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Abstract

We use matrix diagonalization in combination with real-time path integral methods to investigate
the electronic eigenstates and exciton-vibration dynamics of model dendrimers with Frenkel
exciton interactions between adjacent segments, which characterize structures composed of
conjugated molecules. Even in the absence of an explicit energetic gradient in the electronic
Hamiltonian, exciton couplings create a funnel through the eigenstate hierarchy which pulls the
excitation energy away from the periphery. The competition between eigenstate structure and
entropic considerations dictates the equilibrium distribution, which in small dendrimers at low
temperatures tends to favor the core, shifting outward with increasing dendrimer size and thermal
energy, although this distribution can be skewed back toward the core by increasing the exciton
coupling between segments of the same generation. At high temperatures the distribution becomes
classical with all excited segments having the same population. Strong exciton-vibration coupling
also shifts the equilibrium distribution in the classical direction. We find that the dynamics of
excitation energy transfer is highly nontrivial and strongly affected by quantum mechanical effects.
A positive value of the intra-generation coupling (regardless of the sign of the inter-generation
coupling parameter) introduces a very slow component to the dynamics, which we attribute to
electronic frustration. With exciton coupling, vibrational reorganization energy and thermal energy
of approximately the same magnitude, the energy transfer dynamics is characterized by time scales
that span two orders of magnitude. The rich dynamics that results from a single-parameter
electronic Hamiltonian suggests a multitude of design possibilities for dendrimeric structures with
desirable function.
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1. Introduction

The quest for renewable energy has spurred persistent experimental and theoretical activity aiming
at designing molecular structures capable of efficient solar energy harvest and storage. Much of this effort
has focused on the study of the light harvesting apparatus found in photosynthetic plants and bacteria, which
are known to transfer the absorbed light with high efficiency.!? Ever since their discovery and
characterization,*” light harvesting complexes have been used as prototypes for understanding the complex
interplay of electronic states and vibrational motion responsible for this efficiency. Understanding the
intricate mechanism of excitation energy transfer (EET) in natural photosynthetic complexes can lead to
useful design principles for artificial light harvesting architectures with diverse shapes and topologies.
Among many promising candidates, dendrimers have attracted much attention.

Dendrimers are highly branched macromolecules consisting of peripheral groups, repeat units and
a core.*!! The large volume in relation to their molecular weight allows encapsulation of guest molecules
with specific function in their voids, making dendrimers ideal candidates for drug delivery. A judicious
choice of building blocks and peripheral functional groups allows control of various important properties,
such as density, shape, polarity, chirality, solubility and spectral characteristics. Besides their numerous
medical applications, dendrimers are of interest to technology because they can serve as artificial nanoscale
antennae. In particular, the funnel-like architecture of dendrimers allows efficient, directional energy
transport from the periphery to the core.

Theoretical investigations and simulation can complement experimental work on natural and
artificial light harvesting systems and offer invaluable guidance by establishing useful structure-function
relations. A variety of theoretical treatments have been employed in the study of excitation energy transfer
in natural and synthetic molecular aggregates.'*!> A relatively small body of work has been performed on
dendrimers. Theoretical studies have focused primarily on models where each chromophore occupies a
lattice site and couples to its nearest neighbors.'*** When the building blocks are conjugated molecules
whose wavefunctions are delocalized over linear segments, a better model results by assuming nearest-
neighbor interactions between segments.”’ Electronic structure calculations have shown?® that the
interactions between segments can be mapped on the Frenkel exciton Hamiltonian and obtained parameters
for the couplings between poly-phenylacetylene units?!-** that comprise the nanostar.® Some explorations

of dynamical properties of dendrimer structures have been reported using classical kinetic models,?-2*
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quantum mechanical evolution within the electronic subspace studied with exact diagonalization or

density matrix renormalization group®® or tree tensor networks?® and surface hopping approximations.?’-3
The kinetics and pathways of EET are governed by the relations among electronic states, molecular
vibrations and temperature. The complex interplay of the many energy and time scales found in large
molecular structures gives rise to a wide variety of behaviors, which cannot be predicted without accurate,
fully quantum mechanical calculations. Several recent developments in quantum dynamics methodology
have opened up the road to rigorous and accurate investigations of EET in large molecular systems, where
individual intramolecular vibrations play a key role that cannot be captured by simplified treatments. The
multilayer multiconfiguration time-dependent Hartree method®'* and the time-dependent density matrix
renormalization group approach?® have enabled fully quantum mechanical studies of molecular aggregates
comprising several chromophores with a few vibrational modes in each monomer at zero (and in some
cases also at a low) temperature.!>!4343¢ However, the vast size of thermally accessible electronic-
vibrational Hilbert space prohibits the use of conventional wavefunction-based approaches when many low-
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frequency modes are present. Feynman’s path integral formulation’’” offers unique capabilities for treating
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large numbers of vibrational degrees of freedom at any temperature. Real-time path integral methods
developed in our group*”*
calculations in the LH2 complex of purple bacteria,

were recently used to investigate EET through all-mode exciton-vibration
447 in J aggregates of perylene bisimide*-° (PBI), in
cofacial porphyrin dimers,’' as well as the coupled spin dynamics of Ising chains interacting with model
harmonic baths.*?> Even though generic characteristics such as decoherence, equilibration, and some aspects
of spectral characteristics'>*?
simplified system-bath models,*>>¢ the striking finding of such all-state, all-mode path integral studies

(where the exciton-vibration parameters were treated with their specific molecular values without

and density evolution® are common to all these systems and captured through

simplification) is the complexity of the ensuing dynamics and the diversity of observed behaviors."

In this paper we use quantum mechanical methods to investigate the eigenstate structure,
equilibrium populations, and the EET dynamics in model dendrimers composed of segments interacting via
nearest-neighbor Frenkel exciton terms. The Frenkel model®’ has been found to offer an excellent
description of dendrimers composed of conjugated segments.?’ Most dendrimer design has focused on
utilizing several building blocks with electronic energies that decrease in the direction of the core, in order
to create an energy funnel. The latter is understood to be necessary in order to overcome the entropic factor
that favors the accumulation of energy in the periphery. Here we explore the possibility of creating
structures that enable significant energy flow toward the core in the absence of an energetic bias, and
investigate their dynamical behaviors using path integral methods. While the entropic factor may appear to
rule out such scenarios, the underlying argument is based on classical thermodynamics and thus ignores the
quantum mechanical nature of the dendrimer exciton states. We point out that even in the absence of an
energy gradient in the electronic states of the structural units, the population distribution can be manipulated
by adjusting the electronic coupling parameters. Such adjustments may be possible through the judicious
incorporation of ligands at appropriate locations. One of the benefits of a bias-free funnel architecture is
the possibility of quantum coherence and interference, which can allow faster dynamics and possibly alter
the EET pathways.

In addition to varying the relative magnitude of intra- vs. inter-generation couplings, we also
consider different signs of these parameters. We find that with particular combinations of coupling
parameters, the threefold topology of the typical dendrimer gives rise to unusual eigenstate structures
dictated by frustration effects similar to those encountered in spin systems. The unusual eigenstate
characteristics of such structures are accompanied by significant changes in the dynamics of EET, which
becomes considerably slower.

In section 2 we describe the Frenkel exciton Hamiltonian for the dendrimer, including vibrational
baths coupled to the ground and excited states of each segment. In section 3 we analyze the electronic
eigenstates of the simplest case, a trimer which may represent a dendrimer core (with three identical
coupling parameters) or a building block where one segment belongs in one generation while the other two
segments belong to another generation. The simple results of this analysis are instructive and help explain
the eigenstate structure of larger dendrimers. In section 4 we present numerical results for the electronic
eigenstates of a three-generation dendrimer. We also discuss the dependence of the populations of each
generation on temperature and dendrimer parameters. The time evolution of the excitation energy is
presented in section 5 for representative parameters. Some concluding remarks are given in section 6.



2. Dendrimer Hamiltonian and methods

We focus on dendrimers with coordination number equal to 3, which gives rise to a three-branch
structure. We assume that the dendrimer has G generations, each 3x2°™" segments, such that the total
number of segments is n :3(ZG —1) Figure 1 shows a dendrimer comprising two generations (G =2,
n=9) and a larger one with three generations (G =3, n=21). In the larger dendrimer the three innermost
segments comprise the core, six segments belong in the second generation, while the twelve outermost
segments form the periphery.

Fig. 1. Two- and three-generation dendrimers (G =2, n=9 and G =3, n=21). Our numbering
of the segments is shown. Intra-generation couplings are shown in red, while inter-generation
couplings are shown in green.

Optical excitations in dendrimers made out of conjugated molecules are localized and involve no
charge transfer between segments,?' so the electronic Hamiltonian has the Frenkel exciton form,*’
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where |a> is the state with segment « excited, while all other segments are in the ground state, and J
are the exciton coupling parameters. Following earlier work, we assume that only connected (nearest
neighbor) segments are coupled in Eq. (2.1). While the energies of the segments in each generation can
vary in general, providing an energy funnel toward the core, in this paper we explore the EET possibilities
offered in the absence of an energy bias and set &, =0 . The segment-segment interactions are characterized
by two parameters: the coupling J, . between segments within the same generation and the coupling value
J.

inter

of nearest-neighbor segments that belong to adjacent generations. Earlier work?? has found that intra-
and inter-generation couplings can change significantly with small variations of segment length and
composition, and that these parameters may have opposite signs within the same dendrimer. We note that



with J,
(at least) three-fold degenerate.

The dynamics of EET is strongly influenced by the coupling of the dendrimer electronic states to
intramolecular vibrations. Within the normal mode approximation, the ground and excited electronic states

of each segment couple to intramolecular vibrations through the standard Hamiltonian®

=0 the Hamiltonian in Eq. (2.1) describes three unconnected dendra, with eigenvalues that are
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where s, is a parameter with units of length, ¢,, and p,, are the positions and momenta of the normal
modes of segment ¢, and @, , c,, are the respective vibrational frequencies and exciton-vibration coupling
strengths. The total Hamiltonian is given by

H:ﬁe+2[;};+i£§j|a>(a|. (2.3)

P=a

The effects of molecular vibrations on exciton dynamics are collectively captured through the spectral
density function .7 (w). While the path integral methodology can fully account for vibrational modes
characterized by their individual frequencies and coupling coefficients,' in the present model study we
employ an Ohmic bath with _7 (a)) =2nEhwe ' /s?, where @, gives the location of the peak and the
dimensionless parameter & specifies the exciton-vibration coupling strength. For each segment, the
vibrational reorganization energy is given by A =2haw, .

For a chosen electronic excitation, we calculate the time evolution of the n” xn” electronic reduced
density matrix using the small matrix decomposition*** (SMatPI) of the quasi-adiabatic propagator path
integral®-*° (QuAPI). The SMatPI algorithm is an exact decomposition of the fully quantum mechanical
real-time path integral expression (which fully accounts for exciton-vibration interactions at any
temperature) that employs minimal sized, n*xn” matrices, thus enabling the simulation of multistate
systems. It employs two parameters, the QuAPI memory length L and the entanglement 7, . Recent work
has shown®' that the entanglement of the path integral variables may be considerably shorter than the
memory length, facilitating convergence in very challenging situations. Representative convergence tests
are shown for some of the most challenging cases presented in section 5.

3. The building block

We begin by examining a basic block of a dendrimer, made of three molecular segments as shown
in Fig. 2, which interact through the Frenkel exciton Hamiltonian,

A, =T (D01 +2){1])+ s (B30 + 725 (12)3]+13)2]). (2.4)

Because of the symmetry of dendrimer structures, we assume that two of the three exciton coupling
parameters are identical and consider the effect of varying the third.



The eigenstates of Eq. (2.4) are easy to obtain and simplify with special choices of the parameters.
In the case of an inter-generation block we expect that J,, =J,;, while the third coupling parameter J,,
may have a different value. The three-segment block that forms the core is characterized by three identical

coupling values. We thus set J,, =J,; =J and examine several characteristic cases, which are illustrated
in Fig. 2.

(1) J,=J;=J, Jy;=0.The eigenvalues and corresponding eigenstates are

E =-

@) =—Fsen()]1)+3[2)+43)
E, =0, |®,)==[2)-=%[3) (2.5)
@) =+ sen(D]1)+[2)+1]3)

The eigenstate density does not depend on the sign of J, but the wavefunctions do. Eq. (2.5) shows that the
lowest and highest eigenstates swap upon changing this sign. If J >0 the ground state wavefunction has

opposite amplitudes on the two generations (Fig. 2a), while for J <0 it is positive throughout the three-
segment structure.

(b)

Fig. 2. Left: schematic illustration of three-segment block. Right: visualization of segment amplitudes in the
ground state for four combinations of coupling values. The component of the wavefunction on each
segment is illustrated by placing a Gaussian of proportional height on the center of the segment. Green
and orange indicate positive and negative areas. (a) J,, =J;; >0, J,;=0. (b) J,,=J,;>0, J,; =—J,.
© J,=J;3=J3<0.() J,=J;=J,>0.

(i) J, =J;=J, Jy, =—|J|. The eigenvalues and eigenstates of Eq. (2.4) are

E = |®@,) =—%sgn(J)|1>+%|2>+%|3>
E,=|J], |®,)=4[2)-%[3) (2.6)
E3=|J, |cD> %sgn(])|1> f|2>+f|3>




With J <0 (Fig. 2c) all three coupling parameters are identical, thus this condition describes the core of a
dendrimer with negative intra-generation coupling, which has a nodeless ground state. The J >0 case
applies to the smallest building block with one segment in one generation and two in the next generation
(Fig. 2b). This trimer has a ground state wavefunction that switches sign across generations, and a pair of
degenerate excited states. The negative intra-generation coupling stabilizes the system.

(iii) J,, =J,; =J,; =J >0. In this case (Fig. 2d) we find

E==J, [@)=—F)+F2)+ %)
E,=—J, |®,)=+5|2)-%[3) (2.7)
B=2J. (@) =i+ i2)+ 412

The ground state is now doubly degenerate, and is destabilized. This structure exhibits frustration, an effect
familiar from interacting spin systems: the positive inter-generation couplings favor opposite signs, forcing
the outer generation segments 2 and 3 to have the same sign, an unfavorable arrangement for J,; >0.

When all three couplings have the same magnitude equal to J, the evolution of electronic
populations following excitation of one segment is given by

g(r):é[swcos(yr/h)], (2.8)

regardless of the relative signs.

To summarize this section, eigenstate densities are insensitive to the sign of the two identical (inter-
generation) couplings in a trimer, but the spectrum and the ground state structure change drastically when
the third coupling (between segments within the same generation) reverses sign. A negative intra-generation
stabilizes the structure, while a positive value destabilizes the system and gives rise to a pair of degenerate
ground states. We now turn to larger dendrimers and use numerical diagonalization to study the eigenstates
of the electronic Hamiltonian.

4. Eigenvectors and equilibrium distributions

In this section we investigate the eigenstate structure and equilibrium populations of dendrimer of

varying size. We set J, In each case we

inter

=J >0, but consider different magnitudes and signs of J,_ . .
examine the wavefunction of the ground state(s) and of select excited states for three-generation
dendrimers. In addition, we show the total populations of excited segments that comprise each generation
of the electronic Hamiltonian, at zero temperature and also at k,7 =0.2J, J, and 10J , for two-, three-,
and four-generation dendrimers. The first of the finite temperatures is very low for typical values of the

inter-generation coupling (50-500 cm™). Yet, we find that with particular choices of J,_ ., the populations

ntra 2
are drastically different from those obtained at zero temperature. With k,7 =10J the electronic
Hamiltonian of the dendrimer is in the high-temperature regime for all exciton coupling values considered
here. In this case all segments have equal populations, and thus each generation has twice as many segments

as the previous one. Statistical and dynamical results obtained within classical hopping assumptions?*2*
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pertain to this high-temperature limit. As is seen in the figures presented in this section, the quantized
electronic Hamiltonian of the dendrimer gives rise to entirely different population distributions at low and
intermediate temperatures. It is natural to expect that quantum effects will be very prominent in the
dynamics of exciton-vibration dynamics and the EET evolution as well.

(1) All J,,, =0. Since the core segments are not connected, this structure consists of three separate dendra.
The eigenstates of the Hamiltonian exhibit a threefold degeneracy in this case. With proper linear
combinations, the wavefunctions are delocalized over the entire dendrimer. Figure 3 shows that the ground
state wavefunctions have circular nodes between generations, while the highest lying states are nodeless.

The total population generations at zero temperature (also shown in Fig. 3) are distributed
symmetrically, with the largest populations found in the middle generation(s). The highest core population
is found in the G'=2 dendrimer, where it is equal to only Y. The distribution becomes skewed when
temperature is introduced, and its maximum shifts toward the periphery. Even at the intermediate
temperature k,7 =J, the generation populations of large dendrimers (G >4) approach a classical-like
distribution.
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Fig. 3. Visualization of segment amplitudes and population distribution for J, _=0. Left: eigenstate
amplitudes on the various segments for a three-generation dendrimer. All eigenstates are threefold
degenerate here. The larger image shows the ground state @ , while the four smaller images show
eigenstates ®_,® ,® , and @ (which has the largest eigenvalue). Orange/green and blue/orange
correspond to positive and negative amplitudes. Right: total population of each generation for
dendrimers with two, three and four generations at various temperatures. Dark blue: 7 =0. Cyan:

k, T =0.2J .Green: k, T =J . Yellow: k,T =10J .

(i) J,,. <0.In this case the eigenstates maintain the spreading and alternating sign features observed with
Jintra
population distributions for J,  =-J and —3J. As expected based on the analysis presented in the
previous section, increasing intra-generation coupling stabilizes the dendrimer, lowering the ground state

energy and increasing the population of core segments. With these values of J, _, small dendrimers have

=0, but the threefold degeneracy is lifted. Figure 4 shows the eigenfunctions and equilibrium
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their largest populations in the core at zero temperature. As expected, the generation populations depend
nonmonotonically on generation number as the temperature is increased, eventually approaching the
statistical limit. In large dendrimers, the entropic effect becomes noticeable at low temperatures, although
which shifts more population toward innermost
segments. With J, =-3J the core population is maintained above or slightly below 0.8 for the G =2,3,4

this effect is countered by increasing the value of J,

ntra >

dendrimers examined. With negative intra-generation coupling, temperature has a gradual effect on
excitation distribution among generations, with the core population at k,7 =0.2J remaining almost equal
to that at zero temperature even in all three dendrimers.

(a) (b)
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Fig. 4. Visualization of segment amplitudes and population distribution for (a) / =-J and(b) J =-3J.

intra intra

Left: eigenstate amplitudes on the various segments for a three-generation dendrimer. The larger image
shows the ground state @, while the four smaller images show eigenstates (a) ©,, D, ,® , D, and (b)
®,,0,,D ,D, . Orange/green and blue/orange correspond to positive and negative amplitudes. Right:
total population of each generation for dendrimers with two, three and four generations at various
temperatures. Dark blue: 7 =0. Cyan: k,7 =0.2J . Green: k, T =J . Yellow: k£, T =10J .

(i) J,,, >0. The picture changes dramatically when the intra-generation couplings are positive. Figure
5 shows results with all J, . =J or 3J . In analogy with the three-segment Hamiltonians examined in the
previous section, the three-branch dendrimer has two degenerate ground states that do not reflect the
threefold symmetry of the dendrimer structure. Again, this is the result of frustration within each generation.
As seen in Fig. 5, one of the two degenerate ground states is now distributed on only two of the three
dendrimer branches. The excitation distribution across the three generations is the complex outcome of a
competition between frustration and delocalization. This competition pushes the ground state density

toward the core, attempting to minimize population on the periphery which has the largest number of



unfavorably interacting segments. As a result, the entropic effect aids core accumulation of the excitation
energy at zero temperature. Fig. 5 shows that the 7'=0 core population is larger here in comparison to
Further, the shift of excitation
population away from the core with increasing dendrimer size is considerably weaker in the present case,
=3J.

However, there are now eigenstates with large density in the second generation, which are nearly

equivalent cases with J, . <0, and it increases with increasing J,

intra *

showing almost no change if J.

ntra

degenerate with the ground states. These eigenstates are rapidly populated upon increasing the temperature,
depleting the population of core segments. Even at the very low temperature k7' =0.2J the core population
with J.__ =3J drops to about 0.15, compared to 0.95 at 7'=0, and the maximum population is found in

intra

the third generation. Thus, while the equilibrium distribution of excited state populations is overall larger
with J.

intra

>0 in comparison to identical dendrimers with negative intra-generation couplings, the trend
reverses rapidly when finite temperature is introduced, and the excitation energy approaches the statistical
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Fig. 5. Visualization of segment amplitudes and population distribution for (a) J, =+J and (b) J =+3J.
Left: eigenstate amplitudes on the various segments for a three-generation dendrimer. The larger images
show the two degenerate ground states @ and @, , while the two smaller images show excited
eigenstates (a) @, P, and (b)d ,, D, . Orange/green and blue/orange correspond to positive and
negative amplitudes. Right: total population of each generation for dendrimers with two, three and four
generations at various temperatures. Dark blue: 7 =0. Cyan: k£, 7 =0.2J . Green: k7 =J . Yellow:

k,T =10J.

limit faster in this case.

(a) (b)
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5. Dynamics of excitation energy transfer

We now turn to the time evolution of the excitation energy following excitation of a segment
located in the periphery. The population evolution does not depend on the sign of the inter-generation
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coupling. We thus fix the value of this coupling to J, _ =J =300cm™ (a value in the range expected for
such systems) and consider a positive and a negative intra-generation coupling, J, .. =+300 cm™' . Further,
we assume that the vibrational spectral density peaks at @, =1500 cm™' and examine the dynamics for two
values of the reorganization energy, a moderate value 4 =J =300 cm™ and a large value 900 cm™ . After
examining the simpler trimer at 100 K for each parameter combination, we present results for the G =2
dendrimer at 7' =100 K (which corresponds to J/k,T =4.31) and 300 K (J / k,T =1.44).

We begin by investigating the dynamics of the two relevant trimer structures examined in section
III (Fig. 2b and 2d) where two of the segments are connected through J, .
through J, .. =+300cm™ . Figure 6 shows the populations of the excited segments as a function of time at
100 K. In all cases the excitation relaxes fairly rapidly (within 0.5 ps) to its equilibrium value, which equals
1/3 for all three segments. However, significant differences are observed among the four cases. With the
weaker exciton-vibration coupling (1 =300 cm™ ), the EET dynamics is coherent (underdamped), more so
with J.

intra

while the third pair couples

<0, but the oscillatory behavior is lost upon increasing the reorganization energy to 900 cm™ .
Even though we only show results at 100 K for this system, we note that only a mild reduction in the
oscillatory patterns is observed upon increasing the temperature to 300 K. While this temperature is
intermediate in relation to the exciton coupling parameters, it is low with respect to the vibrational
frequencies, thus providing inadequate damping.
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0 1 1 1 1 0 1 1 1 1
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1 L} T T T
a=1,3| 1
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Fig. 6. Excited segment populations as a function of time following excitation of segment 2 for a trimer with
the parameters given in the text at 100 K. For convenience we show the dendrimer structure with
segment numbers in one of the panels, where red and green arrows indicate the couplings /. and

intra

J, .. » respectively. The insets show the convergence of P for various values of the SMatPI

inter

entanglement length »  and memory length L.
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Perhaps the most striking contrast observed in Fig. 6 is the lengthening of the EET relaxation time
>0, compared to the dynamics with J, . <0 (of the same magnitude) and all other parameters
fixed. Two distinct time scales can be identified in the dynamics with J; . >0, which are most clearly
seen in the results with =900 cm™ . Regardless of the sign of J, ., a fast population transfer out of the
initially excited state is observed during the initial 15 fs. The subsequent evolution is also rapid and
unremarkable when J,

intra

when J.

intra

ntra >

<0, and the population settles to its equilibrium value within approximately 50
fs. In sharp contrast, when J, . >0 the population transitions to a slow decay, reaching equilibrium at
approximately 300 fs (a sixfold slowdown). The relaxation is even slower with the smaller reorganization
energy A =300cm™', and energy transfer lasts 0.5 ps in this case.

Interestingly, as discussed in section III, the EET dynamics resulting with different signs of J,
are identical in the absence of exciton-vibration coupling. The unexpected behavior observed with
Jima > 0 1s a consequence of frustration that manifests itself only when interaction with vibrational degrees
of freedom enables the excitation energy to equilibrate within the dendrimer, a process that involves a
redistribution of population between degenerate ground states. Such a process is enabled by the vibrational
bath and tends to be very slow.
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Fig. 7. Energy transfer dynamics in G =2 dendrimers with the parameters given in the text at 7 =100 K .
For convenience we show the dendrimer structure with segment numbers in one of the panels. The
inset shows the convergence of P, for various values of the SMatPI entanglement length »  and
memory length L.
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Several of these trends are observed in the larger G =2 dendrimers whose EET evolution is shown
in Figures 7-9 at three temperatures, although the coherence patterns are more complex here since they are
governed by multiple energy scales associated with the n =9 electronic eigenvalues, and the EET process
lasts longer. Starting with the excitation in the peripheral segment 4, the energy rapidly spreads to the
neighboring segments 1 and 5. A preferential population accumulation on the terminal unit 5 is observed at
early times, as segment 1 is continuously depleted through subsequent transfer to the other two core units.
The populations of distant peripheral segments increase gradually and with a short delay.

The dynamics with J,, =-300cm™" is fast here too, but the amplitude of the oscillations in the
population evolution at 100 K is now smaller than in the three-segment dendrimer, in line with similar
observations in large molecular aggregates.'>** However, with the smaller reorganization energy
A=300cm™, small-amplitude coherent oscillations survive much longer (up to 500 fs) in this larger
dendrimer. With the larger reorganization energy, equilibration is reached in approximately 200 fs. In this
larger dendrimer, positive values of the intra-generation coupling lead to even slower energy transfer,
although the strikingly different dynamical patterns compared to those with negative coupling are less
conspicuous here. With J,  =300cm™" the populations reach their equilibrium values around 1.5 ps
(although, for consistency, we only show the initial 500 fs in the figure).
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Fig. 8. Energy transfer dynamics in G =2 dendrimers with the parameters given in the text at 7 = 300 K .
For convenience we show the dendrimer structure with segment numbers in one of the panels.

The EET evolution at higher temperatures is faster and the transfer of energy to the core is
progressively diminished. At 7 =1000 K (Fig. 9) the long-time population of the core is almost equal to
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its classical value. Remarkably, even under these nearly classical conditions, the quantum mechanical
nature of the electronic system is clearly noticeable. This eigenstate structure and in particular the effects
of frustration associated with positive intra-generation coupling are still seen to give rise to considerably
slower dynamics, with the core population taking approximately twice as long to reach its reaching its
equilibrium value in comparison to the J, ., <0 case.

The role of nuclear motion on the dynamics of EET in these dendrimers is also intriguing. In
addition to their coherence-damping function, intramolecular vibrations are seen to significantly perturb
the equilibrium distribution of excited segment populations. This effect is clearly seen at 100 and 300 K,
where the long-time distribution of excitation energy between core and periphery is closer to the statistical
limit when the reorganization energy has the large value 1=900cm™ than with the smaller exciton-
vibration coupling for which 4 =300 cm™ . A strong coupling of the electronic states to vibrational motion
results in overall more classical-like behavior, which is expressed not only through the damping of
electronic coherence but also in terms of the population distribution at thermal equilibrium.
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Fig. 9. Energy transfer dynamics in G =2 dendrimers with the parameters given in the text at 7 = 1000 K .
For convenience we show the dendrimer structure with segment numbers in one of the panels.

6. Concluding Remarks

In this paper we have investigated the quantum mechanical structure, equilibrium properties and
real-time dynamics of dendrimers described by a simple Frenkel exciton model with interaction between
bias-free nearest-neighbor segments coupled to model vibrational baths. By refraining from creating an
energy funnel though a downhill arrangement of chromophore energies, we were able to focus on the rich
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interplay among quantum coherence, topology, entropic factors, exciton-vibration interactions and
temperature, identifying intriguing behaviors.

Even within the confines of the present single-parameter electronic Hamiltonian, several of these
findings point to the remarkable physics of dendrimeric structures and the endless possibilities for targeted
function through nanoscale design. Perhaps the first notable result is that even in the absence of an energetic
funnel built into the electronic Hamiltonian, these structures are able to transfer excitation energy from the
periphery to the core. This function is a consequence of quantum effects, which give rise to eigenstate
structures and equilibrium distributions that can favor the core at low temperatures. We find that when the
electronic coupling parameters are fixed, small dendrimers have largest populations in the core, and that
the peak of the distribution gradually shifts outward with increasing size. However, for a given dendrimer
size, the core population can be increased by increasing the intra-generation coupling (or, equivalently,
decreasing the inter-generation coupling strength). Thus, electronic coupling can counter the periphery-
favoring entropic factor, achieving outcomes that are vastly different from those based on classical
statistical models.

The eigenstate structure of these dendrimers is dominated by the sign of the intra-generation
coupling parameter. By analyzing a basic trimeric building block, we found that a positive value of this
parameter gives rise to a destabilized structure with a doubly degenerate ground state whose wavefunction
does not exhibit the threefold symmetry of the dendrimer. We attributed this effect to electronic frustration,
in analogy to the analogous effect known from spin systems. The unfavorable interaction generated by an
odd number of positive couplings within a three-state unit effectively shifts electronic density toward the
core, further countering the entropic effect at zero temperature. At the same time, the close proximity of
multiple low-lying states leads to a sharp drop of core population upon increasing the temperature even
slightly. The dynamical manifestations of electronic frustration are surprising and remarkable. We found
that EET slows down very significantly when the intra-generation coupling is positive, in comparison with
situations where this parameter has the same magnitude but a negative sign.

Exciton-vibration interactions play a major role in EET and are required for equilibration and the
trapping of energy. With small-to-moderate values of the vibrational reorganization energy (A =.J) the
population evolution is underdamped. More efficient quenching of oscillatory features is observed in
dendrimers with positive intra-generation coupling. Increasing exciton-vibration coupling causes a shift of
equilibrium populations away from the core, as the composite system becomes effectively more classical.

Thermal effects wash out phase relations and effects related to quantized level structure. Upon
increasing the temperature, the population distribution becomes more classical-like, with each segment
having a population equal to 1/# in the infinite temperature limit. Interestingly, dynamical features such
as those related to the sign of intra-generation couplings persist to sufficiently high temperatures, even
though the equilibrium populations are close to their classical values. With typical Frenkel couplings of the
order of 200-300cm™", the temperatures required for classical-like behavior are extremely high, thus
quantum effects are expected to be prominent in dendrimers at or below physiological temperatures.

Overall, using a simple model with a single electronic parameter of fixed magnitude ( |J | =300cm™
), our calculations

) and two possible values of vibrational reorganization energy (A=|J| or A=3|J
identified a vast range of time scales in the EET dynamics of G =2 dendrimers at a fixed temperature,
ranging from a 15 fs ultrafast transfer out of the initially excited peripheral segment to a slow 1.5 ps
equilibration, which span two orders of magnitude. These very rich behaviors will undoubtedly become
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even more complex when additional parameters are allowed to vary, inviting additional work on these
fascinating systems.
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