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Multiview Orthonormalized Partial Least Squares:
Regularizations and Deep Extensions

Li Wang™, Ren-Cang Li*, and Wen-Wei Lin

Abstract—1In this article, we establish a family of subspace-
based learning methods for multiview learning using least squares
as the fundamental basis. Specifically, we propose a novel unified
multiview learning framework called multiview orthonormalized
partial least squares (MvOPLSs) to learn a classifier over a
common latent space shared by all views. The regularization
technique is further leveraged to unleash the power of the
proposed framework by providing three types of regularizers
on its basic ingredients, including model parameters, decision
values, and latent projected points. With a set of regularizers
derived from various priors, we not only recast most existing
multiview learning methods into the proposed framework with
properly chosen regularizers but also propose two novel models.
To further improve the performance of the proposed framework,
we propose to learn nonlinear transformations parameterized
by deep networks. Extensive experiments are conducted on
multiview datasets in terms of both feature extraction and cross-
modal retrieval. Results show that the subspace-based learning
for a common latent space is effective and its nonlinear extension
can further boost performance, and more importantly, one of two
proposed methods with nonlinear extension can achieve better
results than all compared methods.

Index Terms—Deep learning, multiview learning, orthonor-
malized partial least squares (OPLSs), regularization, subspace
learning.

I. INTRODUCTION

ATA sets are increasingly collected from different views
of the underlying object in many real-world applica-
tions [1]. They are capable of depicting, more comprehen-
sively, the object from multiple views than solely relying
on a single view. Each view is composed of its own set
of features. As the data for each view within the multiview
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dataset contain complementary information, it is expected that
learning algorithms should make good use of these views for
the best learning outcome [2].

Multiview learning [1], [3] is a learning mechanism seek-
ing to leverage the complementary information of multiple
views to boost learning performance. Many multiview learn-
ing algorithms have been proposed in the literature. Among
them, subspace-based learning approaches have attracted much
attention. They aim to obtain a common latent subspace
shared by all views under the assumption that these views
are generated from the common subspace. The subspace-based
learning algorithms have demonstrated a great deal of success
in learning tasks, such as cross-modal retrieval [4], [5] and
feature extraction [6], [7].

In this article, we will focus on the study of a family of
subspace-based multiview learning algorithms in terms of the
least squares formulation from three different perspectives:
1) two or more views; 2) linear/nonlinear representation; and
3) unsupervised/supervised learning.

The most representative model in multiview subspace learn-
ing is canonical correlation analysis (CCA), which was orig-
inally proposed to learn two linear projection matrices by
maximizing the correlation between two views in a common
space [8]. It has since been extended for more than two
views [9], [10], nonlinear projections via either kernel rep-
resentation [11] or deep representation [12], and supervised
learning [5]. Moreover, different least squares reformulations
of CCA have been proposed for supervised multilabel clas-
sification [6] and unsupervised learning of more than two
views [13]. They have demonstrated great advantages in
yielding effective models and efficient learning algorithms.
However, the least squares reformulation in [6] is essentially a
single-view classification method since it treats data points as
one view and class labels as another. In addition to CCA, other
forms of least squares have been studied for two views, such
as coupled spectral regression [14] and partial least squares
(PLS) [15], [16].

The least squares formulation has been previously studied
for single-view supervised learning, but it is seldom explored
for subspace-based multiview learning. As to single-view
learning, linear discriminant analysis (LDA) can be formulated
as least squares for both binary classification [17] and mul-
ticlass classification [18]. CCA for supervised classification
is equivalent to LDA for multiclass classification [19], and
therefore, CCA shares the same least squares characteristics
as that of LDA. For example, LDA has been generalized
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to learn projection matrices for binary classification of two
views [20]. Although CCA and LDA have their own least
squares formulations for two views, their extensions to multi-
ple views of more than two views are not that straightforward.
Nonetheless, multiview discriminant analysis (MvDA) extends
LDA for multiclass classification of more than two views [4].
Various combinations of CCA and LDA are also proposed
in [5], [7], and [21]. Instead of least squares, these methods are
originally modeled as trace ratio problems, but it is the relaxed
ratio trace problems that get finally solved numerically because
of existing highly efficient eigendecomposition packages.

In this article, we will investigate orthonormalized PLSs
(OPLSs) [22], which was proposed to perform dimensionality
reduction only in the input space and that makes it different
from and also less popular than CCA and PLS. Precisely
this property of reduction in the input space becomes its
advantage for multivariate analysis in the setting of super-
vised learning because prediction primarily relies on reliable
extraction of good features in the input space. The equivalence
between supervised CCA and OPLS was established in [23].
Kernel OPLS was proposed in [24] for learning nonlinear
transformations. We emphasize that OPLS admits a least
squares formulation which also produces an optimal regression
classifier in the latent space at the same time [24], [25]. That
is an important advantage. However, these methods only work
for single-view learning. Hence, they are not designed for
supervised multiview learning.

Inspired by the least squares characteristics of OPLS,
we propose a novel unified multiview learning framework for
subspace-based learning. The framework can learn a classifier
over the latent space shared by all views. Several regulariza-
tions are presented to enrich the proposed framework, which
not only can recast many existing methods but also generate
new models by the practitioner if needed. The proposed
framework can deal with any number of views with or without
class labels and can learn either linear or nonlinear projections.

The main contributions of this article are summarized as
follows.

1) We propose multiview OPLS (MvOPLS) as an exten-
sion of OPLS to multiview subspace learning. MvOPLS can
simultaneously learn a latent common space, mappings, and
a decision function shared by all views. We further study its
advantages including the inherited ones from OPLS and ones
that are unique to multiview learning.

2) We propose a generalized formulation of regularized
MvOPLS in order to facilitate the inclusion of various prior
knowledge and still retain the advantages of MvOPLS. Three
general purposed regularizations are studied, with examples,
on model parameters, decision values, and latent projected
points. Two new models are showcased as a demonstration.

3) We propose to extend regularized MvOPLS to learn
nonlinear transformations parameterized by deep networks. All
methods instantiated from the proposed regularized MvOPLS
can take advantage of the proposed nonlinear extension with
little additional effort. This creates a large family of deep
supervised subspace-based multiview learning methods.

4) We recast several existing methods under the proposed
regularized MvOPLS framework, putting firm theoretical
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foundations underneath them as most of them were conceived
heuristically. To deepen the understanding of existing methods,
we highlight their differences in terms of the choices of
regularizations. This provides guidelines to not only choose
proper methods based on regularizers but also develop new
methods with new regularizers that take advantage of domain
priors.

5) We conduct extensive experiments to compare nine
methods and their two variants of each, a total of 27 methods,
instantiated from the proposed framework on nine multiview
datasets with various numbers of views. These methods are
evaluated and compared on two different tasks: feature extrac-
tion and cross-modal retrieval. Results show that subspace-
based learning for a common latent space is effective and
its nonlinear extension can further boost performance, and
more importantly, one of two proposed methods with nonlinear
extension achieves better results than all compared methods.

In the rest of this article, we first briefly review existing
methods related to this work in Section II. In Section III,
we propose MvOPLS for multiview subspace learning with
proper regularizations for incorporating priors in Section IV
and nonlinear transformation via deep neural networks in
Section V. Extensive experiments are conducted in Section VI.
Finally, we draw our conclusion in Section VII.

Notation: R™ " is the set of m x n real matrices and
R" = R™. [, € R"™" is the identity matrix of size n x n,
1, € R" is the vector of all ones, and H, = I, — (1/n)1,17 is
the centering matrix. For a matrix B, || B||f, and tr(B) are
its Frobenius norm and trace (assuming it is square then),
respectively. BT is the transpose of a matrix or vector.

II. RELATED WORK

We briefly review existing methods relevant to this work.
Specially, we first discuss methods in two broad categories:
unsupervised and supervised learning in the case of two views,
and then their extensions to more than two views and nonlinear
transformations.

In the setting of unsupervised learning, CCA has been
the workhorse for learning a common latent space of two
views [8]. To deal with more than two views, multiset CCA
(MCCA) [9], [10] based on pairwise correlations and gen-
eralized CCA (GCCA) [26] based on aligning all views via
a common representation have been proposed. MCCA with
the least squares formulation [13] is widely used due to its
simplicity. In addition, the multiview uncorrelated locality
preserving projection [27] maximizes the sum of all the
pairwise correlations and the high-order correlation. Kernel
CCA (KCCA) [11] and deep CCA (DCCA) [12] are two
representative approaches to explore nonlinear projections to
model complex real-world datasets via the kernel trick and
deep learning, respectively. DMCCA [28] extends MCCA to
nonlinear transformations via deep networks, but it can only
deal with the very special case where all views reside in the
same input space. Deep GCCA (DGCCA) [29] extends GCCA
to nonlinear transformations but it does not reduce to CCA for
two views, suggesting that the extension is not a natural one.
Other linear models closely related to CCA [30] have also
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been explored especially for two views, including PLS [15]
and OPLS [23], [24]. In addition, spectral regression is used
to learn a common space between two views in two separate
steps [14]. These methods do not explicitly take into account
supervised information, such as the class labels for multiclass
classification.

Several supervised subspace-based learning approaches
have been proposed to integrate supervised information in
order to improve multiview learning. LDA [31] is the main
tool for subspace learning with supervised information. The
combination of LDA and CCA has been successfully used to
find discriminatory subspaces. Generalized multiview analy-
sis (GMA) [5] obtains a discriminatory common space by
incorporating intraview discriminatory information and cross-
view correlation and is readily extensible via the kernel trick
to learn nonlinear transformations for more than two views.
Different from GMA, MLDA [7] replaces the within-class
scatter matrices with the covariance matrices. MvDA [4]
considers both interview and intraview variations leading to
a more discriminative common space. Its nonlinear extension
through deep networks has been studied in [32], resulting
in a discriminatory and view-invariant representation shared
among all multiple views. Multiview modular discriminant
analysis (MvMDA) [21] is proposed to maximize the distances
between different class centers across different views and
minimize the within-class scatter of each view. Some of these
methods are originally formulated as trace ratio problems but
solved as relaxed ratio trace problems because of available
numerical linear algebra packages. However, the two types of
optimization problems are not equivalent [33], and, as a result,
their solutions are not optimal ones to their original models,
leaving lingering questions, such as how these solutions should
be interpreted and how effective they may be.

In the following, we will propose a unified multiview
learning framework, which can recast most of the above-
mentioned subspace-based learning approaches into it. Hence,
the framework offers a natural and accurate interpretation
of the relaxed problems of existing models. The proposed
framework combined with judiciously chosen regularizations
can inspire novel and powerful models for different learning
tasks, and, without much additional effort, their nonlinear
extensions.

IIT. MULTIVIEW OPLS

We will establish a simple and yet natural multiview exten-
sion of the classical OPLS model and conduct a detailed
analysis to uncover the advantages of the proposed model for
better understanding and application.

A. Motivation

Most existing subspace learning methods seek a latent space
by optimizing application-agnostic criteria. Examples are
PCA (covariance maximization or reconstruction error), LDA
(class separability), CCA (correlation maximization), and PLS
(cross-covariance maximization). Often, the projected data by
these methods are later used for other learning purposes,
such as classification, clustering, and retrieval, as preprocessed

input, and therefore, it is highly likely that the latent space
obtained from one criterion may not work well for another
learning task that is more aligned with a different criterion.
Although a prediction method can learn a specified mapping
function directly from original raw input data without any
preprocessing with a properly chosen criterion, it may still
suffer from poor generalizations because raw data are usually
noisy and with intrinsic latent structure concealed and, as a
result, the learned mapping function directly from raw data
does not reflect the concealed structure information and is
sensitive to noise.

OPLS [22], [24] is a subspace learning model with a built-in
multivariate regression system for predicting the output of any
given input. The built-in prediction system benefits from its
least squares reformulation [24]. OPLS generalizes many other
models, such as CCA [23] and LDA (see Section I-B of the
Supplementary Material) and has been successfully applied
in many applications. Unfortunately, the success has so far
been limited to single-view subspace learning. Our goal in this
article is to explore OPLS for multiview subspace learning.

For multiview learning, the most fundamental challenge is
how multiview data can be truthfully represented and summa-
rized in such a way that heterogeneity gaps [2] among differ-
ent views can be satisfactorily overcome and comprehensive
information concealed in the data can be properly exploited
by multiview learning models. As each view in multiple
views intends to represent the same object but characterize
it by heterogeneous features, the ultimate goal of multiview
subspace learning is to find a common k-dimensional latent
space R* such that transformed data points of all views for
the same underlying object in the latent space are “similar” to
each other in order to reduce the heterogeneity gap. However,
it is generally difficult to give a uniform “similarity” quantifi-
cation among projected points. Instead, we strike to provide
a platform, in which different prior knowledge can be used
to shape the “similarity” among projected points in various
contexts.

Our platform is built upon OPLS. We first propose our plain
multiview OPLS (MvOPLS) as an extension of OPLS via a
tied built-in classifier. We will then demonstrate that MvOPLS
not only provides a powerful vehicle to incorporate many types
of prior knowledge but also facilitates the learning of deep
representation.

B. Proposed MvOPLS

Multiview subspace learning strives to learn from data
consisting of more than one views, namely, multiview data.
Consider a multiview dataset of v views consisting of n labeled
data instances: {(x\", ..., x”, y)}i_,, where x'*) € R% is the
data point of view s of the ith instance, and y; € R is the
class label of the ith instance, and ¢ is the number of classes.
In the case when the class labels y; are not available, it will

just be {(x, ..., x)) . Let
X, = [xﬁ‘”, . ,xff)] eRM, ¥ =[yi,...,y.] € R

called the data matrix and label matrix of view s, respectively.
It is worth noting that there are many different ways to define
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Fig. 1. (a) Illustration of single-view OPLS and (b) multiview OPLS.

y; to best suit specific learning problems, such as multitarget
regression [34], multilabel classification [6], [35], cross-modal
retrieval [4], [5], and feature extraction [6], [7]. Our later
development works equally well regardless of how y; are
defined.

In what follows, we start with linear transformations and
leave the study of nonlinear transformations to Section V.

For view s, we look for projection matrix P, € R4*k to
transform x; “) from R% to z(s) PT ) in the common space
R* under su1table criteria. Let

Z, = [zgw, . ,sz>] = PTX, e RO

be the projected data matrix of view s in the common latent
space.

Ideally, we would like to have the same projected data
matrix of all v views, i.e., Z, = Zy,Vs,s’ = 1,...,v0, but
it is too restrictive to be feasible due to the heterogeneous
features among views and the generalization of unseen data
later on. We instead require that there is a shared classifier
for all views in the common latent space, i.e., all views share
the same coefficient matrix W € R¥*¢, Heuristically, the same
shared classifier should be expected to correctly classify sets
of “similar” projected data points of each view. This shared
classifier can be regarded as some kind of similarity quantifi-
cation indirectly implied upon projected points of all views.

For ease of presentation and flexibility to include slightly
preprocessing the inputs as needed such as centering X to
XH,, let ¢ and w be two simple transformations on the inputs
for preprocessing, and let

X=[E0, 570 =g, Tl

Later at the times of presenting particular learning methods,
¢ and y will be specified.

Our proposed MvVOPLS model in its most plain form is
formulated as

v
min > 1Y = WIPIX, . M
T s=1

Later it will be empowered with judiciously chosen regu-
larizers as situations call for Accordingly, We will denote the
projected data pomts of x; ©) by z(s) PT *) and the projected
data matrix by Z; ['"(Y) .. zm] PSTX

Fig. 1 shows the data transformation from input to output
in OPLS on single-view data and MvOPLS on multiview
data. In (1), each view has its own projection matrix P;,
but all views share the same classifier as determined by W

,iff)] =y (Y).
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that characterizes the similarity among projected points of all
views.

For single-view data, i.e., v = 1, (1) reduces to OPLS [30].
For the convenience of the reader, in Section I of the
Supplementary Material, we review OPLS for multivariate
regression analysis and multiclass classification in detail and
discuss its many nice properties. There could be other ways to
extend OPLS to multiview learning, but we choose to impose
a shared classifier in our MvOPLS (1) while let each view
has its own projection matrix. The choice leads to some of
the desirable properties to be explained in Section III-D later.

C. Optimization via GEP

For convenience of analysis, denote by d = > ._, d;,
the total number of features from all v views, and by

Py Xl Xy
P, - X5 X5

P = ERka, X = ERdX", X = eRdxn
P, X, X,

)

the concatenations of {Py}, {?s}, and {X,} introduced in
Section III-B. Define

gl,l él,z - Cry
Eogxro | | g 3)
Gt Gz .. Coy
and its block diagonal part
Ci.i _
Caing = €2 e R 4)
Co

5

where a,:)?XVT Vs t=1,.

Most commonly, X=X H,, but 1t may not be as we will
see in Sections IV and V. When X = X H,, C” coincides
with the ordinary (cross-)covariance matrix between view s
and view ¢, denoted conventionally by Cs, = X, H,,X,T, which
is the convention we will stick to in the rest of this article.
We will also introduce C = X XT, and, accordingly, a,, and
anag for data that have not been preprocessed yet.

Problem (1) can be solved as a generalized eigenvalue prob-
lem (GEP). Specifically, we first use the first-order optimality
condition of (1) with respect to W

Z -2 PIX,

s=1

(Y —w'PTX,) =0
to get

v -1 v
— (Z PIC,, PS) > PIX YT
s=1 s=1

= (P"CuneP) " PTXYT. (5)
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Substituting this W in (5) back into (1), we obtain a
reformulated problem of (1) as

max tr((PTédiagP)_lPTi?T?iTP). (6)

which is a ratio trace maximization problem.

In the following, we show that problem (6) is equivalent to a
GEP. The proof is provided in Section II of the Supplementary
Material.

Proposition 1: Let A, B € R™ be symmetric and A is
positive definite. The problem

max tr((PTAP)"PTBP) )
is equivalent to
m]glx tr(PTBP): st. PTAP =1, (8)

whose optimizer P can be constructed by packing the normal-
ized eigenvectors of matrix pencil B — 1A associated with its
k top (largest) eigenvalues.

According to Proposition 1, (6) is equivalent to

m}z}x tr(PTf?T?iTP): s.t. PTadiagP = I )

whose optimizer P can be made of the eigenvectors associated
with the top k eigenvalues of the following GEP:

XY'YX"P = Caing PA (10)
where A is the diagonal matrix of the k largest eigenvalues of
matrix pencil XYTYXT—/ICdiag [36], [37]. After P is obtained,
the optimal W is recovered by (5).

D. Desirable Properties

Although MvOPLS (1) seems like a simple extension of
OPLS to multiview subspace learning in appearance, it pos-
sesses many nice properties, some of which are inherited from
OPLS, while others are unique to multiview subspace learning.

1) MvOPLS is in a least squares formulation as OPLS,
and it can naturally take advantage of many types of known
outputs to guide the learning of the latent common space, for
example, multitarget regression with ¥ € R°*” and multilabel
classification with Y € {0, 1}°*" and multiclass classification
with ¥ € {0, 1} and 1TY = 1,,.

2) MvOPLS admits analytical optimal solution.
In Section HI-C, we show that MvOPLS is equivalent
to GEP, which can be solved efficiently by existing linear
algebra algorithms and packages [36], [38]-[40].

3) MvOPLS fulfills three learning objectives simultane-
ously: compact representations in the latent common subspace,
mappings from original data spaces to output space, and
a shared classifier as determined by W. All these make it
an ideal candidate for further learning nonlinear multiview
representation in deep neural networks as we will show later
in Section V.

4) MvOPLS possesses the ability of learning a latent com-
mon space with contributions from all views. According to (5),
the coefficients of the built-in classifieris W = >'_, PTX, V"
since PT CdlagP = [; at the optimum of (9). To make a

prediction for a new input x*) from view s, MvOPLS relies
on the decision values

=Y ZXT P P'X® =

t=1

wT PT (s) _ -7 z ZT~(s)

ZTZ® can be interpreted as the learned similarities in the
latent common space between x® and xl@ Vi = 1,...,n.
We emphasize that (11) is distinctively different from the
single-view OPLS, applied to just view s, in that in (11) all
views, not just view s, are involved in the decision making,
and hence, complementary and corroborative information from
other views comes into play; (11) is distinctively different from
the single-view OPLS, applied to the concatenated view of
all views, in that MvOPLS learns a shared classifier for all
views, and thus, the classifier can make viewwise prediction
independently, whereas OPLS on the concatenated view can
make prediction only when data from all views are put
together.

5) MvOPLS, though in a supervised formulation, can
include MCCA as a special case. Recall that MCCA
[10], [13] is an unsupervised subspace learning method
because of no class label information, but each instance of
all views may be regarded as in its own class, and hence,
there are n classes, i.e., ¢ = n. This will transform originally
unlabeled data into artificially pseudolabeled data with ¥ = I,
because we assign a unique class label to each instance. Now,
apply MvOPLS (1) with X = XH,, and Y = I, to get

Y

mm Z I, — W' PY X H, 2.

s=1

" 12)

It is equivalent to the following MCCA formulation [13]:

maxZZtrPCs,P s.t ZPTC”PS—Ik

s=1 t=1 s=1

13)

6) MvOPLS is a versatile framework that can incorporate
different types of prior knowledge across multiple views from
three perspectives: model parameters, decision values of built-
in classifiers, and projected points in the latent common space.
This point will be elaborated in detail in Section IV.

E. Computational Complexity

The computational complexity of MvOPLS consists of three
parts: O(n Y '_, d?) for Cdmg, O(nd?) for XYTYXT, and
O(d?) for the generalized eigenvalue decomposition prob-
lem (9) by a dense method or O(d*k) by iterative meth-
ods [36], [40]. Hence, the computational complexity is O (d>+
nd?) or O(nd*) depending on the choice of methods for GEP.

IV. REGULARIZED MULTIVIEW OPLS

As MvOPLS (1) is formulated as least squares, regulariza-
tion techniques can be leveraged to regulate model parameters
and integrate prior knowledge to shape the similarity among
projected points for the purpose of narrowing or even eliminat-
ing heterogeneity gaps among different views. In considering
the special structure of MvOPLS, we will explore three types
of regularizations with respect to different types of priors in
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terms of: 1) model parameters; 2) decision values; and 3) latent
projected points. Some examples of the three types will be
demonstrated.

Before discussing these regularizers, we first propose a
general framework for our regularized MvOPLS, based on the
plain MvOPLS (1), that retains all of the appealing properties
as enumerated in Section III-D.

A. A Generalized Formulation

Our treatment to integrate priors into the plain MvOPLS (1)
for best learning is largely motivated by the past success-
ful marriage of least squares and the popular regularization
techniques widely used for regulating solutions of inverse
problems in computational sciences [41]. In this section,
we focus on a generalized regularized MvOPLS (GMvOPLS)
framework given by

v
min Y — W'PTX, |3
i 2 TR
sS=

+u(W'PTAPW) +u(Q'PTBP) (14)

where A € R and B € R?*¢ are matrices derived from
priors, and Q € R¥*¥ is a flexibility matrix purposely designed
for ease of its numerical treatment and, more importantly,
for retaining the properties of MvOPLS as enumerated in
Section III-D.

For example, letting

Q = PT(Caiug + A) P (15)

makes (14) equivalent to a GEP. First, given P, (14) has the
analytic solution for W

W = [PT(Caiag + A)P]” PTXY". (16)

Substituting (16) back into (14), we get
min — tr([ P (Cag + 4) ] PTXVTTX"P)
+t(Q'PTBP).

According to Proposition 1 and with (15), we conclude
that (14) is equivalent to GEP

T(yyTyyT
max (P (XY'YX" — B)P)

st. PT(Caiag + A)P = . (17)

We caution the reader that at its generality Q may not be
given as in (15) and then GMvOPLS (14) may not be equiv-
alent to a GEP. In that case, how to solve (14) numerically
becomes an issue that warrants further investigation. However,
in the rest of this article, all instantiated models from (14),
including the existing ones, are with (15).

We emphasize that the introduction of the additional terms
in (14) to MvOPLS (1) does not destroy any of the enumer-
ated properties, but only empowers it with the capability of
incorporating priors for best learning, some of which will be
demonstrated later.

It is worth noting that regularizations for MvOPLS (1)
are not limited to the form of (14). In fact, one may use
other types, for example, £, ; norm on P for sparse subspace
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learning intended for feature selection [42] and orthogonal
projection for distance preservation [35], but they will change
the solution structure and the resulting models require very
different numerical techniques from those for solving a GEP,
and therefore, we will not delve in them further in this article.

B. Regularizations

We present three types of regularizations with concrete
examples designed to go with the proposed GMvOPLS (14)
to achieve different objectives. Specifically, three categories
are: 1) regularization on model parameter; 2) regularization
on decision values; and 3) regularization on projected points.
The three categories are inspired by the properties of MvOPLS
presented in Section III-D. Category 1) regularizes model
parameters to prevent the model from overfitting the input data,
especially when the input data are small to avoid the ill-posed
singularity issue in the generalized eigenvalue decomposition
and to capture structure priors, such as sparsity or group spar-
sity if desired. Category 2) regulates view-specific prediction
such that classification results are consistent among different
views. Category 3) regulates the relationships among projected
points from different views. In the following, we will elaborate
on each category with examples.

1) Regularization on Model Parameters: The Tikhonov
regularization is widely used to mitigate the problem of
multicollinearity in linear regression in OPLS for single-view
learning. Model parameters in (1) include W and {P,}"_,, but
they appear in products P;W, and thus, each can be treated as
a single-matrix variable as far as mitigating multicollinearity
is concerned. Therefore, we formulate our weighted Tikhonov
regularizer as

v
Ran(W, {P}) = D | PWII
s=1

= tr(W'PT A PW) (18a)

where y; > 0 is the weight for view s and Ay, is the block
diagonal matrix

Alikh = diag(y1 Idl , V2 Idz, ey yvld,,) S RdXd. (18b)

Aqixn takes the place of A in (14). It can be seen that gdiag +
Ayixn 18 guaranteed positive definite.

The Tikhonov regularizer Ryxn(W, { Ps}) also prevents the
magnitude of optimal P;W from being too large at an
optimum.

2) Regularization on Decision Values: The decision func-
tion, also known as classifier, of MvOPLS for view s is given

by (11)

g (x®) = wTplx® (19)

where x®) is any new data point of view s that needs a decision
on.

Since there are s view-specific decision values, one from
each view-specific data point of the same data instance, and
at the same time, only one class label should be assumed for
each data instance that consists of » data points, one for each
view, it makes sense to regulate these v decisions across v
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views to compel similarity among projected points in the latent
common space. In what follows, we propose three ways for
that purpose.

a) Mean discrepancy minimization: For view s, the mean
of projected points and the decision value on the mean are
given by

1
s =—PrX1,, g, =Wy, (20)
n

respectively. It is reasonable to expect that these decision
values g, for all views be close to each other, assuming certain
similarity among the views. The closeness among {g,} can be
enforced by the regularizer

Rmean(W; {Ps}; {Xs}) = 2”_0 Zz ”gs - gt”z

s=1 t=1

= tr(W' PTApean PW)  (21a)
where
1 v 1
Amean = diag([—Xsl,,lzXE} ) - —X,1,1TxT. (21b)
n =1 no

b) View consistency: The decision values can be para-
meterized by the representer theorem [43] for least squares,
that is, the decision values of view s can be represented by a
weighted combination of the input data points, given by

PsW = Xsﬁs
g(X,) = WTPTX, = BTXT X,

(22a)
(22b)

where B, € R"*¢ is the weight matrix. Note that X7 X; is the
linear kernel of view s. According to (22), we have f;, =
XTP,W, where X! = (XTX;)7'XT is the Moore-Penrose
pseudoinverse of X, [37, p.102]. Any consistency among
views leads to similar kernels, and in turn, closeness among
the weight matrices {f,}’_,, which leads to the following
regularizer:

1 v v
Rue(W AP AXD) = 5 3 > 1B = Bill;
s=1 t=1

= (W' PTAPW) (23a)

where A, is a v-by-v block matrix with its (s, #)th block given
by

— N x5 =

(v Tl)T(X?) X!, s=t (23b)
—(x1) X7, s#L

¢) Maximum alignment: Alignment between the kernel
matrix of class labels and that of the predicted values for
each view is a proven useful criterion for learning projections
[44], [45]. Denote by g,(X;) = WTPTX, the predicted soft
labels and by Ky the kernel matrix! of the class labels. The
HSIC criterion [45] for multiview data is a natural regularizer
for enforcing the alignment

Aye(s, 1) = [

Rsic (W, {Ps}; {Xs}, Y) = — ztr(gs(xs)Tgs(Xs)HnKYHn)
s=1
= tr(WTPT Apsic PW) (24a)

'For example, in the multiclass classification, Ky = YTZ~!Y, where
r=vy"

where

Ansic = — diag([ X, H. Ky H, X[ ]._)). (24b)

We point out that (21) captures the first-order statistics of the
decision values, while (23) and (24) characterize the second-
order statistics.

3) Regularization on Projected Points: According to (1),
the projected data in the common space is

Z,=PIX, Vs=1,...,0. (25)

Regularizers can be designed directly or indirectly on these
projected points to achieve certain objectives. In the following,
we will showcase two commonly used priors.

a) Embedding consistency: We may expect that the pro-
jected points of the same instance from different views are
close to each other. This expectation can be maintained by
keeping the following regularizer:

~ Il ~ ~
Ree(iP}: (X)) = 5 22D 1Z = Zilly
s=1 t=1

= tr(P" B P) (26a)

in check, where

Bee = 0Ciag — C. (26b)

In fact, (26) is analogous to MCCA discussed in
Section III-D for unlabeled data. For supervised classification,
this regularizer can be used to explore the cross-view correla-
tion from unlabeled data.

b) Class separability: The class separability criterion has
been popularly used to learn discriminatory features in a low-
dimensional space by LDA for multiclass classification. For
view s, the within-class scatter matrix SL(US) and the between-
class scatter matrix S}EX) can be written as

1 : )
0= x (0 Luan)x. sp - x5 e

where

r=vY", o=v"zly. (28)

LDA can also be used to regulate projection matrix Py of
each view. The LDA regularizer is

. — : T(ols) B (s)
Riaa((P,): (X)) SZI)tr(Ps (s - -ns)R)

= tr(P"Bga P) (29a)

where

1 1
Blga = diag([Cm — 21X, (Q - ;1,115))(}}

). (29b)
s=1

Each diagonal block of By, stands for the difference
between covariance matrix Cs; and the scaled between-class
scatter matrix /IS}ES) , and the scaling parameter / is the tradeoff
parameter between the two scatter matrices. Regularizer (29)
essentially plays the role in analogy to the fractional formu-
lation of LDA for each view.
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TABLE I
MODELS UNDER THE PROPOSED REGULARIZED MVOPLS FRAMEWORK (14) WITH DIFFERENT REGULARIZATION

model X Y Regularization A B
MCCA [13], [10] X H, T N/A 0 0
MvLDA [32] XH, »-1/2y Rikh (W, {Ps}) Agikn 0
MvDA [4] XH, | »7Y%y Rumean (W, {Ps}; {Xs}) Amean 0
MvDA-VC [4] XH,, »-1/2y Rmean (W, {Ps}; {Xs}) + ARve (W, {Ps}; {Xs}) Amean + My 0
MvMDA [21] XH, | HX 12y Risie W, {Ps }:{Xs},Y) Ansic 0
MLDA [7] XHp In Rida({Ps}:{Xs},Y) 0 Biaa
GMA [5] XH, In Rlda({Ps}§{Xs}7Y7 Q) +,]zhsic(VV:{PS}’;{AXS}’)/) Ahsic Blda
MvOPLS (proposed model) XHy, Y R (W, {Ps}) Atikh 0
MVLDA-CCA (proposed model) | X H,, »-1/2y ARec({Ps}; {X:}) 0 ABec

For regularizations over projected points, it is proper to add
certain weighting constraints for ease of optimization. Instead
of (26) and (29), more generally, we may use

Rec({1P); {X,}, Q) = tr(Q 7' PTB..P)
Ria({Ps}: {X}, ¥, Q) = (Q7 PT B, P)

(30)
€19

where Q is as in (15).

C. Connections to Existing Models

In Section III-D-5), we explained that MCCA [10], [13] can
be regarded as a special case of MVOPLS. Next, we will show
that many existing multiview subspace learning models can
be reformulated to fit in the proposed regularized MvOPLS
framework (14) with different choices of regularizers, includ-
ing MVLDA [32], MvDA [4], MvDA-VC [4], MVvMDA [21],
MLDA [7], and GMA [5], as shown in Table I. Details can
be found in Section III of the Supplementary Material. These
methods more or less spawn from the GEP formulation (10)
of plain MvOPLS (1), mostly based on heuristic and plausible
arguments at best. Fitting them into MvOPLS (1) combined
with suitable regularizers really puts firm foundations under-
neath them and deepens our understanding as to how they work
the way they work and, as a result, can help the practitioner
tremendously when it comes to pick up a proper model for
the underlying learning task that comes with certain prior
information.

1) Existing Models Explained Under Framework (14): The
six existing methods discussed in Table I together with MCCA
can be partitioned into two groups based on whether the
involved MvOPLS least squares parts take class labels into
account or not. The first group includes MCCA, MLDA, and
GMA that do not use labeled data to construct their least
squares parts, while the second group consists of MvLDA,
MvDA, MvDA-VC, and MvMDA that do. However, MLDA
and GMA in the first group do incorporate labeled data via
regularizers, such as Rjg, and Rygie. The methods in the second
group may or may not use regularizers with prior knowledge.
The choices of both input-output transformations (from X and
Y to X and Y, respectively) and regularizers are the key factors
that differentiate one from another. For example, GMA differs
from MLDA in that GMA takes an additional regularizer Rysic
to minimize the within-class scatter of each view. MVMDA
takes the centered normalized label matrix and supervised
MvOPLS with Ry, while MvDA takes the normalized label

matrix and unsupervised MvOPLS with Rean. As these reg-
ularizers are the consequences of some level of understanding
of data, our proposed generalized formulation (14) provides a
helpful guideline to the practitioner in either choosing a proper
existing method with compatible regularizers or designing an
entirely new model.

D. Proposed Novel Models

The proposed unified framework (14) offers much flexibility
and easiness to instantiate new models through incorporating
different inputs/outputs and regularizations in consideration
of underlying learning objectives. Evidently, there are many
possible ways of combinations to integrate one or more
regularizers discussed in Section IV-B into MvOPLS (14),
and it makes no sense for us to exhaust them all here. The
practitioner should choose proper regularizers or customize
one for the learning task in question. To demonstrate this point,
we showcase two novel models.

1) MvOPLS With Tikhonov Regularizer (Namely MvOPLS):
Tikhonov regularization is the default when it comes to
regularize ill-posed least squares problems [41]. It effectively
boosts small singular values to damp high-frequency noises.
Here, for MvOPLS, the Tikhonov regularizer Rk, in (18)
can be used to stabilize the resulting GEP. MvOPLS with the
Tikhonov regularizer is formulated as

min > 1Y = WIPIXIE + Rua (W, (P, (32)
T s=1

Or equivalently
max tr(PTX?T?XVTP)
P

st. PT (gdiag + A[ikh)P = I. (33)

This differs from (9) derived from the plain MvOPLS (1)
in replacing gdiag by gdiag + Aun that makes latter better
conditioned and the associated GEP less sensitive to noise and
rounding errors [37], [46]. While this is a good thing to have,
the Tikhonov regularizer does not bring much informative
prior into the model.

2) MvOPLS With Embedding Consistency (Namely,
MvLDA-CCA): We can require some closeness of the
projected points of corresponding data instances among
all views through maintaining embedding consistency by
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incorporating regularizer R, into the plain MvOPLS. The
new model is with

X=XH, =YYT, Y=3x"2y (34)

and formulated as

v
min, Zl 1Y — WTPTX 12 + ARec (P} {X,}. Q) (35)

where Q = PTCgi,e P. Or equivalently

max tr( [ (Q——l 1 )X—i—/l(a—vaﬁag)}P)

st. PTCingP = I (36)

where Q is as defined in (28).

V. DEEP REGULARIZED MULTIVIEW OPLS

Regularized MvOPLS aims to learn a set of linear pro-
jections. Lately, extending a linear projection method to a
nonlinear one via the kernel trick becomes almost mechanical
and immediate because the extension is often very much
straightforward. The case for MvOPLS methods so far is
no different. However, as pointed out in [12], kernel-based
nonlinear extensions encounter several drawbacks.

1) Nonlinear representations are limited by the fixed kernel

function.

2) Inner products between any two of input data points are
required, and therefore, the training set has to be stored
and repeatedly called for during the entire testing phase.

3) The time required to train a subspace learning model or
compute the representations of new data points scales
poorly with the size of the training set.

Those drawbacks are intrinsic to any kernel-based nonlinear
extension and there is no way to get around them. Deep
learning methods seem to be potent alternatives that use a
completely different technique. They have been used rather
successfully to learn a set of nonlinear parametric functions
for subspace-based multiview learning [12], [21], [32], such as
MvLDA [32] and MvMDA [21]. MVLDA takes a ratio trace
formulation of LDA as its objective function by concatenating
all views into one, while MVMDA takes a trace ratio as its
original objective function but minimizes it approximately as
a ratio trace via GEP because of the availability of high-quality
numerical linear algebra packages. In that sense, numerically
MvMDA also takes a ratio trace formulation nonetheless.
As discussed in [33], ratio trace and trace ratio actually yield
different projections.

Our regularized MvOPLS (14) takes a ratio trace formula-
tion and is equivalent to GEP (17). We propose a nonlinear
extension via deep networks in the general form

max tr(PT#P) st. PP/ P =1 (37)
where

B = f({hs(X))_.Y), o =g(thy(X\))_;.Y)

are some matrix-valued functions of {h,(X,)}’_, parameter-
ized by v independent deep networks and label matrix Y, and

{hs}7_, is a set of nonlinear functions of the deep networks.
According to (17), all the regularized models listed in Table I
can be formulated into (37) as

({h (X )}3 1° ) = 6diag‘i‘A
(R (X)), ¥) = XTTFRT - B

where the matrices in the right-hand sides are defined similarly
as before except with X replaced by h,(Xy), Vs.

Following [12], we will use multiple stacked layers with
nonlinear activation functions as the deep network architecture.
The ith layer in the network for view s has mgi) units, and the
output layer has k units. The output of the first layer for input
x® from view s is

rD =6 (VOx® 4bD) € R

where VD e R %4 s the weight matrix, b € R™ s the
vector of biases, and ¢ : R — R is a nonlinear activation
function. The output A{" can then be used as the input to the
next layer whose output A® = ¢ (VP! +b5®) ¢ R™”, and
the construction repeats £ times until the final output

hy(x,) =h" = o (VORI + b)) e R

is reached. The same construction process can be used for
each of the v views. As a result, we have a set of nonlinear
functions {h,}°_, with ¢ layers and their associated parameters
(VO,bD} for s = 1,...,0,i = 1,...,¢. To simplify the
notation, we have suppressed the dependency of the nonlinear
transformed matrix k,(X,) € R*" on the network parameters.

We further rewrite (37) as a standard eigenvalue problem so
that the gradient of the transformed objective with respect to
network parameters can be computed by automatic differen-
tiation tools. Specifically, let the Cholesky decomposition of

o/ be
o =Ty, (38)

To ensure that .7 is positive definite, the regularizer Ry
is applied to all methods studied in this article. Let

U=¥YP=P=Y""U. (39)
Problem (37) is equivalent to
max tr(UT‘I—"T%‘I”IU): st. UTU = I, (40)
which is  equivalent to calculating the  partial
eigendecomposition
v Tay-'Uu=UA (41)

where A = diag(4y, ..., Ax) consists of the largest k eigenval-
ues Ay > Ao >, ..., > A of P"TAY! and U of the associ-
ated eigenvectors. After the optimal U is obtained, we recover
optimal P using (39). The optimal objective function value is
then given by

k

w(PTBP) =u(U™Y TBY'U) =>4 (42

i=1

Treating the negative of the objective of (40) as loss,
we actually minimize the loss over network parameters
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TABLE 11
MULTIVIEW DATASETS USED IN THE EXPERIMENTS, WHERE THE NUMBER OF FEATURES FOR EACH VIEW IS SHOWN INSIDE THE BRACKET

Data set n c view 1 view 2 view 3 view 4 view 5 view 6
Mfeat 2000 10 fac (216) fou (76) kar (64) mor (6) pix (240) zer (47)

Ads 3279 2 url+alt+caption (588)  origurl (495)  ancurl (472) - - -
Caltech101-7 1474 7 CENTRIST (254) GIST (512) LBP (1180)  HOG (1008) CH (64) SIFT-SPM (1000)
Caltech101-20 2386 20  CENTRIST (254) GIST (512)  LBP (1180) HOG (1008) CH (64) SIFT-SPM (1000)

Scenel5 4310 15 CENTRIST (254) GIST (512) LBP (531) HOG (360) SIFT-SPM (1000) -
NUS-wide-object 23953 31 BOW (500) CH (64) CMS55 (255) CORR (144) EDH (73) WT (128)
Pascal 1000 20 Text (100) Image (1024) - - - -
TVGraz 2058 10 Text (100) Image (1024) - - - -
Wikipedia 2866 10 Text (100) Image (1024) - - - -
{VS(’), bg’)}, s = 1,...,0,i = 1,...,¢, and the projection 2) Unsupervised method MCCA [13].

matrices {P}’_, simultaneously via the gradient descent
method.

V1. EXPERIMENTS
A. Datasets

The statistics of the nine datasets with their corresponding
descriptions are summarized in Table II.

The first six multiview datasets are used for multiview
feature extraction evaluated through multiclass classifica-
tion. Multiple features (Mfeat)> and Internet advertisements
(Ads)® are downloaded from UCI’s machine learning repos-
itory, where the descriptions of each view can be found in
their documentations. Image datasets Caltech101* [47] and
Scenel5> [48] are created by applying the following descrip-
tors to each image: CENTRIST [49], GIST [50], LBP [51],
histogram of oriented gradient (HOG), color histogram (CH),
and scale invariant feature transform (SIFT)-spatial pyra-
mid matching (SPM) [48]. Note that we drop CH from
Scenel5 due to the gray-level images, and Caltech101 with
two datasets consisting of seven and 20 categories are used
by following [52]. NUS-wide-object is a Web image dataset
consisting of six precomputed low-level features.®

The last three datasets, TVGraz [53], Wikipedia [54], and
Pascal [55] are employed for cross-modal retrieval, where
the image query is used to retrieve text articles and vice-
versa. As pointed out in [56], these three datasets demonstrate
different characteristics. Both image and text classifications are
low in accuracy for Pascal. On Wikipedia, image classification
has low accuracy, but its text classification accuracy is high.
TVGraz has good accuracies for both text and image. These
datasets are also used in [56], where the training/testing data
splits are at: 1558/500 for TVGraz, 2173/693 for Wikipedia,
and 700/300 for Pascal.

B. Compared Methods

The methods to be compared are as follows.

1) The six existing supervised methods discussed in
Section IV-C: MvLDA [32], MvDA [4], MVDA-VC [4],
MvMDA [21], MLDA [7], and GMA [5].

Zhttps://archive.ics.uci.edu/ml/datasets/Multiple+Features

3https://archive.ics.uci.edu/ml/datasets/internet+advertisements

“http://www.vision.caltech.edu/Image_Datasets/Caltech101/

Shttps://figshare.com/articles/15-Scene_Image_Dataset/7007177

Ohttps://lms.comp.nus.edu.sg/wp-content/uploads/2019/research
/muswide/NUS-WIDE.html

3) The two new variants: the plain MvOPLS combined
with the Tikhonov regularizer (33), denoted simply by
MvOPLS, and MvLDA-CCA (36) in Section IV-D.
Their nonlinear extensions via deep networks proposed
in Section V.

There are nine methods in items 1)-3), along with two
variants of each that will be evaluated. The first variants,
distinguished by attaching a prefix “D” to each of them,
are their nonlinear extensions via deep networks in item 4).
The second variants, distinguished by attaching a suffix “p” to
each of them, are the results of the input data reduction by first
applying PCA to each view in order to reduce the dimension of
each view while retaining 95% energy but otherwise the same
methods. For example associated with MvDA, MvDAp stands
for MvDA applied to the PCA reduced data, and DMvDA is
the nonlinear extension of MvDA via deep networks.

To prevent gdiag + A in the unified form (17) from being
singular or nearly singular, the Tikhonov regularization (18)
is applied to all methods.

4)

C. Experimental Settings

We first evaluate the baseline methods for multiview feature
extraction in terms of classification. All methods aim to learn
a set of linear/nonlinear projections, which transform the data
points of each view to points in the common space. Classifi-
cation is then conducted in the common space. As observed
in [2], the concatenation of the projected points from all views
as the new representation of the input instance is proper for
use by a regression algorithm, and the main finding of CCA
there is that there is little loss of predictive power by using
the reduced data in the lower dimensional space and yet the
regression problem gains a lower sample complexity due to
that the reduced multiview data matrix resides in R Tt is
worth noting that the new representation of multiview data
is consistent with our proposed framework based on least
squares.

The proposed regularized MvOPLS has its built-in classifier,
but some variants, such as MCCA, MLDA, and GMA, do not
because their least squares losses are independent of the class
labels. To make fair comparisons of all baseline methods in
terms of classification performance, we seek an independent
classifier for performance evaluation. Among them, linear sup-
port vector machines (SVMs) and 1-nearest neighbor classifier
have been popularly used in the literature [4], [5], [12], [57].
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TABLE III

11

MEAN ACCURACY AND STANDARD DEVIATION BY NINE METHODS AND THEIR TWO VARIANTS ON THE FIRST S1X MULTIVIEW DATASETS IN TABLE II
OVER 10 RANDOM SPLITS OF 10% TRAINING AND 90% TESTING. THE NUMBER IN THE BRACKET IS THE RANK OF EACH METHOD

FOR GIVEN DATA. THE LAST COLUMN IS THE AVERAGE RANK OF EACH METHOD OVER SIX DATASETS.

A SMALLER RANK NUMBER STANDS FOR A BETTER METHOD

Method Mfeat Ads Caltech101-7 Caltech101-20 Scenel5 NUS-wide-object ~ rank
MCCA 79.11 £ 1.36 (21)  91.05 £ 1.51 (26)  88.53 £ 2.03 (25) 63.54 £ 2.58 (25) 4341 £1.93 (27) 3453 £0.79 24) 247
MvOPLS 7429 + 1.94 (23) 92.04 + 142 (23) 93.80 + 1.04 (21) 8475 £ 1.21 (22) 55.87 £ 1.26 (23)  34.97 £ 0.37 (20)  22.0
MvDA 74.05 + 2.23 (25) 91.62 £ 1.65 (25) 9277 £ 3.63 (23) 84.09 + 1.29 (23) 55.78 £ 1.52 (24) 34.96 £+ 0.37 (22) 23.7
MvDA-VC 89.06 + 1.74 (18)  93.04 + 2.35 (19) 94.21 £ 0.82 (20) 88.76 £ 1.04 (18)  75.75 £ 2.18 (19)  34.81 £ 0.52 (23) 195
MvVLDA 95.46 + 0.80 (8) 9290 £ 1.62 (20) 93.13 £ 1.15 (22)  90.53 £ 0.69 (10) 92.24 £+ 0.60 (12) 27.22 £ 0.70 (27) 16.5
MvMDA 41.13 931 (27) 91.67 £ 1.66 (24) 77.47 £ 3.51 (26)  52.60 + 1.40 (26) 77.15 £ 1.19 (18) 31.28 4+ 0.37 (26) 24.5
MLDA 78.96 + 1.32 (22) 9092 + 1.52 (27) 88.56 + 2.12 (24)  63.81 £ 2.55 (24) 44.96 + 1.62 (26) 3448 £ 0.78 (25) 24.7
GMA 41.14 £9.30 (26) 93.07 £ 1.81 (17)  76.21 £ 3.63 (27) 52.18 £ 1.38 (27)  77.16 £ 1.19 (17)  35.66 £ 0.57 (18) 22.0
MvLDA-CCA 74.19 4+ 2.40 (24)  93.20 £ 1.80 (16) 94.59 +0.93 (19) 8491 + 1.18 (21) 57.34 £ 1.05 (22) 3497 £ 0.37 (21) 20.5
MCCAp 88.41 £ 1.70 (19)  92.53 & 1.01 (21) 9525 £ 0.45 (16) 88.82 £ 0.77 (16) 7224 £ 1.08 (20) 37.54 £ 0.41 (16)  18.0
MvOPLSp 0523 + 0.86 (11) 9521 £ 0.76 (13) 9587 £ 0.32 (14) 91.54 £ 0.61 (9) 9292 £ 0.52(7) 37.63 £ 0.54 (12) 11.0
MvDAp 9523 £ 0.86 (12) 9529 £ 0.71 (12) 9599 £ 0.49 (12) 91.58 £ 0.67 (7) 9295+ 049 (6) 37.62 £0.53 (14) 10.5
MvDA-VCp 9521 £ 0.88 (14) 9532 &£ 0.77 (11) 9595 £ 048 (13)  91.55 £ 0.65 (8) 92.84 £ 0.54 (8) 37.63 £ 0.55 (13) 11.2
MvLDAp 93.53 &£ 1.17 (17)  93.05 + 0.94 (18) 95.17 & 0.97 (18) 90.01 + 0.76 (12) 45.83 + 5.16 (25) 35.53 £ 0.67 (19) 18.2
MvMDAp 95.32 £ 0.69 (10) 9534 + 0.61 (10) 96.31 &+ 1.04 (10) 87.41 &= 1.29 (19) 92.54 + 0.54 (10) 36.28 £ 0.31 (17) 12.7
MLDAp 88.41 + 1.69 (20)  92.49 4+ 1.02 (22) 9525 £ 045 (17) 88.82 £ 0.78 (17) 7224 £ 1.09 (21) 37.55 £ 0.41 (15) 18.7
GMAp 9544 £0.75(9) 9544 £059(8) 9673 £0.77 (7) 87.02 £ 1.20 (20)  92.38 £+ 0.57 (11)  38.60 + 0.38 (10) 10.8
MVLDA-CCAp 9522 + 0.87 (13) 9544 £0.76 (9) 9585 £ 0.35 (15) 91.60 £ 0.71 (6) 9279 £ 0.49 (9) 37.64 £ 0.54 (11) 10.5
DMCCA 95.17 £ 0.64 (15) 9395 & 0.49 (15) 96.61 £ 0.33 (8) 90.28 = 0.66 (11)  81.68 & 1.31 (15) 40.11 £ 035(7) 11.8
DMvVOPLS 95.85 042 (3) 9576 £042(7) 9683 £0.37(6) 9258 +£035(3) 9331 £056(5) 41.124+0.29(2) 43
DMvDA 95.61 £ 050 (6) 9578 £0.47 (5) 9684 £ 039 (4) 9257 £042(4) 9336 £050(3) 41.01 £0.38(3) 42
DMvDA-VC 95.61 £ 050 (7) 9578 £ 047 (6) 9684 £ 039 (5) 9257 £042(5) 9336 £050(4) 41.01 £ 038 (4) 5.2
DMVLDA 9635 £0.73 (2) 9582 +£036(4) 97.60 £0.56(2) 9272 +0.63(2) 9425+£024(2) 40.81 £0.36(5) 2.8
DMvMDA 95776 £ 0.59 (4) 9591 £035(2) 97.25+£054(3) 89.71 £ 1.12(14) 9224 £ 035 (13) 39.27 £ 036 (9) 7.5
DMLDA 95.09 + 0.72 (16)  94.45 + 0.34 (14) 9645 £ 0.33 (9) 89.89 + 0.73 (13) 80.64 + 0.81 (16) 39.83 £ 042 (8) 12.7
DGMA 95774 £ 0.78 (5) 9584 £0.43 (3) 96.18 £0.56 (11)  88.90 £ 0.94 (15) 90.70 £ 0.45 (14)  40.55 £ 0.48 ( 6) 9.0
DMVLDA-CCA  96.67 £ 041 (1) 96.05 £+ 0.30 (1) 98.01 =037 (1) 93.69 + 040 (1) 9431 +045(1) 41.60 + 0.36 (1) 1.0

We will evaluate baselines in terms of SVMs since it is con-
sistent with the built-in classifier of the proposed framework.
Specifically, each dataset is split into training and testing sets.
Each baseline method takes in a training set and outputs the
learned projections and the new representation of the training
set. The classifier is trained on the new representation of
the training set. In the testing step, the testing set is first
transformed to the common space via the given projections,
and then the classifier is applied to make predictions of
the testing data. We repeat the experiment for each baseline
method over ten randomly drawn training and testing sets, and
the mean accuracy with standard deviation on testing sets is
reported.

Regularized MvOPLS and its variants share some common
parameters, including the regularization parameters for Ry
and the dimension k of the common space. In addition,
MvDA-VC, MLDA, GMA, MvLDA-CCA, and their nonlinear
versions have another regulating parameter A for an additional
regularization term. For simplicity, we set y;, =y = 107, Vs
in (18), and the second regularization parameter is set to
2 = 1072 for all experiments. The dimension k is an important
parameter for all subspace learning methods. Following the
convention, we will evaluate all baseline methods over a
set of ks. For Mfeat data, k € {2,3,4,5,6} is used since
there are only six morphological features. For other datasets,
k € {2,3,5:5:50} is used. The architecture of deep networks
used for all nonlinear methods follows [12], where the widths
of the hidden layers are 500 and 500, and there are three layers,
including the output layer. During the training process, we take
the full-batch optimization approach, as suggested in [12].

All nonlinear extensions are implemented in Pytorch [58] for
tensor operations and eigenvalue decompositions. The Adam
optimizer is used with the learning rate set to 1073, and
others are set by default. It is worth noting that our work
in this article mainly focuses on the generalized framework
and demonstrates its versatility to recast existing methods and
inspire new models as needed, and thus fine-tuning all involved
parameters to achieve the best possible performance by each
method is not our main concern.

Cross-modal retrieval is different from multiview feature
extraction. After the common space is learned on the training
data, the testing data are used to query each other through the
common space. We take the retrieval method proposed in [54]
with L, metric to evaluate the performance of each method.
Following [5], we set the latent dimension to 20 for the last
three datasets in Table II for cross-modal multimedia retrieval.

D. Performance Evaluation via Multiview Feature Extraction

The classification performance of all methods on the first six
datasets in Table II is compared from three different perspec-
tives: the best overall accuracy of each method, the accuracy
by varying the dimension of the common space, and the best
accuracy by varying the training ratios.

1) Overall Classification Performance: We first evaluate the
nine methods and their two variants by comparing their best
accuracies over all ks with 10% training and 90% testing split
of data, and the results are shown in Table III. We have the
following observations: 1) supervised methods significantly
outperform unsupervised MCCA; 2) methods (with suffix “p”)
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Fig. 2. Accuracies of nine methods and their variants on Caltech101-20 and
Ads with 10% training and 90% testing data split as k varies.

trained on data of reduced dimensions have better accuracies
than the same methods on original features (without suffix
“p” and prefix “D”), and nonlinear transformations via deep
networks (with suffix “D”) perform better than the same linear
methods (with or without suffix “p”); 3) among the supervised
MvOPLS models, GMA and MLDA demonstrate relatively
worse results than others (that is possibly caused by the model
assumption that their least squares in MvOPLS are built on the
unlabeled data); and 4) our proposed method DMVLDA-CCA
consistently outperforms others over all six datasets.

To get an overall picture of the nine methods and their
two variants over the six datasets, we rank them in terms of
their accuracies on each dataset, from 1 to 27 with 1 being
the best and 27 being the worst. The average ranking over
the six datasets is reported to measure the overall perfor-
mance of each method. The top four methods are DMVLDA,
DMvOPLS, DMvDA, and DMvLDA-CCA, where the two
newly proposed models, DMvLDA-CCA and DMvOPLS, are
in the top 1 and 4, respectively.

2) Impact of Common Subspace: The impact of common
subspace on the performance of classification is evaluated by
varying dimension k of the subspace in a given range. Results
of the nine methods and their two variants on Caltech101-20
and Ads are shown in Fig. 2. It can be observed that deep
variants consistently achieve better accuracy as k increases.
However, those models on original data can behave somehow
unpredictably. Among them, MvVLDAp behaves very differ-
ently from its other counterparts. In any case, the deep variants
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Fig. 3. Accuracies of nine methods and their two variants on Caltech101-7
and Mfeat with varying training data ratio from 10% to 70%.

produce consistently better results than their two counter-
parts. Moreover, our proposed methods DMvLDA-CCA and
MvLDA-CCAp show consistently better accuracy than their
counterparts over most of the tested ks.

3) Impact of the Size of Training Data: We further evaluate
the impact of the training ratio on the performance of clas-
sification. The results are shown in Fig. 3 where the training
ratio is varied from 10% to 70% for the nine methods and
their two variants on Mfeat and Caltech101-7. We observe
that deep variants perform consistently better as the training
ratio increases. Their two counterparts show similar trends but
achieve lower accuracies compared with corresponding deep
variants. Another observation is that MvOPLS and its variants
can achieve relatively better accuracy for large training ratios
on Mfeat, while DMVLDA-CCA achieves best results on small
training ratios on both datasets. This is possibly because more
labeled data degrades the importance of Re..

4) Impact of the Layers of Deep Networks: We also evaluate
the sensitivity of deep network variants with respect to the
depth of networks from 2 to 8 layers. Each layer consists
of a linear layer with a nonlinear activation function. Here,
two functions: sigmoid and tanh are used. The widths of all
layers are set to 500. The results on two datasets Caltech101-7
and Ads are shown in Fig. 4. With both activation functions,
DGMA and DMLDA show a bit worse accuracy, while
the proposed DMvVLDA-CCA performs well in general. For
sigmoid, it is shown that the best performance occurs near
2-4 layers, but the accuracy drops significantly when the
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Fig. 4. Accuracies of nine deep network variants on Caltech101-7 and Ads
as the number of layers varies from 2 to 8. (a) Sigmoid. (b) Sigmoid. (c¢) Tanh.
(d) Tanh.
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Fig. 5. Parameter sensitivity analysis of four methods on Caltech101-20

as parameter A varies in a wide range from 10™* to 10*. (a) MvDA-VC.
(b) MLDA. (c) GMA. (d) MVLDA-CCA.

number of layers becomes large. This has been observed in
the literature. However, tanh generally requires more layers
to reach similar performance and continues to improve as the
number of layers increases.

5) Parameter Sensitivity Analysis: MvDA-VC, MLDA,
GMA, MvVLDA-CCA, and their nonlinear versions have
another parameter 41 (see Section IV-C). To investigate the
impact of 4 on the four models, we repeat the experiments in
Section VI-D1 on Caltech101-20 by fixing k = 50 and varying
J € [107%, 10*]. Experimental results are shown in Fig. 5. The
four methods show large variations on the original input data,
but they behave less sensitively to /4 for reduced data using
either PCA or deep networks.
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TABLE IV

MAP SCORES OF THE NINE METHODS AND THEIR TWO VARIANTS
ON THREE DATASETS, WHERE THE BEST RESULTS
ARE HIGHLIGHTED IN BOLD

Method Pascal TVGraz Wikipedia
Image Text Ave Image Text Ave Image Text Ave
MCCA 0.102 0.085 0.093 0.191 0.282 0.237 0.144 0.174 0.159
MvOPLS 0.132 0.069 0.101 0.201 0.354 0.278 0.142 0.219 0.181
MvDA 0.131 0.070 0.101 0.203 0.351 0.277 0.146 0.219 0.183
MvDA-VC 0.134 0.069 0.102 0.141 0.348 0.244 0.131 0.196 0.163
MvLDA 0.070 0.068 0.069 0.148 0.225 0.186 0.130 0.138 0.134
MvMDA 0.159 0.067 0.113 0.163 0.359 0.261 0.140 0.224 0.182
MLDA 0.101 0.085 0.093 0.231 0.270 0.250 0.163 0.164 0.164
GMA 0.159 0.067 0.113 0.163 0.346 0.255 0.135 0.183 0.159
MvLDA-CCA [0.129 0.069 0.099 0.271 0.452 0.361 0.153 0.235 0.194
MCCAp 0.115 0.108 0.111 0.191 0.287 0.239 0.144 0.175 0.159
MvOPLSp 0.136 0.154 0.145 0.171 0.309 0.240 0.130 0.167 0.149
MvDAp 0.136 0.153 0.145 0.178 0.327 0.253 0.132 0.180 0.156
MvDA-VCp  |0.137 0.154 0.145 0.138 0.340 0.239 0.125 0.193 0.159
MvLDAp 0.073 0.079 0.076 0.121 0.154 0.138 0.121 0.118 0.120
MvMDAp 0.129 0.173 0.151 0.159 0.355 0.257 0.131 0.220 0.175
MLDAp 0.115 0.108 0.111 0.234 0.276 0.255 0.163 0.164 0.163
GMAp 0.130 0.168 0.149 0.168 0.337 0.253 0.134 0.180 0.157
MvLDA-CCAp|0.136 0.149 0.143 0.269 0.400 0.335 0.151 0.217 0.184
DMCCA 0.132 0.118 0.125 0.115 0.220 0.168 0.121 0.156 0.138
DMvOPLS 0.153 0.161 0.157 0.406 0.411 0.409 0.198 0.236 0.217
DMvDA 0.155 0.162 0.158 0.420 0.399 0.410 0.210 0.223 0.217
DMVDA-VC |0.155 0.162 0.158 0.420 0.399 0.410 0.210 0.223 0.217
DMVLDA 0.133 0.120 0.126 0.296 0.290 0.293 0.129 0.161 0.145
DMvMDA 0.112 0.173 0.142 0.376 0.340 0.358 0.141 0.226 0.184
DMLDA 0.131 0.117 0.124 0.229 0.259 0.244 0.175 0.179 0.177
DGMA 0.122 0.179 0.151 0.261 0.276 0.268 0.146 0.179 0.162
DMvLDA-CCA}0.188 0.198 0.193 0.422 0.453 0.438 0.219 0.241 0.230

6) Empirical Time Complexity Analysis: We present the
empirical time spent by each compared method on Mfeat
(k = 6) and Caltech101-7 (k = 50) in Fig. 6. On Mfeat with
649 features in total, deep methods need much more time
than others since many iterations are required even though
each iteration takes less time. On Caltech101-7 with about
4018 features in total, deep methods take comparable time
to counterpart methods with the original data as input, while
counterparts with PCA become faster variants. This is because
GEP on 4018 features dominates, while deep methods and
counterparts with PCA can avoid this issue by working on
reduced dimensions.

E. Performance Evaluation via Text-Image Retrieval

Text-image retrieval is used to evaluate MvOPLS and its
variants on datasets whose two views are text and image,
respectively. This task aims to retrieve an image (text) from a
database for a given text (image) query. A correct retrieval is
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the one with the same class as the query. The mean average
precision (mAP) score is the performance measurement for
text-image retrieval, and it has been popularly used [5], [56].
The parameters of all methods are the same as those used in
Section VI-D.

Table IV shows the mAP scores by the nine methods and
their two variants on three datasets. We observe that: 1) PCA is
helpful on Pascal, but not on TVGraz and Wikipedia; 2) deep
variants outperform their counterparts, and DMvVLDA-CCA
produces the best performance in terms of the mAP score
over all three datasets; and 3) DMvLDA does not show
good performance for cross-modal retrieval as in classification
(Section VI-D). These results demonstrate that deep network
variants of MvOPLS for learning nonlinear transformations
are effective for certain models, but not always.

VII. CONCLUSION

Previously, several multiview subspace learning methods are
formulated equivalently as GEPs of diverse matrix pencils,
mostly based on heuristic understanding and plausible fixes
to incorporate information that comes to light. There is not
much coherent foundation laid out for them, not to mention
a unified one upon which they can be built. In this article,
we have proposed a unified multiview learning framework
for that purpose. The framework not only provides a deep
understanding of many existing methods from the viewpoint
of regularized least squares but also guides the development of
new methods. Furthermore, the framework affords a nonlinear
variant via deep networks with little additional effort. Exten-
sive experiments in terms of two multiview learning tasks
validate the proposed framework, the two newly instantiated
models, and the new deep variants.

The proposed framework can provide appealing flexibility to
design effective models for a wide range of learning objectives,
beyond what we have discussed in this article. For example,
the sparse CCA [42], [59] can be reformulated under the pro-
posed framework with sparsity regularization over projection
matrices, and more importantly, this reformulation lends itself
to immediate extensions for multiview data of more than two
views and of nonlinear representations via a deep network,
following our developments in this article. Our framework
can also be extended for another learning paradigm, such as
semisupervised multiview learning, missing view learning,
and other label matrix learning approaches [60], which we
will investigate elsewhere.
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