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Abstract 

We use matrix diagonalization in combination with real-time path integral methods to investigate 
the electronic eigenstates and exciton-vibration dynamics of model dendrimers with Frenkel 
exciton interactions between adjacent segments, which characterize structures composed of 
conjugated molecules. Even in the absence of an explicit energetic gradient in the electronic 
Hamiltonian, exciton couplings create a funnel through the eigenstate hierarchy which pulls the 
excitation energy away from the periphery. The competition between eigenstate structure and 
entropic considerations dictates the equilibrium distribution, which in small dendrimers at low 
temperatures tends to favor the core, shifting outward with increasing dendrimer size and thermal 
energy, although this distribution can be skewed back toward the core by increasing the exciton 
coupling between segments of the same generation. At high temperatures the distribution becomes 
classical with all excited segments having the same population. Strong exciton-vibration coupling 
also shifts the equilibrium distribution in the classical direction. We find that the dynamics of 
excitation energy transfer is highly nontrivial and strongly affected by quantum mechanical effects. 
A positive value of the intra-generation coupling (regardless of the sign of the inter-generation 
coupling parameter) introduces a very slow component to the dynamics, which we attribute to 
electronic frustration. With exciton coupling, vibrational reorganization energy and thermal energy 
of approximately the same magnitude, the energy transfer dynamics is characterized by time scales 
that span two orders of magnitude. The rich dynamics that results from a single-parameter 
electronic Hamiltonian suggests a multitude of design possibilities for dendrimeric structures with 
desirable function.  
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1.  Introduction 
The quest for renewable energy has spurred persistent experimental and theoretical activity aiming 

at designing molecular structures capable of efficient solar energy harvest and storage. Much of this effort 
has focused on the study of the light harvesting apparatus found in photosynthetic plants and bacteria, which 
are known to transfer the absorbed light with high efficiency.1-2 Ever since their discovery and 
characterization,3-7 light harvesting complexes have been used as prototypes for understanding the complex 
interplay of electronic states and vibrational motion responsible for this efficiency.  Understanding the 
intricate mechanism of excitation energy transfer (EET) in natural photosynthetic complexes can lead to 
useful design principles for artificial light harvesting architectures with diverse shapes and topologies. 
Among many promising candidates, dendrimers have attracted much attention.  

Dendrimers are highly branched macromolecules consisting of peripheral groups, repeat units and 
a core.8-11 The large volume in relation to their molecular weight allows encapsulation of guest molecules 
with specific function in their voids, making dendrimers ideal candidates for drug delivery. A judicious 
choice of building blocks and peripheral functional groups allows control of various important properties, 
such as density, shape, polarity, chirality, solubility and spectral characteristics. Besides their numerous 
medical applications, dendrimers are of interest to technology because they can serve as artificial nanoscale 
antennae. In particular, the funnel-like architecture of dendrimers allows efficient, directional energy 
transport from the periphery to the core.  

Theoretical investigations and simulation can complement experimental work on natural and 
artificial light harvesting systems and offer invaluable guidance by establishing useful structure-function 
relations. A variety of theoretical treatments have been employed in the study of excitation energy transfer 
in natural and synthetic molecular aggregates.12-15 A relatively small body of work has been performed on 
dendrimers. Theoretical studies have focused primarily on models where each chromophore occupies a 
lattice site and couples to its nearest neighbors.16-19 When the building blocks are conjugated molecules 
whose wavefunctions are delocalized over linear segments, a better model results by assuming nearest-
neighbor interactions between segments.20 Electronic structure calculations have shown20 that the 
interactions between segments can be mapped on the Frenkel exciton Hamiltonian and obtained parameters 
for the couplings between poly-phenylacetylene units21-22 that comprise the nanostar.8 Some explorations 
of dynamical properties of dendrimer structures have been reported using  classical kinetic models,23-24 
quantum mechanical evolution within the electronic subspace studied with exact diagonalization17-18 or 
density matrix renormalization group25 or tree tensor networks26 and surface hopping approximations.27-30   
 The kinetics and pathways of EET are governed by the relations among electronic states, molecular 
vibrations and temperature. The complex interplay of the many energy and time scales found in large 
molecular structures gives rise to a wide variety of behaviors, which cannot be predicted without accurate, 
fully quantum mechanical calculations. Several recent developments in quantum dynamics methodology 
have opened up the road to rigorous and accurate investigations of EET in large molecular systems, where 
individual intramolecular vibrations play a key role that cannot be captured by simplified treatments. The 
multilayer multiconfiguration time-dependent Hartree method31-32 and the time-dependent density matrix 
renormalization group approach33 have enabled fully quantum mechanical studies of molecular aggregates 
comprising several chromophores with a few vibrational modes in each monomer at zero (and in some 
cases also at a low) temperature.12,14,34-36 However, the vast size of thermally accessible electronic-
vibrational Hilbert space prohibits the use of conventional wavefunction-based approaches when many low-
frequency modes are present. Feynman’s path integral formulation37-39 offers unique capabilities for treating 
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large numbers of vibrational degrees of freedom at any temperature. Real-time path integral methods 
developed in our group40-45 were recently used to investigate EET through all-mode exciton-vibration 
calculations in the LH2 complex of purple bacteria,46-47 in J aggregates of perylene bisimide48-50 (PBI), in 
cofacial porphyrin dimers,51 as well as the coupled spin dynamics of Ising chains interacting with model 
harmonic baths.52 Even though generic characteristics such as decoherence, equilibration, and some aspects 
of spectral characteristics12,53 and density evolution54 are common to all these systems and captured through 
simplified system-bath models,55-56 the striking finding of such all-state, all-mode path integral studies 
(where the exciton-vibration parameters were treated with their specific molecular values without 
simplification) is the complexity of the ensuing dynamics and the diversity of observed behaviors.15  
 In this paper we use quantum mechanical methods to investigate the eigenstate structure, 
equilibrium populations, and the EET dynamics in model dendrimers composed of segments interacting via 
nearest-neighbor Frenkel exciton terms. The Frenkel model57 has been found to offer an excellent 
description of dendrimers composed of conjugated segments.20 Most dendrimer design has focused on 
utilizing several building blocks with electronic energies that decrease in the direction of the core, in order 
to create an energy funnel. The latter is understood to be necessary in order to overcome the entropic factor 
that favors the accumulation of energy in the periphery. Here we explore the possibility of creating 
structures that enable significant energy flow toward the core in the absence of an energetic bias, and 
investigate their dynamical behaviors using path integral methods. While the entropic factor may appear to 
rule out such scenarios, the underlying argument is based on classical thermodynamics and thus ignores the 
quantum mechanical nature of the dendrimer exciton states. We point out that even in the absence of an 
energy gradient in the electronic states of the structural units, the population distribution can be manipulated 
by adjusting the electronic coupling parameters. Such adjustments may be possible through the judicious 
incorporation of ligands at appropriate locations. One of the benefits of a bias-free funnel architecture is 
the possibility of quantum coherence and interference, which can allow faster dynamics and possibly alter 
the EET pathways. 
 In addition to varying the relative magnitude of intra- vs. inter-generation couplings, we also 
consider different signs of these parameters. We find that with particular combinations of coupling 
parameters, the threefold topology of the typical dendrimer gives rise to unusual eigenstate structures 
dictated by frustration effects similar to those encountered in spin systems. The unusual eigenstate 
characteristics of such structures are accompanied by significant changes in the dynamics of EET, which 
becomes considerably slower.  
 In section 2 we describe the Frenkel exciton Hamiltonian for the dendrimer, including vibrational 
baths coupled to the ground and excited states of each segment. In section 3 we analyze the electronic 
eigenstates of the simplest case, a trimer which may represent a dendrimer core (with three identical 
coupling parameters) or a building block where one segment belongs in one generation while the other two 
segments belong to another generation. The simple results of this analysis are instructive and help explain 
the eigenstate structure of larger dendrimers. In section 4 we present numerical results for the electronic 
eigenstates of a three-generation dendrimer. We also discuss the dependence of the populations of each 
generation on temperature and dendrimer parameters. The time evolution of the excitation energy is 
presented in section 5 for representative parameters. Some concluding remarks are given in section 6. 
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2.   Dendrimer Hamiltonian and methods   

We focus on dendrimers with coordination number equal to 3, which gives rise to a three-branch 
structure. We assume that the dendrimer has G generations, each 13 2G  segments, such that the total 
number of segments is  3 2 1Gn    Figure 1 shows a dendrimer comprising two generations ( 2G  , 

9n  ) and a larger one with three generations ( 3G  , 21n  ). In the larger dendrimer the three innermost 
segments comprise the core, six segments belong in the second generation, while the twelve outermost 
segments form the periphery.  
 

 
 

Fig. 1.  Two- and three-generation dendrimers ( 2G  , 9n   and 3G  , 21n  ). Our numbering 
of the segments is shown. Intra-generation couplings are shown in red, while inter-generation 
couplings are shown in green. 

 
 
 
Optical excitations in dendrimers made out of conjugated molecules are localized and involve no 

charge transfer between segments,21  so the electronic Hamiltonian has the Frenkel exciton form,57 
 

 e
1 1

ˆ
n n n

H J 
   

      
  

                                            (2.1) 

 
where   is the state with segment   excited, while all other segments are in the ground state, and J  
are the exciton coupling parameters. Following earlier work, we assume that only connected (nearest 
neighbor) segments are coupled in Eq. (2.1). While the energies of the segments in each generation can 
vary in general, providing an energy funnel toward the core, in this paper we explore the EET possibilities 
offered in the absence of an energy bias and set 0  . The segment-segment interactions are characterized 
by two parameters: the coupling intraJ  between segments within the same generation and the coupling value 

interJ  of nearest-neighbor segments that belong to adjacent generations. Earlier work22 has found that intra- 
and inter-generation couplings can change significantly with small variations of segment length and 
composition, and that these parameters may have opposite signs within the same dendrimer. We note that 
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with intra 0J   the Hamiltonian in Eq. (2.1) describes three unconnected dendra, with eigenvalues that are 
(at least) three-fold degenerate. 

The dynamics of EET is strongly influenced by the coupling of the dendrimer electronic states to 
intramolecular vibrations. Within the normal mode approximation, the ground and excited electronic states 
of each segment couple to intramolecular vibrations through the standard Hamiltonian58  
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where es  is a parameter with units of length, ˆiq   and ˆ ip   are the positions and momenta of the normal 
modes of segment  , and i , ic   are the respective vibrational frequencies and exciton-vibration coupling 
strengths. The total Hamiltonian is given by 
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The effects of molecular vibrations on exciton dynamics are collectively captured through the spectral 
density function ( )J . While the path integral methodology can fully account for vibrational modes 
characterized by their individual frequencies and coupling coefficients,15 in the present model study we 
employ an Ohmic bath with   c/ 2

e2 /e s    
J , where c  gives the location of the peak and the 

dimensionless parameter   specifies the exciton-vibration coupling strength. For each segment, the 
vibrational reorganization energy is given by c2   .  
 For a chosen electronic excitation, we calculate the time evolution of the 2 2n n  electronic reduced 
density matrix using the small matrix decomposition43-45 (SMatPI) of the quasi-adiabatic propagator path 
integral59-60 (QuAPI). The SMatPI algorithm is an exact decomposition of the fully quantum mechanical 
real-time path integral expression (which fully accounts for exciton-vibration interactions at any 
temperature) that employs minimal sized, 2 2n n  matrices, thus enabling the simulation of multistate 
systems. It employs two parameters, the QuAPI memory length L and the entanglement maxr . Recent work 
has shown61 that the entanglement of the path integral variables may be considerably shorter than the 
memory length, facilitating convergence in very challenging situations. Representative convergence tests 
are shown for some of the most challenging cases presented in section 5.  
 
 
3.  The building block 

We begin by examining a basic block of a dendrimer, made of three molecular segments as shown 
in Fig. 2, which interact through the Frenkel exciton Hamiltonian,  

 
     e 12 13 23

ˆ 1 2 2 1 1 3 3 1 2 3 3 2H J J J      .                              (2.4) 

 
Because of the symmetry of dendrimer structures, we assume that two of the three exciton coupling 
parameters are identical and consider the effect of varying the third.   
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The eigenstates of Eq. (2.4) are easy to obtain and simplify with special choices of the parameters. 
In the case of an inter-generation block we expect that 12 13J J , while the third coupling parameter 23J  
may have a different value. The three-segment block that forms the core is characterized by three identical 
coupling values. We thus set 12 13J J J   and examine several characteristic cases, which are illustrated 
in Fig. 2. 

 
(i)  12 13J J J  , 23 0J  . The eigenvalues and corresponding eigenstates are 
 

2 1 1
1 1 2 2 2

1 1
2 2 2 2

2 1 1
3 3 2 2 2
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2 , sgn( ) 1 2 3

E J J

E

E J J

      

   

      

                                           (2.5) 

 
The eigenstate density does not depend on the sign of J, but the wavefunctions do. Eq. (2.5) shows that the 
lowest and highest eigenstates swap upon changing this sign. If 0J   the ground state wavefunction has 
opposite amplitudes on the two generations (Fig. 2a), while for 0J   it is positive throughout the three-
segment structure.  

 
 

    

 
 

Fig. 2.   Left: schematic illustration of three-segment block. Right: visualization of segment amplitudes in the 
ground state for four combinations of coupling values. The component of the wavefunction on each 
segment is illustrated by placing a Gaussian of proportional height on the center of the segment.  Green 
and orange indicate positive and negative areas.  (a) 12 13 230, 0J J J   .  (b) 12 13 23 120,J J J J    .  
(c) 12 13 23 0J J J   .  (d) 12 13 23 0J J J   .  

 
 
(ii) 12 13J J J  , 23J J  . The eigenvalues and eigenstates of Eq. (2.4) are  
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With 0J   (Fig. 2c) all three coupling parameters are identical, thus this condition describes the core of a 
dendrimer with negative intra-generation coupling, which has a nodeless ground state. The 0J   case 
applies to the smallest building block with one segment in one generation and two in the next generation 
(Fig. 2b). This trimer has a ground state wavefunction that switches sign across generations, and a pair of 
degenerate excited states. The negative intra-generation coupling stabilizes the system.  
 
(iii) 12 13 23 0J J J J    . In this case (Fig. 2d) we find 
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                                                  (2.7) 

 
The ground state is now doubly degenerate, and is destabilized. This structure exhibits frustration, an effect 
familiar from interacting spin systems: the positive inter-generation couplings favor opposite signs, forcing 
the outer generation segments 2 and 3 to have the same sign, an unfavorable arrangement for 23 0J  .  
 When all three couplings have the same magnitude equal to J , the evolution of electronic 
populations following excitation of one segment is given by  
 

 
1( ) 5 4cos 3 /
9

P t J t      ,                                                         (2.8) 

 
regardless of the relative signs.  
 To summarize this section, eigenstate densities are insensitive to the sign of the two identical (inter-
generation) couplings in a trimer, but the spectrum and the ground state structure change drastically when 
the third coupling (between segments within the same generation) reverses sign. A negative intra-generation 
stabilizes the structure, while a positive value destabilizes the system and gives rise to a pair of degenerate 
ground states. We now turn to larger dendrimers and use numerical diagonalization to study the eigenstates 
of the electronic Hamiltonian. 
 
 
4.   Eigenvectors and equilibrium distributions 

In this section we investigate the eigenstate structure and equilibrium populations of dendrimer of 
varying size. We set inter 0J J  , but consider different magnitudes and signs of intraJ . In each case we 
examine the wavefunction of the ground state(s) and of select excited states for three-generation 
dendrimers. In addition, we show the total populations of excited segments that comprise each generation 
of the electronic Hamiltonian, at zero temperature and also at B 0.2 ,k T J  J,  and 10J , for two-, three-, 
and four-generation dendrimers. The first of the finite temperatures is very low for typical values of the 
inter-generation coupling (50-500 1cm ). Yet, we find that with particular choices of intraJ , the populations 
are drastically different from those obtained at zero temperature. With B 10k T J  the electronic 
Hamiltonian of the dendrimer is in the high-temperature regime for all exciton coupling values considered 
here. In this case all segments have equal populations, and thus each generation has twice as many segments 
as the previous one. Statistical and dynamical results obtained within classical hopping assumptions23-24 
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pertain to this high-temperature limit. As is seen in the figures presented in this section, the quantized 
electronic Hamiltonian of the dendrimer gives rise to entirely different population distributions at low and 
intermediate temperatures. It is natural to expect that quantum effects will be very prominent in the 
dynamics of exciton-vibration dynamics and the EET evolution as well. 

(i)  All intra 0J  . Since the core segments are not connected, this structure consists of three separate dendra. 
The eigenstates of the Hamiltonian exhibit a threefold degeneracy in this case. With proper linear 
combinations, the wavefunctions are delocalized over the entire dendrimer. Figure 3 shows that the ground 
state wavefunctions have circular nodes between generations, while the highest lying states are nodeless. 
 The total population generations at zero temperature (also shown in Fig. 3) are distributed 
symmetrically, with the largest populations found in the middle generation(s). The highest core population 
is found in the 2G   dendrimer, where it is equal to only ½. The distribution becomes skewed when 
temperature is introduced, and its maximum shifts toward the periphery. Even at the intermediate 
temperature Bk T J , the generation populations of large dendrimers ( 4G  ) approach a classical-like 
distribution.  
 

 
          

Fig. 3.  Visualization of segment amplitudes and population distribution for intra 0J  . Left: eigenstate 
amplitudes on the various segments for a three-generation dendrimer. All eigenstates are threefold 
degenerate here. The larger image shows the ground state 1 , while the four smaller images show 
eigenstates 7 12 16, , ,    and 19  (which has the largest eigenvalue). Orange/green and blue/orange 
correspond to positive and negative amplitudes. Right: total population of each generation for 
dendrimers with two, three and four generations at various temperatures. Dark blue: 0T  . Cyan: 

B 0.2k T J . Green: Bk T J . Yellow: B 10k T J .  
 

(ii) intra 0J  . In this case the eigenstates maintain the spreading and alternating sign features observed with 
intra 0J  , but the threefold degeneracy is lifted. Figure 4 shows the eigenfunctions and equilibrium 

population distributions for intraJ J   and 3J . As expected based on the analysis presented in the 
previous section, increasing intra-generation coupling stabilizes the dendrimer, lowering the ground state 
energy and increasing the population of core segments. With these values of intraJ , small dendrimers have 
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their largest populations in the core at zero temperature. As expected, the generation populations depend 
nonmonotonically on generation number as the temperature is increased, eventually approaching the 
statistical limit. In large dendrimers, the entropic effect becomes noticeable at low temperatures, although 
this effect is countered by increasing the value of intraJ , which shifts more population toward innermost 
segments. With intra 3J J   the core population is maintained above or slightly below 0.8 for the 2,3,4G   
dendrimers examined. With negative intra-generation coupling, temperature has a gradual effect on 
excitation distribution among generations, with the core population at B 0.2k T J  remaining almost equal 
to that at zero temperature even in all three dendrimers. 
 

 
 

Fig. 4.  Visualization of segment amplitudes and population distribution for (a) intraJ J   and (b) intra 3J J  . 
Left: eigenstate amplitudes on the various segments for a three-generation dendrimer. The larger image 
shows the ground state 1 , while the four smaller images show eigenstates (a) 7 11 18 20, , ,    and (b) 

4 9 16 20, , ,    . Orange/green and blue/orange correspond to positive and negative amplitudes. Right: 
total population of each generation for dendrimers with two, three and four generations at various 
temperatures. Dark blue: 0T  . Cyan: B 0.2k T J . Green: Bk T J . Yellow: B 10k T J . 

 
 
 
(iii)  intra 0J  . The picture changes dramatically when the intra-generation couplings are positive. Figure 
5 shows results with all intraJ J  or 3J . In analogy with the three-segment Hamiltonians examined in the 
previous section, the three-branch dendrimer has two degenerate ground states that do not reflect the 
threefold symmetry of the dendrimer structure. Again, this is the result of frustration within each generation. 
As seen in Fig. 5, one of the two degenerate ground states is now distributed on only two of the three 
dendrimer branches. The excitation distribution across the three generations is the complex outcome of a 
competition between frustration and delocalization. This competition pushes the ground state density 
toward the core, attempting to minimize population on the periphery which has the largest number of 

(a) (b) 
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unfavorably interacting segments. As a result, the entropic effect aids core accumulation of the excitation 
energy at zero temperature. Fig. 5 shows that the 0T   core population is larger here in comparison to 
equivalent cases with intra 0J  , and it increases with increasing intraJ . Further, the shift of excitation 
population away from the core with increasing dendrimer size is considerably weaker in the present case, 
showing almost no change if intra 3J J .  

However, there are now eigenstates with large density in the second generation, which are nearly 
degenerate with the ground states. These eigenstates are rapidly populated upon increasing the temperature, 
depleting the population of core segments. Even at the very low temperature B 0.2k T J  the core population 
with intra 3J J  drops to about 0.15, compared to 0.95 at 0T  , and the maximum population is found in 
the third generation. Thus, while the equilibrium distribution of excited state populations is overall larger 
with intra 0J   in comparison to identical dendrimers with negative intra-generation couplings, the trend 
reverses rapidly when finite temperature is introduced, and the excitation energy approaches the statistical 
limit faster in this case.  

                                                  
 
  

  
 
 

Fig. 5.  Visualization of segment amplitudes and population distribution for (a) intraJ J   and (b) intra 3J J  . 
Left: eigenstate amplitudes on the various segments for a three-generation dendrimer. The larger images 
show the two degenerate ground states 1  and 2 , while the two smaller images show excited 
eigenstates (a) 15 21,  and (b) 12 21,  . Orange/green and blue/orange correspond to positive and 
negative amplitudes. Right: total population of each generation for dendrimers with two, three and four 
generations at various temperatures. Dark blue: 0T  . Cyan: B 0.2k T J . Green: Bk T J . Yellow: 

B 10k T J . 
 
 

 
5.  Dynamics of excitation energy transfer            

We now turn to the time evolution of the excitation energy following excitation of a segment 
located in the periphery. The population evolution does not depend on the sign of the inter-generation 

(a) (b) 
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coupling. We thus fix the value of this coupling to 1
inter 300 cmJ J    (a value in the range expected for 

such systems) and consider a positive and a negative intra-generation coupling, 1
intra 300 cmJ   . Further, 

we assume that the vibrational spectral density peaks at 1
c 1500 cm   and examine the dynamics for two 

values of the reorganization energy, a moderate value 300J   1cm  and a large value 900 1cm . After 
examining the simpler trimer at 100 K for each parameter combination, we present results for the 2G   
dendrimer at 100T  K (which corresponds to B/ 4.31J k T  ) and 300 K ( B/ 1.44J k T  ).  
 We begin by investigating the dynamics of the two relevant trimer structures examined in section 
III (Fig. 2b and 2d) where two of the segments are connected through interJ  while the third pair couples 
through 1

intra 300 cmJ   . Figure 6 shows the populations of the excited segments as a function of time at 
100 K. In all cases the excitation relaxes fairly rapidly (within 0.5 ps) to its equilibrium value, which equals 
1/3 for all three segments. However, significant differences are observed among the four cases. With the 
weaker exciton-vibration coupling ( 1300 cm  ), the EET dynamics is coherent (underdamped), more so 
with intra 0J  , but the oscillatory behavior is lost upon increasing the reorganization energy to 900 1cm . 
Even though we only show results at 100 K for this system, we note that only a mild reduction in the 
oscillatory patterns is observed upon increasing the temperature to 300 K. While this temperature is 
intermediate in relation to the exciton coupling parameters, it is low with respect to the vibrational 
frequencies, thus providing inadequate damping.  
 

 
 

Fig. 6.  Excited segment populations as a function of time following excitation of segment 2 for a trimer with 
the parameters given in the text at 100 K. For convenience we show the dendrimer structure with 
segment numbers in one of the panels, where red and green arrows indicate the couplings 

intraJ  and 

interJ , respectively. The insets show the convergence of 1P  for various values of the SMatPI 
entanglement length maxr  and memory length L. 
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Perhaps the most striking contrast observed in Fig. 6 is the lengthening of the EET relaxation time 
when intra 0J  , compared to the dynamics with intra 0J   (of the same magnitude) and all other parameters 
fixed. Two distinct time scales can be identified in the dynamics with intra 0J  , which are most clearly 
seen in the results with 1900 cm  . Regardless of the sign of intraJ , a fast population transfer out of the 
initially excited state is observed during the initial 15 fs. The subsequent evolution is also rapid and 
unremarkable when intra 0J  , and the population settles to its equilibrium value within approximately 50 
fs. In sharp contrast, when intra 0J   the population transitions to a slow decay, reaching equilibrium at 
approximately 300 fs (a sixfold slowdown). The relaxation is even slower with the smaller reorganization 
energy 1300 cm  , and energy transfer lasts 0.5 ps in this case.  

Interestingly, as discussed in section III, the EET dynamics resulting with different signs of intraJ  
are identical in the absence of exciton-vibration  coupling. The unexpected behavior observed with 

intra 0J   is a consequence of frustration that manifests itself only when interaction with vibrational degrees 
of freedom enables the excitation energy to equilibrate within the dendrimer, a process that involves a 
redistribution of population between degenerate ground states. Such a process is enabled by the vibrational 
bath and tends to be very slow.  

 

 
 

Fig. 7.  Energy transfer dynamics in 2G   dendrimers with the parameters given in the text at 100 KT  . 
For convenience we show the dendrimer structure with segment numbers in one of the panels. The 
inset shows the convergence of 5P  for various values of the SMatPI entanglement length maxr  and 
memory length L. 
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Several of these trends are observed in the larger 2G   dendrimers whose EET evolution is shown 
in Figures 7-9 at three temperatures, although the coherence patterns are more complex here since they are 
governed by multiple energy scales associated with the 9n   electronic eigenvalues, and the EET process 
lasts longer. Starting with the excitation in the peripheral segment 4, the energy rapidly spreads to the 
neighboring segments 1 and 5. A preferential population accumulation on the terminal unit 5 is observed at 
early times, as segment 1 is continuously depleted through subsequent transfer to the other two core units. 
The populations of distant peripheral segments increase gradually and with a short delay.  

The dynamics with 1
intra 300 cmJ    is fast here too, but the amplitude of the oscillations in the 

population evolution at 100 K is now smaller than in the three-segment dendrimer, in line with similar 
observations in large molecular aggregates.15,47-49 However, with the smaller reorganization energy 

1300 cm  , small-amplitude coherent oscillations survive much longer (up to 500 fs) in this larger 
dendrimer. With the larger reorganization energy, equilibration is reached in approximately 200 fs. In this 
larger dendrimer, positive values of the intra-generation coupling lead to even slower energy transfer, 
although the strikingly different dynamical patterns compared to those with negative coupling are less 
conspicuous here. With 1

intra 300 cmJ   the populations reach their equilibrium values around 1.5 ps 
(although, for consistency, we only show the initial 500 fs in the figure).  

 

 

Fig. 8.  Energy transfer dynamics in 2G   dendrimers with the parameters given in the text at 300 KT  . 
For convenience we show the dendrimer structure with segment numbers in one of the panels. 

 

 The EET evolution at higher temperatures is faster and the transfer of energy to the core is 
progressively diminished. At 1000 KT   (Fig. 9) the long-time population of the core is almost equal to 
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its classical value. Remarkably, even under these nearly classical conditions, the quantum mechanical 
nature of the electronic system is clearly noticeable. This eigenstate structure and in particular the effects 
of frustration associated with positive intra-generation coupling are still seen to give rise to considerably 
slower dynamics, with the core population taking approximately twice as long to reach its reaching its 
equilibrium value in comparison to the intra 0J   case.  
 The role of nuclear motion on the dynamics of EET in these dendrimers is also intriguing. In 
addition to their coherence-damping function, intramolecular vibrations are seen to significantly perturb 
the equilibrium distribution of excited segment populations. This effect is clearly seen at 100 and 300 K, 
where the long-time distribution of excitation energy between core and periphery is closer to the statistical 
limit when the reorganization energy has the large value 1900 cm   than with the smaller exciton-
vibration coupling for which 1300 cm  . A strong coupling of the electronic states to vibrational motion 
results in overall more classical-like behavior, which is expressed not only through the damping of 
electronic coherence but also in terms of the population distribution at thermal equilibrium. 
 

 

Fig. 9.  Energy transfer dynamics in 2G   dendrimers with the parameters given in the text at 1000 KT  . 
For convenience we show the dendrimer structure with segment numbers in one of the panels. 

 

 

6. Concluding Remarks 

 In this paper we have investigated the quantum mechanical structure, equilibrium properties and 
real-time dynamics of dendrimers described by a simple Frenkel exciton model with interaction between 
bias-free nearest-neighbor segments coupled to model vibrational baths. By refraining from creating an 
energy funnel though a downhill arrangement of chromophore energies, we were able to focus on the rich 
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interplay among quantum coherence, topology, entropic factors, exciton-vibration interactions and 
temperature, identifying intriguing behaviors.  

Even within the confines of the present single-parameter electronic Hamiltonian, several of these 
findings point to the remarkable physics of dendrimeric structures and the endless possibilities for targeted 
function through nanoscale design. Perhaps the first notable result is that even in the absence of an energetic 
funnel built into the electronic Hamiltonian, these structures are able to transfer excitation energy from the 
periphery to the core. This function is a consequence of quantum effects, which give rise to eigenstate 
structures and equilibrium distributions that can favor the core at low temperatures. We find that when the 
electronic coupling parameters are fixed, small dendrimers have largest populations in the core, and that 
the peak of the distribution gradually shifts outward with increasing size. However, for a given dendrimer 
size, the core population can be increased by increasing the intra-generation coupling (or, equivalently, 
decreasing the inter-generation coupling strength). Thus, electronic coupling can counter the periphery-
favoring entropic factor, achieving outcomes that are vastly different from those based on classical 
statistical models. 

The eigenstate structure of these dendrimers is dominated by the sign of the intra-generation 
coupling parameter. By analyzing a basic trimeric building block, we found that a positive value of this 
parameter gives rise to a destabilized structure with a doubly degenerate ground state whose wavefunction 
does not exhibit the threefold symmetry of the dendrimer. We attributed this effect to electronic frustration, 
in analogy to the analogous effect known from spin systems. The unfavorable interaction generated by an 
odd number of positive couplings within a three-state unit effectively shifts electronic density toward the 
core, further countering the entropic effect at zero temperature. At the same time, the close proximity of 
multiple low-lying states leads to a sharp drop of core population upon increasing the temperature even 
slightly. The dynamical manifestations of electronic frustration are surprising and remarkable. We found 
that EET slows down very significantly when the intra-generation coupling is positive, in comparison with 
situations where this parameter has the same magnitude but a negative sign.  
 Exciton-vibration interactions play a major role in EET and are required for equilibration and the 
trapping of energy. With small-to-moderate values of the vibrational reorganization energy ( J ) the 
population evolution is underdamped. More efficient quenching of oscillatory features is observed in 
dendrimers with positive intra-generation coupling. Increasing exciton-vibration coupling causes a shift of 
equilibrium populations away from the core, as the composite system becomes effectively more classical.  
 Thermal effects wash out phase relations and effects related to quantized level structure. Upon 
increasing the temperature, the population distribution becomes more classical-like, with each segment 
having a population equal to 1/ n  in the infinite temperature limit. Interestingly, dynamical features such 
as those related to the sign of intra-generation couplings persist to sufficiently high temperatures, even 
though the equilibrium populations are close to their classical values. With typical Frenkel couplings of the 
order of 1200 300 cm , the temperatures required for classical-like behavior are extremely high, thus 
quantum effects are expected to be prominent in dendrimers at or below physiological temperatures. 
 Overall, using a simple model with a single electronic parameter of fixed magnitude ( 1300 cmJ 

) and two possible values of vibrational reorganization energy ( J   or 3 J  ), our calculations 
identified a vast range of time scales in the EET dynamics of 2G   dendrimers at a fixed temperature, 
ranging from a 15 fs ultrafast transfer out of the initially excited peripheral segment to a slow 1.5 ps 
equilibration, which span two orders of magnitude. These very rich behaviors will undoubtedly become 
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even more complex when additional parameters are allowed to vary, inviting additional work on these 
fascinating systems. 
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