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Abstract The paper presents a collection of results on continuous dependence for solutions to nonlocal
problems under perturbations of data and system parameters. The integral operators appearing in the
systems capture interactions via heterogeneous kernels that exhibit different types of weak singularities,
space dependence, even regions of zero-interaction. The stability results showcase explicit bounds involving
the measure of the domain and of the interaction collar size, nonlocal Poincaré constant, and other param-
eters. In the nonlinear setting the bounds quantify in different L” norms the sensitivity of solutions under
different nonlinearity profiles. The results are validated by numerical simulations showcasing discontinuous
solutions, varying horizons of interactions, and symmetric and heterogeneous kernels.

1 Introduction

The third condition of Hadamard well-posedness, continuous dependence on data, is important for several
reasons in mathematical models. From an application standpoint, whenever data is based on physical
observations it is expected to have some associated measurement errors, due either to inaccessibility or
prohibitive costs. A system where solutions depend continuously on the given data will ensure that the
values of the approximated solution can be found in a close range near the exact solution. In fact, it is
desirable to obtain explicit bounds that quantify the effect that noise or small perturbations in data or
parameters of the system can have on solutions. In numerical simulations, a decrease in the mesh spacing
is anticipated to lead to better approximations of the exact solution at a prescribed rate (i.e., numerical
convergence). However, numerical convergence theorems in general apply only to well-posed mathematical
problems, meaning that continuous dependence of the solution on the data is a necessary (although not
sufficient) condition for numerical convergence.

We will conduct these stability studies in the nonlocal framework which has generated interest due to its
capability to handle discontinuities, both in the input functions themselves, as well as in the domains where
the equations are posed. The operators have an integral form which collect information in a neighborhood of
a point through a kernel of interaction. Nonlocal interactions in a variety of applications have been expressed
through different operators (single, or double convolution-type operators), for which results connecting the
local and nonlocal frameworks have been established [2]/4][111[161[251[261128}[29].
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The results here are formulated on a bounded domain (2, with the linear systems involving a nonlocal
Laplacian operator:

Luu(x) = . (u(y) — u(x))p(z, y)dy, © € 2, (1.1)

where the kernel u(z,y) that records the interaction between points x and y is chosen to be nonnegative and
integrable (in order to allow “rough” inputs). In peridynamics, the kernel is usually chosen to be symmetric,
though for the purposes of this paper, we allow the kernel to be heterogeneous. The kernel allows an added
degree of flexibility in applications, so for different profiles we obtain different dynamics. At a theoretical
level, the selection of a weakly singular function (vs. a highly singular one) allows discontinuous solutions,
while the availability of mathematical tools (such as compactness theorems) is highly reduced. While a
growing literature dedicated to nonlocal Laplacians of this form establishes growing connections between
classical and elliptic-type properties [14], investigations regarding continuous dependence have been more
scarce. Several studies focus on nonlocal models which include fractional operators (where kernels have
nonintegrable singularity); we summarize some of the results below. Sensitivity on system parameters
(such as operator coefficients) has been explored for systems in [7] and [31]. Continuous dependence on
initial conditions for nonlinear fractional convection-diffusion was studied in [3] and for nonlinear nonlocal
diffusion in [6]. The latter also includes some continuous dependence on boundary conditions. The paper [9]
includes results on stability for boundary or initial data, where the nonlocal operator is also nonlinear. In
[10] the focus is on a fractional porous medium equation and shows an explicit dependence of the solution
on a power of solution, fractional derivative, and initial conditions.

For operators with the structure @, the authors of [7] show sensitivity with respect to some kernel
parameters (such as the size of the support of p and its order of singularity s). A second-order evolution
model inspired from the theory of peridynamics is considered in [9], where u is a nonintegrable kernel
(u(z,y) = |y — | 7" 2% with s > 0), and for which the authors show continuity of solutions with respect
to initial data. Both papers [7] and [9] treat the continuous dependence only in the linear setting. To our
knowledge, this is the first paper that includes a comprehensive analysis of dependence on boundary data,
external forcing, kernel, as well as some certain types of nonlinearities, where the nonlocal interactions are
modeled through weakly singular (i.e. integrable) kernels.

The stability results of the paper are provided as estimates of the form

luz — w1l x < Cllbz — b1y

for some C > 0, with appropriate norms X and Y, and where b; denotes data such as the forcing term,
boundary data, or the kernel of the nonlocal operator. It is worth noting that simple examples show that,
in general, continuity with respect to data may fail even in the setting of local linear elliptic operators.
Indeed, consider Hadamard’s example [18] for the classical Laplace equation. The system:

Ugy +uyy =0, ze€R, y>0
u(z,0) =0, uy(z,0) =0, zeR

admits only the solution v(z,y) = 0. Under a small perturbation in the boundary conditions, however, the
system

Upy +uyy =0, z€R, y>0
u™(z,0) = 0,uy (z,0) = %sin(m:)7 z €R,

. . 1 _/m. . .
where n € N, admits solutions u"(z,y) = e v sin(nz) sinh(ny) of unbounded magnitude as n — oo.

In many physical models the nonlocality is exhibited through heterogeneous kernels u(x,y). Most com-
monly, p(z,y) = A(lz — y|), with i a decreasing function with respect to the distance |z — y| between
particles. However, if material properties change with the position, one may require an interaction function
of the form p(z,y) = fi(z, |z — y|), or of even a more general structure. For example, in geophysics models
(see |27] and references within) or medical imaging [32], nonlocal variable fractional operators contain a
(nonintegrable) kernel of the form

1

p(z,y) = W
The nonlocality manifests through the kernel, and also through the boundary conditions which, for the
well-posedness of the system, must be imposed on sets of positive measure (often referred to as “collars”,

when they surround the domain (2). As experimental data is usually measured only on surfaces, the nonlocal



problems raise an additional difficulty as data has to be (artificially) produced on the volumetric boundary;
this is related to the “skin effect”, see [17] for a discussion. Continuous dependence results that quantify the
role that variations in boundary conditions have on solutions would alleviate this problem in the nonlocal
framework.

The nonlinear setting brings in additional complexities, especially in the nonlocal realm, where classical
results (e.g. compactness or embedding theorems, chain rule) are not available. We are able, however,
to show stability results for Lu = f(u) for specific nonlinearities f, as well as for equations of the type
L(h(u)) = f, where h satisfies a lower bound and possesses an invertability property.

The arguments of the paper rely on: (i) the convolution structure of the integral operators and ensuing
properties (such as weighted-mean value formulas, convolution inequalities); (ii) energy-type arguments
enabled by the availability of nonlocal versions of integration by parts theorems, as well as Poincaré in-
equalities, and upper bounds for the Poincaré constant [12]; (iii) estimates that involve the (shrinking) size
of the collar I'.

At the numerical level we conduct investigations that validate the bounds obtained theoretically. Dif-
ferent profiles for forcing terms are considered (sinusoidal, sigmoid), boundary data that is discontinuous
on the collar, kernels that affect their solutions through different singularities and types of heterogeneities.
In the nonlinear case, we perform simulations for varying parameters that control the nonlinearity versus
the linear part of the forcing.

1.1 Contributions of this paper

As mentioned above, the paper aims to provide groundwork studies, both theoretical and numerical, in
stability of solutions to nonlocal systems. More precisely,

e We identify exact dependence of solutions on external forcing and boundary data (through LP estimates)
with two different type of arguments: mean value type theorems and energy estimates.

e We produce sensitivity studies for nonlocal models with heterogeneous kernels. In comparison to the
integration by parts formula as in [4}[19], the heterogeneities bring forth additional terms in integration
by parts arguments, for which additional estimates have to be obtained. In particular, one can extract
dependence on the horizon size § and the degree of (weak) singularity (which were first obtained in [9]);

e For specific nonlinearities we are able to quantify the sensitivity of the solutions to the nonlocal system
with respect to the size of the nonlinearity.

e The numerical studies performed include simulations with discontinuous forcing, discontinuous data
on the collar, different types of kernels (symmetric with varying singularity and various heterogeneous
ones), as well as nonlinear forcing terms. We investigate the stability of the bounds for the continuous
dependence, and the relationship with the theoretical bounds which involve nonlocal Poincaré constant
(estimated using the arguments of [12].

1.2 Outline of the paper

Section 2 of the paper contains preliminaries needed for the proofs, including a list of the main assumptions
for the kernel and tools for analysis (such as inequalities and integration by parts). With the background
material available, in Section 3 we prove several results on continuous dependence and stability in the linear
setting. We consider the nonlinear setting in Section 4 and give various proofs of continuous dependence
and stability in the nonlinear setting where we consider nonlinear Laplacian operators, as well as semilinear
problems with Lipschitz forcing terms. Section 5 presents numerical studies that validate the results from
Sections 3 and 4.

2 Preliminaries and setup
2.1 The setting of nonlocal operators; assumptions and notation

The results of this paper are set in the framework of nonlocal operators, of which the ones needed are
introduced below. The operators are kernel-dependent, which measures the interaction between particles.



As in [11], for functions u: R™ — R and «, p, v:R™ x R™ — R, we define the nonlocal gradient with kernel
« as the two-point operator

Gau(z,y) := [u(y) — u(@)le(z,y), =,y € R™.

The nonlocal Laplacian with kernel p is given by
fuue)i= [ (ulo) ~ uleDulo)dy, = R,

For symmetric kernels (u(z,y) = p(y,x)) one can write £,u = Da(Gau), where the nonlocal divergence of
a two-point function is given by

Dav(e.y)i= | o(em)ale.s) ~ ol a)aly. o) dy

in which case u(z,y) = o?(z,y).

Most results of the paper apply for a large class of heterogeneous kernels p (including anisotropic). In
the most basic case we will impose the assumption:

(M1) p is nonnegative and pu € L'(R™ x R™).

The domain 2 C R" (open, bounded set) is surrounded by a collar set I' that has to be chosen
appropriately. More precisely, given a kernel u, we will impose that the collar satisfies the condition:

(M2) The domain £ (open, bounded set) is surrounded by a collar set I" such that

U supp p(z, )\ 2 CTI.
zes?

Note that we allow z € £2 such that u(zx,-) may not have bounded support.
The coercivity given by the Poincaré inequality (see Lemma@below) will also need the following lower
bound for the kernel in an anulus around the origin. More precisely, for each 0 < & < §, set

A 5(z) == {Bs(z) | ly — x| > ¢}

The following are the primary assumptions that we will use.
(M3) There exists 1 < p < o0, uo > 0, and 0 < € < ¢ such that

w(z,y) > m Ho for all € 2 and y € supp p(z, ) N A. 5(x). (2.1)

_ m|p ’
Our last assumptions require integrability for the z- and y-slices of the kernel.
(M4) For non-symmetric kernels assume:
(i) For a.e. y € R™, suppose that u(-,y) € L*(R™).
(ii) For a.e. x € R™, suppose that u(z,-) € L'(R™).
Under this assumption we may introduce the auxiliary functions
YY) = lpCY)llprwey  and  Au(z) == [lpz, )l L@y (2.2)
1/p 1-1/p
LOO(R"')”)‘MHLOO(RWV
My,p = ”/\H”LOO(R")-

and My p = ||yull y- Notice that if x is symmetric then Yu(y) = Au(z) for z = y and

In applications such as peridynamics |28], a prototypical kernel is given by

p(z,y) =4 |z =yl (2.3)
Oa |ZU - y‘ Z 65

where the parameter ¢ > 0 is called horizon of interaction. For this kernel, the integrability assumption in
(M1) is satisfied if 0 < 8 < n.
Define the symmetric and antisymmetric parts of u by

psym(z,y) = 5lu(e,y) + uly,2)]  and  pasym(@,y) = z[p(z.y) — uly, 2)]. (2.4)
We observe that psym > 0, by assumption (M1). For brevity, we may use

Lsym = Eusyxn and  Gsym =G (2~5)

Hsym *

Clearly, p = ptsym + ftasym and £ = Lsym + Lasym-



2.2 Tools for analysis

Some of the proofs below will employ the “almost” convolution structure of the operator. The results in
our paper do not require u(z,y) = p(r —y), a feature which is amenable to convolution operators. However,
a generalization of Young’s inequality for this type of more general kernel is available through the following
lemma. The following Young’s-type inequality is extracted from [23].

Lemma 2.1. Let 1 < p < oo be given, and suppose that yu, Ay € L°(R™). For each v € LP(2 U I"), define
Tv:R"™ - R" by

To(z) = /Q o)y

Then Tv € LP(2) and
1Tv|lLr 2y < MupllvllLeoury- (2.6)

The nonlocal Laplacian with rotationally symmetric kernel satisfies a list of elliptic-type properties
[14] Prop 3.1], some of which will be generalized and employed here. The following equality, obtained for
convolution kernels in [14], is a simple consequence of the definition of the nonlocal Laplacian and it will
be used in several proofs below:

Lemma 2.2. Let u : 2UI — R be measurable. Then if p satisfies (M1) and Lyu = f in 2, we have the
following property

. 1
||HHL1(R”><1R")

1

— = f(z), z€n. (2.7)
”:U'”Ll(R"XR")

/ u(y)u(z, y)dy —

Note that if |||l mxr)y = 1 (e.g. convolution kernels that are probability distributions) and f(x) = 0, then u
satisfies the weighted mean value property:

u(z) = /R (e, v)dy, =< Q.

As key tools for the proofs of our main results we will employ nonlocal versions for integration by parts
and a Poincaré-type inequality.

Lemma 2.3. Let u,v: 2UI — R be measurable. Then

/ Cpu(z)o(z)de = - / / Geyrmts(,y)Goyrm (. y)dydz + / / ()0 () asyem (2 y) dydz
nuIr QU JQuIr QU JQuIr

Proof. We begin by trivially extending u,v by zero to R". Then
/ Lpu(z)v(z)de = / / — u(@)]v(z) psym (z, y)dydz + 2/ / u(y) — u(@)]v(z) pasym (z, y)dydx
-/ / ) = w(@fo(0) = vy + [ [ ol sy
n Rn R’Vl R'ﬂr

Recalling that v = v =0 on R™ \ (22U I') establishes the lemma. O

Lemma 2.4. Let a measurable function v : R™ x R UI' — R. Fach of the following holds:

(a) Suppose v satisfies both parts of assumption (M4) and that vu, A, € L°(R™). Given Hélder conjugate expo-
nents 1 < p,q < oo, u € LP(2), and v e LI UT), we have

[ [ liee)ivtelduds < dplallollol oo,
Q2 Jeur
(b) Suppose that v € L*(R™ x R™). Given u € L*(2) and v € L*(RUI"), we have

/ / Dlo(@)l[(z,9) dydz < ] @l 22 [0l 22 cor-
.QUF



Proof. Part (a) is a direct consequence of Holder’s inequality and Lemma We write

/ /UF z)|[v(y)||v(z,y)|dydz </ [u(z)] (/ o |v(y)|\u(m,y)dy> da
<tince ([ ([ wvto i) )’

<My qllull ey llvllLaoury-

For part (b), we use Minkowski’s integral inequality instead of Lemma followed by Holder’s inequal-

ity to get
2 3
[ ] @l las <ulzzco) (/ (/ |v<y>uu<x,y)|dy> dx>
oJour o \Jour
<l [ ([ e ra)
nuUIr (9]
< v, )2 @n ey llull L2 (o) lIvl 22 (2ury,
which gives the conclusion. O

A critical tool for obtaining estimates for solutions to nonlocal problems is the nonlocal Poincaré in-
equality, which can be found in several papers (see for example [1], [4], [21], [24]). For our results we will
need upper bounds for the Poincaré constant Cp, which can be obtained from [12] Example 3.2].

Lemma 2.5. [12] Let 1 < p < 00, 0 < e < 4, and an open set Z C A(e,0) := {z € R"|e < |z| < §} be given.
Set I' := Ugen(z+ Z) \ 2. If u is a measurable function over 2 and u =0 a.e. on I', then

/\u )Pda < dwm(” // ue +2) —w@I” )y (2.8)

121 En

where m(Z) is the measure of Z.
In particular, under assumption (M3) and with Z := suppu N A(e,8) we obtain

/Q |u(z)|Pdx < Cp /Q /Supp# lu(z + 2) — u(@)|Pu(z, z + 2)dzdz, (2.9)

diam(2)P

pom(Z)

Remark 2.6. For the numerical results in 5 it will be useful to know the optimal (smallest) Poincaré
constant Cp in (2.9) for p = 2 and u(z,y) = 3672 on 2 = (0,1). As diam(2)? = 1, to minimize Cp we must
maximize pom(Z). From Assumption (M3) we know there exists a po > 0 such that

where Cp 1=

55 = H(2) 2 "Z% z € supp nNA(e, ) = A(e, d).

The largest po results when z is the smallest value in its range, thus po = e2u(z) for p = 2. Note that m(Z2)
is maximized when the measure of Z is the largest, so m(Z) = 2(§ — ¢). The product pom(Z) becomes
3073£%2(§ — ), which achieves a maximal value when & = 2§/3, and thus the optimal Cp = 9/8.

The above conditions guarantee well-posedness of solutions for the linear problems, as well as some
nonlinear problems, as shown in [15].

3 Continuous dependence of the nonlocal boundary value problem in the linear setting

In this section we investigate stability of solutions for the nonlocal Poisson problem

Lyu(z) = f(z), z€L,
{U(#ﬂ:) = g(z), zeT, (3.1)

under perturbations of the data f, g, as well as of the kernel p. Although the setting is linear for now, some
of the methods will extend to the nonlinear setting, which is considered in Section



3.1 Stability with respect to the forcing term
We begin by proving a stability result for solutions under perturbations of the forcing term by using the
mean-value type property.

Theorem 3.1. Consider the nonlocal Poisson equations:

Luui(z) = fi(z), =€,

(3.2)
ui(z) = g(z), zel.

fori=1,2. Givenp € [1,00] and q = 2531 and assume the kernel u is symmetric and satisfies (M1) and (M2),

and in addition, u € LYI(R™ x R™). Further let 2 satisfy

)ﬁ ||#||L<1(Rnxw)

m(£2) 2 o L EED)
”.“'HLl(]R"xR")

<1 (3.3)

Then,
luz —uillL2e () < Cillf2 = fillLze (),

where the constant C1 above is given by

Cq = 1

. (3.4)
1
2 (Il o ey = (2 | o e )

Proof. Using Lemma 2.1 and assumptions (M1)—(M2) for u, we can rewrite (3.2) as

. 1
el 2 gy

/ ui (y)p(z, y)dy — fi(@).
nur

U\ T ETEErre—
il Tl

Then, since p(z,y) = p(y — x), and u1 = uz in R™\ 2 (where we used the fact that u; = ua = g on I' and
we extended all functions trivially by zero outside R™ \ {2), we have for all z € R" that

L J(uz — ) # ()] !

|(f2 = f1)(z)].

[(u2 —u1) ()] <

+
||UHL1(IR"><]R<") ”NHLl(R"XR")

Taking the L"(R™) norm of each side and using Young’s convolution inequality (with % +1= % + %7 1<
p,q,7 < 00) on the first term, and the fact that ug —u1 = fo — f1 = 0 on R™ \ 2 we obtain
Juz —uillLr 2y < ”HHWMHW — L) + ;Ilh — fillLr(2)- (3.5)
H#||L1(R"xﬂ§") ”,“HLl(]R"xR")
Now let r = 2p, so ¢ = 25—51. Hence
luz —uillper(2) < Mwwﬂuz —utllpr2) + T f2 = fillz2r () (3.6)
el r rm xR el r (re xmn)

From Hélder’s inequality we have that

1
luz —willpr (@) < m(2)2 [luz — u1l[L20 (),
so from ([3.6) we obtain

el e (e e
luz — w1l p2n () < m($2)7 LXR;HW — w1l +

1
f2- f .
lallzr e xmn 1o = Bl

HP‘HLl(R"xR”

1 o .
Thus, under the assumption m(2)2» lellagnxemy 9 o ohtain
HHHLl(mnxmn)

1

luz — w12 () < | f2 = fill L2 (-

1
el L1 sy — m(£2) 27 ||l Lo xry



Remark 3.2. Notice that this result usually requires a large collar in order for the condition (3.3) to hold.
Indeed, for a typical peridynamic kernel as given by (2.3), the condition (3.3) becomes
m(Q) < 8P 7T,

so for constant kernels (8 = 0) we need to impose m(£2) < 1. However, Theorem does yield stability
results for all LP norms with p > 2. Additionally, as we will see in the sequel, the proof generalizes to
certain nonlinear problems (see Theorem . Next, with a similar argument, we establish an alternative
to the stability result above that replaces the m(f2) constraint with a restriction on p and allows for an
asymmetric component to the kernel. Alternatively, we can obtain a similar stability result (but only in
L?) by using an energy argument with no requirement on the size of the domain as in Theorem

Theorem 3.3. Consider the nonlocal Poisson equations:

Lyui(x) = fi(x), =€,
{ uz'u(w) =g(z), zel (3.7)

fori=1,2. Let r > 1. If (M1), (M2), and (M4) hold, we have
uz —uillLr(2) < C2llf2 = fillLr (@)

The constant Co above is given by

l oo
Cy e 5l 1(Qur) . (3.8)
1= Mpr|lxllLeour
Proof. From (3.7) we have
w@) = 5oy [ wuedy - 5 fi) = 5 [ wnends - 55 1)
M) Jour Az) A=) Jour A(z)
Subtracting the two solutions and taking the L™ norm, we have
fluz — ul”L"(QuF)
1 r 1/r 1 r 1/r ( )
< _— Us — U x, d dx -+ / —_ — dz> . 3.9
U 55 U 02 = 00ntein)] o)+ ([ syt =0
=:T1 =:ITI
We handle I first. By Holder’s inequality with p,q > 1 and % + % =1 we have
1 r 1/r
([ s ([ 1ee-wwuteia)| a)
nQur ('T) Qur (3 10)

rq 1/rq
dx) .

- \Jaur de> " </nur
</

By Lemma we have

(o

Thus from (3.10), by letting ¢ = 1 (so that r¢ = r and p = co) and denoting by s the Holder conjugate of r
(2 +1=1) we have
1

(/M e (/Mum—m)(y)u(w)\dy)

Next we handle I7. By Holder’s inequality and letting p = oo and ¢ = 1, we have

/Qur ’A(lx) (f2 = f1)(x)

/ (2 — 1) (W), )| dy
nur

/ (2 — un) (W)l )| dy
U

rq 1/rq
dﬂﬂ) < Myrqllue — il pracoury-

luz — w1l (Qur)-

r 1/r 1
dx) < Mpr|~
A Loo(2urI)

dx <

Ilf2 = fillroury-
Lo (QUI)



Thus we have

If2 = fillLreury,
Leo(Qur)

> =

luz —uillLr(oury < Mu,r

1
luz —willLr(oury + H)\
Loo(QUI)

which we can rewrite as

1512 (2ur)

luz —uillLroury < I f2 = fillLr ur)-

1 — Mpyll5 1o (ur)
O

Remark 3.4. Notice that the restriction 1 — MMTH%HLOQ(QUF) > 0 can not be satisfied by kernels n radially
symmetric and positive, as:

1

A

However, one can generate simple examples of kernels that fit this restriction. For example, let p = 2,
n=1, 0<a<band assume that 2 = (a,b). Let p(z,y) = 2 on Bs(z). Then we have
Loo(Q2UI)

b % z+3 1
= max / |x|dx max/ |z|dy max ———————
ye(z—38,2+8) J, we(ab) Jy_s z€(a,b) ffi; ||dy
b2 a? z B 1
= - - = max 20z max ——
ye(:r: 5:1:+5) 2 z€(a,b) z€(a,b) 20x
1 1 1
b2 a2 11 (b* —a?®)z [ b2
= (5 - ?) (206) (ﬁ) =5 )<t

There are a variety of choices for a, b, § that satisfy this restriction. Indeed, take for example, a = 1, then for
b < (—14++/17)/2, we have that there exist § > 0 that satisfy the restriction above as well as § < m(£2) = b—a.
Notice that if instead, we let u(x,y) =y, we have a slightly different restriction since:

1-1/p

||’Y||LOO(]RVL HA”LOO(RH > 1

Leo(QUI)

1
Y

= [|AllLoe mn)
Loe(QUI)

1/2 1/2
I ey I 2 ey

1
Y

o=

1/2 1/2
2 ey I 2

‘ 1

L (2UI)

b 3
= max dx max
(ue(w 5w+5)/ v ) ( (a, b) |y| y) (we(a b) fw+5|y|dy>
= —_— 6
(ye( 75 z+9) (e ))) (zren(%}%) x) <1€(a b) 5:1:)
b

1
2

(@ a0-a} @ (5 ) = (@0} (5) <1,

where a # 0. The restriction above must hold for all z € (a,b), so we impose

2a

(b+06)(b—a))? (;’) <1,

or equivalently,
b? — ab® < 6(ab+ a® — b?). (3.11)

Notice that since the left hand side is always positive, we need ab+a? —b? > 0, which implies a < b < LQ‘/ga,
thus severely restricting the length of the interval (a,b). Additionally, by letting b = aa for a > 1, then
- 3.11) becomes § > 2% (10‘ alg) A simple calculation shows that this inequality implies § > a(a — 1), which is

the length of (a,b). Thus no J exists such that 6 < b — a, so the collar size exceeds the size of the domain,
a similar restriction to that in Theorem [3.1]



Theorem 3.5. Consider the nonlocal Poisson’s equation over the domain 2 C R.

Lyui(z) = fi(z), z€,
{ “iu(x) =9(=), zel (3.12)

fori=1,2. Let g € L>(I'). Then, if (M3) and (M}) are satisfied and 1 > Mysoym,2CPs

Cp
_ < _
luz —uillz2(2) < 7= MMW’QCPHE fillzz o)

where Cp is the Poincaré constant from [12].

Proof. Multiplying £, (u2 —u1) by uz — u1, integrating, and using the notation of (2.5) we have

/Q(m(ﬂc) —u1(x))Ly(uz —u1)(z)de = — /Q /Q[gsym(w — un)2dyda
+ /ﬂ /Q [uz(y) — u1(y)][uz(z) — u1 (@) pasym (z, y)dydz.

By Holder’s inequality we have

/ / 2 () — w1 ()] [ (&) — 01 (&) sasym (& ) dydl
2 J0N

< lluz —wllzae) (/Q </Q IU2(y)—ul(y)l/utasym(vﬂ,y)ldy>2dag>é (3.13)

2
< My 2lluz — willz2(0).-

For the last line, Lemma [2.1|was used and vz asym € L (2UT") is defined by Yasym (y) := ||ttasym (-, )|l L1 (rn)-
Then from nonlocal Poincaré’s inequality, we have that

luz — w1722y < CpllGsym(uz — u1)| 20y = CP/ / [Geym (u — u1)]*dyda
olo

< ‘cp | ] r2t0) = )u2(e) = w10z )y

(3.14)
T \op [ wnle) = @) (a2 — ) )
nQur

< CpMy, 2lluz = w1]Z20) + Cp

/ (uz(z) —ur(z))Ly(uz — ur)(z)dz
2

The second term is bounded above (using Holder’s inequality) by Cp|luz — u1llr2(o)llf2 = fillL2(2)-
And so

uz — ur[|F2(2) < CpMpupym 2lluz — urlliz (o) + Cplluz — uillz2(o)llf2 = fillz2 (o).

Rearranging, we have

Cp

luz —willp2(0y <
=T My 2

CPHfz — fillz2()-
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3.2 Continuous Dependence on the Collar Term

For the continuous dependence on the collar, we only consider the energy argument. Following the “mean
value” type argument yields a condition equivalent to needing support for the kernel to be larger than both
the domain and the collar, rendering the result useless.

Corollary 3.6. Consider the nonlocal Poisson’s equation over the domain 2 C R.

Lyui(x) = f(x), €,
{ uz'u(w) = gi(z), zel. (3.15)

fori=1,2. Let g € L*(I"). Then, if (M3) and (M}) are satisfied and 1 > My, 2Cp,

Cp
_ < — I —
luz = uillL2(ur) < 7= M. 2Cr 1£4(g2 = 91)ll 22 (2ur)

where Cp is the Poincaré constant from [12].

Proof. We begin by considering w; = u; — g;. We extend g; by 0 to £, since g € L?(I"). Then by linearity of
the nonlocal Laplacian (3.15) with the function w; is

Lpw; = f—Lpgi, €82,
w; =0, zel.

From here, we apply Theorem 3.3 to have

Cp
luz —uillz2aur) < 757 a5 C 1£n92 — Lugillz2(our)-
Hasym s

Then since the support of g is I', we yield

Cp
lez = wallz2aur) < Wllﬁu(gz —gV)ll2(r)-
O
Theorem 3.7. Consider the nonlocal Poisson’s equation over the domain 2 C R.
Lyui(z) = f(z), z€R
’ ’ 3.16
{Ui($):9i($), zel. ( )

fori=1,2. Then, if (M3) and (M4) are satisfied and 1 > CpM,,,,. 2,

luz —uillL2() < Cllgz — g1ll2(r),

CP”MHLZ(QXF)

where C' = T—Cp i,

asym-2

Proof. Define v := uj in 2 and v := us in I'. Notice that
/ (un(&) — v(@)) L (w2 — v) (x)dz = / (un() — w1 (2))Lp (2 — v)()de
uIr 0
- / (us(z) — w1 (2)) / (92(v) — g1 () u(er, )y
0N I

<llg2 = g1llL2(myllpllLz (2xrylluz — uillLz ()

Multiplying £, (u2 — v) by u2 — v and integrating, we have
/ (un() — v(2)) Lz — v) (x)de = — / / [Goyrm (2 — v) 2dyd
nQurIr nuUIr Jult
+ / / [u2() — v(u)][u2(2) — 0(z) tasym (2, y)dyd.
QU J Ul

11



Here Gsym = G /iy - Similar to (3.13), we have

[t = o)ua(e) — o(@)psin o)
nuUI JuIr

<

/ / [2() — 1 ()] 2 (%) — 1 () asyom (2, )y
02 J0N

2
< Myym 2llue — willz2(0)-

Then from nonlocal Poincaré’s inequality (since ug —v =0 on I'), we have that

2 . 2
luz — u1|lz2(0) = lluz —vl[72(0)

<Cp [ [ wa(s) = o)llua(a) = o) pneyn w00y +Cp [ (un(o) = o)) (s = 0}

Qur
(3.17)
2
< CpMy,ym2lluz —uillz2(0) + Cpllg2 — g1llL2 (el L2 (ox rylluz — uill L2 o)-
Consequently,
luz — urllZe(0) < CpMu,ym2luz —uillfz(o) + Cprllgz — g1l L2y il 2 ox rylluz — uall2()-
Rearranging, we have
lluz — uil|z2 <M” — g1l
2 Hirz(2) = 1-CpMy, ., 92 = gLy
O

3.3 Stability with Changes in the Kernel

Lastly we consider the stability of the solution due to perturbations of the kernel, which alters the operator
itself. From the following result, we have both the L? and the L® norms.

To provide a concise statement for our next theorem, we introduce some supplementary notation.
Recall the definition for A, in (2.2). For convenience, we will use A; = Ay,. Define the normalized kernels
ﬁi c Ll(Rn x Rn) by

~ . /\i(at)flpi(m,y), T e
fi(z,y) = { 0 L CR™\ 0. (3.18)
(Note that, by assumption (M3), we find \;(x) > 0 for each z € £2). We will also write

Vi =V VL2 = Via—fins  Viasym = Vim0 Nasym = Ag, -
Theorem 3.8. Consider the nonlocal Poisson’s equation over the domain {2 C R.

Lpuui(z) = f(x), =€,
{uiu(m) = g(z), vel. (3.19)

fori=1,2. Define K = ()\—12 - )\%) Suppose that p; satisfies (M3) and (M}).

(a) If My := |[F2,asym || oo (&) [IX2,a8yml| oo (rn) < Cp', then

C - ~ ~
2 = w2y < ——F |20 2ll ey A2 = Rl zoeeny Nl 2oy + 1Kz Il | -

1—CpMs
(b) If p; € L*(R™ x R™) and ||fiz,asyml £2(rn xrny < Cp ', then

Cp
Cp|lr2,asyml| L2 (R xR7)

luz —utllz2(2) < 7= (2072 — Bl 2 en ey lutll L2 oury + 1K e @) 1 Fll 22 (2)] -

12



Proof. Note K € L°°(£2) by (M4) and the normalized kernels ;1;, i = 1, 2 satisfy (M4). First, we establish a
simple identity that follows from the Poisson equation. We can rewrite (3.19) as

) ) ()
o) = [ W=

Using the definition of K, we may write

us(z) — un(z) = /Q  ualu)ia(e. )y / wr ()i (2, 9)dy — K (@) ()

Qur

— [ (w2) - e ate)ds =~ [ wa)(en) - Fale)dy - K@) f(o)
2 nQur
Rearranging, we obtain
/ u1(y) (g (z,y) — p2(z, y))dy = / (u2(y) — ur(y)pz(2, y)dy — (u2(z) —ui(z) + K(2) f(2))
Qur (9]

= Ly, (u2 —u1) — K(x) f(z),

and thus
Ly (2 — u1)(z) = /Q ) ) = B )y + K (@) () (3.20)

We next employ the nonlocal Poincaré inequality to bound |[uz — u1| 2(0). Multiplying £z, (u2 —u1)
with us —u1 and using Lemma, [2.3] produces

/Qur(w(x) —u1 ()L, (w2 — wr)(w)de = — /QUF /Qur [gg,sym(uz - u1)(06)}2 dydx
+ /{ZUF /QUF[UQ(?/) — w1 (y)][uz(z) — w1 (z)]p2,asym (z, y)dydz.

Here we used ég,sym = Q\/ﬁz% and the fact that ug —u; = 0 on I'. Rearranging and using Lemma we

obtain

luz = wrl|72(2) < CplIG2,sym(uz — w1) |22 () = Cp / / Ga,5ym (u2 — u1)]*dydz (3.21)
2J0

— Cp /Q /Q [u2(y) — w1 (1) [u2 () — ua ()], asym (2, ¥) dyde

=:1
_op / (uz(@) — ua (2)) L, (uz — 1) (2)der.
17
=11
For I, Lemma a) provides
11| < |72,asym [l Loo (&) A2, asyml| Lo () lluz — U1||%2(Q) = Malluz — UlH%‘Z(Q)» (3.22)
while Lemma b) gives us
| < [li22,asym | L2 (Rn xRy [Jue — u1||2L2(n)- (3.23)

Note that 7; € L?(R"™ x R™) by assumption (b) of the Theorem.
For 11, we use (3.20) and get

11 < / / iz () — un (@) [ua () [ (2 ) — Fiz e ) |y + / jua () — w1 (@) |6 ()] £ () |dz
2 Jur (94
< /Q /Q fuz () — wn (@) ua (9) [ (2 ) — Fio )|y + K o (|l 2o luz — w22 (2)-
ul’
Similarly Lemma [2.4] yields either

111 < A1,2)l Loo gy A2 = Al oo ey luall 22 ooy lluz — ull 22 oy + 1K poo () | Il L2y luz —wa [l 2y (3.24)
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or
[IT] < ||z — pall L2 @e xeey vt L2 coury llue — willp2 @) + 1Kl pe 2y [1f L2y luz — uill L2 o) (3.25)

Finally, we now combine the bounds for I and I7 to conclude the proof. Assuming My < C;l, we may
absorb the bound for |I| given by (3.22) into the lower bound in (3.21). Then using (3.24), we get

2 Cp ~ VY
luz —uallz2(0) < T oih {”’YLQHLW(R")”)‘Q = Mllpes@myllutllzourylluz — uillpz(o)
— Upii2

1Kl e () 1222 luz = willpagey | -

The part (a) of the theorem follows upon dividing both sides of the inequality by [luz — u1l/z2(g). The
argument for part (b) is similar, using (3.23) and (3.25). O

Remark 3.9. As a consequence of Theorem [3.8] we can extract the dependence of nonlocal solutions on
different features of the kernel, such as the size of the support of interaction and degree of (integrable)
singularity. Let p1, 12 be symmetric kernels with support in Bg, (), respectively in Bs,(z), and such that

0<m1<H/L7;||L1(BJi)<m2<OO, i=1,2.
Then

llug — uill 22y < Cp [2l82 — A1l L2 @e sz vt ll 2 coury + 1K L 2y 1 flL2(2)]

—1 —1
= Cllp2llmllLr s,y — mallpz Iy By 2@ scem) Il i sy 2l i s, )

-1 -1
+ Ol s, = el ey | Il L s, 121 s,

where C depends on the Poincaré constant, u; and f. It can be easily shown that if the kernels are simply
the characteristic functions of the balls of radii 01, respectively d2, (i.e. p1(z,y) = xB;, (x = y), p2(2,y) =
XB;, (T —y)), then one can show that for horizons 41,02 bounded below (m < 41 < d2, for some m > 0) we
have

|uz —u1llL2(0) < C(m)[d2 — d1].

The results of |7, Section 3, Prop. 3.2] also prescribe that solutions have a Lipschitz variation with respect
to the size of ¢.

4 Continuous Dependence of the Nonlocal Boundary Value Problem in the Nonlinear Setting

We consider two different instances of nonlinearities in terms of continuous dependence. The first is a
direct result of Theorem 3.1 and includes nonlinearites inside the nonlocal Laplacian and yields continuous
dependence on the forcing term.

Corollary 4.1. Consider the problem

/ (h(ui(y)) — h(ui(z)))u(z,y)dy = fi(x), z €,
Qur (4.1)
ui(m):g(aj)v el

for i = 1,2, where the nonlinearity h satisfies that |z2 — z1| < C|h(z2) — h(z1)|. Let r > 1. Let yu, Ay € L= (R™),
we have

lur —uellLr < Clf1 = f2llLr-

The constant C' above is given by

1
511z (U

C 1= Mpurllxlleeoury

14



Proof. Let h satisfy that |22 — 21| < |h(22) — h(21)] and define v; := h(u;). Then we are instead considering
the problem

(vi(y) —vi(z))p(z, y)dy = fi(z), =z€ L, 43
oQur (4.3)
vi(z) = h(g(z)), rel.
for 4 = 1,2. Using Theorem we then have
lvz = v1llpr(2y < Clife = fillor()-

And so, since ||uz — uil|r2e < ||h(u2) — h(u1)] 120, we have that

luz —uillLr(2) < Cllf2 — fillLr(@)-

Corollary 4.2. Consider the problem

| (htus) = bty = fiw). e 2 )

uz(L:;) = g(x), zel.

for i = 1,2, where the nonlinearity h satisfies that |22 — 21| < Clh(22) — h(z1)|. Let g € L*(I"). Then, if (M3)
and (M4) are satisfied and 1 > My, 2Cp,

Cp
_ < ____zr _
luz —uillp2(0) < . MHMWQCPHfz fillzz )

where Cp is the Poincaré constant from [12].

Proof. Let h satisfy that |z2 — z1| < |h(22) — h(21)] and define v; := h(u;). Then we are instead considering
the problem

(iy) — vi(@)) (@, y)dy = fi(z), =€, A5
our (4.5)
vi(z) = h(g(x)), zel.
for i = 1,2. Using the above Theorem we then have
lve = villz2(0) < Cellfe = fillL2 ()

And so, since ||juz — u1l|z20 < ||h(u2) — h(u1)||f20, we have that

luz —uillp2e () < Cpllf2 = fill2r (o)

Example 4.3. Consider the following nonlocal boundary value problem:

/ (sin(u(y)) — sin(u(z)))u(z,y)dy = fi(x), =z € 2,
(=5,149)
() = 9(z). rer

From Corollaries[{.1 and[].2, we know that

lur —uz2|lLr < Cllf1 = fallLr-

The constant C above is given by
1
I51lze (2ur)

T 1= Myl 3l our)
or if (M3) and (M4) are satisfied and 1 > My, 2Cp,

Cp
_ < ____xPr _
luz —uillp2(0) < 1=, 20 Il f2 = fill2 ()

where Cp is the Poincaré constant from [12].
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In the following we will study continuous dependence of solutions on the profiles of nonlinearities
appearing in the forcing term.

Theorem 4.4. Consider the nonlocal systems

Luui(x) = fi(z,ui(z)), =z €0,
{ ulu(x) = g(z), x€eT. (4.7)

fori=1,2, where f1, fo are Lipschitz in u, i.e. there exist L1, Lo > 0 such that
|fi(w,u) — fi(z,v)| < Li(@)lu —v|, z,u,v€eR.

Then if (M3) and (M4) are satisfied and 1 — My, .. 2Cp — L1Cp > 0, where Cp is the Poincaré constant and
where L1 (z) is the Lipschitz constant associated with f1 with respect to the first argument and L1 = ||L1][ 11 (o)

luz —uillz(2y < Cllif2 = fillLe (@xr)

_ Cp
where C = =M, 2Cr—T:Cr -
Proof. From Theorem 3.5, we have that

Cp
luz —ul[z2(0) < 101

Hasym 2

cn 1 f2(u2() = f1(ur ()l L2 (o)
Using the boundedness of f1, fo we have
[f2(uz(-)) = fr(ua (D) llzze) < I1f205u2() = frlhu2()llLze) + 110 u2() = filwa())lzze)
<|lf2 = fillpeery + 11 G u2() = frlwa ()l 22 0)-
Since f; is Lipschitz in u, we have
[f2(u2() = fr(ur(Dllz2ce) < 12 = fillper) + 1L1 () (u2(-) —u1 ()220
< |lf2 = fillLeo(2r) + Lalluz — uil|L2(0)-

Hence

C
luz = williaa) < 757 ——a= (12 = fillqom + Lilluz = w2 ).

- MlLasyrrl ,2 OP
or

Cp
- < - . .
luz —utllz2(2) < 7= My 2Cp L10p||f2 fillLee (2,r)

Since 1 — My,.....2Cp — L1Cp > 0, the conclusion giving sensitivity of solutions with respect to forcing
follows. =

5 Numerical Results

In this section we numerically solve

x40
| - e = 1) weo (5.12)

—5
u(z) = g(x) zel (5.1b)

to illustrate the bounds presented thus far. The domain §2 is chosen to be (0,1), so that 2 U I" for all

examples is (—d,1 + §). All numerical results are computed using the discontinuous Galerkin discretizaton
described in [8] and using a uniform mesh spacing of h = 1/200.
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05
2r e=0
e=1
e=2
151 e=3
e=4
1k
05
0 —'w/
021
-0.5 L L L L L L L L L L . L L
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 0.35 0.4 0.45 0.5 0.55 0.6 0.65
(a) (b)
Tue —uoll
€ lfe = follpz | llue —wollp2 ﬁ
1.0 1.95421 0.0385269 0.019715
2.0 1.98031 0.0150158 0.0075826
3.0 1.99662 0.013236 0.0066292
4.0 1.98945 0.015445 0.0077636

(©)

Fig. 1: Numerical results for the example of §5.1.1} (a): Solutions wuc(z) over (—4,1 + §) for various e
using the piecewise sinusoidal forcing function (5.3). (b): A zoom in to show the discontinuity at = 0.5.
(c): Numerical evaluation of the terms in for various e. For these particular examples the ratio in the
rightmost column in the table is less than 9/8, the Poincaré constant in , showing that is satisfied.

5.1 Sensitivity with respect to perturbations in the forcing term

We explore how perturbations to the the right-hand side f(z) perturb the solution. Given the ability of
nonlocal methods to handle discontinuous solutions, we consider two separate forcing functions that will
produce discontinuous solutions. From Theorem we know that if 1 > M, . o Cp, then

Cp

_ < . zr _
luz —utllz2(2) < 7 _M#%WHQCPHfz fillzz(a)s
where Cp is the Poincaré constant from Lemma If we select a symmetric kernel, then M, .. 2 =0 and
the above inequality reduces to
lue —uillp2(2y < Cpllf2 — fillLz()- (5.2)

For both of the following cases, as in Remark we let us = 3672 on Bs(zx), so Cp = % for all § > 0. We
will compute the norms in (5.2) and verify that it is satisfied numerically for these specific examples.

5.1.1 Discontinuous forcing sinusoidal perturbation

In this example § = 0.2, the collar conditions are g(z) = 2% in (—=§,0) and g(z) = z* in (1,14 ), and the
forcing function is
z <0.5

5.3
z > 0.5. (5:3)

) 6z + 4sin(20ex)
fe(@) = { 1222

We study the sensitivity of the solutions on the forcing term by varying the parameter e. Note that fe—o(z)
is continuous, but fe(z) is not continuous for € > 0. In this example a discontinuity in the forcing function
is sufficient to force a discontinuity in the solution. In Figure we plot ue(x) for various e, and in Table
E we show numerically that is satisfied for this example.
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02 0 02 04 06 08 1 12 045 046 047 048 049 05 051 052 053 0.5¢
(a) (b)
Tue —uoll L2
e | Ife = follgz | llue —wollr2 | r—=pyry

0.1 0.194463 0.00333435 0.0171464
0.3 0.274272 0.00705121 0.0257089
0.3 0.326465 0.00937336 0.0287117
0.4 0.360981 0.0108048 0.0299318

(©)

Fig. 2: Numerical results for the example of (a): Solutions ue(x) over (—4§,1 + §) for various € using
the sigmoid forcing function ((5.4). (b): A zoom in to show the discontinuity at = = 0.5. (c): Numerical
evaluation of the terms in or various e. For these particular examples the ratio in the rightmost
column in the table is less than 9/8, the Poincaré constant in , showing that is satisfied.

5.1.2 Sigmoid Forcing

In this example § = 0.2, the collar conditions are g(z) =z — 0.5 in (—4,0) and g(z) = M in (1,14 9),
and the forcing function is

x—0.5
e €
fa(ﬂ?) = z—0.5 * (54)
1+e =

We study the sensitivity of the solutions on the forcing term by varying the parameter €. Note that fe—o(z)
is discontinuous, but f:(z) is continuous for € > 0. In Figure we plot ue(x) for various e, and in Table
[2¢/ we show numerically that (5.2) is satisfied for this example.

5.2 Sensitivity with respect to perturbations in the boundary data

From Theorem (3.7, we know that if 1 > M, . 2Cp, then

Cpllullzz(exr)

m”% - 91HL2(F)7 (5.5)

luz —url[r2(0) <

where Cp is the Poincaré constant from [12]. If we select symmetric kernels, M,,,. .. > = 0, then the above
inequality reduces to

lluz —willpz(2) < Cpllullrzexryllgz — g1llLz(ry- (5.6)
Let p(z,y) =362 on Bs(x) so that Cp = 3 for all § > 0 as in Remark We observe that [|ullz2(oxr) =

6672, We chose the horizon § = 0.1, which means Cp||u|l L2, our constant of proportionality, becomes 675.
With the forcing given by f(z) = 1222, we vary parameter ¢ > 0 and consider the collar data

)1, ze(-6,—¢)
9e(@) = { wt, ze[-5 00U, 1+6) (57)
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— — Mue—usly2
€ llge — gsll L2 lue — usll g2 Tge—gsll 2
0.075 0.158104 0.160571 1.0156
0.05 0.223598 0.253197 1.13237
0.025 0.273854 0.400205 1.46138
05+ 0 0.316221 0.65106 2.05887
(b)
\
\L
0 |
-0.2 0 1.2

Fig. 3: Numerical results for the example of (a): Solutions ue(z) over (4,1 + §) for various e using
the collar given by (5.7). (b): Numerical evaluation of the terms in (5.6)) for various e. For these particular
examples the ratio in the rightmost column in the table is less than 675, showing that (5.6) is satisfied.

Ife =6 ore = 0 then g.—s(x) and ge—o(z) are continuous, but otherwise g¢ () is discontinuous. We illustrate
the sensitivity of the solutions on the boundary data by varying the parameter . In Figure we plot
ue(z) for various e, and in Table @ we show numerically that (5.6) is satisfied for this example.

5.3 Sensitivity with respect to perturbations in the kernel

Recalling Theorem it was proven that the analytical bound for perturbations in the kernel is

2 Cp -~
Uy — Ul < = ul||re o — u1llr2 + | K|| o0 (rm) | f | 12 R 5.8
[ 12202 T Cr il ors) (luall 2y li2 = Bille(ex o) + 1Kl L@yl fllL2(2)) » - (5:8)
where M = ‘# ———| and j; = X . Note that if we allow only symmetric kernels, our
2l 1 lleallpa ||H1”L1(QUF)
bound becomes
luz — w120y < Cp (lwallpz(oy iz — fallr2(ox 2) + 1K Lo @ 1l L2 (o)) - (5.9)

5.8.1 Sensitivity with respect to singularity in the kernel

We study the sensitivity of the solutions upon the the kernel pe(z,y) = 633%55|1: —y|™% as we vary € > 0. We
choose the horizon § = 0.2 > 0, let the forcing function be given by f(z) = 1222, and the collar conditions
be given by g(x) = 2*. We solve numerically for several values of the parameter ¢ and compare them as
perturbation to the solution computed using the constant kernel (i.e., ¢ = 0). The numerical solutions
for this case are unremarkable, so we show only the tabular data in Table |1} demonstrating that is
satisfied for this example. Here Cp = 271(2 —¢)*2(3 —¢)?~=.

5.8.2 Heterogeneous kernel in x

Next we consider a heterogeneous kernel. For varying parameter ¢ > 0 and given horizon § = 0.2, let the
forcing be given by f(z) = 1222, and the collar data be given by g(z) = z*. We consider the kernel

L(4—2)e® |y—x|<$
w(z,y) = 5 ) . | = (5.10)
0, otherwise.
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el o | B |luc—uolpe [ =N
0.2 | 1.1076 | 0.117579 | 0.000215331 0.00120516
0.4 | 1.0873 | 0.300229 | 0.000447169 | 0.000987976
0.6 | 1.0634 | 0.618071 | 0.000697213 | 0.000756179
0.8 | 1.0348 1.00269 0.000967517 | 0.000651402

Table 1: Numerical results for the example of §5.3.1 Numerical evaluation of the terms in (5.9) for various
¢, where we have defined B := 2|luoll2(@)lltiz — p1llz2(2x @) + 1Kl Lo @)l flL2(0)- For these particular
examples the ratio in the rightmost column in the table is less than the Poincaré constant given in the

second column.
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e=0.3
151 e=0.4
e=0.5
1k
05F
0
0.2 1.2

— —~ Ue —U
¢ | ot | Al | KMl | e —uollze | Pl
0.2 0.102950 0.0105405 93.7685 0.0369836 0.00039434
0.3 0.0908265 0.0210802 197.5639 0.0724964 0.00036694
0.4 0.0801798 0.0316185 312.4746 0.106577 0.00034106
0.5 0.0708216 0.0421549 439.7065 0.139266 0.00031671

(b)

Fig. 4: Numerical results for the example of (a): Solutions ue(z) over (—6,1+ 6) for various & found
by varying ¢ in @ (b)Numerical evaluation of the terms in for various e, where we have defined
B = |luill2(@yllpe — mllez(oxo) + 1K e @) fllL2(@)- For these particular examples the ratio in the
rightmost column is less than the ratio in the second column, demonstrating that is satisfied for this
example.

As this kernel is nonsymmetric, we must compute the terms in . We can compute analytically that
Il fllz2(2) = 5.3666. We define the unperturbed solution w; as the solution computed when ¢ = 0.1, and
compute numerically that [|u1]lz2(oury = 0.38937. In Figure we plot ue(z) for various ¢, and in Table
we show numerically that is satisfied for this example.

5.8.8 Spatially Discontinuous Domain

We consider a problem where the material in the region = := (0.5 —¢,0.5+¢) has been removed from 2, but
where 2e < 6 = 0.2, so that the remaining material is still self-connected. This can be realized by removing
all bonds between 2 and =, which manifests as a spatially heterogeneous kernel. We study the sensitivity
of the solution based on the size of the region removed. We utilize the kernel u(z,y) = 3673, except in the
noted regions where bonds have been removed. We choose a forcing function f(z) = 0 so that ||f||z2(2) =0
and let g(z) = 2. When ¢ = 0, we have continuity and [[uol|z2() = 0.57735.

If we consider this problem as instance of a 1D nonlocal elastic bar where a portion of the bar has been
excised, the region near the excised portion will have a reduced density of bonds, which will manifest as
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0.01 0.125 0.576929 0.0715597 0.03550
0.02 0.25 0.577764 0.102999 0.0367
0.03 0.375 0.580346 0.129405 0.0385
0.04 0.5 0.585365 0.154908 0.0410

(©)

Fig. 5: Numerical results for the example of §5.3.3| (a): Solutions us(z) over (—8,1 + &) for various e
found by varying the size of the discontinuity in (5.1). (b): A zoom in to show the differences between
the solutions. (c¢): Numerical evaluation of the terms in (5.11) for various §, where we have defined B :=
2|luzllr2(@uryllfe — f1llL2 (rn xrey- For these particular examples the ratio in the rightmost column in the
table is less than 9/8, the Poincare constant in @, showing that (5.11) is satisfied.

a locally reduced stiffness. Inspecting Figure we see that the more material that is removed (i.e., the
larger the value of ¢) the steeper the slope of the displacement for the remaining material around = = 0.5,
which is consistent with a reduced stiffness in that region.

Note from Theorem we have if p; € L*(R™ x R™) and [121,asymll 22 (Rn xR7) < Cp', then

Cp
Cpllf1,asymll L2 (g7 xrn)

lug — url|72 (o) < . (172 = Bl 2@ xrey w2l L2coury + 1K e ()1 fllL2(2)] -

If we let p1 = pe=o = 3573 (with no bonds removed), we satisfy the restriction as p1,asym = 0. Further,
since f = 0, we have the bound

luz — w12y < Cplluzllrzcouryllfiz — i ll L2 e xzny- (5.11)

5.4 Nonlinear Forcing

We consider a nonlinear variation of (5.1 with right-hand side

__ ,narctanu + 0
fn,0($: U) = 22327“’ (5-12)
parameterized by 1,0 > 0, and study the sensitivity of solutions to perturbations of these parameters.
This is a slightly altered variation of the example from [15] Section 5.1], for which well-posedness and
regularity of solution follow with simple alterations from the arguments presented in [15]. We choose the

kernel p(z,y) = 363, let 6 = 0.2, and set the collar condition g(x) = 0.
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— u —Uu
m2 | Wae = Frallis | lume —umlle | 2=yt 0 | o —folli [ luo, —uo, 2 | oz
1.0 3.14159 0.0159504 0.00507719 4.5 0.5 0.0829955 0.165991
2.0 6.28319 0.0291401 0.00463779 4.0 1 0.165959 0.165959
3.0 9.42478 0.0402251 0.00426802 3.5 1.5 0.248893 0.165928
4.0 12.5664 0.0496702 0.00395263 3.0 2 0.331797 0.165899

() (d)

Fig. 6: Numerical results for the examples of §5.4.1] and §5.4.2] (a): Solutions w,(z) over (—8,1 + &) for
various 7 using the nonlinear forcing function (5.12)). (b): Solutions ug(z) over (—§,1+4) for various 6 using
the nonlinear forcing function (5.12). (c¢): Numerical evaluation of the terms in (5.13) for various n. (d):
Numerical evaluation of the terms in for various 6.

5.4.1 Sensitivity to perturbations in n

In this example we fix # = 1 and consider perturbations in the solution by varying n. We denote n; = 0 as
the unperturbed solution (i.e., uy, (z) denotes the solution for n = 0). From Theorem we know that a
change in the nonlinearity induces a variation in the solution with a bound given by

luz —willz2(oury < Cllf2 = fillLe(our), (5.13)

Cp . . .
where C = . Since p(z,y) is symmetric, the constant reduces to C =
1 — MiM2Cp||[Yasym| L () — CpLe2 (@9)
10%. The condition C’;l > L1 = 2m = 0 (71 = 0 removes the nonlinearity in the right-hand-side)
—Cpla

is clearly satisfied and so C = Cp. In Figure we plot solutions for various 7, and in Table @ we show
numerically that ([5.13) is satisfied for this example.

5.4.2 Sensitivity to perturbations in 0

In this example we fix n = 1/9, and consider perturbations in the solution by varying 6. We denote 61 =5
as the unperturbed solution (i.e., up, (z) denotes the solution for § = 5). Referring again to the bound

(5.13), since u(z,y) is symmetric, the constant in this example reduces to C' = %
- Cpln

C’;l > L1 = 2m = 2/9, and thus C = 3/2. In Figure @We plot solutions for various @, and in Table |6d we
show numerically that (5.13) is satisfied for this example.

. The condition

5.4.8 An exponential kernel

The magnitude of the constant C' in bounds of the form (5.13) depends on the conditioning of the operator,
which depends strongly on the choice of kernel. In this example we repeat the analysis of §5.4.1] and §5.4.2]
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— u —Uu
m2 | Wae = Frallis | lume —umlle | 2=yt 0 | oo~ foulee | o, —us,llie | g
0.1 0.314159 15.6436 49.7952 0.9 0.00505439 0.254709 50.3935
0.2 0.628319 31.2032 49.6615 0.8 0.00954429 0.48097 50.3935
0.3 0.942478 46.6088 49.4534 0.7 0.0135794 0.684312 50.3935
0.4 1.25664 61.69 49.0913 0.6 0.0172518 0.869377 50.3935

()

(d)

Fig. 7: Numerical results for the example of This example uses the exponential kernel of (5.14);
compare against solutions using a constant kernel in Figure [6] (a): Solutions u,(z) over (—4,1 + &) for
various n using the nonlinear forcing function with the exponential kernel. (b): Solutions ug(z)
over (—§,1+ §) for various 6 using the nonlinear forcing function with the exponential kernel. (c):
Numerical evaluation of the terms in for various 7. (d): Numerical evaluation of the terms in @
for various 6.

with the kernel

—(z—y)?
cse , lr—y| <é
1z, y) ={ ’ =~ (5.14)

O’ ‘x_y|267

where c; is chosen such that ||u||z1(g) = 1. Results are shown in Figure Specifically, observe the magnitude
of the solution in Figures[7a] and [7h is substantially greater than in Figures [6a] and which is consistent
with the rightmost columns in Tables E and @ being substantially larger than the rightmost columns of
Tables [6¢ and [6d]

6 Conclusions and Future Work

The results proven show explicit dependence of solutions to linear and nonlinear nonlocal systems with
respect to forcing terms (including nonlinear Lipschitz forcing), Dirichlet boundary conditions, and different
choices for kernels. In the case of heterogeneous kernels, additional restrictions are needed in order to
accommodate the explicit dependence on space variables.

The numerical studies validate the theoretical bounds, which are based on upper bounds for the Poincaré
constant. The simulations, however, seem to suggest that the theoretical bounds obtained for the sensitivity
results are not optimal, hinting at an open research direction.

Extensions of the theoretical results to a linear vector-valued setting is possible. A key component of
the continuous dependence results is a Poincaré-type inequality (see @,@, and ) In the linear
state-based peridynamics setting [30], for example, this can be provided by the Poincaré-Korn inequality
in [20]. With this inequality, straightforward analogues of Theorems and can be established. Theo-
retical studies in the fully nonlinear vectorial case are notoriously difficult, as formation of singularities/lack
of regularity and inextricably mixing of the system components beset the analysis of these problems with
major obstacles [13l[22]. Generalizations of the numerical work is a nontrivial undertaking and the subject
of future work, as analysis of these properties for 3D solid mechanics is in general quite difficult. In the
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nonlinear setting, without very restrictive assumptions, there are substantial obstacles. In the classical case,
a rich literature exists [5].

Future work will also consider Neumann (or flux-type), as well as mixed-type (possibly nonlinear)
boundary conditions are an expected future step in understanding the effect that data imposed on collar
(however small) may have on solutions. Finally, we are exploring stability results for higher-order systems,
in particular, involving a nonlocal biharmonic operator.

7 Acknowledgements

MLP was supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Com-
puting Research under the Physics-Informed Learning Machines for Multiscale and Multiphysics Problems
(PhILMs) project.Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective
views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S.
Department of Energy or the United States Government.

8 Data availability

The datasets generated during and /or analysed during the current study are available from the correspond-
ing author on reasonable request.

References

1. B. AkSOYLU AND M. L. PARKS, Variational theory and domain decomposition for monlocal problems, Applied Mathe-
matics and Computation, 217 (2011), pp. 6498-6515.

2. B. AvraLl K. Liu, AND M. GUNZBURGER, A generalized nonlocal vector calculus, Zeitschrift fiir angewandte Mathematik
und Physik, 66 (2015), pp. 2807-2828.

3. N. AuBAuDp, S. CIrANI, AND E. R. JAKOBSEN, Continuous dependence estimates for monlinear fractional convection-
diffusion equations, STAM Journal on Mathematical Analysis, 44 (2012), pp. 603-632.

4. F. ANDREU-VAILLO, J. M. MazON, J. D. Rossi, AND J. J. TOLEDO-MELERO, Nonlocal diffusion problems, no. 165,
American Mathematical Soc., 2010.

5. T. BELyTscuko, W. K. Liu, B. MORAN, AND K. ELKHODARY, Nonlinear finite elements for continua and structures,
John Wiley & Sons, 2014.

6. M. BoGcoya, R. FERREIRA, AND J. RossI, A nonlocal nonlinear diffusion equation with blowing up boundary conditions,
Journal of mathematical analysis and applications, 337 (2008), pp. 1284-1294.

7. O. BURKOVSKA AND M. GUNZBURGER, Affine approrimation of parametrized kernels and model order reduction for
nonlocal and fractional laplace models, SIAM Journal on Numerical Analysis, 58 (2020), pp. 1469-1494.

8. X. CHEN AND M. GUNZBURGER, Continuous and discontinuous finite element methods for a peridynamics model of
mechanics, Computer Methods in Applied Mechanics and Engineering, 200 (2011), pp. 1237-1250.

9. G. M. CocLITE, S. DIPIERRO, F. MADDALENA, AND E. VALDINOCI, Wellposedness of a nonlinear peridynamic model,
Nonlinearity, 32 (2018), p. 1.

10. A. DE PaBLO, F. QUIROS, A. RODRIGUEZ, AND J. L. VAZQUEZ, A general fractional porous medium equation, Commu-
nications on Pure and Applied Mathematics, 65 (2012), pp. 1242-1284.

11. Q. Du, M. GUNZBURGER, R. B. LEHOUCQ, AND K. ZHOU, A nonlocal vector calculus, nonlocal volume-constrained
problems, and nonlocal balance laws, Mathematical Models and Methods in Applied Sciences, 23 (2013), pp. 493-540.

12. M. Foss, Nonlocal Poincaré inequalities for integral operators with integrable nonhomogeneous kernels, arXiv preprint
arXiv:1911.10292, (2019).

13. M. Foss AND G. MINGIONE, Partial continuity for elliptic problems, in Annales de 'THP Analyse non linéaire, vol. 25,
2008, pp. 471-503.

14. M. D. Foss AND P. RADU, Bridging local and nonlocal models: Convergence and reqularity, 2019.

15. M. D. Foss, P. Rabu, C. WRIGHT, ET AL., Existence and regularity of minimizers for nonlocal energy functionals,
Differential and Integral Equations, 31 (2018), pp. 807-832.

16. C. G. GAL, On the strong-to-strong interaction case for doubly nonlocal cahn-hilliard equations, Discrete & Continuous
Dynamical Systems, 37 (2017), p. 131.

17. Y. D. HA AND F. BoBARU, Characteristics of dynamic brittle fracture captured with peridynamics, Engineering Fracture
Mechanics, 78 (2011), pp. 1156-1168.

18. J. HADAMARD, Lectures on Cauchy’s problem in linear partial differential equations, Dover Publications, 1952.

19. B. HINDS AND P. RADU, Dirichlet’s principle and wellposedness of solutions for a nonlocal p-Laplacian system, Applied
Mathematics and Computation, 219 (2012), pp. 1411-1419.

20. T. MENGESHA, Nonlocal korn-type characterization of sobolev vector fields, Communications in Contemporary Math-
ematics, 14 (2012), p. 1250028.

24



21.
22.

23.
. A. C. PONCE, An estimate in the spirit of Poincaré’s inequality, Journal of the European Mathematical Society, 6

25.
26.
27.
28.

29.
. S. A. SILLING, M. EPTON, O. WECKNER, J. XU, AND E. ASKARI, Peridynamic states and constitutive modeling, Journal

31.

32.

T. MENGESHA AND Q. Du, The bond-based peridynamic system with Dirichlet-type volume constraint, Proceedings of
the royal society of Edinburgh section A: mathematics, 144 (2014), pp. 161-186.

G. MINGIONE, Regularity of minima: an invitation to the dark side of the calculus of wvariations, Applications of
mathematics, 51 (2006), p. 355.

G. OKIKIOLU, On inequalities for integral operators, Glasgow Mathematical Journal, 11 (1970), pp. 126-133.

(2004), pp. 1-15.

P. Rapu, D. TOUNDYKOV, AND J. TRAGESER, A nonlocal biharmonic operator and its connection with the classical
analogue, Archive for Rational Mechanics and Analysis, 223 (2017), pp. 845-880.

P. Rapu AND K. WELLS, A doubly nonlocal Laplace operator and its connection to the classical Laplacian, Journal of
Integral Equations and Applications, 31 (2019), pp. 379-4009.

S. SAMKO, Fractional integration and differentiation of variable order: an overview, Nonlinear dynamics, 71 (2013),
pp. 6563-662.

S. A. SILLING, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics
and Physics of Solids, 48 (2000), pp. 175-209.

, Linearized theory of peridynamic states, Journal of Elasticity, 99 (2010), pp. 85-111.

of Elasticity, 88 (2007), pp. 151-184.

N. H. Tuan, D. O’'REGAN, AND T. B. Ncoc, Continuity with respect to fractional order of the time fractional diffusion-
wave equation, Evolution Equations & Control Theory, 9 (2020), p. 773.

Q. Yu, V. VEGH, F. Liu, AND I. TURNER, A variable order fractional differential-based texture enhancement algorithm
with application in medical imaging, PloS one, 10 (2015), p. e0132952.

25



	Introduction
	Preliminaries and setup
	Continuous dependence of the nonlocal boundary value problem in the linear setting
	Continuous Dependence of the Nonlocal Boundary Value Problem in the Nonlinear Setting
	Numerical Results
	Conclusions and Future Work
	Acknowledgements
	Data availability

