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SHARP ESTIMATION OF CONVERGENCE RATE FOR
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EIGENVECTOR-DEPENDENT NONLINEAR EIGENVALUE
PROBLEMS*
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Abstract. We present a comprehensive convergence analysis for the self-consistent field (SCF)
iteration to solve a class of nonlinear eigenvalue problems with eigenvector dependency (NEPvs).
Using the tangent-angle matrix as an intermediate measure for approximation error, we establish
new formulas for two fundamental quantities that characterize the local convergence behavior of the
plain SCF': the local contraction factor and the local asymptotic average contraction factor. In com-
parison with previously established results, new convergence rate estimates provide much sharper
bounds on the convergence speed. As an application, we extend the convergence analysis to a popular
SCF variant—the level-shifted SCF. The effectiveness of the convergence rate estimates is demon-
strated numerically for NEPvs arising from solving the Kohn—-Sham equation in electronic structure
calculation and the Gross—Pitaevskii equation for modeling of the Bose—Einstein condensation.
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1. Introduction. We consider the following nonlinear eigenvalue problem with
eigenvector dependency (NEPv): find an orthonormal matrix V € C"** ie., VHV =
I, and a square matrix A € C*** satisfying

(1.1) H(V)V = VA,

where H: C"** — C™ ™ is a continuous Hermitian matrix-valued function of V.
Necessarily, A = VEH(V)V and the eigenvalues of A are k of the eigenvalues of
H(V), often either the k smallest or largest ones. Our later analysis will focus on A
associated with the k smallest eigenvalues of H(V'), but it works equally well for the
case when A is associated with the k largest ones. We assume throughout this paper
that H(V) is right-unitarily invariant in V| i.e.,

(1.2) H(VQ)=H(V) for any unitary Q € UF*F

where U¥** is the set of all k x k unitary matrices. This property (1.2) essentially
says that NEPv (1.1) is eigenspace-dependent, to be more precise. However, we will
adopt the notion of the nonlinear eigenvalue problem with eigenvector dependency, as
commonly used in literature. Furthermore, the assumption (1.2) implies that if (V, A)
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is a solution of NEPv (1.1), then so is (VQ, Q"AQ) for any unitary Q. We therefore
view V and V as an identical solution if the two share a common range R(V) = R(V).

NEPvs in the form of (1.1) arise in a number of areas of computational science
and engineering. They are the discrete representations of the Kohn—Sham equation
of the density functional theory in electronic structure calculations [19, 35] and the
Gross—Pitaevskii equation in modeling the ground state wave function in a Bose—
Einstein condensate [4, 11]. In particular, H(V) = ¢(P), where ¢ is a Hermitian
matrix-valued function of P = VVH, known as the density matrix in the density
functional theory [19, 35]. NEPvs have also long played an important role in the
classical methods for data analysis, such as multidimensional scaling [21]. It has
become increasingly popular recently in the fields of machine learning and network
science, such as the trace ratio maximizations for dimensional reduction [22, 42],
balanced graph cut [13], robust Rayleigh quotient maximization for handling data
uncertainty [2], core-periphery detection in networks [37], and orthogonal canonical
correlation analysis [43]. The unitary invariance (1.2) holds in all those practical
NEPvs except a few.

The self-consistent field (SCF) iteration is the most general and widely used
method to solve NEPv (1.1). SCF, first introduced in molecular quantum mechanics
in the 1950s [29], serves as an entrance to all other approaches. Starting with an
orthonormal matrix Vo € U"** SCF computes iteratively V;,; and A, satisfying

(13) H(‘/;)‘/;Jrl = V;leAiJrl for i :07132a"'7

where V41 € C"** is orthonormal and A, is a diagonal matrix consisting of the k
smallest eigenvalues of H(V;). Since unit eigenvectors associated with simple eigenval-
ues can differ by scalar factors of unimodular complex numbers and those associated
with multiple eigenvalues have even more freedom, the iteration matrix V;,; can-
not be uniquely defined. But thanks to the property (1.2), the computed subspaces
R(V1),R(Va),... are always the same, provided the kth and (k + 1)st eigenvalues of
H(V;) are distinct at the ith iteration. Because of this, SCF can be interpreted as
an iteration of subspaces of dimension k, i.e., elements in the Grassmann manifold
Gr(k,C™) of all k-dimensional subspaces of C™.

The procedure in (1.3) is an SCF in its simplest form, also known as the plain SCF
iteration. In practice, such a procedure is prone to slow convergence and sometimes
may not converge [14]. Therefore, it has been a fundamental problem of intensive
research for decades to understand when and how the plain SCF converges so as to
develop remedies to stabilize and accelerate the SCF iteration.

For the applications of solving the Kohn—Sham equation in physics and quantum
chemistry, the solution of the associated NEPv corresponds to the minimizer of an en-
ergy function. In such context, optimization techniques can be employed to establish
convergence results of SCF. A number of convergence conditions have been investi-
gated [7, 17, 18, 40]. For solving general NEPvs, one may view the plain SCF (1.3)
as a simple fixed-point iteration. Sufficient conditions for the fixed-point map being
a contraction have been studied in [5], where the authors revealed a convergence rate
of SCF based on the Davis-Kahan Sin® theorem [8]. Another approach for the fixed-
point analysis is to examine the spectral radius of the Jacobian supermatrix of the
fixed-point map. When H (V) is a smooth function in the density matrix P = VVH
a closed-form expression of the Jacobian has been obtained in a recent work [38].
Similar analysis appeared in an earlier work [32] on the Hartree-Fock equation.

What is often different among the existing convergence analyses is the way of
measuring the approximation error. Since SCF is a subspace iteration, how to assess
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the distance between two subspaces R(V) and R(V;) is the key to the convergence
analysis. Various distance measures have been applied in the literature, leading to
different approaches of analysis and different types of convergence results. In partic-
ular, the difference in density matrices in 2-norm is used as a measure of distance
in [40]. A chordal 2-norm is used in [17]. More recent work [5] turned to the sines
of the canonical angles between subspaces. The work [7] (as well as [38] though not
explicitly specified) used the difference of density matrices in the Frobenius norm. We
believe that those distance measures may not necessarily be the best to capture the
local convergence rate of the SCF iteration.

The results presented in this paper are a refinement and extension of the pre-
vious ones in [5, 17, 38, 40]. We aim to provide a comprehensive and unified local
convergence analysis of SCF. Rather than resorting to a specific distance measure,
our development is based on the tangent-angle matrix, associated with the tangents
of canonical angles of two subspaces. Such matrices can precisely capture the error
recurrence of SCF when close to convergence, and they can act as intermediate mea-
surements by which various distance measures can be evaluated as needed. Although
they are less popular than sines, the tangents of canonical angles have been used to
assess the distance between subspaces and can lead to tighter bounds when applicable;
see [8, 45] and references therein.

The use of the tangent-angle matrix allows us to take a closer examination of the
local error recursion of SCF, leading to the following contributions presented in this
paper:

(a) A precise characterization for the local contraction factor of SCF for both

continuous and differentiable H (V). This improves over the previous work [5,
17, 40], where only upper bounds of such a quantity were obtained.

(b) A closed-form formula for the local asymptotic average contraction factor of
SCF in terms of the spectral radius of an underlying linear operator when
H(V) is differentiable. The formula is sharp for providing a sufficient and
almost necessary local convergence condition of SCF. It extends the previous
work in [32, 38] to general H(V') functions and has a compact expression that
is convenient to work with in both theory and computation.

(¢) A new justification for a commonly used level-shifting scheme for the sta-
bilization and acceleration of SCF [7]. A closed-form lower bound on the
shifting parameter to guarantee local convergence is obtained.

The rest of the paper is organized as follows. Section 2 presents some preliminaries
to set up basic definitions and assumptions. Section 3 introduces the tangent-angle
matrix and establishes the recurrence relation of such matrices in consecutive SCF
iterations. Section 4 is devoted to the local convergence theory of the plain SCF
iteration. Section 5 deals with the level-shifted SCF and its convergence. Numerical
illustrations are in section 6, followed by conclusions in section 7.

We follow the notation convention in matrix analysis: R™*™ and C™*" are the
sets of m x n real and complex matrices, respectively, and R" = R**! and C* = C"*!.
U™*™ < C™*™ denotes the set of m x n complex orthonormal matrices. AT and AH
are the transpose and conjugate transpose of a matrix or a vector A, respectively,
and A takes entrywise conjugate. H; > H, means that H; and Hy are Hermitian
matrices, and H; — Ho is positive semidefinite. For a matrix H € C"*™ known to
have real eigenvalues only, A\;(H) is the ith eigenvalue of H in the ascending order,
ie, M(H) < M(H) < - < A(H), and Apin(H) = M (H) and Apax(H) = A\ (H).
Diag(x) is a diagonal matrix made of the vector z, and diag(X) is a vector consisting
of the diagonal elements of a matrix X; R(X) is the range of X; o(X) is the collection
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of all singular values of X. R(-) and (-) extract the real and imaginary parts of a
complex number, and, when applied to a matrix/vector, they are understood in the
elementwise sense. Standard big-O and little-o notations in mathematical analysis are
used: for functions f(x),g(z) — 0 as z — 0, write f(z) = O(g(z)) if |f(z)| < c|g(z)|
for some constant ¢ as z — 0, and write f(z) = o(g(x)) if | f(x)|/|g(z)| — 0 as © — 0.
Other notations will be explained at their first appearance.

2. Preliminaries. Throughout this paper, we denote by Vi € U"** a solution
of NEPv (1.1). The eigendecomposition of H (V) is given by

(2.1) H(Vi) [Vie, Vier] = [Vae, Vaed] [ A ) }

where [V, Vi1 ] € UM*™ is unitary, and
Ay =diag(A1, ..., Ag) and Ayy = diag(Agi1,-- 5 An)

are diagonal matrices containing the eigenvalues of H(V;) in the ascending order, i.e.,
Ai = Mi(H (V). We make the following assumption for the solution V, of NEPv (1.1)
under consideration.

Assumption 1. There is a positive eigenvalue gap:
(2.2) Og = M1 (H (Vi) — Me(H (Vi) > 0.

Such an assumption, which is commonly required in the convergence analysis of
SCF, guarantees the uniqueness of the eigenspace corresponding to the k& smallest
eigenvalues of H(Vy) [5, 7, 17, 38, 40].

Sylvester equation. The following Sylvester equation in X € C™*** will be needed
in our analysis:

(2:3) A1 X = XAy = VI [H(Vi) = H(V) Vi

Under Assumption 1, this equation has a unique solution X = S(V') for each V €
U<k, given by

(2.4) S(V) =D(Vi) © (VAL [H(Vz) — HV)V:)
where
(2.5) D(Vy) e RFF with D(V)ij = (ks (H (Vi) = X (H(Vi)) ™

and ® denotes the Hadamard product, i.e., elementwise multiplication.
Unitarily invariant norm. We denote by | - |4 a unitarily invariant norm, which,
besides being a matrix norm, also satisfies the following two additional conditions:
(1) | XAY||lui = | Al for any unitary matrices X and Y
(2) |Alui = |Al2 whenever A is rank-1, where || - |2 is the spectral norm.
It is well known that | A|; is dependent only on the singular values of A. In this paper,
we assume any | - |,; we use is applicable to matrices of all sizes in a compatible way,

i.e., |Alui = || B|ui for A, B sharing the same set of nonzero singular values (see, e.g.,
[34, Theorem 3.6, page 78]). The spectral norm | - |2 and Frobenius norm | - | are
two examples of such unitarily invariant norms. Unitary invariant norms satisfy
(2.6) IABC ui < [|All2 - [Bllui - [Cl2

for any matrices A, B, and C of compatible sizes (see, e.g., [34, Theorem 3.9, page
80)).
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Canonical angles between subspaces. Let X,Y € U™**. The k canonical angles
between subspaces X = R(X) and Y = R(Y') are defined as

(2.7) 0<0;(X,Y) :=arccoso; < for 1 <j <k,

7r
2
where oy > --- > 0}, are singular values of the matrix YHX (see, e.g., [34, section
4.2.1]). Put k canonical angles all together to define

(2.8) O(X,Y) = diag(6:(X,V),...,0:(X, ).

Since the canonical angles defined above are independent of the basis matrices X and
Y, for convenience, we use the notation ©(X,Y") interchangeably with ©(X’,Y).

Canonical angles provide a natural distance measure for subspaces. For any uni-
tarily invariant norm | - ||y, it holds that both |©(X,Y)|y and |sin©(X,Y )| are
unitarily invariant metrics on the Grassmann manifold Gr(k, C") (see, e.g., [34, The-
orem 4.10, page 93] and [27]). In our analysis, the tangents of canonical angles will
play an important role. By trigonometric function properties, tangents provide good
approximation to the canonical angles as ©(X,Y) — 0:

(2.9) tan O(X,Y) = O(X,Y) + O(|O(X,Y)|3)-
R-linear mapping. A mapping .Z: C"** — CP*1 is called R-linear if it satisfies
(2.10) ZX+Y)=Z4(X)+Z ) and Z(aX)=aZ(X)

for all X,Y € C"** and o € R. When we talk about an R-linear mapping, the complex
matrix space C"™*" is viewed as a vector space over the field R of real numbers,
denoted by C™*™(R). By elementary linear algebra, C"™*™(R) is a (2mn)-dimensional
inner product space, equipped with the inner product (X,Y) := Rtr(X"Y) and the
induced norm | X||p = (Rtr(X"X))"/2. We can see that .Z: C"**(R) — CP*4(R) is a
linear mapping (over R). For convenience, we use C"** and C"**(R) interchangeably
in future discussions when referring to an R-linear mapping.

The spectral radius of an R-linear operator . : C**F — C"*F is defined as the
largest eigenvalue in magnitude of a matrix representation L € R(27k)*x(2nk) of .

(2.11) p(£L) :=max{ [A: Lx = Ax, xe C*"* }.

Notice that x is allowed to be a complex vector because a real matrix can have complex
eigenvalues. Here we do not make any assumption on the basis used to obtain L; the
choice of the basis does not affect the spectrum of L and therefore p(.Z).

Derivative operator. Let V. = Vi +1V; € C™*F with V;,V; € R"** being the
real and imaginary parts of V, respectively. A Hermitian matrix-valued function
H(V) is called differentiable if each element h;;(V) is a smooth function in the real
and imaginary parts (V;, Vi) of V. Such differentiability is also known as real dif-
ferentiability in the literature (see, e.g., [28, 10]), and it is different from the one
in the holomorphic sense, which generally cannot hold for H(V') with real diagonal
elements.

For H(V) differentiable at Vi, we can define a derivative operator

(2.12) DH(Vi)[]: CF > C™"  with DH(Vi)[X] = [ZH(V*HX)] :
t=0
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where ¢t € R. The DH (V,)[X] represents the directional derivative of H(V) at V; in
the direction of X = X, +1X; € C"**. By definition, the (i,7) entry of DH (V4 )[X]
is given by

(2.13)

Dh,;(Vi)[X] = [ihij(v* +tX)LO = <ah” Vi), Xy > <ah” (Vi) , Xi>,

where (X,Y) := tr(XTY). It follows that the elements Dh;;(V;)[-], and hence the
full DH (V,)['], are R-linear mappings satisfying (2.10).

By Taylor’s expansion, as V' comes close to Vi (in the Euclidean sense), it holds
that

ohi; 0hi;
hi; (V) = hij (Vi) + < 6VJ Vi), Vo — Vi r> < (Vi) Vi— Vi l> +o(||V — Vi)

= hij (Vi) + Dhi (Vi) [V = Va] + o(|V — V*H

where || - || is any matrix norm, and the last equation is due to (2.13). It then follows
that
(2.14) H(V) = H(Vx) + DH(Vi)[V = Vi] + o(|V = Vi]).

Namely, DH (V;)[ -] is the Fréchet derivative of H : C"**(R) — C"*™(R). Note that
the expansion (2.14) does not take into account the unitary invariance (1.2) of H(V),
and that is why the remainder is in terms of the Euclidean difference V — V.

The Fréchet derivatives for matrix-valued functions and the R-linear operators
are essential tools for numerical analysis over the Grassmann manifold; see, e.g., [1]
and references therein.

3. Tangent-angle matrix. Let V € U"** be an approximation to the solution
Vi of NEPv (1.1). Each V represents an orthonormal basis matrix of a subspace. As
far as a solution of NEPv (1.1) is concerned, it is the subspace that matters. To assess
the distance of V' to the solution V; in terms of the subspaces their columns span, we
define the tangent-angle matriz from V to V, as

(3.1) T(V) := (VEV)(VEV)~t e crR)xk,

provided V2V is invertible, and we recall (2.1) for Vi . By definition, T(V) can
be viewed as a function of U"**¥ — C(»=%)*k  The name of “tangent-angle matrix”
comes from the fact that

(3-2) [tan OV, Vi) lui = [(Vil VIV V)™ i = [T(V) s

for all unitarily invariant norms. Recall that the unitarily invariant norm |Aly; is
defined by the singular values of A; (3.2) is a direct consequence of the identity
of singular values o(tan©(V, Vi) = o ((VIV,)(VHV,)~1), which follows from the
definition of canonical angles in (2.8) (see, e.g., [33, Theorems 2.2, 2.4, Chapter 4]
and [45]). The tangents of canonical angles have long been used in numerical matrix
analysis, and we refer to [45] and references therein.

By definition (2.7), the singular values of V'V consist of those of the matrix
cos O(V, Vi) = I+ O(|O(V, V4)|?;). Therefore, it can be seen from (3.2) that T(V) is
well defined for sufficiently small canonical angles ©(V, V,.). Meanwhile, ©(V,V,) — 0
if and only if T(V') — 0. By the unitary invariance (1.2) and the continuity of H(V),
we have H(V') — H(V;) as the tangent-angle matrix T'(V') — 0. This is more precisely
described in the following lemma.
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LEMMA 3.1. Let V e U"*k. Then as T(V) — 0, for a solution Vi of NEPv (1.1),
1t holds that

(3-3) H(V) = H(Vy + Vi  T(V) + O(|T(V)3))-
If H(V) is also differentiable, then
(3.4) H(V) = H(Vi) + DHV:)[Vi . T(V)] + o(|T (V) ui)-

Proof. The singular values of VEV consist of cos ©(V, Vi) = I+ O(|O(V, Vi) |2).
So we have VIV = W + O(||©(V, Vi)|?;) for some unitary W e UF**. Tt follows that

(3.5) VW =V(VAV)T + O(lO(V, Vi) [3) = Vi + Var T(V) + O(IT(V)5:),

where we used V = Vo (VAV) + Vi (VR V) and T(V) = O(|O(V, Vi)|wi) in the
last equation. The unitary invariance property H(V) = H(VW™1) leads to (3.3).
Combining (3.5) with (2.14), we obtain (3.4). 0

The following lemma, which is the key to establish our local convergence results,
describes the relation between the tangent-angle matrices of two consecutive SCF
iterations.

LEMMA 3.2. Suppose Assumption 1 holds. Let V be an orthonormal basis matriz
associated with the k smallest eigenvalues of H(V'), and let S(V') be the unique solution
of the Sylvester equation defined in (2.4). Then

(a) S(V)>0asT(V)—0;

(b) the tangent-angle matriz T(V) of V satisfies

(3.6) T(V) = S(V) + o(IS(V) ui);
(c) if H(V) is differentiable at Vi, then
(3.7) T(V) =2 (T(V)) +o(|T(V)]w),
where £ : Cn=k)xk _, Cc(n=k)xk defined by
(3.8) ZL(Z) = D(Vi) © (Vi DH (Vi) [Vier Z] V)

is an R-linear operator, called the local R-linear operator of the plain SCF.
Proof. For item (a), by (3.3) and the continuity of H, it holds that H(V) — H (V)
as T(V) — 0. Hence, S(V) — 0 by the definition of S(V).
For item (b), we begin with the eigendecomposition of H(V'):

where |‘~/ \N/L| e U™*" is unitary, A= diag(xl7 .. .,Xk), and A, = diag‘(xkﬂ, .. ,Xn)
with A\; = N;(H(V)). Due to Assumption 1, as H(V) — H(V,), we can apply the
standard perturbation analysis of eigenspaces [34, section V.2] to obtain

(3.9)
Iy —ZH] [(Ik +Z8 7)1

LA IV szl [* o]
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where Z e R"=F)*k Q9 e UF*k and P e UMk *("—k) are parameter matrices and
(3.10) Z—0 as H(V)— H(V,).
The parameterization from (3.9) can be equivalently put as

V= (Vo + Vil 2) (I + 29 2)712Q,
Vi = (—VaZ® + Vol) Un + Z22W)~12P,

I

By the first equation, Z is identical to the tangent-angle matrix from V to Vi
(3.11) T(V) = (VAV)(VIV)™ = 2,

where we have used VIV = (I} + Z12)~12Q and VIV = Z(I), + 2" 2)~1/2Q.
Next, we establish an equation to characterize Z. From VEH(V)V = VEVA =0,
we get

0= [—Z In—k] [V, V*J_]HH(V)[V*a Vil [IZk]

7z
=N Z — ZAs + (—ZVE + VENH(V) — HV)(Vs + Vil Z).

-7 L] Ve Vel I [HYV) + (HV) — HV)[Va V] [I’“]

Therefore, Z satisfies the Sylvester equation (view the right-hand side as fixed)
M1 Z = ZAy = 2V = VID[H(V) = H(Vi)]| (Vi + Vi Z).

By Assumption 1, we can solve the Sylvester equation to obtain

(3.12) Z=5V)+o(2),

where

(2) = D(Vi) © (ZVEIH(V) — H(Vi)I(Ve + Var Z) = VELH(V) = H(V,)]Ver 2)
and D(V) is defined as in (2.5). A quick calculation shows that
(313)  [0(2)|r < 65" |H(V) — HV)e@IZ]2 + |1 Z13) = o|Z ],

where the last equation is due to H(V) — H(Vy) and Z — 0, as T(V) — 0, and
the equivalency of matrix norms. Recall T(V) = Z. Equations (3.12) and (3.13) lead
directly to (3.6).

For item (c), we derive from the definition of S(V') and the expansion (3.4) that

S(V) = D(Vi)) © (Vil DH (Vi) [Var T(V)] Vi) + o(|T(V) ).

Plugging it into (3.6), and exploiting |Z(T(V))|ui = O(T(V)|u) since £ is an
R-linear operator of finite dimension (which is bounded), we complete the proof. 0O

We mention that the tangent-angle matrix in the form of (3.1) appeared in the so-
called McWeeny transformation [20, 31, 32] in the density matrix theory for electronic
structure calculations, where the matrix was treated as an independent parameter
that is not connected with canonical angles of subspaces. This lack of geometric
interpretation makes it difficult to produce a comprehensive convergence analysis as
developed in the following sections and extend to the treatment of a continuous H (V).
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4. Convergence analysis. Because of the invariance property (1.2), the plain
SCF iteration (1.3) should be inherently understood as a subspace iterative scheme,
and the convergence of the basis matrices {V;}° to a solution Vi should be mea-
sured by a metric on the Grassmann manifold Gr(k,C™). Let d(-,-) be a metric on
Gr(k,C™). Without causing any ambiguity, in what follows we will not distinguish an
element R(V) € Gr(k,C") from its representation V' € U"**. We adopt the following
notions for the local convergence analysis:

(i) SCF (1.3) is called locally (R-linearly) convergent to Vi if there exist ¢ < 1,

e > 0, and mg > 0 such that, for any initial Vj with d(Vp, Vi) < ¢ and integer
i > mo, it holds that d(V;, Vi) < 7 - ¢ - d(Vp, Vi), where v is a constant
independent of i and Vj;

(if) SCF (1.3) is called locally divergent from Vi, if there exists ¢ > 1 such that
for any € > 0 and arbitrarily large mg > 0, there exist an initial V{; with
d(Vo, Vi) < € and integer i > myq satisfying d(V;, Vi) = ¢ - d(Vp, Vy).

The local (R-linear) convergence implies d(V;, Vi) — 0 as ¢ — oo for any Vj that is
sufficiently close to Vi in the metric, i.e., d(Vp, Vi) is sufficiently small. Moreover, the
asymptotic rate of convergence is at least linear with a convergence factor c.

4.1. Contraction factors. There are two fundamental quantities that provide
convergence measures of SCF on Gr(k, C™): the local contraction factor and the local
asymptotic average contraction factor. The former, which is a quantity to assess local
convergence, accounts for the worst case error reduction of SCF per iterative step.
The latter captures the asymptotic average convergence rate of SCF and provides a
sufficient and almost necessary condition for the local convergence.

Since SCF is a fixed-point iteration on the Grassmann manifold Gr(k,C"), the
local contraction factor of SCF is defined as

4.1 sup -= limsup ————=.
(1) Tp i ek d(Vo, Vi)

d(Vp,Vg)—0

Such a constant can be viewed as the (best) local Lipschitz constant for the fixed-
point mapping of SCF. We observe that the condition 7g,, < 1, which implies SCF
is locally error reductive, is sufficient for local convergence. In the convergent case, it
follows from the definition (4.1) that

. d(‘/i+1,V*)
1 T 1/t r 1r N < su ’
L TR T B

namely, the (asymptotic) convergence rate of SCF is bounded by nsup.

To take into account oscillation and to obtain tighter convergence bounds, the
one-step contraction factor (4.1) can be generalized to multiple iterative steps. Let m
be a given positive integer, and define

. d(vmv*))”’”
4.2 sup.m i= limsu —_ .
(42) "lsup, " <d(VO,V*)

d(Vp,Vg)—0

Then 7sup,m 1S a (geometric) average contraction factor of m consecutive iterative
steps of SCF (1.3). The limit of the average contraction factor as m — oo,

(43) Nsup,00 = lim sup Tlsup,m»

m—00
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defines a local asymptotic average contraction factor of SCF. We mention that the
quantities Nsup, Nsup,m, and Nsup,oo from above are always well defined under Assump-
tion 1, which implies R(V1), R(V.,) € Gr(k,C"), for any fixed m, are unique for
sufficient small d(Vp, Vi). We should also caution the reader that all those quantities
depend on the metric d(-,-) and that the dependency is suppressed for notational
clarity.

By definition, the number 7,p, o measures the average convergence rate of SCF.
The average convergence rate is a conventional tool to study matrix iterative meth-
ods [39] and typically leads to tight convergence rates in practice.! It follows from
item (b) of Lemma 4.1 below that nsup, is precisely the local convergence factor of
SCF. The properties of contraction factors as shown in Lemma 4.1 have long been
known for linear iterative methods; see, e.g., [39, section 3.2]. It is not surprising they
also hold for contraction factors defined for a general iterative scheme. Lemma 4.1 is
tailored for SCF, and, for the sake of completeness, we present a proof here. It has
two assumptions: Assumption 1, which is needed for the SCF iteration to proceed in
a neighborhood of V, to ensure the well-definedness of the contraction factors, and
Nsup < 90, which will be proved in Theorem 4.2 later under the condition that H (V)
is Lipschitz continuous at V.

LEMMA 4.1. Suppose Assumption 1 and ns,p < 0.
(a) It holds that for any m > 1

(44) Tlsup,00 < Nsup,m < Nsup-

(b) If Nsup,o0 < 1, then SCF is locally convergent to Vi, with its asymptotic av-
erage convergence rate bounded by Nsup,oo- If Nsup,c0 > 1, then SCF is locally
divergent from V.

Proof. For item (a), first from definition (4.1) and 7., < 00, we conclude that
d(V,, Vi) = 0for p=0,1,...,m —1 as d(Vp, Vi) — 0. Therefore,

_ 1/m
. d(vm,v*))l/’" . " d(Visr, Vi)
lim su —_— = limsu _
4 (d(vo,v*) e E) AV, Vi)

d(Vp,Vg)—0 d(Vp,Vg)—0
1/m
m—1
. d(Vpt1, V.
<[ TT tmsu W1, Vi) |
p=0 Vpeunxk d(v;h V*)
A(Vp,Vig)—0
and Nsup,m < Nsup follows.
Now fix m. Any integer m’ > m can be expressed as m’ = sm + p for some s = 0
and 0 < p < m — 1. Using the same arguments as from above, and noticing that

AV, VO™ [ AV, Vi) AV, Vi) \ ™
( d(V(JvV*) ) - < d(Vp,V*) d(V07V*))

s— 1/m’
(1—[1 d(Vin(es1)+ps V) . d(Vp, V*))

=0 d(meJrzn V*) d(%a V*)

we obtain by taking lim sup that

)sm/m/ . ( )p/’rn/.

Tlsup,m’ < (nsup,m Tlsup,p

1The average convergence rate in [39] is defined with an extra logarithm, i.e., — In(nsup,m)-
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Assume for the moment 7syp.m # 0. Letting m’ — o0 and noticing that ngupp < Msup
is bounded, we get Nsup,0 = M sup,,,/_, o Msup,m’ < Nsup,m- If, however, Neup.m = 0,
then 7sup,m/ = 0 for any m’ = m, and so Nsup,0 = 0 < Nsup,m -

For item (b), consider first ng,p 0o < 1. Pick a constant ¢ such that ngyp 0 < ¢ < 1.
Because of how 7sup.m is defined in (4.3), we see that [d(V;,, Vi)/d(Vo, Vi)]Y/™ < ¢ for
m sufficiently large and for all Vj sufficiently close to Vi in the metric d(-,-). More
precisely, there exist my > 0 and £; > 0 such that

A(Viy Vi) < ™ d(Vo, Vi) for all Vi with d(Vo, V) < e1.

Recall ¢ < 1, so we have d(Vp,,, Vi) < €1. By induction, it holds for all s =0,1,2,...
and all Vg with d(Vp, Vi) < €1 that

(4.5) AV, Vie) < €™ d(Vig_1ymgs Vi) < -+ < &0 d(Vo, Vi) < e1.

Recall that 7., < 00, and pick a finite constant ¢; > max{l,ns,p} = 1. By (4.1),
there exists €5 € (0,&71) such that

(46) d(‘/i7 V*) < o d(Vo, V*) for all V() with d(VQ, V*) < €9.

Let e3 = c;(mo_l) X €9 < €9 < €1. For any Vj with d(Vp, Vi) < €3, we have by (4.6)
(47&) d(Vl, V*> < e d(VQ, V*) < C2€3 < €9,

(4.7b) d(Va, Vi) < c2d(Vi, Vi) < c3d(Vo, Vi) < c3e3 < €2,

(4.7¢) A(Ving—1, V) < 5071 d(Vo, Vi) < 50 teg < o

Whereas for any m > mg, we can write m = smg + p for some 0 < p < mg — 1. We
have by (4.5) and (4.7) that for any Vo with d(Vp, Vi) < e3,

. d(Vp’ V*) <

A(Vin, Vi) < &0 - d(Vy, Vi) = ™ <cm (%)pd(vo,v*).

cP

Observe that ¢ < 1 and [ea/c]? < [e2/c]™ ! is bounded by a constant independent
of m and Vj. So SCF is locally (R-linearly) convergent.

On the other hand, if nsupe > 1, then there exist ¢ > 1 and a subsequence
{m;}%, of positive integers such that 7syp.m; = ¢ as i — c0. Let § > 0 be a constant
satisfying ¢ — 6 > 1. It follows from the definition of 7sp,m that for all € > 0 there
exists Vp, with d(Vp, Vi) < g, such that d(V,,,,, Vi)/d(Vo, Vi) = (¢ — §)™i, which is
arbitrarily large as m; — c0. Hence the iteration is locally divergent. O

4.2. Characterization of contraction factors. The definitions of 7g,p, in (4.1)
and 7sup,co in (4.3) are generic. A meaningful characterization of 7y, and Msup,co
will have to involve the specific choice of the metric d(-,-) and the detail of H (V).
Theorem 4.2 below contains the main contributions of this paper. It reveals a direct
characterization of ns,, by H(V) for a class of metrics, as compared to the previous
works on the upper bounds of 7y, [5, 17, 40]. Furthermore, for differentiable H(V'),
it provides closed-form expressions for ns,, and the true convergence factor nsup, -

THEOREM 4.2. Suppose Assumption 1, and let d(-,-) := |O(, )| ui-
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(a) If H(V) is Lipschitz continuous at Vi, then

. 1S(V) i
4.8 up = lim su TtanOV Vol = %
(4.8) Tsup VEWX,P | tan ©(V, Vi)|lui

[ tan ©(V, Vi) [ —0

where S(V') is the unique solution of the Sylvester equation defined in (2.4).
(b) If H(V) is differentiable at Vi, then

(4.9) Nsup = 1L lwi = Nsup,co = P(ZL),

where £ is the local R-linear operator of the plain SCF defined in (3.8) and
IZ i s the operator norm of £ induced by the unitarily invariant norm
[ lis i€, [[Zwi := supzo ”“Téﬁ‘)ﬁ““i. Consequently, the plain SCF (1.3) is
locally convergent to Vi with its asymptotic average convergence rate bounded

by p(&) if p(£) < 1 and locally divergent at Vi if p(.£) > 1.
Proof. For item (a), by definition (4.1) with d(-,-) := ||©(,-)|ui, we obtain

: 1©(V1, Vi) i : | tan ©(V1, Vi) ui

4.10 Neup = llmsup ————— = lim sup ,

( ) sup Voeunxk H@(%, V*)Hul Voeunxk ” tan @(%, V*)Hul
[©(Vo,Vg)lui—0 [ tan ©(Vy,Vig) | 4i—0

where the second equality is a consequence of (2.9), together with ©(V1,V,) — 0 as
©(Vo, Vi) — 0 due to items (a) and (b) of Lemma 3.2. Then, a direct application
of (3.6) leads to (4.8).

For the boundedness of 7g,, < 00, we first observe that

A1 X = XAsfui = [[(Asr = MDX = X(As = M)
> [(Asr = M) X i = [ X (A = M) i

HXHm
g = 1A% =M T X ui
[(Asr =MD~ [(As = A D) 2] X
= 0| X i
where the second inequality is due to the 2-norm consistency with | - ||y in (2.6) and

the last one is by the definition of d4 in (2.2). So by taking norms on the Sylvester
equation (2.3) and noticing that X = S(V) and d, > 0 by Assumption 1, we have

(4.11) ISVl < 65 IVELIH (Vi) = H(V) Vi .
On the other hand, it follows from the Lipschitz continuity of H(V') and (3.3) that
[H(V) = H(Vi)|ui < o ([tan ©(V, Vi) i + O(] tan O(V, Vi) [[3,))

for some constant a < co. Combining this with (4.11) and (4.8), we conclude 7y, < 0.
For item (b), the inequality in (4.9) has already been established in (4.4), and the
formula of 74, follows directly from (4.8) and the expansion (3.7). It remains to find
the expression for nsup, -
For notation simplicity, we denote by T, 1= T(Vi) = (VI V) (VEV,,) "t for
m=20,1,.... It follows from Lemma 3.2 that

T, = gm(To) + O(Cm”TOHUi)a
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where ™ = % o--- 0. % represents the composition of the linear operator .Z for m
times and ¢, is a constant independent of Ty. Hence for any given m

1/m 1/m
e~ s (|@(vm,v*)|ui> " s (|Tm|m) !
P 10V, Vi) luim0 \ [©(Vo, Vi) [lui 1Tolwi—0 \ [T0]ui
. fw%uvwl
= lim sup < ,
Ty—0 170/ i

where the second equation is due to (2.9), together with the continuity T;, — 0 as
To — 0, implied by (3.6). Since .Z is a finite-dimensional linear operator, we have
that Nsup.m = (J|-£™[|wi)/™. The expression for neup o in (4.9) is a consequence of
Gelfand’s formula, which says lim,, . [|-Z™ Y™ = p(Z) for any operator norm || -
in a finite-dimensional vector space (see, e.g., [15, Theorem 17.4]). |

In recent years, a series of works has been published to improve the upper bounds
of the local contraction factor ns,p, €.g., [5, 17, 40]. Those bounds were typically
established for particular choices of the metric d(-,-) between subspaces and for a
class of H(V'). Let us revisit particularly the following estimation of the convergence
factor of the plain SCF iteration presented recently in [5]:

. 5 VR [H(Vy) — HV)]Vie i
4.12 czbl 1= lim su L L )
(4.12) e == limsup [sim OV, Va)

[ sin ©(V, Vi) wi—0

We use 7czp1 as a baseline for comparison since it improves the previous estimates of
the convergence factors presented in [17, 40].
For a differentiable H (V') with the expansion (3.4), e can be expressed as

(4.13) Neabt = 051+ |- Lean i
where Z,p1 : C(r=k)xk _, C(n=k)xk ig an R-linear operator:
(4.14) Leai(Z) = Vi DH(V)[Vie 1 Z] Vi

The convergence factor 7, in (4.12) significantly improves several previously estab-
lished results in [17, 40]. However, it follows from the characterization of 7, in (4.8)
and the bound of S(V') in (4.11) that

(415) Tlsup < Tlczbl -

Therefore, the quantity 7c,b1 is an upper bound of 74, and can substantially overes-
timate the convergence rate of SCF in practice; see numerical examples in section 6.

We have already seen from Lemma 4.1 that 9sup,o is the true convergence factor
for SCF and 7sup,00 < Nsup- 10 see why there may be a difference between 7gup, 0 and
Nsup 10 (4.9), we take a look at 7y, in the commonly used Frobenius norm:

IZ2@De _ (ZL(2), 221"
1Z]r Z#0 (Z,Z)1/?

Lo LI,

1 e = sup
Z#0

4.16 =

_— zh0 (L2

where (X,Y) = R(tr(X"Y)) denotes the inner product on C*~*)**¥(R) and .£* is
the adjoint of .Z. It follows from (4.9) and (4.16) that for the Frobenius norm

(4.17) Nsup = |)‘maX($* © X)P/Q = |p(ZL)| = Tsup,0-
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By the standard matrix analysis, the equality in (4.17) holds if .Z is a normal linear
operator on CV(R), and the difference between the two numbers can be arbitrarily
large when % is far from normal. For practical NEPvs, such as the ones in section 6,
we have observed that .Z is usually a slightly nonnormal operator, causing a small
difference between the two contraction factors.

Finally, we comment on another recent work [38] on the local convergence analysis
of SCF using the spectral radius. In [38], SCF is viewed as a fixed-point iteration
Pni1 = ¥(P,) in the density matrix P, = V,, V!l € C"*" rather than in V,,
directly. The authors showed that the fixed-point mapping ¥ (P) has a closed-form
Jacobian supermatrix J, assuming H (V) is a linear function in P = VVH. So the
spectral radius of J also provides a convergence criterion. Since P has p = (n+1)n/2
free variables, the corresponding supermatrix J is of size p-by-p. This is in contrast to
the R-linear operator .Z (3.8) in tangent-angle matrices, which is only of size ¢-by-¢
with ¢ = 2(n—k)k = O(p'/?) for modest k. In addition to the reduced size, the use of
a linear operator, rather than a supermatrix, allows for more convenient computation
of the spectral radius in practice; see subsection 6.1. Furthermore, .Z is also easier to
work with theoretically and numerically, thanks to its simplicity in formulation and
more explicit dependencies on key variables, such as derivatives and eigenvalue gaps.
In the next section, we will show how to apply the spectral radius p(.£) to analyze the
so-called level-shifting scheme for stabilizing and accelerating the plain SCF iteration.

5. Level-shifted SCF iteration. In the previous section, we have discussed
that if the spectral radius p(.Z’) > 1 (or more generally 7sup,oo > 1 in the case when
H(V) is just continuous), then the plain SCF (1.3) is locally divergent at Vi. Even if
p(Z) < 1, the process is prone to slow convergence or oscillation before reaching local
convergence. To address those issues, the plain SCF may be applied in practice with
some stabilizing schemes to help with convergence. Among the most popular choices
is the level-shifting strategy initially developed in computation chemistry [30, 36, 41].
In this section, we discuss why such a scheme works through the lens of spectral radius
when H (V) is differentiable.

5.1. Level-shifting. The level-shifting scheme modifies the plain SCF (1.3) with
a parameter o as follows:

(5.1) [H(V;) — o ViV Vi = VigAiy for i=0,1,2,...,

where V;, 1 is an orthonormal basis matrix of the invariant subspace associated with
the k smallest eigenvalues of the matrix H(V;) — o V;Vi2. It can be viewed simply as
the plain SCF (1.3) applied to the level-shifted NEPv:

(5.2) H,(V)V =VA with H,(V):= HV)—-oVVH

Note that H,(V) is again unitarily invariant as in (1.2). The level-shifting trans-
formation does not alter the solutions of the original NEPv (1.1) but shifts related
eigenvalues of H(V) by o:

HV)V =VA — H,(V)V =V(A—oly).
Hence, if (Vi, A4) is a solution of the original NEPv (1.1), then (Vi, Ay, —oI}) will solve

the level-shifted NEPv (5.2). In the following discussion, we assume the parameter o
is a constant for convenience. In practice, it can change iteration-by-iteration.
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One direct consequence of the level-shifting transformation is that it enlarges the
eigenvalue gap at the solution Vi.. By the eigendecomposition (2.1), we obtain

(53) HU(V*) [V*?V*J-] = [V*’V*J‘] |:A* - Ulk A*L] -

Recall that A, = diag(A1,...,Ax) and A,y = diag(Ags1,-..,A,) consist of the or-
dered eigenvalues of H (V) as in (2.1). Therefore, the gap between the kth and
(k + 1)st eigenvalue of H,(V;) becomes

(5.4) 0o = A1 — (Mg — 0) = 04 + 0,

where 0, denotes the eigenvalue gap (2.2) of the original NEPv (1.1) at Vi. So the
level-shifted NEPv (5.2) always has a larger eigenvalue gap 6,4 if o > 0.

For the standard Hermitian eigenvalue problem, it is well known that the larger
the eigenvalue gap between the desired eigenvalues and the others, the easier and
more robust it will become to compute the desired eigenvalues and the associated
eigenspace [8, 24, 34]. Therefore, it is desirable to have a large eigenvalue gap d,4
for the sequence of matrix eigenvalue problems in the SCF iteration (5.1), but on the
other hand if the shift o is too large, it will negatively affect the local convergence
rate of SCF as numerical evidences suggest. Presently, there are heuristic schemes to
choose the level-shift parameter ¢ in practice; see, e.g., [41]. However, those heuristics
cannot explain how the convergence behavior of SCF (5.1) is affected by the level-
shifting parameter o.

We mention that the conventional restriction of o > 0 for the level-shifting pa-
rameter [30, 36, 41] is not necessary. From the eigendecomposition (5.3) we see that
the eigenvector matrix Vi, always corresponds to the k smallest eigenvalues of H, (V;)
so long as 0 € (—dy, +00).

5.2. Local convergence of level-shifted SCF. In what follows, we investigate
the local convergence behavior of the level-shifting scheme by examining the spectral
radius p(.%,) for the local R-linear operator .Z, of the level-shifted SCF (5.1). We
will focus on a class of NEPv where certain conditions on the derivatives of H (V)
are satisfied. Those conditions hold for NEPvs arising in optimization problems with
orthogonality constraints, as is usually the case for most practical NEPvs.

5.2.1. NEPvs from optimization with orthogonality constraints. Let us
review a class of NEPvs arising from the following optimization problems with or-
thogonality constraints

5.5 in E(V) st. Viv =1
(5.5) Jin E(V) s ks

where E is some energy function satisfying VE(V) = H(V)V (see, e.g., [3, 41, 42]).
We will make no assumption on the specific form of E(-) to be used. For the con-
strained optimization problem (5.5), the associated Lagrangian function is given by

L(V):= E(V) + %tr (AR (VHYV — 1)),

where A = AM is the k-by-k matrix of Lagrange multipliers. We have suppressed
L’s dependency on A for notation simplicity. The first-order optimization condition
Vv L(V)=H(V)V — VA =0 leads immediately to NEPv (1.1).
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Because the target solution Vj of interest is also a minimizer of (5.5), it needs to
satisfy certain second-order conditions as well. Assuming E(V) is also second-order
differentiable, by straightforward derivation, the Hessian operator of L(V') is given by

VU L(Vi)[X] = H(Vi)X + (DH(Vy)[X]) Vi — XAy,

where X denotes the direction for the evaluation and DH(Vy)[-] denotes the di-
rectional derivative of H as defined in (2.12). Then by the standard second-order
optimization condition [23], this operator needs to be at least positive semidefinite
when restricted to X = Vi, Z for all Z € C"=%)*F: namely, within the tangent space
of the feasible set VHV = I, at Vi, the operator

Vil (VY L(Vi)[Ver Z]) = Vil DH (Vi) [Va Z] Ve + As 1t Z — Z A,

is self-adjoint and at least positive semidefinite.

In general, NEPv (1.1) may or may not be associated with an optimization prob-
lem like (5.5). The discussion above nonetheless can still motivate us to introduce the
following R-linear operator 2: C(»—*)xk _, C(n—k)xk,

(5.6) 2(2) =V DHV)[Var Z] Vi + A1 Z — ZAy.

It is well defined without the need of an associated optimization problem (5.5) so
long as H(V) is differentiable at Vi, with respect to the real and imaginary parts of
V. We call 2 a restricted derivative operator of NEPv (1.1). In this more general
situation, there is no implied self-adjointness as a result of being the Hessian of L(V),
however, not to mention that it is positive definite. For that reason, we need to make
the following assumption.

Assumption 2. The linear operator 2 is self-adjoint and positive definite with

respect to the standard inner product on C*=*)*k je.

R(tr(Z72(2))) = R(tx([2(2)]"Z)) and R(tr(Z72(Z))) > 0 for all Z # 0.

5.2.2. Spectral radius of level-shifted local R-linear operator. We can
immediately draw from Lemma 3.2 and Theorem 4.2 a conclusion that the local con-
vergence behavior of the level-shifted SCF (5.1) is characterized by the local R-linear
operator corresponding to the level-shifted NEPv (5.2). To show the dependency
on o, we note that the local R-linear operator associated with H, (), as defined in
Lemma 3.2, is

(5.7) Z5(Z) = Do (Vs) © (Ve DH, (Vi) [Var Z] Vi),
where D, (Vi) € R(*=F)*F has elements
Do (Vi) (i) = Nii (H (Vi) = A (H (Vi) +0) 7

A representation of %, in terms of restricted derivative operator 2 and a bound of
the spectral radius of .Z, is given in the following theorem.

THEOREM 5.1. Suppose Assumptions 1, and 2 and that o € (—04, +0). The local
R-linear operator £, (-) of the level-shifted SCF (5.1) for the level-shifted NEPv (5.2)
is given by

(5.8) Z5(-) = Do (Vi) © 2(-) — Iia,
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where 2 is the restricted derivative operator defined in (5.6) and Iig denotes the
identity operator on the vector space (C(”*k)Xk(R). Moreover, the spectral radius of

L, is bounded:
Hmin N 1‘} 7
o+ Sy

where Umax = WUmin > 0 denote the largest and smallest eigenvalues of the R-linear
operator 2 and 0y and sy are the spectral gap and span, respectively, i.e.,

Op = A1 (H(Vy)) = Me(H(Vy))  and sy = A (H (Vi) — M (H(Vy)).

Mmax

0+ 0y B

b

(5.9) p(Z,) < max{

In particular, p(£,) <1 if
(5.10) o> % — 5y

Proof. By the definition of H, (V) in (5.2) and the derivative operator (2.12), it
holds that

DH,(Vi)[X] = DH(V)[X] — oD(VL V) [X] = DH(V3)[X] — o (Ve X + XV ).

Hence
VA DH, (V) [Var Z] Ve = VE DHV) Vel Z| Vi — 0 Z
(5.11) =2(2Z)+ Z(Ny —0l}) — My 1 Z = 2(Z) — Z @ D, (Vy),

where the second equation is by (5.6) and @ denotes the elementwise division. Plug
(5.11) into (5.7) to obtain

Z5(2) = Ds(Va) ©[2(2) = Z@ Do (Vi)] = Do (V) © 2(2) - Z.

This proves (5.8).

The vector space C("~%)*¥(R) has a natural basis B := {E;;, 1E;j:i=1,...,n—
k, j =1,...,k}, where the entries of E;; € R(™=F) <k are all zeros but 1 is its (4,5)th
entry. Let £,,D,, Q € R*V*2N be the matrix representations of the operators %, (+),
D,(Vi)®(+), and 2(-) with respect to the basis B, respectively, where N = (n—k) x k.
It follows from (5.8) that

EJ = Da Q - I2N~

Observe that D,, is a diagonal matrix consisting of elements of D, and Q is symmetric
positive definite due to Assumption 2. Hence the eigenvalues of D, Q are all positive,
and

(5.12) p(Z5) = max{[Amax (Do Q) — 1|, [Amin(Ds Q) — 1]}

Since the eigenvalues of D, Q are the same as those of 02D, Q2 and
Anax(Ds)Q = @D, QY2 = Ain(D5)Q,

we have

(5.13) Amax (Do Q) < pmax/(0 +0x)  and  Amin(DoQ) = fmin/(0 + 54).-

Inequality (5.9) is now a simple consequence of (5.12).
It follows immediately from (5.9) that

. HMmin HMmax
Z) <1 if 0< < < 2,
p(Zs) ' o+ Sy 0+ 04

ie, 0> lmax/2 — O0x. 1]
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As an immediate consequence of Theorem 5.1, the level-shifted SCF is locally
convergent for a sufficiently large o! In fact, 0 > pmax/2 — 04 guarantees p, (%) < 1,
although the latter may hold for much smaller o than pimax/2 — §x. This is what
we can prove without further detailed information. On the other hand, it follows
from (5.13) that D,Q — 0 as ¢ — +oo. Hence by (5.12) we have p,(Z) — 1 as
0 — 400, implying slow convergence of the level-shifted SCF for ¢ that is too large.
The question is how to pick a decent o with fairly small p,(.%). In general, this is
not an easy task because p, () is usually unknown. One possible compromise is to
minimize the upper bound of p,(Z) in (5.9), assuming good estimates t0 fimin, maxs
04, and s, are available. In fact, the minimizer of the upper bound is achieved when
the two terms in the right-hand side of (5.9) coincide, which happens only if

HMmax _ 1 _ _ Hmin

o+ 04 o+ sy’

due to o € (=04, +o0). This equation has a unique solution oy € (fmax/2 — 0, +00).
We caution the reader that this o, can be far from the one that minimizes the actual
0o (Z). Tt is just the best possible choice we can get with the limited information at
hand. The true optimal o, however, can be even smaller than iyax/2 — 04, as will be
illustrated by numerical examples in section 6. In any case, the operator %, and its
spectral radius provide us with a deep understanding of level-shifting strategy and an
approach to seek a decent choice of the level-shifting parameter o.

To end this section, we note that the results in this section are consistent with,
and also complement, the convergence analysis of the level-shifted methods applied to
Hartree—Fock equations [7]. Using optimization approaches, the authors showed that
a sufficiently large shift o can lead to global convergence. The condition (5.10), on
the other hand, provided a closed-form lower bound on the size of o needed to achieve
local convergence. The bound of (5.10) involves the quantities d, and pmax defined by
the exact solution V, and is mostly of theoretical interest. For some applications, it is
possible to have a priori estimates of §; and fiyax, as demonstrated in the examples
in the next section.

6. Numerical examples. In this section, we present numerical examples to
demonstrate the sharpness of the convergence rate estimates established in the previ-
ous sections. Specifically, the purpose of the examples is twofold: Firstly, to illustrate
how these convergence results are manifested in practice, where various convergence
rate estimates are compared and their sharpness in estimating the actual convergence
rate is demonstrated. Secondly, to investigate and gain insight into the influence of
the level-shifting parameter ¢ on the convergence rate of SCF (5.1).

6.1. Experiment setup. We will perform two case studies: one is a discrete
Kohn—Sham equation with real coefficient matrices H(V'), and the other is a discrete
Gross—Pitaevskii equation with complex matrices.

All our experiments are implemented and conducted in MATLAB 2019. In each
simulation, the “exact” solution Vj is computed by the plain SCF (1.3), when it is
convergent, to achieve a residual tolerance |H (Vi)Vi — ViAygl2 < 10714 When the
plain SCF failed to converge, Vi is computed by the level-shifted SCF (5.1) with a
properly chosen shift o, also to the same level of accuracy.

The convergence rate estimates to be investigated include

(i) Mezb1 by [5], computed as (4.13) in the Frobenius norm,

(ii) Nsup = [|-Z]|r in (4.9) in the Frobenius norm, and

(iil) Msup,c0 = p(Z) in (4.9).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/14/22 to 129.107.134.218 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SHARP CONVERGENCE RATE ESTIMATES OF SCF 319

These convergence rate estimates will be compared against the observed convergence
rate of SCF, computed from the convergence history of residual norms |H(V;)V; —
ViA;|2 of SCF iteration by the least squares approximation on the last few iterations
(with residual norms below 107%).

Evaluation of Nsup (= p(:£)). Although a matrix representation L is involved
in the definition (2.11), its explicit formulation is not needed for computing p(.%).
Recall that #: CP** — CP** is an R-linear operator. By viewing a complex matrix
X = X, +1X; € CP*F as a pair of real matrices (Xy, Xi) consisting of the real and
imaginary parts, we express .Z as a linear operator . Rexk 5 RPXE _ RPXE RP¥F
(6.1) Z(Xe, Xi) = (R(Z(X)), 3(Z(X))) .
The input (as well as the output) matrix pair (X, X;) can be regarded as a real
“vector” of length 2/N. The largest eigenvalue in magnitude of the linear operator 12

can be computed conveniently by the MATLAB eigs function as follows:
v2m = @(x) reshape(x(1:N)+li*x(N+l:end), p, [1); % real vec x -> mat X

m2v = Q(X) [real(X(:)); imag(X(:))]; % mat X -> real vec x
hatl = @(x) m2v(L(v2m(x)))); % operator hat L
lam_max = eigs(hatL, 2*N, 1); % largest eigenval.

Evaluation of Nsup and Nezpi. The induced norm ||.Z||r in (4.16) is defined as the
square root of the largest eigenvalue of £* 0% which is also an R-linear operator. We
can use exactly the same approach above to obtain Apax(-£* 0.%). Since the operator
ZL* o £ is self-adjoint, the largest eigenvalue is always a real number. In analogy, for

Nezbl i (4.13), [|-Zeani[|lr can be computed as the square root of Apax (L%, 0 Lesbr)-

6.2. Single particle Hamiltonian. Let us consider an NEPv (1.1) with a real
coefficient matrix-valued function

(6.2) H(V) = L + a Diag(L~ ! diag(VVT)),

where tridiagonal matrix L = tridiag(—1,2,—1) € R"*" is a discrete 1D Laplacian,
a > 0 is a given parameter, and V € Q"% := {X e Rk . XTX = [,}. H(V)
is known as the single-particle Hamiltonian arising from discretizing a 1D Kohn—
Sham equation in electronic structure calculations and has become a standard testing
problem for investigating the convergence of SCF due to its simplicity; see, e.g., [5,
17, 40, 44]. H(V) is differentiable. By a straightforward calculation, the directional
derivative operator DH (V) defined in (2.12) is given by

DH(V)[X] = 2a Diag(L™* diag(XV'™1)),

which is linear in X.
The local R-linear operator . in (3.8) of the plain SCF (1.3) is given by

(6.3) L(Z) =2aD(Vy) ® (v*{ Diag(L ™! diag(Vi 1 ZV))) v*).

The adjoint operator .£* is given by
(6.4) ZL*(Y) =2aV,]| Diag (L™ " diag (Vo (D(Vi) OY)VY)) Vi

see Appendix A for the derivation.
The local R-linear operator %, (5.7) of the level-shifted SCF (5.1) is given by

(6.5) Z,(Z) = Do (Vi) © 2(Z) — La,
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where 2 is the restricted derivative operator, which is defined in (5.6) and is given
by

(6.6) 2(Z) = 2a V)| Diag(L™ ' diag(Ve1 ZV.D)) Vi + (A1 Z — ZAy).

The largest eigenvalue fimax of 2 can be bounded as follows: let Z € R(*=¥)*k he the
corresponding eigenvector of fiyax; then

. —1 . T
P |2(2)]e _, |Diag(L™" diag(Ver ZV, )l 5
1Z]e 12|
<2a||L7 2 + sx < 3a|L7H|2 + 4,
where s, is the spectral span of H(Vy), and for the last inequality we have used the

inequalities s, < A\, (H(V)) < |L|2 + a|L71|2 due to (6.2), and | L2 < 4.
Recalling the lower bound in (5.10) for the level-shifting parameter o, we find

,umax /J'max
fmax )
2 2 *

3
(6.7) oz all M +2>

is sufficient to ensure local convergence of SCF (5.1). The first inequality provides an
a priori lower bound on the shift o. In practice, this crude bound is a bit pessimistic
though. But it does reveal two key contributing factors—the parameter o and size n
of the problem due to the fact that |L™'|y = 27! (1 — cos(;57)) ™" = O(n?) for the
1D Laplacian [9, Lemma 6.1]—that tend to negatively affect the size of shift.

Ezample 6.1. In this example, we compare the sharpness of the three convergence

rate estimates of the plain SCF. We take n = 10 and k = 2 and use different o ranging
from 0 to 1 in the Hamiltonian (6.2). For each run of SCF, the starting vectors are set
to be the basis of the k smallest eigenvalues of L. The results are shown in Figure 1.
A few observations are summarized as follows:

(a) For a = 0, the NEPv reduces to a standard eigenvalue problem LV = VA,
for which SCF converges in one iterative step. As « increases, SCF faces
increasing challenges to converge. In particular, for « larger than 0.85 (e.g.,
a = 0.9 in Figure 1), the plain SCF becomes divergent. For those «, the
“exact” solutions V, used to calculate convergence factors are computed by
the level-shifted SCF.

1
100+ a=0.9 <‘ 1.6 || —e—observed ! Bl
-43-Ne1 (Cai et al., 2018) }. DE
g
. ‘ 14 | o= D 28 1

szl |
i 107 :é 4 L
E} y %
E Sos |
2 £ !
5 g :
o] 2 06 |
<) S |
Z 4010 © !
10 04 | |

|

0.2 |

|

‘ ‘ ‘ ‘ N :

0 100 200 300 400 500
SCF iteration o

Fi1c. 1. Ezample 6.1: convergence history of residual norm |H(V;)V; — V;A;|2 by the plain SCF
(1.3) for selected o (left plot) and convergence rate estimates as o varies (right plot). The observed
rate marked by “circle” and the theoretic rate nsup,co marked by “+” coincide perfectly.
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(b) The right plot in Figure 1 shows that the asymptotic average contraction
factor Nsup,o0 (= p(-£)) successtully predicts the convergence behavior of SCF
in all cases, as 7sup,.0 Mmarked by “4” in the plot perfectly coincides with
the observed rate marked by “circle.” It can also be observed from the left
plot that SCF iterations quickly enter into the region of linear convergence,
and the factor nsup,«o yields excellent estimation after only a small number of
iterative steps.

(c) The contraction factor estimate 7y, is an overestimate and provides a good
prediction of local convergence for small «. It fails slightly at o = 0.85, where,
up to 10 digits,

observed = 0.9913931781, 7Nsup,o = 0.9913931591,
1.028434776, Nezbl = 1.430511920.

Tlsup

The difference between 7)sup o0 and ng,p implies £ is a nonnormal operator
as discussed in subsection 4.2.

(d) In comparison, the estimate 7,1 by [5] is less accurate. In particular, it fails
to correctly indicate the convergence of the plain SCF starting at a = 0.55,
which is in contrast to 7s,, starting at 0.85.

Example 6.2. In this example, we examine the convergence of the level-shifted
SCF (5.1) with respect to the shift . The testing problem is the same as Example 6.1
but with a fixed o = 1, for which the plain SCF (1.3) is divergent. We apply the level-
shifted SCF with various choices of o. The convergence history and the corresponding
spectral radius of the operator %, in (5.7) are depicted in Figure 2.

From the spectral radius plot on the right side of Figure 2, we observe that p(.%,)
dropped quickly below 1. The minimal value p(.%,) ~ 0.33 at o ~ 0.36 and leads to
rapid convergence of SCF as shown in the left plot. As o grows, p(.%,) monotonically
increases towards 1. Such a behavior of p(.Z,) is consistent with the bound obtained
in Theorem 5.1, governed by rational functions in the form of |1 — a/(c + b)| with
a,b>0.

The sharp turning of the curve of p(.Z,) reveals the challenge in finding the
optimal o. The values of spectral radius grows quickly as « moves away from the

T T
10° 1.1 | 3
| |
1H-T !
i T
g | !
z L 09| |
= 5 i | |
= 10 S08FH 1 |
=) = | !
3 o7t |
8 2 | |
% S 1 :
= 4
2 10-10 706 3 ia priord]
0.5 (| 1 !
i |
04 ] 1 !
! I
I L L L L L ! I
0 50 100 150 200 250 300 350 0 5 10 15 20 25
SCF iteration o

F1G. 2. Ezample 6.2: convergence history of residual norm |H(V;)V; — V;Ai|2 by the level-
shifted SCF (5.1) with selected o (left plot) and spectral radius p(Ls) as shift o varies (right plot).
The first vertical dash line is ¢ = pmax/2 — 0% as in (5.10), the theoretical bound beyond which
provably p(ZLs) < 1, and the second one is a priori o = %oz [L=1]2 + 2 suggested by (6.7), while the
optimal shift is o ~ 0.36, which is smaller than pmax/2 — 0%, the theoretical bound. H(V) is given

by (6.2) with a = 1.
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optimal shift. We note that both the theoretic lower bound in (5.10) and a priori
estimate (6.7) fall correctly into the convergence region. The a priori bound provided

a pessimistic estimate of o that leads to a less satisfactory convergence rate of the
level-shifted SCF (5.1) than others.

6.3. Gross—Pitaevskii equation. In this experiment, we consider NEPvs with
complex coefficient matrices H(V') given by

(6.8) H(V) = A; + B8 Diag(|V])?,

where Ay € C*"*" is a Hermitian matrix and positive definite, § > 0 is a parameter,
V e C™ is a complex vector, and | - | takes elementwise absolute value. Such an
NEPv arises from discretizing the Gross—Pitaevskii equation (GPE) for modeling the
physical phenomenon of Bose-Einstein condensation [4, 11, 12, 16].

The matrix Ay in (6.8) is dependent on a potential function f. For illustra-
tion, we will discuss a model 2D GPE studied in [11], where for a given potential
function f(z,y) over a two-dimensional domain [—¢,¢] x [—£, (], the corresponding
matrix is

~

1
(6.9) Ay = Diag(f) — §M — wMy,
where

f:hz [f(zlayl)w"af(mNayl)af(Ilay2)7"'7f(xNay2)7"'7f(IN’yN)]TGRN2

with {z;}¥; and {y;}X, being interior points of the interval [—¢, ¢] from the N + 2
equidistant discretization with spacing h = NQ—fl. The matrices M, My are given
by

M = Dy N®I+I®D> v, My = h Diag(yi,...,yn)®Dn—Dn®(h Diag(zi,...,znN))

with N x N tridiagonal matrices Dy = tridiag(—%, 0, %) and Dy y = tridiag(1, —2,1).
Since V is a vector, by definition (2.12) the directional derivative operator of
H(V) is given by
DH(V)[X] = 28 Diag(R(V © X)).

The local R-linear operator of the plain SCF ¢ : C"~1 — C" in (3.8) is

(6.10) Z(Z) =26 D(Vi) © (Vy] Diag(R(V« © (Vi1 2))) Vi),

and its adjoint operator .Z*, with respect to the standard inner product in C(*—+)*k
(k = 1), ie., (L(2),Y) = R((YIL(2))) = (2, 2*(V)) = Rtx([£* (V)]12)) for
any Y, Z € C("=F)*k_is given by

(6.11) LHY) =26V, (R(diag(Va (D(Va) OY)V)) © Vi) 5

see Appendix A for the derivation.
For the level-shifted SCF, the local R-linear operator %, in (5.7) is given by

(6.12) 25(Z) = Dy (Vi) © 2(2) — Lia,
where the restricted derivative operator 2(Z) is given by

(6.13) 2(Z) =2B8VE DiagR(Vi © (Ve  2)) Vi + (As1 Z — ZAy).
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The largest eigenvalue fimayx of 2 can be bounded as follows. Let Z € C*~! be the
eigenvector associated with ppax. Then

2@k _,,; [DiagRV O Ver2))le
|Z e |Z e

<28+ sy <36+ |Afl2,

where s, = A\, (H (Vi) — A (H(Vy)) is the spectral span, and for the last inequality
we have used the inequalities s, < A, (H(Vy)) < B+ |Af|2 due to H(V) in (6.8) being
positive definite. Consequently, the lower bound on o in (5.10) yields

(36 + | Aplp) > P Bmax 5,

6.14 >
(6.14) o 5 5

N |

to ensure the local convergence of the level-shifted SCF.

Example 6.3. In this example, we select the parameters ¢ = 1, w = 0.85, and
N =10 (hence n = 100). We use a radial symmetric potential f(z,y) = (22 + y?)/2.
Various values of 8 ranging from 0.5 to 5 have been tried. The simulation results are
shown in Figure 3.

It is observed that the plain SCF becomes slower and slower and eventually di-
vergent as [ increases. Again, the spectral radius p(.Z;) and ns,p can well capture
true convergence behavior. In particular, at g = 3.5, we find that up to 7 digits,

observed = 0.9136140, 7up.o = 0.9136173, Nsup = 1.019727, e = 2.342686.

Again, we see the sharpness of the estimate 7sup 0.

The performance of the level-shifted SCF with respect to different shifts o is
shown in Figure 4, where we observe a similar convergence behavior to Figure 2 for
Example 6.2 on the impact of the choice of shift o.

Ezample 6.4. Exploiting symmetry in the potential function can be important for
the numerical solution of a GPE [3]. This example is a repeat of Example 6.3 using an
asymmetric potential function f(z,y) = (22 + 100y?)/2. The plots in Figure 5 show
only a slightly different performance of the plain SCF (1.3) compared to the radial

3.5

10° B=4 1 —o— observed .
i 3L |- 13- 7 (Cai et al., 2018) =]
- = Thup o

g w25 - Thapoo
B 5 o
= (é /,
E 10° <2 =
] <
= =
1% 5
4 o0
- =
> g
& =
2 g

-10

10 3=35
0 50 100 150 200 250 300

SCF iteration

Fic. 3. Ezample 6.3: convergence history of residual norm |H(V;)V; — V;A;|2 by the plain SCF
(1.3) for selected 8 (left plot) and convergence rate estimates as B varies (right plot). The observed
rate marked by “circle” and the theoretic rate nsup,co marked by “+” coincide perfectly.
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Fic. 4. Ezample 6.3: convergence history of residual norm |H(V;)V; — V;A;|2 by the level-
shifted SCF (5.1) with selected o (left plot) and spectral radius p(Ls) as shift o varies (right plot).
The first vertical dash line is ¢ = pmax/2 — 0% as in (5.10), the theoretical bound beyond which
provably p(%,) < 1, and the second one is a priori o = %(3& + |Agl2) suggested by (6.14), while
the optimal shift is o ~ 0.08, which is smaller than pmax/2 — 0%, the theoretical bound. H(V) is
given by (6.8) with 8 =5.

100 B = 2.6 —o6— observed |
- -3-Nen (Cai et al., 2018)
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F1G. 5. Ezample 6.4: convergence history of residual norm |H (V;)V; — Vi A;|2 by the plain SCF
(1.3) for selected 8 (left plot) and convergence rate estimates as B varies (right plot). The observed
rate marked by “circle” and the theoretic rate nsup,co marked by “+” coincide perfectly.

symmetric case of Example 6.3. The sharpness of the estimate 7sp o on the local
convergence rate can be best seen at § = 2.2, where, up to 7 digits,

observed = 0.9652599, Nsup,0 = 0.9652614, ngup = 1.073434, neup1 = 2.043247.

The performance of the level-shifted SCF is depicted in Figure 6. Again we observe
a similar convergence behavior to Example 6.3 with repect to the choice of shift o.

7. Concluding remarks. We have presented a comprehensive local convergence
analysis of the plain SCF iteration and its level-shifted variant for solving NEPvs. The
exact convergence rate and its estimates are established. Our analysis is in terms of
the tangent-angle matrix to measure the approximation error between consecutive
SCF iterates and the intended target. We first established a relation between the
tangent-angle matrices associated with any two consecutive SCF approximates, and
with it we developed new formulas for the local error contraction factor and the
asymptotic average contraction factor of SCF. The new formulas are sharper and
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Fic. 6. Ezample 6.4: convergence history of residual norm |H(V;)V; — V;A;|2 by the level-
shifted SCF (5.1) with selected o (left plot) and spectral radius of p(%5) as shift o varies (right
plot). The first vertical dash line is ¢ = pmax/2 — 0% as in (5.10), the theoretical bound beyond
which provably p(£,) < 1, and the second one is a priori o = %(35 + |Aygll2) suggested by (6.14),
and the optimal shift is o ~ 0.08, which is smaller than pmax/2 — dx, the theoretical bound. The
H(V) is given by (6.8) with 8 = 3.

complement existing local convergence results. With the help of new convergence rate
estimates, we derive an explicit lower bound on the shifting parameter to guarantee
local convergence of the level-shifted SCF. These results are numerically confirmed by
examples from applications in computational physics and chemistry.

Our analysis does not cover other sophisticated variants of SCF such as the
damped SCF [6] and the direct inversion of iterative subspace [25, 26]. It is con-
ceivable that by the tangent-angle matrix and the eigenspace perturbation theory,
one may work out the local convergence analysis of those variants.

Finally, we note that we focused on NEPv (1.1) satisfying the invariant property
(1.2). While this property is formulated as a result of some practically important
applications, there are recent emerging NEPvs (1.1) that do not have this property,
such as the one in [43], and yet similar SCF iterations can be used. It would be
interesting to find out what now determines the local convergence rate. This will be
a future project to pursue.

Appendix A. Adjoint operators.
The adjoint operator .Z* in (6.4) is derived as follows:

(Y, 2(Z))

=2a(Y, D(V) O (V,'| Diag(L™" diag(Var ZV,1)) Vi) )

Y oa(D(Vy) ©Y, VI Diag(L ' diag(Var ZVE)) Vi) oy ov. 0o x5 = 0 ov. x5

@ 20 { Vi1 [D(Vi) O Y]V,E, Diag(L™* diag(Vir ZVi)) ) vy <v, axsy = 4Ty 5T, x5
) oa (diag(Ve [D(Va) O YV.T), L™ diag(Vir ZVE) S by v bias(s)s — cattas(.
Woa (Lt diag(Va [D(Vi) © Y]VE), diag(Vir ZV.E) by moving £ to the ter
©) 90 ¢ Diag(L™! diag(Ver [D(Va) © YIVE)), Vil ZVES vy o diasvys  Diaso). v,

Finally, moving the last Vi, and Vi to the left we obtain the formula (6.4).
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The adjoint operator £* in (6.11) is derived analogously. The first three steps
are exactly the same as above, and so we continue with

(Y, 2(2)) =28{Y, D(Vi)® (V4L Diag(R(Vs © (Va1 2))) Vi) )
=268{diag(Vi 1 [D(Vix) OYIVI), R(Ve © (Vi1 Z)) ) by identisies (1) (3)
= 28(R(diag(Var [D(Vi) OYIVE)), Vi © (Val Z) ) by vector inner product
= 28{(R(diag(Vx1 [D(V%) © Y]V*H)) OV, Vel Z ) by cab0e> =@, .

Finally, moving the last V| to the left, we obtain the formula (6.11).
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