 MAE 0.1583 
5 RMSE 0.6037 
 R2 0.9922 
 MAE 0.6715 

15 RMSE 1.3644 
 R2 0.9602 

 
Statistical Model – ARIMA.  
In the ARIMA model, the autoregressive term (p term), differencing (d term), and MA (moving 
average or q term) have been adjusted to find the best results. The best model (best R2) achieved 
has the parameters setup as p=0, d=1, and q=1. Temporal prediction of the ARIMA model against 
actual data was shown in Figure 3.  

The loss functions for all LSTM models converge within 40 epochs. The predicted energy 
consumptions were plotted against the real data as shown in Figure 4. Predictions of LSTM models 
follow the actual data very well. 

 
Potential Applications of LSTM model.  
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With the developed LSTM model in this study, two types of applications can be expected. Users 
can apply this model structure to train their EV charging data following the same format used in 
this LSTM model. The input to the LSTM model is a vector representing temporal energy 
consumption of a charging station with given sampling frequency. It’s worth mentioning, the 
dimension of the vector and sampling frequency is upon user’s convenience to collect data. In 
addition, the LSTM and ARIMA models can be components of more advanced deep learning 
models such as reinforcement learning models, where parameters from the LSTM or ARIMA 
models will be further processed and combined with parameters from other models for better 
performance. The data and codes for this LSTM model are available upon request. 

  
  

CONCLUSION 
In this study, three modeling methods, multi-step LSTM, one-step LSTM, and ARIMA were 
applied to predict charging loads with temporal profiles for 3 charging stations in two years on the 
campus of the University of Texas at San Antonio. Prediction accuracy, loss function, MAE, 
RSME, and R2 were applied to evaluate the performance of the models. The LSTM models 
demonstrated a significant improvement in prediction compared to the traditional ARIMA models. 
The results from this study lay a foundation to efficiently manage charge resources.   
 

 
Figure 3. ARIMA model predictions 
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Figure 4. Predictions for energy consumption from 1-step, 5-step, and 15-step LSTM 
models 
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