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SHARP ESTIMATION OF CONVERGENCE RATE FOR
SELF-CONSISTENT FIELD ITERATION TO SOLVE

EIGENVECTOR-DEPENDENT NONLINEAR EIGENVALUE
PROBLEMS˚
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Abstract. We present a comprehensive convergence analysis for the self-consistent field (SCF)
iteration to solve a class of nonlinear eigenvalue problems with eigenvector dependency (NEPvs).
Using the tangent-angle matrix as an intermediate measure for approximation error, we establish
new formulas for two fundamental quantities that characterize the local convergence behavior of the
plain SCF: the local contraction factor and the local asymptotic average contraction factor. In com-
parison with previously established results, new convergence rate estimates provide much sharper
bounds on the convergence speed. As an application, we extend the convergence analysis to a popular
SCF variant---the level-shifted SCF. The effectiveness of the convergence rate estimates is demon-
strated numerically for NEPvs arising from solving the Kohn--Sham equation in electronic structure
calculation and the Gross--Pitaevskii equation for modeling of the Bose--Einstein condensation.
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level-shifted SCF
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1. Introduction. We consider the following nonlinear eigenvalue problem with
eigenvector dependency (NEPv): find an orthonormal matrix V P Cnˆk, i.e., V HV “

Ik, and a square matrix \Lambda P Ckˆk satisfying

(1.1) HpV qV “ V \Lambda ,

where H : Cnˆk Ñ Cnˆn is a continuous Hermitian matrix-valued function of V .
Necessarily, \Lambda “ V HHpV qV and the eigenvalues of \Lambda are k of the eigenvalues of
HpV q, often either the k smallest or largest ones. Our later analysis will focus on \Lambda 
associated with the k smallest eigenvalues of HpV q, but it works equally well for the
case when \Lambda is associated with the k largest ones. We assume throughout this paper
that HpV q is right-unitarily invariant in V , i.e.,

(1.2) HpV Qq “ HpV q for any unitary Q P Ukˆk,

where Ukˆk is the set of all k ˆ k unitary matrices. This property (1.2) essentially
says that NEPv (1.1) is eigenspace-dependent, to be more precise. However, we will
adopt the notion of the nonlinear eigenvalue problem with eigenvector dependency, as
commonly used in literature. Furthermore, the assumption (1.2) implies that if pV,\Lambda q
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302 ZHAOJUN BAI, REN-CANG LI, AND DING LU

is a solution of NEPv (1.1), then so is pV Q,QH\Lambda Qq for any unitary Q. We therefore

view V and rV as an identical solution if the two share a common range \scrR pV q “ \scrR prV q.
NEPvs in the form of (1.1) arise in a number of areas of computational science

and engineering. They are the discrete representations of the Kohn--Sham equation
of the density functional theory in electronic structure calculations [19, 35] and the
Gross--Pitaevskii equation in modeling the ground state wave function in a Bose--
Einstein condensate [4, 11]. In particular, HpV q “ \phi pP q, where \phi is a Hermitian
matrix-valued function of P “ V V H, known as the density matrix in the density
functional theory [19, 35]. NEPvs have also long played an important role in the
classical methods for data analysis, such as multidimensional scaling [21]. It has
become increasingly popular recently in the fields of machine learning and network
science, such as the trace ratio maximizations for dimensional reduction [22, 42],
balanced graph cut [13], robust Rayleigh quotient maximization for handling data
uncertainty [2], core-periphery detection in networks [37], and orthogonal canonical
correlation analysis [43]. The unitary invariance (1.2) holds in all those practical
NEPvs except a few.

The self-consistent field (SCF) iteration is the most general and widely used
method to solve NEPv (1.1). SCF, first introduced in molecular quantum mechanics
in the 1950s [29], serves as an entrance to all other approaches. Starting with an
orthonormal matrix V0 P Unˆk, SCF computes iteratively Vi`1 and \Lambda i`1 satisfying

(1.3) HpViqVi`1 “ Vi`1\Lambda i`1 for i “ 0, 1, 2, . . . ,

where Vi`1 P Cnˆk is orthonormal and \Lambda i`1 is a diagonal matrix consisting of the k
smallest eigenvalues of HpViq. Since unit eigenvectors associated with simple eigenval-
ues can differ by scalar factors of unimodular complex numbers and those associated
with multiple eigenvalues have even more freedom, the iteration matrix Vi`1 can-
not be uniquely defined. But thanks to the property (1.2), the computed subspaces
\scrR pV1q,\scrR pV2q, . . . are always the same, provided the kth and pk ` 1qst eigenvalues of
HpViq are distinct at the ith iteration. Because of this, SCF can be interpreted as
an iteration of subspaces of dimension k, i.e., elements in the Grassmann manifold
Grpk,Cnq of all k-dimensional subspaces of Cn.

The procedure in (1.3) is an SCF in its simplest form, also known as the plain SCF
iteration. In practice, such a procedure is prone to slow convergence and sometimes
may not converge [14]. Therefore, it has been a fundamental problem of intensive
research for decades to understand when and how the plain SCF converges so as to
develop remedies to stabilize and accelerate the SCF iteration.

For the applications of solving the Kohn--Sham equation in physics and quantum
chemistry, the solution of the associated NEPv corresponds to the minimizer of an en-
ergy function. In such context, optimization techniques can be employed to establish
convergence results of SCF. A number of convergence conditions have been investi-
gated [7, 17, 18, 40]. For solving general NEPvs, one may view the plain SCF (1.3)
as a simple fixed-point iteration. Sufficient conditions for the fixed-point map being
a contraction have been studied in [5], where the authors revealed a convergence rate
of SCF based on the Davis--Kahan Sin\Theta theorem [8]. Another approach for the fixed-
point analysis is to examine the spectral radius of the Jacobian supermatrix of the
fixed-point map. When HpV q is a smooth function in the density matrix P “ V V H,
a closed-form expression of the Jacobian has been obtained in a recent work [38].
Similar analysis appeared in an earlier work [32] on the Hartree--Fock equation.

What is often different among the existing convergence analyses is the way of
measuring the approximation error. Since SCF is a subspace iteration, how to assess
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the distance between two subspaces \scrR pV q and \scrR pV˚q is the key to the convergence
analysis. Various distance measures have been applied in the literature, leading to
different approaches of analysis and different types of convergence results. In partic-
ular, the difference in density matrices in 2-norm is used as a measure of distance
in [40]. A chordal 2-norm is used in [17]. More recent work [5] turned to the sines
of the canonical angles between subspaces. The work [7] (as well as [38] though not
explicitly specified) used the difference of density matrices in the Frobenius norm. We
believe that those distance measures may not necessarily be the best to capture the
local convergence rate of the SCF iteration.

The results presented in this paper are a refinement and extension of the pre-
vious ones in [5, 17, 38, 40]. We aim to provide a comprehensive and unified local
convergence analysis of SCF. Rather than resorting to a specific distance measure,
our development is based on the tangent-angle matrix, associated with the tangents
of canonical angles of two subspaces. Such matrices can precisely capture the error
recurrence of SCF when close to convergence, and they can act as intermediate mea-
surements by which various distance measures can be evaluated as needed. Although
they are less popular than sines, the tangents of canonical angles have been used to
assess the distance between subspaces and can lead to tighter bounds when applicable;
see [8, 45] and references therein.

The use of the tangent-angle matrix allows us to take a closer examination of the
local error recursion of SCF, leading to the following contributions presented in this
paper:

(a) A precise characterization for the local contraction factor of SCF for both
continuous and differentiable HpV q. This improves over the previous work [5,
17, 40], where only upper bounds of such a quantity were obtained.

(b) A closed-form formula for the local asymptotic average contraction factor of
SCF in terms of the spectral radius of an underlying linear operator when
HpV q is differentiable. The formula is sharp for providing a sufficient and
almost necessary local convergence condition of SCF. It extends the previous
work in [32, 38] to general HpV q functions and has a compact expression that
is convenient to work with in both theory and computation.

(c) A new justification for a commonly used level-shifting scheme for the sta-
bilization and acceleration of SCF [7]. A closed-form lower bound on the
shifting parameter to guarantee local convergence is obtained.

The rest of the paper is organized as follows. Section 2 presents some preliminaries
to set up basic definitions and assumptions. Section 3 introduces the tangent-angle
matrix and establishes the recurrence relation of such matrices in consecutive SCF
iterations. Section 4 is devoted to the local convergence theory of the plain SCF
iteration. Section 5 deals with the level-shifted SCF and its convergence. Numerical
illustrations are in section 6, followed by conclusions in section 7.

We follow the notation convention in matrix analysis: Rmˆn and Cmˆn are the
sets ofmˆn real and complex matrices, respectively, and Rn “ Rnˆ1 and Cn “ Cnˆ1.
Umˆn Ă Cmˆn denotes the set of mˆ n complex orthonormal matrices. AT and AH

are the transpose and conjugate transpose of a matrix or a vector A, respectively,
and A takes entrywise conjugate. H1 ľ H2 means that H1 and H2 are Hermitian
matrices, and H1 ´ H2 is positive semidefinite. For a matrix H P Cnˆn known to
have real eigenvalues only, \lambda ipHq is the ith eigenvalue of H in the ascending order,
i.e., \lambda 1pHq ď \lambda 2pHq ď ¨ ¨ ¨ ď \lambda npHq, and \lambda minpHq “ \lambda 1pHq and \lambda maxpHq “ \lambda npHq.
Diagpxq is a diagonal matrix made of the vector x, and diagpXq is a vector consisting
of the diagonal elements of a matrix X; \scrR pXq is the range of X; \sigma pXq is the collection
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304 ZHAOJUN BAI, REN-CANG LI, AND DING LU

of all singular values of X. \Re p¨q and \Im p¨q extract the real and imaginary parts of a
complex number, and, when applied to a matrix/vector, they are understood in the
elementwise sense. Standard big-O and little-o notations in mathematical analysis are
used: for functions fpxq, gpxq Ñ 0 as x Ñ 0, write fpxq “ \scrO pgpxqq if |fpxq| ď c|gpxq|

for some constant c as x Ñ 0, and write fpxq “ opgpxqq if |fpxq|{|gpxq| Ñ 0 as x Ñ 0.
Other notations will be explained at their first appearance.

2. Preliminaries. Throughout this paper, we denote by V˚ P Unˆk a solution
of NEPv (1.1). The eigendecomposition of HpV˚q is given by

(2.1) HpV˚q rV˚, V˚Ks “ rV˚, V˚Ks

„

\Lambda ˚

\Lambda ˚K

ȷ

,

where rV˚, V˚Ks P Unˆn is unitary, and

\Lambda ˚ “ diagp\lambda 1, . . . , \lambda kq and \Lambda ˚K “ diagp\lambda k`1, . . . , \lambda nq

are diagonal matrices containing the eigenvalues of HpV˚q in the ascending order, i.e.,
\lambda i “ \lambda ipHpV˚qq. We make the following assumption for the solution V˚ of NEPv (1.1)
under consideration.

Assumption 1. There is a positive eigenvalue gap:

(2.2) \delta ˚ :“ \lambda k`1pHpV˚qq ´ \lambda kpHpV˚qq ą 0.

Such an assumption, which is commonly required in the convergence analysis of
SCF, guarantees the uniqueness of the eigenspace corresponding to the k smallest
eigenvalues of HpV˚q [5, 7, 17, 38, 40].

Sylvester equation. The following Sylvester equation in X P Cnˆk will be needed
in our analysis:

(2.3) \Lambda ˚KX ´X\Lambda ˚ “ V H
˚KrHpV˚q ´HpV qsV˚.

Under Assumption 1, this equation has a unique solution X ” SpV q for each V P

Unˆk, given by

(2.4) SpV q “ DpV˚q d
`

V H
˚KrHpV˚q ´HpV qsV˚

˘

,

where

(2.5) DpV˚q P Rpn´kqˆk with DpV˚qij “ p\lambda k`ipHpV˚qq ´ \lambda jpHpV˚qqq´1,

and d denotes the Hadamard product, i.e., elementwise multiplication.
Unitarily invariant norm. We denote by } ¨ }ui a unitarily invariant norm, which,

besides being a matrix norm, also satisfies the following two additional conditions:
(1) }XAY }ui “ }A}ui for any unitary matrices X and Y ;
(2) }A}ui “ }A}2 whenever A is rank-1, where } ¨ }2 is the spectral norm.

It is well known that }A}ui is dependent only on the singular values of A. In this paper,
we assume any } ¨ }ui we use is applicable to matrices of all sizes in a compatible way,
i.e., }A}ui “ }B}ui for A, B sharing the same set of nonzero singular values (see, e.g.,
[34, Theorem 3.6, page 78]). The spectral norm } ¨ }2 and Frobenius norm } ¨ }F are
two examples of such unitarily invariant norms. Unitary invariant norms satisfy

(2.6) }ABC}ui ď }A}2 ¨ }B}ui ¨ }C}2

for any matrices A, B, and C of compatible sizes (see, e.g., [34, Theorem 3.9, page
80]).
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Canonical angles between subspaces. Let X,Y P Unˆk. The k canonical angles
between subspaces \scrX “ \scrR pXq and \scrY “ \scrR pY q are defined as

(2.7) 0 ď \theta jp\scrX ,\scrY q :“ arccos\sigma j ď
\pi 

2
for 1 ď j ď k,

where \sigma 1 ě ¨ ¨ ¨ ě \sigma k are singular values of the matrix Y HX (see, e.g., [34, section
4.2.1]). Put k canonical angles all together to define

(2.8) \Theta p\scrX ,\scrY q “ diagp\theta 1p\scrX ,\scrY q, . . . , \theta kp\scrX ,\scrY qq.

Since the canonical angles defined above are independent of the basis matrices X and
Y , for convenience, we use the notation \Theta pX,Y q interchangeably with \Theta p\scrX ,\scrY q.

Canonical angles provide a natural distance measure for subspaces. For any uni-
tarily invariant norm } ¨ }ui, it holds that both }\Theta pX,Y q}ui and } sin\Theta pX,Y q}ui are
unitarily invariant metrics on the Grassmann manifold Grpk,Cnq (see, e.g., [34, The-
orem 4.10, page 93] and [27]). In our analysis, the tangents of canonical angles will
play an important role. By trigonometric function properties, tangents provide good
approximation to the canonical angles as \Theta pX,Y q Ñ 0:

(2.9) tan\Theta pX,Y q “ \Theta pX,Y q ` \scrO p}\Theta pX,Y q}3uiq.

R-linear mapping. A mapping L : Cnˆk Ñ Cpˆq is called R-linear if it satisfies

(2.10) L pX ` Y q “ L pXq ` L pY q and L p\alpha Xq “ \alpha L pXq

for all X,Y P Cnˆk and \alpha P R. When we talk about an R-linear mapping, the complex
matrix space Cmˆn is viewed as a vector space over the field R of real numbers,
denoted by CmˆnpRq. By elementary linear algebra, CmˆnpRq is a p2mnq-dimensional
inner product space, equipped with the inner product xX,Y y :“ \Re trpXHY q and the
induced norm }X}F “ p\Re trpXHXqq1{2. We can see that L : CnˆkpRq Ñ CpˆqpRq is a
linear mapping (over R). For convenience, we use Cnˆk and CnˆkpRq interchangeably
in future discussions when referring to an R-linear mapping.

The spectral radius of an R-linear operator L : Cnˆk Ñ Cnˆk is defined as the
largest eigenvalue in magnitude of a matrix representation L P Rp2nkqˆp2nkq of L :

(2.11) \rho pL q :“ max
␣

|\lambda | : Lx “ \lambda x, x P C2nk
(

.

Notice that x is allowed to be a complex vector because a real matrix can have complex
eigenvalues. Here we do not make any assumption on the basis used to obtain L; the
choice of the basis does not affect the spectrum of L and therefore \rho pL q.

Derivative operator. Let V “ V\bfr ` \imath V\bfi P Cnˆk with V\bfr , V\bfi P Rnˆk being the
real and imaginary parts of V , respectively. A Hermitian matrix-valued function
HpV q is called differentiable if each element hijpV q is a smooth function in the real
and imaginary parts pV\bfr , V\bfi q of V . Such differentiability is also known as real dif-
ferentiability in the literature (see, e.g., [28, 10]), and it is different from the one
in the holomorphic sense, which generally cannot hold for HpV q with real diagonal
elements.

For HpV q differentiable at V˚, we can define a derivative operator

(2.12) DHpV˚qr¨s : Cnˆk Ñ Cnˆn with DHpV˚qrXs “

„

d

dt
HpV˚ ` tXq

ȷ

t“0

,
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306 ZHAOJUN BAI, REN-CANG LI, AND DING LU

where t P R. The DHpV˚qrXs represents the directional derivative of HpV q at V˚ in
the direction of X “ X\bfr ` \imath X\bfi P Cnˆk. By definition, the pi, jq entry of DHpV˚qrXs

is given by
(2.13)

DhijpV˚qrXs “

„

d

dt
hijpV˚ ` tXq

ȷ

t“0

“

B

Bhij
BV\bfr 

pV˚q , X\bfr 

F

`

B

Bhij
BV\bfi 

pV˚q , X\bfi 

F

,

where xX,Y y :“ trpXTY q. It follows that the elements DhijpV˚qr¨s, and hence the
full DHpV˚qr¨s, are R-linear mappings satisfying (2.10).

By Taylor's expansion, as V comes close to V˚ (in the Euclidean sense), it holds
that

hijpV q “ hijpV˚q `

B

Bhij
BV\bfr 

pV˚q , V\bfr ´ V˚,\bfr 

F

`

B

Bhij
BV\bfi 

pV˚q , V\bfi ´ V˚,\bfi 

F

` op}V ´ V˚}q

“ hijpV˚q ` DhijpV˚qrV ´ V˚s ` op}V ´ V˚}q,

where } ¨ } is any matrix norm, and the last equation is due to (2.13). It then follows
that

(2.14) HpV q “ HpV˚q ` DHpV˚qrV ´ V˚s ` op}V ´ V˚}q.

Namely, DHpV˚qr ¨ s is the Fr\'echet derivative of H : CnˆkpRq Ñ CnˆnpRq. Note that
the expansion (2.14) does not take into account the unitary invariance (1.2) of HpV q,
and that is why the remainder is in terms of the Euclidean difference V ´ V˚.

The Fr\'echet derivatives for matrix-valued functions and the R-linear operators
are essential tools for numerical analysis over the Grassmann manifold; see, e.g., [1]
and references therein.

3. Tangent-angle matrix. Let V P Unˆk be an approximation to the solution
V˚ of NEPv (1.1). Each V represents an orthonormal basis matrix of a subspace. As
far as a solution of NEPv (1.1) is concerned, it is the subspace that matters. To assess
the distance of V to the solution V˚ in terms of the subspaces their columns span, we
define the tangent-angle matrix from V to V˚ as

(3.1) T pV q :“ pV H
˚KV qpV H

˚ V q´1 P Cpn´kqˆk,

provided V H
˚ V is invertible, and we recall (2.1) for V˚K. By definition, T pV q can

be viewed as a function of Unˆk Ñ Cpn´kqˆk. The name of ``tangent-angle matrix""
comes from the fact that

(3.2) } tan\Theta pV, V˚q}ui “ }pV H
˚KV qpV H

˚ V q´1}ui “ }T pV q}ui

for all unitarily invariant norms. Recall that the unitarily invariant norm }A}ui is
defined by the singular values of A; (3.2) is a direct consequence of the identity
of singular values \sigma ptan\Theta pV, V˚qq “ \sigma 

`

pV H
K V˚qpV HV˚q´1

˘

, which follows from the
definition of canonical angles in (2.8) (see, e.g., [33, Theorems 2.2, 2.4, Chapter 4]
and [45]). The tangents of canonical angles have long been used in numerical matrix
analysis, and we refer to [45] and references therein.

By definition (2.7), the singular values of V H
˚ V consist of those of the matrix

cos\Theta pV, V˚q “ I `\scrO p}\Theta pV, V˚q}2uiq. Therefore, it can be seen from (3.2) that T pV q is
well defined for sufficiently small canonical angles \Theta pV, V˚q. Meanwhile, \Theta pV, V˚q Ñ 0
if and only if T pV q Ñ 0. By the unitary invariance (1.2) and the continuity of HpV q,
we haveHpV q Ñ HpV˚q as the tangent-angle matrix T pV q Ñ 0. This is more precisely
described in the following lemma.
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Lemma 3.1. Let V P Unˆk. Then as T pV q Ñ 0, for a solution V˚ of NEPv (1.1),
it holds that

(3.3) HpV q “ H
`

V˚ ` V˚KT pV q ` \scrO p}T pV q}2uiq
˘

.

If HpV q is also differentiable, then

(3.4) HpV q “ HpV˚q ` DHpV˚qrV˚KT pV qs ` op}T pV q}uiq.

Proof. The singular values of V H
˚ V consist of cos\Theta pV, V˚q “ I `\scrO p}\Theta pV, V˚q}2uiq.

So we have V H
˚ V “ W ` \scrO p}\Theta pV, V˚q}2uiq for some unitary W P Ukˆk. It follows that

(3.5) VW´1 “ V pV H
˚ V q´1 ` \scrO p}\Theta pV, V˚q}2uiq “ V˚ ` V˚K T pV q ` \scrO p}T pV q}2uiq,

where we used V “ V˚pV H
˚ V q ` V˚KpV H

˚KV q and T pV q “ \scrO p}\Theta pV, V˚q}uiq in the
last equation. The unitary invariance property HpV q “ HpVW´1q leads to (3.3).
Combining (3.5) with (2.14), we obtain (3.4).

The following lemma, which is the key to establish our local convergence results,
describes the relation between the tangent-angle matrices of two consecutive SCF
iterations.

Lemma 3.2. Suppose Assumption 1 holds. Let rV be an orthonormal basis matrix
associated with the k smallest eigenvalues of HpV q, and let SpV q be the unique solution
of the Sylvester equation defined in (2.4). Then

(a) SpV q Ñ 0 as T pV q Ñ 0;

(b) the tangent-angle matrix T prV q of rV satisfies

(3.6) T prV q “ SpV q ` op}SpV q}uiq;

(c) if HpV q is differentiable at V˚, then

(3.7) T prV q “ L pT pV qq ` op}T pV q}uiq,

where L : Cpn´kqˆk Ñ Cpn´kqˆk defined by

(3.8) L pZq “ DpV˚q d pV H
˚K DHpV˚qrV˚KZsV˚q

is an R-linear operator, called the local R-linear operator of the plain SCF.

Proof. For item (a), by (3.3) and the continuity of H, it holds that HpV q Ñ HpV˚q

as T pV q Ñ 0. Hence, SpV q Ñ 0 by the definition of SpV q.
For item (b), we begin with the eigendecomposition of HpV q:

HpV q

”

rV rVK

ı

“

”

rV rVK

ı

«

r\Lambda 
r\Lambda K

ff

,

where |rV rVK| P Unˆn is unitary, r\Lambda “ diagpr\lambda 1, . . . , r\lambda kq, and r\Lambda K “ diagpr\lambda k`1, . . . , r\lambda nq

with r\lambda i “ \lambda ipHpV qq. Due to Assumption 1, as HpV q Ñ HpV˚q, we can apply the
standard perturbation analysis of eigenspaces [34, section V.2] to obtain
(3.9)
”

rV rVK

ı

“
“

V˚ V˚K

‰

„

Ik ´ZH

Z In´k

ȷ „

pIk ` ZHZq´1{2

pIn´k ` ZZHq´1{2

ȷ „

Q
P

ȷ

,
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308 ZHAOJUN BAI, REN-CANG LI, AND DING LU

where Z P Rpn´kqˆk, Q P Ukˆk, and P P Upn´kqˆpn´kq are parameter matrices and

(3.10) Z Ñ 0 as HpV q Ñ HpV˚q.

The parameterization from (3.9) can be equivalently put as

rV “ pV˚ ` V˚KZq pIk ` ZHZq´1{2Q,

rVK “ p´V˚Z
H ` V˚Kq pIn´k ` ZZHq´1{2P.

By the first equation, Z is identical to the tangent-angle matrix from rV to V˚:

(3.11) T prV q “ pV H
˚K

rV qpV H
˚
rV q´1 “ Z,

where we have used V H
˚
rV “ pIk ` ZHZq´1{2Q and V H

˚K
rV “ ZpIk ` ZHZq´1{2Q.

Next, we establish an equation to characterize Z. From rV H
K HpV qrV “ rV H

K
rV r\Lambda “ 0,

we get

0 “
“

´Z In´k

‰

rV˚, V˚KsHHpV qrV˚, V˚Ks

„

Ik
Z

ȷ

“
“

´Z In´k

‰

rV˚, V˚KsHrHpV˚q ` pHpV q ´HpV˚qqsrV˚, V˚Ks

„

Ik
Z

ȷ

“ \Lambda ˚KZ ´ Z\Lambda ˚ ` p´ZV H
˚ ` V H

˚KqrHpV q ´HpV˚qspV˚ ` V˚KZq.

Therefore, Z satisfies the Sylvester equation (view the right-hand side as fixed)

\Lambda ˚KZ ´ Z\Lambda ˚ “ pZV H
˚ ´ V H

˚KqrHpV q ´HpV˚qspV˚ ` V˚KZq.

By Assumption 1, we can solve the Sylvester equation to obtain

Z “ SpV q ` \Phi pZq,(3.12)

where

\Phi pZq “ DpV˚q d
`

ZV H
˚ rHpV q ´HpV˚qspV˚ ` V˚KZq ´ V H

˚KrHpV q ´HpV˚qsV˚KZ
˘

and DpV˚q is defined as in (2.5). A quick calculation shows that

(3.13) }\Phi pZq}F ď \delta ´1
˚ }HpV q ´HpV˚q}Fp2}Z}2 ` }Z}22q “ op}Z}uiq,

where the last equation is due to HpV q Ñ HpV˚q and Z Ñ 0, as T pV q Ñ 0, and

the equivalency of matrix norms. Recall T prV q “ Z. Equations (3.12) and (3.13) lead
directly to (3.6).

For item (c), we derive from the definition of SpV q and the expansion (3.4) that

SpV q “ DpV˚q d
`

V H
˚K DHpV˚qrV˚KT pV qsV˚

˘

` op}T pV q}uiq.

Plugging it into (3.6), and exploiting }L pT pV qq}ui “ \scrO p}T pV q}uiq since L is an
R-linear operator of finite dimension (which is bounded), we complete the proof.

We mention that the tangent-angle matrix in the form of (3.1) appeared in the so-
called McWeeny transformation [20, 31, 32] in the density matrix theory for electronic
structure calculations, where the matrix was treated as an independent parameter
that is not connected with canonical angles of subspaces. This lack of geometric
interpretation makes it difficult to produce a comprehensive convergence analysis as
developed in the following sections and extend to the treatment of a continuous HpV q.
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4. Convergence analysis. Because of the invariance property (1.2), the plain
SCF iteration (1.3) should be inherently understood as a subspace iterative scheme,
and the convergence of the basis matrices tViu

8
i“0 to a solution V˚ should be mea-

sured by a metric on the Grassmann manifold Grpk,Cnq. Let dp¨, ¨q be a metric on
Grpk,Cnq. Without causing any ambiguity, in what follows we will not distinguish an
element \scrR pV q P Grpk,Cnq from its representation V P Unˆk. We adopt the following
notions for the local convergence analysis:

(i) SCF (1.3) is called locally (R-linearly) convergent to V˚ if there exist c ă 1,
\varepsilon ą 0, and m0 ą 0 such that, for any initial V0 with dpV0, V˚q ď \varepsilon and integer
i ą m0, it holds that dpVi, V˚q ď \gamma ¨ ci ¨ dpV0, V˚q, where \gamma is a constant
independent of i and V0;

(ii) SCF (1.3) is called locally divergent from V˚ if there exists c ą 1 such that
for any \varepsilon ą 0 and arbitrarily large m0 ą 0, there exist an initial V0 with
dpV0, V˚q ď \varepsilon and integer i ą m0 satisfying dpVi, V˚q ě ci ¨ dpV0, V˚q.

The local (R-linear) convergence implies dpVi, V˚q Ñ 0 as i Ñ 8 for any V0 that is
sufficiently close to V˚ in the metric, i.e., dpV0, V˚q is sufficiently small. Moreover, the
asymptotic rate of convergence is at least linear with a convergence factor c.

4.1. Contraction factors. There are two fundamental quantities that provide
convergence measures of SCF on Grpk,Cnq: the local contraction factor and the local
asymptotic average contraction factor. The former, which is a quantity to assess local
convergence, accounts for the worst case error reduction of SCF per iterative step.
The latter captures the asymptotic average convergence rate of SCF and provides a
sufficient and almost necessary condition for the local convergence.

Since SCF is a fixed-point iteration on the Grassmann manifold Grpk,Cnq, the
local contraction factor of SCF is defined as

(4.1) \eta sup :“ lim sup
V0PUnˆk

dpV0,V˚qÑ0

dpV1, V˚q

dpV0, V˚q
.

Such a constant can be viewed as the (best) local Lipschitz constant for the fixed-
point mapping of SCF. We observe that the condition \eta sup ă 1, which implies SCF
is locally error reductive, is sufficient for local convergence. In the convergent case, it
follows from the definition (4.1) that

lim sup
iÑ8

dpVi`1, V˚q

dpVi, V˚q
ď \eta sup;

namely, the (asymptotic) convergence rate of SCF is bounded by \eta sup.
To take into account oscillation and to obtain tighter convergence bounds, the

one-step contraction factor (4.1) can be generalized to multiple iterative steps. Let m
be a given positive integer, and define

(4.2) \eta sup,m :“ lim sup
V0PUnˆk

dpV0,V˚qÑ0

ˆ

dpVm, V˚q

dpV0, V˚q

˙1{m

.

Then \eta sup,m is a (geometric) average contraction factor of m consecutive iterative
steps of SCF (1.3). The limit of the average contraction factor as m Ñ 8,

(4.3) \eta sup,8 :“ lim sup
mÑ8

\eta sup,m,
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310 ZHAOJUN BAI, REN-CANG LI, AND DING LU

defines a local asymptotic average contraction factor of SCF. We mention that the
quantities \eta sup, \eta sup,m, and \eta sup,8 from above are always well defined under Assump-
tion 1, which implies \scrR pV1q,\scrR pVmq P Grpk,Cnq, for any fixed m, are unique for
sufficient small dpV0, V˚q. We should also caution the reader that all those quantities
depend on the metric dp¨, ¨q and that the dependency is suppressed for notational
clarity.

By definition, the number \eta sup,8 measures the average convergence rate of SCF.
The average convergence rate is a conventional tool to study matrix iterative meth-
ods [39] and typically leads to tight convergence rates in practice.1 It follows from
item (b) of Lemma 4.1 below that \eta sup,8 is precisely the local convergence factor of
SCF. The properties of contraction factors as shown in Lemma 4.1 have long been
known for linear iterative methods; see, e.g., [39, section 3.2]. It is not surprising they
also hold for contraction factors defined for a general iterative scheme. Lemma 4.1 is
tailored for SCF, and, for the sake of completeness, we present a proof here. It has
two assumptions: Assumption 1, which is needed for the SCF iteration to proceed in
a neighborhood of V˚ to ensure the well-definedness of the contraction factors, and
\eta sup ă 8, which will be proved in Theorem 4.2 later under the condition that HpV q

is Lipschitz continuous at V˚.

Lemma 4.1. Suppose Assumption 1 and \eta sup ă 8.
(a) It holds that for any m ą 1

(4.4) \eta sup,8 ď \eta sup,m ď \eta sup.

(b) If \eta sup,8 ă 1, then SCF is locally convergent to V˚, with its asymptotic av-
erage convergence rate bounded by \eta sup,8. If \eta sup,8 ą 1, then SCF is locally
divergent from V˚.

Proof. For item (a), first from definition (4.1) and \eta sup ă 8, we conclude that
dpVp, V˚q Ñ 0 for p “ 0, 1, . . . ,m ´ 1 as dpV0, V˚q Ñ 0. Therefore,

lim sup
V0PUnˆk

dpV0,V˚qÑ0

ˆ

dpVm, V˚q

dpV0, V˚q

˙1{m

“ lim sup
V0PUnˆk

dpV0,V˚qÑ0

˜

m´1
ź

p“0

dpVp`1, V˚q

dpVp, V˚q

¸1{m

ď

¨

˚

˝

m´1
ź

p“0

lim sup
VpPUnˆk

dpVp,V˚qÑ0

dpVp`1, V˚q

dpVp, V˚q

˛

‹

‚

1{m

,

and \eta sup,m ď \eta sup follows.
Now fix m. Any integer m1 ą m can be expressed as m1 “ sm` p for some s ě 0

and 0 ď p ď m´ 1. Using the same arguments as from above, and noticing that

ˆ

dpVm1 , V˚q

dpV0, V˚q

˙1{m1

“

ˆ

dpVm1 , V˚q

dpVp, V˚q

dpVp, V˚q

dpV0, V˚q

˙1{m1

“

˜

s´1
ź

\ell “0

dpVmp\ell `1q`p, V˚q

dpVm\ell `p, V˚q
¨
dpVp, V˚q

dpV0, V˚q

¸1{m1

,

we obtain by taking lim sup that

\eta sup,m1 ď p\eta sup,mqsm{m1

¨ p\eta sup,pqp{m1

.

1The average convergence rate in [39] is defined with an extra logarithm, i.e., ´ lnp\eta sup,mq.
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Assume for the moment \eta sup,m ‰ 0. Letting m1 Ñ 8 and noticing that \eta sup,p ď \eta sup
is bounded, we get \eta sup,8 “ lim supm1Ñ8 \eta sup,m1 ď \eta sup,m. If, however, \eta sup,m “ 0,
then \eta sup,m1 “ 0 for any m1 ě m, and so \eta sup,8 “ 0 ď \eta sup,m.

For item (b), consider first \eta sup,8 ă 1. Pick a constant c such that \eta sup,8 ă c ă 1.
Because of how \eta sup,m is defined in (4.3), we see that rdpVm, V˚q{dpV0, V˚qs1{m ď c for
m sufficiently large and for all V0 sufficiently close to V˚ in the metric dp¨, ¨q. More
precisely, there exist m0 ą 0 and \varepsilon 1 ą 0 such that

dpVm0
, V˚q ď cm0 dpV0, V˚q for all V0 with dpV0, V˚q ă \varepsilon 1.

Recall c ă 1, so we have dpVm0 , V˚q ă \varepsilon 1. By induction, it holds for all s “ 0, 1, 2, . . .
and all V0 with dpV0, V˚q ă \varepsilon 1 that

(4.5) dpVsm0
, V˚q ď cm0 dpVps´1qm0

, V˚q ď ¨ ¨ ¨ ď csm0 dpV0, V˚q ă \varepsilon 1.

Recall that \eta sup ă 8, and pick a finite constant c2 ą maxt1, \eta supu ě 1. By (4.1),
there exists \varepsilon 2 P p0, \varepsilon 1q such that

(4.6) dpV1, V˚q ď c2 dpV0, V˚q for all V0 with dpV0, V˚q ă \varepsilon 2.

Let \varepsilon 3 “ c
´pm0´1q

2 ˆ \varepsilon 2 ă \varepsilon 2 ă \varepsilon 1. For any V0 with dpV0, V˚q ă \varepsilon 3, we have by (4.6)

dpV1, V˚q ď c2 dpV0, V˚q ă c2\varepsilon 3 ď \varepsilon 2,(4.7a)

dpV2, V˚q ď c2dpV1, V˚q ď c22dpV0, V˚q ă c22\varepsilon 3 ď \varepsilon 2,(4.7b)

...

dpVm0´1, V˚q ď cm0´1
2 dpV0, V˚q ă cm0´1

2 \varepsilon 3 ď \varepsilon 2.(4.7c)

Whereas for any m ě m0, we can write m “ sm0 ` p for some 0 ď p ď m0 ´ 1. We
have by (4.5) and (4.7) that for any V0 with dpV0, V˚q ă \varepsilon 3,

dpVm, V˚q ď csm0 ¨ dpVp, V˚q “ cm ¨
dpVp, V˚q

cp
ď cm ¨

´c2
c

¯p

dpV0, V˚q.

Observe that c ă 1 and rc2{csp ď rc2{csm0´1 is bounded by a constant independent
of m and V0. So SCF is locally (R-linearly) convergent.

On the other hand, if \eta sup,8 ą 1, then there exist c ą 1 and a subsequence
tmiu

8
i“0 of positive integers such that \eta sup,mi

ě c as i Ñ 8. Let \delta ą 0 be a constant
satisfying c ´ \delta ą 1. It follows from the definition of \eta sup,m that for all \varepsilon ą 0 there
exists V0, with dpV0, V˚q ď \varepsilon , such that dpVmi , V˚q{dpV0, V˚q ě pc ´ \delta qmi , which is
arbitrarily large as mi Ñ 8. Hence the iteration is locally divergent.

4.2. Characterization of contraction factors. The definitions of \eta sup in (4.1)
and \eta sup,8 in (4.3) are generic. A meaningful characterization of \eta sup and \eta sup,8
will have to involve the specific choice of the metric dp¨, ¨q and the detail of HpV q.
Theorem 4.2 below contains the main contributions of this paper. It reveals a direct
characterization of \eta sup by HpV q for a class of metrics, as compared to the previous
works on the upper bounds of \eta sup [5, 17, 40]. Furthermore, for differentiable HpV q,
it provides closed-form expressions for \eta sup and the true convergence factor \eta sup,8.

Theorem 4.2. Suppose Assumption 1, and let dp¨, ¨q :“ }\Theta p¨, ¨q}ui.
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(a) If HpV q is Lipschitz continuous at V˚, then

(4.8) \eta sup “ lim sup
V PUnˆk

} tan\Theta pV,V˚q}uiÑ0

}SpV q}ui

} tan\Theta pV, V˚q}ui
ă 8,

where SpV q is the unique solution of the Sylvester equation defined in (2.4).
(b) If HpV q is differentiable at V˚, then

(4.9) \eta sup “ ~L ~ui ě \eta sup,8 “ \rho pL q,

where L is the local R-linear operator of the plain SCF defined in (3.8) and
~L ~ui is the operator norm of L induced by the unitarily invariant norm

} ¨ }ui, i.e., ~L ~ui :“ supZ‰0
}L pZq}ui

}Z}ui
. Consequently, the plain SCF (1.3) is

locally convergent to V˚ with its asymptotic average convergence rate bounded
by \rho pL q if \rho pL q ă 1 and locally divergent at V˚ if \rho pL q ą 1.

Proof. For item (a), by definition (4.1) with dp¨, ¨q :“ }\Theta p¨, ¨q}ui, we obtain

(4.10) \eta sup “ lim sup
V0PUnˆk

}\Theta pV0,V˚q}uiÑ0

}\Theta pV1, V˚q}ui

}\Theta pV0, V˚q}ui
“ lim sup

V0PUnˆk

} tan\Theta pV0,V˚q}uiÑ0

} tan\Theta pV1, V˚q}ui

} tan\Theta pV0, V˚q}ui
,

where the second equality is a consequence of (2.9), together with \Theta pV1, V˚q Ñ 0 as
\Theta pV0, V˚q Ñ 0 due to items (a) and (b) of Lemma 3.2. Then, a direct application
of (3.6) leads to (4.8).

For the boundedness of \eta sup ă 8, we first observe that

}\Lambda ˚KX ´X\Lambda ˚}ui “ }p\Lambda ˚K ´ \lambda 1IqX ´Xp\Lambda ˚ ´ \lambda 1Iq}ui

ě }p\Lambda ˚K ´ \lambda 1IqX}ui ´ }Xp\Lambda ˚ ´ \lambda 1Iq}ui

ě
}X}ui

}p\Lambda ˚K ´ \lambda 1Iq´1}2
´ }p\Lambda ˚ ´ \lambda 1Iq}2}X}ui

“ \delta ˚}X}ui,

where the second inequality is due to the 2-norm consistency with } ¨ }ui in (2.6) and
the last one is by the definition of \delta ˚ in (2.2). So by taking norms on the Sylvester
equation (2.3) and noticing that X ” SpV q and \delta ˚ ą 0 by Assumption 1, we have

(4.11) }SpV q}ui ď \delta ´1
˚ }V H

˚KrHpV˚q ´HpV qsV˚}ui.

On the other hand, it follows from the Lipschitz continuity of HpV q and (3.3) that

}HpV q ´HpV˚q}ui ď \alpha 
`

} tan\Theta pV, V˚q}ui ` \scrO p} tan\Theta pV, V˚q}2uiq
˘

for some constant \alpha ă 8. Combining this with (4.11) and (4.8), we conclude \eta sup ă 8.
For item (b), the inequality in (4.9) has already been established in (4.4), and the

formula of \eta sup follows directly from (4.8) and the expansion (3.7). It remains to find
the expression for \eta sup,8.

For notation simplicity, we denote by Tm :“ T pVmq “ pV H
˚KVmqpV H

˚ Vmq´1 for
m “ 0, 1, . . . . It follows from Lemma 3.2 that

Tm “ L mpT0q ` opcm}T0}uiq,
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where L m “ L ˝ ¨ ¨ ¨ ˝ L represents the composition of the linear operator L for m
times and cm is a constant independent of T0. Hence for any given m

\eta sup,m “ lim sup
}\Theta pV0,V˚q}uiÑ0

ˆ

}\Theta pVm, V˚q}ui

}\Theta pV0, V˚q}ui

˙1{m

“ lim sup
}T0}uiÑ0

ˆ

}Tm}ui

}T0}ui

˙1{m

“ lim sup
T0Ñ0

ˆ

}L mpT0q}ui

}T0}ui

˙1{m

,

where the second equation is due to (2.9), together with the continuity Tm Ñ 0 as
T0 Ñ 0, implied by (3.6). Since L is a finite-dimensional linear operator, we have
that \eta sup,m “ p~L m~uiq

1{m. The expression for \eta sup,8 in (4.9) is a consequence of
Gelfand's formula, which says limmÑ8 ~L m~1{m “ \rho pL q for any operator norm ~¨~

in a finite-dimensional vector space (see, e.g., [15, Theorem 17.4]).

In recent years, a series of works has been published to improve the upper bounds
of the local contraction factor \eta sup, e.g., [5, 17, 40]. Those bounds were typically
established for particular choices of the metric dp¨, ¨q between subspaces and for a
class of HpV q. Let us revisit particularly the following estimation of the convergence
factor of the plain SCF iteration presented recently in [5]:

\eta czbl :“ lim sup
V PUnˆk

} sin\Theta pV,V˚q}uiÑ0

\delta ´1
˚ }V H

˚KrHpV˚q ´HpV qsV˚}ui

} sin\Theta pV, V˚q}ui
.(4.12)

We use \eta czbl as a baseline for comparison since it improves the previous estimates of
the convergence factors presented in [17, 40].

For a differentiable HpV q with the expansion (3.4), \eta czbl can be expressed as

(4.13) \eta czbl “ \delta ´1
˚ ¨ ~Lczbl~ui,

where Lczbl : Cpn´kqˆk Ñ Cpn´kqˆk is an R-linear operator:

(4.14) LczblpZq “ V H
˚K DHpV˚qrV˚KZsV˚.

The convergence factor \eta czbl in (4.12) significantly improves several previously estab-
lished results in [17, 40]. However, it follows from the characterization of \eta sup in (4.8)
and the bound of SpV q in (4.11) that

\eta sup ď \eta czbl.(4.15)

Therefore, the quantity \eta czbl is an upper bound of \eta sup and can substantially overes-
timate the convergence rate of SCF in practice; see numerical examples in section 6.

We have already seen from Lemma 4.1 that \eta sup,8 is the true convergence factor
for SCF and \eta sup,8 ď \eta sup. To see why there may be a difference between \eta sup,8 and
\eta sup in (4.9), we take a look at \eta sup in the commonly used Frobenius norm:

~L ~F :“ sup
Z‰0

}L pZq}F

}Z}F
“ sup

Z‰0

xL pZq,L pZqy1{2

xZ,Zy1{2

“ sup
Z‰0

xZ,L ˚ ˝ L pZqy1{2

xZ,Zy1{2
“ p\lambda maxpL ˚ ˝ L qq

1{2
,(4.16)

where xX,Y y “ \Re ptrpXHY qq denotes the inner product on Cpn´kqˆkpRq and L ˚ is
the adjoint of L . It follows from (4.9) and (4.16) that for the Frobenius norm

(4.17) \eta sup “ |\lambda maxpL ˚ ˝ L q|1{2 ě |\rho pL q| “ \eta sup,8.
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By the standard matrix analysis, the equality in (4.17) holds if L is a normal linear
operator on CN pRq, and the difference between the two numbers can be arbitrarily
large when L is far from normal. For practical NEPvs, such as the ones in section 6,
we have observed that L is usually a slightly nonnormal operator, causing a small
difference between the two contraction factors.

Finally, we comment on another recent work [38] on the local convergence analysis
of SCF using the spectral radius. In [38], SCF is viewed as a fixed-point iteration
Pm`1 “ \psi pPmq in the density matrix Pm “ VmV

H
m P Cnˆn, rather than in Vm

directly. The authors showed that the fixed-point mapping \psi pP q has a closed-form
Jacobian supermatrix J , assuming HpV q is a linear function in P “ V V H. So the
spectral radius of J also provides a convergence criterion. Since P has p “ pn` 1qn{2
free variables, the corresponding supermatrix J is of size p-by-p. This is in contrast to
the R-linear operator L (3.8) in tangent-angle matrices, which is only of size q-by-q
with q “ 2pn´kqk “ \scrO pp1{2q for modest k. In addition to the reduced size, the use of
a linear operator, rather than a supermatrix, allows for more convenient computation
of the spectral radius in practice; see subsection 6.1. Furthermore, L is also easier to
work with theoretically and numerically, thanks to its simplicity in formulation and
more explicit dependencies on key variables, such as derivatives and eigenvalue gaps.
In the next section, we will show how to apply the spectral radius \rho pL q to analyze the
so-called level-shifting scheme for stabilizing and accelerating the plain SCF iteration.

5. Level-shifted SCF iteration. In the previous section, we have discussed
that if the spectral radius \rho pL q ą 1 (or more generally \eta sup,8 ą 1 in the case when
HpV q is just continuous), then the plain SCF (1.3) is locally divergent at V˚. Even if
\rho pL q ă 1, the process is prone to slow convergence or oscillation before reaching local
convergence. To address those issues, the plain SCF may be applied in practice with
some stabilizing schemes to help with convergence. Among the most popular choices
is the level-shifting strategy initially developed in computation chemistry [30, 36, 41].
In this section, we discuss why such a scheme works through the lens of spectral radius
when HpV q is differentiable.

5.1. Level-shifting. The level-shifting scheme modifies the plain SCF (1.3) with
a parameter \sigma as follows:

(5.1) rHpViq ´ \sigma ViV
H
i sVi`1 “ Vi`1\Lambda i`1 for i “ 0, 1, 2, . . . ,

where Vi`1 is an orthonormal basis matrix of the invariant subspace associated with
the k smallest eigenvalues of the matrix HpViq ´ \sigma ViV

H
i . It can be viewed simply as

the plain SCF (1.3) applied to the level-shifted NEPv:

(5.2) H\sigma pV qV “ V \Lambda with H\sigma pV q :“ HpV q ´ \sigma V V H.

Note that H\sigma pV q is again unitarily invariant as in (1.2). The level-shifting trans-
formation does not alter the solutions of the original NEPv (1.1) but shifts related
eigenvalues of HpV q by \sigma :

HpV qV “ V \Lambda ðñ H\sigma pV qV “ V p\Lambda ´ \sigma Ikq.

Hence, if pV˚,\Lambda ˚q is a solution of the original NEPv (1.1), then pV˚,\Lambda ˚´\sigma Ikq will solve
the level-shifted NEPv (5.2). In the following discussion, we assume the parameter \sigma 
is a constant for convenience. In practice, it can change iteration-by-iteration.
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One direct consequence of the level-shifting transformation is that it enlarges the
eigenvalue gap at the solution V˚. By the eigendecomposition (2.1), we obtain

(5.3) H\sigma pV˚q rV˚, V˚Ks “ rV˚, V˚Ks

„

\Lambda ˚ ´ \sigma Ik
\Lambda ˚K

ȷ

.

Recall that \Lambda ˚ “ diagp\lambda 1, . . . , \lambda kq and \Lambda ˚K “ diagp\lambda k`1, . . . , \lambda nq consist of the or-
dered eigenvalues of HpV˚q as in (2.1). Therefore, the gap between the kth and
pk ` 1qst eigenvalue of H\sigma pV˚q becomes

(5.4) \delta \sigma ˚ :“ \lambda k`1 ´ p\lambda k ´ \sigma q “ \delta ˚ ` \sigma ,

where \delta ˚ denotes the eigenvalue gap (2.2) of the original NEPv (1.1) at V˚. So the
level-shifted NEPv (5.2) always has a larger eigenvalue gap \delta \sigma ˚ if \sigma ą 0.

For the standard Hermitian eigenvalue problem, it is well known that the larger
the eigenvalue gap between the desired eigenvalues and the others, the easier and
more robust it will become to compute the desired eigenvalues and the associated
eigenspace [8, 24, 34]. Therefore, it is desirable to have a large eigenvalue gap \delta \sigma ˚

for the sequence of matrix eigenvalue problems in the SCF iteration (5.1), but on the
other hand if the shift \sigma is too large, it will negatively affect the local convergence
rate of SCF as numerical evidences suggest. Presently, there are heuristic schemes to
choose the level-shift parameter \sigma in practice; see, e.g., [41]. However, those heuristics
cannot explain how the convergence behavior of SCF (5.1) is affected by the level-
shifting parameter \sigma .

We mention that the conventional restriction of \sigma ą 0 for the level-shifting pa-
rameter [30, 36, 41] is not necessary. From the eigendecomposition (5.3) we see that
the eigenvector matrix V˚ always corresponds to the k smallest eigenvalues of H\sigma pV˚q

so long as \sigma P p´\delta ˚,`8q.

5.2. Local convergence of level-shifted SCF. In what follows, we investigate
the local convergence behavior of the level-shifting scheme by examining the spectral
radius \rho pL\sigma q for the local R-linear operator L\sigma of the level-shifted SCF (5.1). We
will focus on a class of NEPv where certain conditions on the derivatives of HpV q

are satisfied. Those conditions hold for NEPvs arising in optimization problems with
orthogonality constraints, as is usually the case for most practical NEPvs.

5.2.1. NEPvs from optimization with orthogonality constraints. Let us
review a class of NEPvs arising from the following optimization problems with or-
thogonality constraints

(5.5) min
V PCnˆk

EpV q s.t. V HV “ Ik,

where E is some energy function satisfying \nabla EpV q “ HpV qV (see, e.g., [3, 41, 42]).
We will make no assumption on the specific form of Ep¨q to be used. For the con-
strained optimization problem (5.5), the associated Lagrangian function is given by

LpV q :“ EpV q `
1

2
tr
`

\Lambda HpV HV ´ Ikq
˘

,

where \Lambda “ \Lambda H is the k-by-k matrix of Lagrange multipliers. We have suppressed
L's dependency on \Lambda for notation simplicity. The first-order optimization condition
\nabla V LpV q “ HpV qV ´ V \Lambda “ 0 leads immediately to NEPv (1.1).
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Because the target solution V˚ of interest is also a minimizer of (5.5), it needs to
satisfy certain second-order conditions as well. Assuming EpV q is also second-order
differentiable, by straightforward derivation, the Hessian operator of LpV q is given by

\nabla 2
V LpV˚qrXs “ HpV˚qX ` pDHpV˚qrXsqV˚ ´X\Lambda ˚,

where X denotes the direction for the evaluation and DHpV˚qr¨s denotes the di-
rectional derivative of H as defined in (2.12). Then by the standard second-order
optimization condition [23], this operator needs to be at least positive semidefinite
when restricted to X “ V˚KZ for all Z P Cpn´kqˆk; namely, within the tangent space
of the feasible set V HV “ Ik at V˚, the operator

V H
˚K

`

\nabla 2
V LpV˚qrV˚KZs

˘

“ V H
˚K DHpV˚qrV˚KZsV˚ ` \Lambda ˚KZ ´ Z\Lambda ˚

is self-adjoint and at least positive semidefinite.
In general, NEPv (1.1) may or may not be associated with an optimization prob-

lem like (5.5). The discussion above nonetheless can still motivate us to introduce the
following R-linear operator Q : Cpn´kqˆk Ñ Cpn´kqˆk:

(5.6) QpZq :“ V H
˚K DHpV˚qrV˚KZsV˚ ` \Lambda ˚KZ ´ Z\Lambda ˚.

It is well defined without the need of an associated optimization problem (5.5) so
long as HpV q is differentiable at V˚ with respect to the real and imaginary parts of
V . We call Q a restricted derivative operator of NEPv (1.1). In this more general
situation, there is no implied self-adjointness as a result of being the Hessian of LpV q,
however, not to mention that it is positive definite. For that reason, we need to make
the following assumption.

Assumption 2. The linear operator Q is self-adjoint and positive definite with
respect to the standard inner product on Cpn´kqˆk, i.e.,

\Re ptrpZHQpZqqq “ \Re ptrprQpZqsHZqq and \Re ptrpZHQpZqqq ą 0 for all Z ‰ 0.

5.2.2. Spectral radius of level-shifted local R-linear operator. We can
immediately draw from Lemma 3.2 and Theorem 4.2 a conclusion that the local con-
vergence behavior of the level-shifted SCF (5.1) is characterized by the local R-linear
operator corresponding to the level-shifted NEPv (5.2). To show the dependency
on \sigma , we note that the local R-linear operator associated with H\sigma p ¨ q, as defined in
Lemma 3.2, is

(5.7) L\sigma pZq “ D\sigma pV˚q d pV H
˚K DH\sigma pV˚qrV˚KZsV˚q,

where D\sigma pV˚q P Rpn´kqˆk has elements

D\sigma pV˚qpi,jq “ p\lambda k`ipHpV˚qq ´ \lambda jpHpV˚qq ` \sigma q´1.

A representation of L\sigma in terms of restricted derivative operator Q and a bound of
the spectral radius of L\sigma is given in the following theorem.

Theorem 5.1. Suppose Assumptions 1, and 2 and that \sigma P p´\delta ˚,`8q. The local
R-linear operator L\sigma p¨q of the level-shifted SCF (5.1) for the level-shifted NEPv (5.2)
is given by

(5.8) L\sigma p¨q “ D\sigma pV˚q d Qp¨q ´ Iid,
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where Q is the restricted derivative operator defined in (5.6) and Iid denotes the
identity operator on the vector space Cpn´kqˆkpRq. Moreover, the spectral radius of
L\sigma is bounded:

(5.9) \rho pL\sigma q ď max

"
ˇ

ˇ

ˇ

ˇ

\mu max

\sigma ` \delta ˚

´ 1

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

\mu min

\sigma ` s˚

´ 1

ˇ

ˇ

ˇ

ˇ

*

,

where \mu max ě \mu min ą 0 denote the largest and smallest eigenvalues of the R-linear
operator Q and \delta ˚ and s˚ are the spectral gap and span, respectively, i.e.,

\delta ˚ “ \lambda k`1pHpV˚qq ´ \lambda kpHpV˚qq and s˚ “ \lambda npHpV˚qq ´ \lambda 1pHpV˚qq.

In particular, \rho pL\sigma q ă 1 if

(5.10) \sigma ą
\mu max

2
´ \delta ˚.

Proof. By the definition of H\sigma pV q in (5.2) and the derivative operator (2.12), it
holds that

DH\sigma pV˚qrXs “ DHpV˚qrXs ´ \sigma DpV˚V
H

˚ qrXs “ DHpV˚qrXs ´ \sigma pV˚X
H `XV H

˚ q.

Hence

V H
˚K DH\sigma pV˚qrV˚KZsV˚ “ V H

˚K DHpV˚qrV˚KZsV˚ ´ \sigma Z

“ QpZq ` Zp\Lambda ˚ ´ \sigma Ikq ´ \Lambda ˚KZ “ QpZq ´ Z mD\sigma pV˚q,(5.11)

where the second equation is by (5.6) and m denotes the elementwise division. Plug
(5.11) into (5.7) to obtain

L\sigma pZq “ D\sigma pV˚q d rQpZq ´ Z mD\sigma pV˚qs “ D\sigma pV˚q d QpZq ´ Z.

This proves (5.8).
The vector space Cpn´kqˆkpRq has a natural basis \scrB :“ tEij , \imath Eij : i “ 1, . . . , n´

k, j “ 1, . . . , ku, where the entries of Eij P Rpn´kqˆk are all zeros but 1 is its pi, jqth
entry. Let \scrL \sigma ,\scrD \sigma ,\scrQ P R2Nˆ2N be the matrix representations of the operators L\sigma p¨q,
D\sigma pV˚qdp¨q, and Qp¨q with respect to the basis \scrB , respectively, where N “ pn´kqˆk.
It follows from (5.8) that

\scrL \sigma “ \scrD \sigma \scrQ ´ I2N .

Observe that \scrD \sigma is a diagonal matrix consisting of elements of D\sigma , and \scrQ is symmetric
positive definite due to Assumption 2. Hence the eigenvalues of \scrD \sigma \scrQ are all positive,
and

(5.12) \rho pL\sigma q “ maxt|\lambda maxp\scrD \sigma \scrQ q ´ 1|, |\lambda minp\scrD \sigma \scrQ q ´ 1|u.

Since the eigenvalues of \scrD \sigma \scrQ are the same as those of \scrQ 1{2\scrD \sigma \scrQ 1{2 and

\lambda maxp\scrD \sigma q\scrQ ľ \scrQ 1{2\scrD \sigma \scrQ 1{2 ľ \lambda minp\scrD \sigma q\scrQ ,

we have

(5.13) \lambda maxp\scrD \sigma \scrQ q ď \mu max{p\sigma ` \delta ˚q and \lambda minp\scrD \sigma \scrQ q ě \mu min{p\sigma ` s˚q.

Inequality (5.9) is now a simple consequence of (5.12).
It follows immediately from (5.9) that

\rho pL\sigma q ă 1 if 0 ă
\mu min

\sigma ` s˚

ď
\mu max

\sigma ` \delta ˚

ă 2,

i.e., \sigma ą \mu max{2 ´ \delta ˚.
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As an immediate consequence of Theorem 5.1, the level-shifted SCF is locally
convergent for a sufficiently large \sigma ! In fact, \sigma ą \mu max{2 ´ \delta ˚ guarantees \rho \sigma pL q ă 1,
although the latter may hold for much smaller \sigma than \mu max{2 ´ \delta ˚. This is what
we can prove without further detailed information. On the other hand, it follows
from (5.13) that \scrD \sigma \scrQ Ñ 0 as \sigma Ñ `8. Hence by (5.12) we have \rho \sigma pL q Ñ 1 as
\sigma Ñ `8, implying slow convergence of the level-shifted SCF for \sigma that is too large.
The question is how to pick a decent \sigma with fairly small \rho \sigma pL q. In general, this is
not an easy task because \rho \sigma pL q is usually unknown. One possible compromise is to
minimize the upper bound of \rho \sigma pL q in (5.9), assuming good estimates to \mu min, \mu max,
\delta ˚, and s˚ are available. In fact, the minimizer of the upper bound is achieved when
the two terms in the right-hand side of (5.9) coincide, which happens only if

\mu max

\sigma ` \delta ˚

´ 1 “ 1 ´
\mu min

\sigma ` s˚

,

due to \sigma P p´\delta ˚,`8q. This equation has a unique solution \sigma ˚ P p\mu max{2 ´ \delta ˚,`8q.
We caution the reader that this \sigma ˚ can be far from the one that minimizes the actual
\rho \sigma pL q. It is just the best possible choice we can get with the limited information at
hand. The true optimal \sigma , however, can be even smaller than \mu max{2 ´ \delta ˚, as will be
illustrated by numerical examples in section 6. In any case, the operator L\sigma and its
spectral radius provide us with a deep understanding of level-shifting strategy and an
approach to seek a decent choice of the level-shifting parameter \sigma .

To end this section, we note that the results in this section are consistent with,
and also complement, the convergence analysis of the level-shifted methods applied to
Hartree--Fock equations [7]. Using optimization approaches, the authors showed that
a sufficiently large shift \sigma can lead to global convergence. The condition (5.10), on
the other hand, provided a closed-form lower bound on the size of \sigma needed to achieve
local convergence. The bound of (5.10) involves the quantities \delta ˚ and \mu max defined by
the exact solution V˚ and is mostly of theoretical interest. For some applications, it is
possible to have a priori estimates of \delta ˚ and \mu max, as demonstrated in the examples
in the next section.

6. Numerical examples. In this section, we present numerical examples to
demonstrate the sharpness of the convergence rate estimates established in the previ-
ous sections. Specifically, the purpose of the examples is twofold: Firstly, to illustrate
how these convergence results are manifested in practice, where various convergence
rate estimates are compared and their sharpness in estimating the actual convergence
rate is demonstrated. Secondly, to investigate and gain insight into the influence of
the level-shifting parameter \sigma on the convergence rate of SCF (5.1).

6.1. Experiment setup. We will perform two case studies: one is a discrete
Kohn--Sham equation with real coefficient matrices HpV q, and the other is a discrete
Gross--Pitaevskii equation with complex matrices.

All our experiments are implemented and conducted in MATLAB 2019. In each
simulation, the ``exact"" solution V˚ is computed by the plain SCF (1.3), when it is
convergent, to achieve a residual tolerance }HpV˚qV˚ ´ V˚\Lambda ˚}2 ď 10´14. When the
plain SCF failed to converge, V˚ is computed by the level-shifted SCF (5.1) with a
properly chosen shift \sigma , also to the same level of accuracy.

The convergence rate estimates to be investigated include
(i) \eta czbl by [5], computed as (4.13) in the Frobenius norm,
(ii) \eta sup “ ~L ~F in (4.9) in the Frobenius norm, and
(iii) \eta sup,8 “ \rho pL q in (4.9).
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These convergence rate estimates will be compared against the observed convergence
rate of SCF, computed from the convergence history of residual norms }HpViqVi ´

Vi\Lambda i}2 of SCF iteration by the least squares approximation on the last few iterations
(with residual norms below 10´8).

Evaluation of \eta sup,8p“ \rho pL qq. Although a matrix representation L is involved
in the definition (2.11), its explicit formulation is not needed for computing \rho pL q.
Recall that L : Cpˆk Ñ Cpˆk is an R-linear operator. By viewing a complex matrix
X “ X\bfr ` \imath X\bfi P Cpˆk as a pair of real matrices pX\bfr , X\bfi q consisting of the real and

imaginary parts, we express L as a linear operator xL : Rpˆk ˆRpˆk Ñ Rpˆk ˆRpˆk,

(6.1) xL pX\bfr , X\bfi q “ p\Re pL pXqq,\Im pL pXqqq .

The input (as well as the output) matrix pair pX\bfr , X\bfi q can be regarded as a real

``vector"" of length 2N . The largest eigenvalue in magnitude of the linear operator xL
can be computed conveniently by the MATLAB eigs function as follows:
v2m = @(x) reshape(x(1:N)+1i*x(N+1:end), p, []); \% real vec x -?` mat X

m2v = @(X) [real(X(:)); imag(X(:))]; \% mat X -?` real vec x

hatL = @(x) m2v(L(v2m(x)))); \% operator hat L

lam\.max = eigs(hatL, 2*N, 1); \% largest eigenval.

Evaluation of \eta sup and \eta czbl. The induced norm ~L ~F in (4.16) is defined as the
square root of the largest eigenvalue of L ˚ ˝L , which is also an R-linear operator. We
can use exactly the same approach above to obtain \lambda maxpL ˚ ˝L q. Since the operator
L ˚ ˝ L is self-adjoint, the largest eigenvalue is always a real number. In analogy, for
\eta czbl in (4.13), ~Lczbl~F can be computed as the square root of \lambda maxpL ˚

czbl ˝ Lczblq.

6.2. Single particle Hamiltonian. Let us consider an NEPv (1.1) with a real
coefficient matrix-valued function

(6.2) HpV q “ L` \alpha DiagpL´1 diagpV V Tqq,

where tridiagonal matrix L “ tridiagp´1, 2,´1q P Rnˆn is a discrete 1D Laplacian,
\alpha ą 0 is a given parameter, and V P Onˆk :“ tX P Rnˆk : XTX “ Iku. HpV q

is known as the single-particle Hamiltonian arising from discretizing a 1D Kohn--
Sham equation in electronic structure calculations and has become a standard testing
problem for investigating the convergence of SCF due to its simplicity; see, e.g., [5,
17, 40, 44]. HpV q is differentiable. By a straightforward calculation, the directional
derivative operator DHpV˚q defined in (2.12) is given by

DHpV qrXs “ 2\alpha DiagpL´1 diagpXV Tqq,

which is linear in X.
The local R-linear operator L in (3.8) of the plain SCF (1.3) is given by

(6.3) L pZq “ 2\alpha DpV˚q d

ˆ

V T
˚K DiagpL´1 diagpV˚KZV

T
˚ qqV˚

˙

.

The adjoint operator L ˚ is given by

(6.4) L ˚pY q “ 2\alpha V T
˚K Diag

`

L´ T diag
`

V˚KpDpV˚q d Y qV T
˚

˘˘

V˚;

see Appendix A for the derivation.
The local R-linear operator L\sigma (5.7) of the level-shifted SCF (5.1) is given by

(6.5) L\sigma pZq “ D\sigma pV˚q d QpZq ´ Iid,
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where Q is the restricted derivative operator, which is defined in (5.6) and is given
by

(6.6) QpZq “ 2\alpha V T
˚K DiagpL´1 diagpV˚KZV

T
˚ qqV˚ ` p\Lambda ˚KZ ´ Z\Lambda ˚q.

The largest eigenvalue \mu max of Q can be bounded as follows: let Z P Rpn´kqˆk be the
corresponding eigenvector of \mu max; then

\mu max “
}QpZq}F

}Z}F
ď 2\alpha 

}DiagpL´1 diagpV˚KZV
T

˚ qq}F

}Z}F
` s˚

ď 2\alpha }L´1}2 ` s˚ ď 3\alpha }L´1}2 ` 4,

where s˚ is the spectral span of HpV˚q, and for the last inequality we have used the
inequalities s˚ ď \lambda npHpV qq ď }L}2 ` \alpha }L´1}2 due to (6.2), and }L}2 ď 4.

Recalling the lower bound in (5.10) for the level-shifting parameter \sigma , we find

(6.7) \sigma ě
3

2
\alpha }L´1}2 ` 2 ě

\mu max

2
ą
\mu max

2
´ \delta ˚

is sufficient to ensure local convergence of SCF (5.1). The first inequality provides an
a priori lower bound on the shift \sigma . In practice, this crude bound is a bit pessimistic
though. But it does reveal two key contributing factors---the parameter \alpha and size n
of the problem due to the fact that }L´1}2 “ 2´1p1 ´ cosp \pi 

n`1 qq´1 “ \scrO pn2q for the
1D Laplacian [9, Lemma 6.1]---that tend to negatively affect the size of shift.

Example 6.1. In this example, we compare the sharpness of the three convergence
rate estimates of the plain SCF. We take n “ 10 and k “ 2 and use different \alpha ranging
from 0 to 1 in the Hamiltonian (6.2). For each run of SCF, the starting vectors are set
to be the basis of the k smallest eigenvalues of L. The results are shown in Figure 1.
A few observations are summarized as follows:

(a) For \alpha “ 0, the NEPv reduces to a standard eigenvalue problem LV “ V \Lambda ,
for which SCF converges in one iterative step. As \alpha increases, SCF faces
increasing challenges to converge. In particular, for \alpha larger than 0.85 (e.g.,
\alpha “ 0.9 in Figure 1), the plain SCF becomes divergent. For those \alpha , the
``exact"" solutions V˚ used to calculate convergence factors are computed by
the level-shifted SCF.
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Fig. 1. Example 6.1: convergence history of residual norm }HpViqVi ´Vi\Lambda i}2 by the plain SCF
(1.3) for selected \alpha (left plot) and convergence rate estimates as \alpha varies (right plot). The observed
rate marked by ``circle"" and the theoretic rate \eta sup,8 marked by ```"" coincide perfectly.
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(b) The right plot in Figure 1 shows that the asymptotic average contraction
factor \eta sup,8p“ \rho pL qq successfully predicts the convergence behavior of SCF
in all cases, as \eta sup,8 marked by ```"" in the plot perfectly coincides with
the observed rate marked by ``circle."" It can also be observed from the left
plot that SCF iterations quickly enter into the region of linear convergence,
and the factor \eta sup,8 yields excellent estimation after only a small number of
iterative steps.

(c) The contraction factor estimate \eta sup is an overestimate and provides a good
prediction of local convergence for small \alpha . It fails slightly at \alpha “ 0.85, where,
up to 10 digits,

observed “ 0.9913931781, \eta sup,8 “ 0.9913931591,
\eta sup “ 1.028434776, \eta czbl “ 1.430511920.

The difference between \eta sup,8 and \eta sup implies L is a nonnormal operator
as discussed in subsection 4.2.

(d) In comparison, the estimate \eta czbl by [5] is less accurate. In particular, it fails
to correctly indicate the convergence of the plain SCF starting at \alpha “ 0.55,
which is in contrast to \eta sup starting at 0.85.

Example 6.2. In this example, we examine the convergence of the level-shifted
SCF (5.1) with respect to the shift \sigma . The testing problem is the same as Example 6.1
but with a fixed \alpha “ 1, for which the plain SCF (1.3) is divergent. We apply the level-
shifted SCF with various choices of \sigma . The convergence history and the corresponding
spectral radius of the operator L\sigma in (5.7) are depicted in Figure 2.

From the spectral radius plot on the right side of Figure 2, we observe that \rho pL\sigma q

dropped quickly below 1. The minimal value \rho pL\sigma q « 0.33 at \sigma « 0.36 and leads to
rapid convergence of SCF as shown in the left plot. As \sigma grows, \rho pL\sigma q monotonically
increases towards 1. Such a behavior of \rho pL\sigma q is consistent with the bound obtained
in Theorem 5.1, governed by rational functions in the form of |1 ´ a{p\sigma ` bq| with
a, b ą 0.

The sharp turning of the curve of \rho pL\sigma q reveals the challenge in finding the
optimal \sigma . The values of spectral radius grows quickly as \alpha moves away from the

0 50 100 150 200 250 300 350

10
-10

10
-5

10
0

0 5 10 15 20 25

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Fig. 2. Example 6.2: convergence history of residual norm }HpViqVi ´ Vi\Lambda i}2 by the level-
shifted SCF (5.1) with selected \sigma (left plot) and spectral radius \rho pL\sigma q as shift \sigma varies (right plot).
The first vertical dash line is \sigma “ \mu max{2 ´ \delta ˚ as in (5.10), the theoretical bound beyond which
provably \rho pL\sigma q ă 1, and the second one is a priori \sigma “ 3

2
\alpha }L´1}2 ` 2 suggested by (6.7), while the

optimal shift is \sigma « 0.36, which is smaller than \mu max{2 ´ \delta ˚, the theoretical bound. HpV q is given
by (6.2) with \alpha “ 1.
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optimal shift. We note that both the theoretic lower bound in (5.10) and a priori
estimate (6.7) fall correctly into the convergence region. The a priori bound provided
a pessimistic estimate of \sigma that leads to a less satisfactory convergence rate of the
level-shifted SCF (5.1) than others.

6.3. Gross--Pitaevskii equation. In this experiment, we consider NEPvs with
complex coefficient matrices HpV q given by

(6.8) HpV q “ Af ` \beta Diagp|V |q2,

where Af P Cnˆn is a Hermitian matrix and positive definite, \beta ą 0 is a parameter,
V P Cn is a complex vector, and | ¨ | takes elementwise absolute value. Such an
NEPv arises from discretizing the Gross--Pitaevskii equation (GPE) for modeling the
physical phenomenon of Bose--Einstein condensation [4, 11, 12, 16].

The matrix Af in (6.8) is dependent on a potential function f . For illustra-
tion, we will discuss a model 2D GPE studied in [11], where for a given potential
function fpx, yq over a two-dimensional domain r´\ell , \ell s ˆ r´\ell , \ell s, the corresponding
matrix is

(6.9) Af “ Diagp rfq ´
1

2
M ´ \imath \omega M\phi ,

where

rf “ h2 rfpx1, y1q, . . . , fpxN , y1q, fpx1, y2q, . . . , fpxN , y2q, . . . , fpxN , yN qs
T

P RN2

with txiu
N
i“1 and tyiu

N
i“1 being interior points of the interval r´\ell , \ell s from the N ` 2

equidistant discretization with spacing h “ 2\ell 
N`1 . The matrices M , M\phi are given

by

M “ D2,N bI`IbD2,N , M\phi “ h Diagpy1, . . . , yN qbDN ´DN bph Diagpx1, . . . , xN qq

with NˆN tridiagonal matrices DN “ tridiagp´ 1
2 , 0,

1
2 q and D2,N “ tridiagp1,´2, 1q.

Since V is a vector, by definition (2.12) the directional derivative operator of
HpV q is given by

DHpV qrXs “ 2\beta Diagp\Re pV dXqq.

The local R-linear operator of the plain SCF L : Cn´1 Ñ Cn in (3.8) is

(6.10) L pZq “ 2\beta DpV˚q d pV H
˚K Diagp\Re pV ˚ d pV˚KZqqqV˚q,

and its adjoint operator L ˚, with respect to the standard inner product in Cpn´kqˆk

(k “ 1), i.e., xL pZq, Y y ” \Re ptrpY HL pZqqq “ xZ,L ˚pY qy ” \Re ptrprL ˚pY qsHZqq for
any Y, Z P Cpn´kqˆk, is given by

(6.11) L ˚pY q “ 2\beta V H
˚K

`

\Re 
`

diagpV˚KpDpV˚q d Y qV H
˚ q

˘

d V˚

˘

;

see Appendix A for the derivation.
For the level-shifted SCF, the local R-linear operator L\sigma in (5.7) is given by

(6.12) L\sigma pZq “ D\sigma pV˚q d QpZq ´ Iid,

where the restricted derivative operator QpZq is given by

(6.13) QpZq “ 2\beta V H
˚K Diagp\Re pV˚ d pV˚KZqqV˚ ` p\Lambda ˚KZ ´ Z\Lambda ˚q.
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The largest eigenvalue \mu max of Q can be bounded as follows. Let Z P Cn´1 be the
eigenvector associated with \mu max. Then

\mu max “
}QpZq}F

}Z}F
ď 2\beta 

}Diagp\Re pV d pV˚KZqq}F

}Z}F
` s˚

ď 2\beta ` s˚ ď 3\beta ` }Af }2,

where s˚ “ \lambda npHpV˚qq ´ \lambda 1pHpV˚qq is the spectral span, and for the last inequality
we have used the inequalities s˚ ď \lambda npHpV˚qq ď \beta `}Af }2 due to HpV q in (6.8) being
positive definite. Consequently, the lower bound on \sigma in (5.10) yields

(6.14) \sigma ě
1

2
p3\beta ` }Af }2q ě

\mu max

2
ą
\mu max

2
´ \delta ˚

to ensure the local convergence of the level-shifted SCF.

Example 6.3. In this example, we select the parameters \ell “ 1, \omega “ 0.85, and
N “ 10 (hence n “ 100). We use a radial symmetric potential fpx, yq “ px2 ` y2q{2.
Various values of \beta ranging from 0.5 to 5 have been tried. The simulation results are
shown in Figure 3.

It is observed that the plain SCF becomes slower and slower and eventually di-
vergent as \beta increases. Again, the spectral radius \rho pL\sigma q and \eta sup can well capture
true convergence behavior. In particular, at \beta “ 3.5, we find that up to 7 digits,

observed “ 0.9136140, \eta sup,8 “ 0.9136173, \eta sup “ 1.019727, \eta czbl “ 2.342686.

Again, we see the sharpness of the estimate \eta sup,8.
The performance of the level-shifted SCF with respect to different shifts \sigma is

shown in Figure 4, where we observe a similar convergence behavior to Figure 2 for
Example 6.2 on the impact of the choice of shift \sigma .

Example 6.4. Exploiting symmetry in the potential function can be important for
the numerical solution of a GPE [3]. This example is a repeat of Example 6.3 using an
asymmetric potential function fpx, yq “ px2 ` 100y2q{2. The plots in Figure 5 show
only a slightly different performance of the plain SCF (1.3) compared to the radial
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Fig. 3. Example 6.3: convergence history of residual norm }HpViqVi ´Vi\Lambda i}2 by the plain SCF
(1.3) for selected \beta (left plot) and convergence rate estimates as \beta varies (right plot). The observed
rate marked by ``circle"" and the theoretic rate \eta sup,8 marked by ```"" coincide perfectly.
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Fig. 4. Example 6.3: convergence history of residual norm }HpViqVi ´ Vi\Lambda i}2 by the level-
shifted SCF (5.1) with selected \sigma (left plot) and spectral radius \rho pL\sigma q as shift \sigma varies (right plot).
The first vertical dash line is \sigma “ \mu max{2 ´ \delta ˚ as in (5.10), the theoretical bound beyond which
provably \rho pL\sigma q ă 1, and the second one is a priori \sigma “ 1

2
p3\beta ` }Af }2q suggested by (6.14), while

the optimal shift is \sigma « 0.08, which is smaller than \mu max{2 ´ \delta ˚, the theoretical bound. HpV q is
given by (6.8) with \beta “ 5.
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Fig. 5. Example 6.4: convergence history of residual norm }HpViqVi ´Vi\Lambda i}2 by the plain SCF
(1.3) for selected \beta (left plot) and convergence rate estimates as \beta varies (right plot). The observed
rate marked by ``circle"" and the theoretic rate \eta sup,8 marked by ```"" coincide perfectly.

symmetric case of Example 6.3. The sharpness of the estimate \eta sup,8 on the local
convergence rate can be best seen at \beta “ 2.2, where, up to 7 digits,

observed “ 0.9652599, \eta sup,8 “ 0.9652614, \eta sup “ 1.073434, \eta czbl “ 2.043247.

The performance of the level-shifted SCF is depicted in Figure 6. Again we observe
a similar convergence behavior to Example 6.3 with repect to the choice of shift \sigma .

7. Concluding remarks. We have presented a comprehensive local convergence
analysis of the plain SCF iteration and its level-shifted variant for solving NEPvs. The
exact convergence rate and its estimates are established. Our analysis is in terms of
the tangent-angle matrix to measure the approximation error between consecutive
SCF iterates and the intended target. We first established a relation between the
tangent-angle matrices associated with any two consecutive SCF approximates, and
with it we developed new formulas for the local error contraction factor and the
asymptotic average contraction factor of SCF. The new formulas are sharper and
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Fig. 6. Example 6.4: convergence history of residual norm }HpViqVi ´ Vi\Lambda i}2 by the level-
shifted SCF (5.1) with selected \sigma (left plot) and spectral radius of \rho pL\sigma q as shift \sigma varies (right
plot). The first vertical dash line is \sigma “ \mu max{2 ´ \delta ˚ as in (5.10), the theoretical bound beyond
which provably \rho pL\sigma q ă 1, and the second one is a priori \sigma “ 1

2
p3\beta ` }Af }2q suggested by (6.14),

and the optimal shift is \sigma « 0.08, which is smaller than \mu max{2 ´ \delta ˚, the theoretical bound. The
HpV q is given by (6.8) with \beta “ 3.

complement existing local convergence results. With the help of new convergence rate
estimates, we derive an explicit lower bound on the shifting parameter to guarantee
local convergence of the level-shifted SCF. These results are numerically confirmed by
examples from applications in computational physics and chemistry.

Our analysis does not cover other sophisticated variants of SCF such as the
damped SCF [6] and the direct inversion of iterative subspace [25, 26]. It is con-
ceivable that by the tangent-angle matrix and the eigenspace perturbation theory,
one may work out the local convergence analysis of those variants.

Finally, we note that we focused on NEPv (1.1) satisfying the invariant property
(1.2). While this property is formulated as a result of some practically important
applications, there are recent emerging NEPvs (1.1) that do not have this property,
such as the one in [43], and yet similar SCF iterations can be used. It would be
interesting to find out what now determines the local convergence rate. This will be
a future project to pursue.

Appendix A. Adjoint operators.
The adjoint operator L ˚ in (6.4) is derived as follows:

xY,L pZq y

“ 2\alpha xY, DpV˚q d pV T
˚K DiagpL´1 diagpV˚KZV

T
˚ qqV˚q y

p1q
“ 2\alpha xDpV˚q d Y, V T

˚K DiagpL´1 diagpV˚KZV
T

˚ qqV˚ y by xY,D d Xy “ xD d Y,Xy

p2q
“ 2\alpha xV˚KrDpV˚q d Y sV T

˚ , DiagpL´1 diagpV˚KZV
T

˚ qq y by xY,AXBy “ xA
T

Y B
T

, Xy

p3q
“ 2\alpha x diagpV˚KrDpV˚q d Y sV T

˚ q, L´1 diagpV˚KZV
T

˚ q y by xY,Diagpbqy “ xdiagpY q, by

p4q
“ 2\alpha xL´1 diagpV˚KrDpV˚q d Y sV T

˚ q, diagpV˚KZV
T

˚ q y by moving L to the left

p5q
“ 2\alpha xDiagpL´1 diagpV˚KrDpV˚q d Y sV T

˚ qq, V˚KZV
T

˚ y by xb, diagpY qy “ xDiagpbq, Y y.

Finally, moving the last V˚K and V˚ to the left we obtain the formula (6.4).
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The adjoint operator L ˚ in (6.11) is derived analogously. The first three steps
are exactly the same as above, and so we continue with

xY,L pZq y “ 2\beta xY, DpV˚q d pV H
˚K Diagp\Re pV ˚ d pV˚KZqqqV˚q y

“ 2\beta x diagpV˚KrDpV˚q d Y sV H
˚ q,\Re pV ˚ d pV˚KZqq y by identities (1)--(3)

“ 2\beta x\Re pdiagpV˚KrDpV˚q d Y sV H
˚ qq, V ˚ d pV˚KZq y by vector inner product

“ 2\beta x\Re pdiagpV˚KrDpV˚q d Y sV H
˚ qq d V˚, V˚KZ y by xa, b d cy “ xa d b, cy.

Finally, moving the last V˚K to the left, we obtain the formula (6.11).
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