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ABSTRACT

The number of Electric Vehicles (EV) has increased significantly in the past decades due to its
advantages including emission reduction and improved energy efficiency. However, the adoption
of EV could lead to overloading the grid and degrading the power quality of the distribution
system. It also demands an increase in the number of EV charging stations. To meet the charging
needs of 15 million EVs by the year 2030 with limited charging stations, prediction of charging
needs and reallocating charging resources are in emerging needs. In this study, long short-term
memory (LSTM) and autoregressive and moving average models (ARMA) models were applied
to predict charging loads with temporal profiles from 3 charging stations. Prediction accuracy was
applied to evaluate the performance of the models. The LSTM models demonstrated a significant
performance improvement compared to ARMA models. The results from this study lay a
foundation to efficiently manage charge resources.

INTRODUCTION

The adoption of electric vehicles is growing very fast due to their many advantages such as
emission reduction and increased energy efficiency (Xiong, Wang, Chu, & Gadh, 2018).
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However, this increased adoption has negative impacts and risks on the resiliency of the power
grid by overloading it and inflating the demand peaks (Mu, Wu, Jenkins, Jia, & Wang, 2014).
These new system load peaks may degrade the power quality of the distribution system and
cause voltage drops (Foley, Tyther, Calnan, & O Gallachéir, 2013).

In the year 2020, level 3 (DC fast charging), level 2 (240V with 16-40A), and level 1
(120V) EV supply equipment are 49.6%, 12%, and 38.2%, respectively, of all charging points.
More charging stations are expected to meet the need of serving 15million EVs by the year 2030
in the United States. Therefore, there is a growing demand for developing effective management
strategies for the large-scale integration of EVs. Different algorithms have been developed to
address the following questions: 1) improving energy-efficient EV routing with or without
recharging (Artmeier, Haselmayr, Leucker, & Sachenbacher, 2010)-(Storandt, 2012), 2)
calculating reachable locations from a certain starting point given an initial battery level
(Storandt & Funke, 2012), 3) enhancing the use of supercapacitors with machine learning and
data mining techniques to maximize the range of EVs (Ermon, Xue, Gomes, & Selman, 2013),
and 4) routing EVs to charging station where the least congestion exists, considering drivers’
final destination and amount of electricity to charge (Weerdt, Gerding, Stein, Robu, & Jennings,
2013)-(Qin & Zhang, 2011). Besides, many methods have been developed to schedule and
control the charging of EVs. This allows peaks and possible overloads of the electricity network
to be avoided while minimizing electricity cost (Ma, Callaway, & Hiskens, 2013; Sundstrom &
Binding, 2010; Vandael, Boucké, Holvoet, Craemer, & Deconinck, 2011).

However very limited research effort has been dedicated to predicting energy
consumptions of EV charging stations partially due to the complexity of the problem including
the location of charging stations, the number of EVs in the vicinity, cost, travel planning, and
period for a full charging. Most of all, one challenge is the availability of EV charging data. We
have collected hourly energy consumption for 3 EV charging stations on the campus of the
University of Texas at San Antonio for 2 years. The data is a typical time series representing the
energy consumption for each EV charging station with respect to time. Time series analysis
algorithms have been widely studied with statistical approaches such as auto-correlation, random
walk, moving average, autoregressive process, and integrated autoregressive and moving average
(ARIMA) (Ho & Xie, 1998). However, the order of such models and embedded noises will give
inaccurate predictions. Meanwhile, deep learning methods have shown extraordinary
performance on prediction systems with nonlinear properties in nature (Hochreiter &
Schmidhuber, 1997; Schmidhuber, 2015). Specifically, the LSTM approach as an excellent
method for temporal predictions has been applied in this study to analyze the collected EV
charging data to predict short-term energy consumptions.



METHODS

Preliminary data process.

The dataset used in this study was acquired from 3 charging stations on the campus of the
University of Texas at San Antonio. The raw datasets were collected by the city energy utility
provider with observations ranging from 02/06/2012 to 05/14/2019, accounting for a total of 8095
hourly observations. To focus on normal workday charging patterns, all data on holidays, spring,
summer, and winter breaks were filtered due to the distinct patterns. To illustrate the latest charging
loads, the time-series data from 01/08/2018 to 05/14/2019 was used and plotted in Figure 1. The
pre-processed data consisted of 750 hourly observations.
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Figure 1. Illustration of hourly energy consumption of 3 charging stations with respect to
time. The time point was represented by the number of observations in a given period.
X—Xmin

The data is normalized as X,y = by using the minimum and maximum scaler to

Xmax~Xmin
accelerate the network convergence and decrease training time. The variable, x,,,,, represents the
normalized value, x represents an original value, X,,;, and X,,,, represents the minimum and

maximum value in the dataset, correspondingly.

Description of LSTM model.

The long short-term memory model is an extension of Recurrent Neural Networks (RNN) models
without the vanishing gradient problem. The LSTM model will determine the importance of input
data and is more robust for long-term dependency problems compared with the RNN models.
LSTM models include input, hidden, and output layers (Hochreiter & Schmidhuber, 1997). There
may exist multiple cells in the hidden layer of the LSTM model and each cell is typically made up
of 3 gates, namely the forget gate, input gate, and output gate. These gates will determine the
output of a cell based on the input, activation function, and memory of a cell. Weights in the
network will be adjusted by optimizing/reducing the loss function and iterations will be repeated
until the desired performance is achieved.

Training of LSTM model.



The pre-processed 750 hourly observations served as input data to establish the LSTM models
following the rule of 80% data for training and 20% for testing. Different time steps, 1, 5, and 15,
were used to determine how long the memory will be used to predict the output of the model. A
total of 150 hours of energy consumption are predicted as the output of the models. A flow chart
of the LSTM model design is shown in Figure 2.
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Figure 2. LSTM model framework

Model evaluation

Evaluation metrics such as Mean Average Error (MAE) = % . (i =), Root Mean Square
Error RMSE) = [=¥™ . (9; — ¥;)% and Goodness of Fit (R-squared) R2 = 1 — Zisy Oimyo®
N &~i=1 Vi —Yi)5 q ?=1 ()7i—yi)2'

were applied to compare LSTM models and a traditional ARIMA model, where n represents the
total number of data points, y; represents the actual values and y represents the predicted values.
The MAE and RMSE have the same evaluation principle: the smaller they are, the better the model.
On the other hand, the R-squared metric ranges from 0 to 1. The closer it is to 1, the better the
model.

RESULTS

The parameters for each timestep (1, 5, 15) LSTM model are tuned by the grid search method. All
LSTM models showed convergence of the loss function. Each LSTM model has 70 runs with
different initial conditions. Setups of LSTM models and averaged performances of the 70 runs for
1-step, 5-step, and 15-step LSTM models are presented for comparison as shown in Table 1.



MAE, RMSE, and R? of 1-step, 5-step, and 15-step LSTM models were shown in Table 2.
It can be seen that the EV charging pattern demonstrated dependence on a relatively short period
since 1-step and 5-step LSTM models have R? close to 1. The 1-step LSTM model has smaller
MAE and RMSE compared against 5-step and 15-step LSTM models. Specifically, the 15 timestep
LSTM model demonstrated a significant drop in the performance, suggesting prediction on energy
consumption can be generated with a short memory. Besides, 15-step LSTM models converge in
more epochs while 1-step LSTM converges very fast.

The worst performance comes from the ARIMA model with R?>=0.18, suggesting a
significant performance improvement of LSTM models as shown in (Figure 3 and Figure 4).

Table 1. Model setup and averaged R? performance of LSTM models

Timestep  Optimizer Input Neurons  Epochs  Batch Size STD Mean(R?)

1 Adam 1000 20 20 0.0011 0.9991
5 Adam 800 29 30 0.0089 0.9844
15 Adam 1000 100 10 0.1630 0.7164

Table 2. Evaluation results on LSTM models with single and multiple steps

Timestep Metrics LSTM
MAE 0.0231

1 RMSE 0.0409

R? 0.9999

MAE 0.1583

5 RMSE 0.6037

R? 0.9922

MAE 0.6715

15 RMSE 1.3644

R? 0.9602

Statistical Model — ARIMA.
In the ARIMA model, the autoregressive term (p term), differencing (d term), and MA (moving
average or q term) have been adjusted to find the best results. The best model (best R?) achieved
has the parameters setup as p=0, d=1, and g=1. Temporal prediction of the ARIMA model against
actual data was shown in Figure 3.

The loss functions for all LSTM models converge within 40 epochs. The predicted energy
consumptions were plotted against the real data as shown in Figure 4. Predictions of LSTM models
follow the actual data very well.

Potential Applications of LSTM model.



With the developed LSTM model in this study, two types of applications can be expected. Users
can apply this model structure to train their EV charging data following the same format used in
this LSTM model. The input to the LSTM model is a vector representing temporal energy
consumption of a charging station with given sampling frequency. It’s worth mentioning, the
dimension of the vector and sampling frequency is upon user’s convenience to collect data. In
addition, the LSTM and ARIMA models can be components of more advanced deep learning
models such as reinforcement learning models, where parameters from the LSTM or ARIMA
models will be further processed and combined with parameters from other models for better
performance. The data and codes for this LSTM model are available upon request.

CONCLUSION

In this study, three modeling methods, multi-step LSTM, one-step LSTM, and ARIMA were
applied to predict charging loads with temporal profiles for 3 charging stations in two years on the
campus of the University of Texas at San Antonio. Prediction accuracy, loss function, MAE,
RSME, and R? were applied to evaluate the performance of the models. The LSTM models
demonstrated a significant improvement in prediction compared to the traditional ARIMA models.
The results from this study lay a foundation to efficiently manage charge resources.
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Figure 4. Predictions for energy consumption from 1-step, 5-step, and 15-step LSTM
models
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