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Abstract

As an extension of the traditional principal component analysis, the multi-view
canonical correlation analysis (MCCA) aims at reducing m high dimensional random
variables s; € R (i = 1,2, ..., m) by proper projection matrices X; € R"%*¢ so
that the m reduced ones y; = XiTsl- € R¢ have the “maximal correlation.”” Various
measures of the correlation for y; (i = 1,2, ..., m) in MCCA have been proposed.
One of the earliest criteria is the sum of all traces of pair-wise correlation matrices
between y; and y; subject to the orthogonality constraints on X;, i = 1,2,...,m.
The resulting problem is to maximize a homogeneous quadratic function over the
product of Stiefel manifolds and is referred to as the MAXBET problem. In this
paper, the problem is first reformulated as a coupled nonlinear eigenvalue problem
with eigenvector dependency (NEPv) and then solved by a novel self-consistent-field
(SCF) iteration. Global and local convergences of the SCF iteration are studied and
proven computational techniques in the standard eigenvalue problem are incorporated
to yield more practical implementations. Besides the preliminary numerical evalua-
tions on various types of synthetic problems, the efficiency of the SCF iteration is
also demonstrated in an application to multi-view feature extraction for unsupervised
learning.

Keywords MAXBET - Multi-view canonical correlation analysis - Multi-view
feature extraction - Nonlinear eigenvalue problem - Self-consistent-field iteration -

Stiefel manifold

Mathematics Subject Classification (2010) 90C20 - 90C06 - 65F10 - 65F15 - 65F35

Communicated by: Raymond H. Chan

P4 Lei-Hong Zhang
longzlh@suda.edu.cn

Extended author information available on the last page of the article.

Published online: 16 March 2022 €\ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-022-09929-3&domain=pdf
http://orcid.org/0000-0001-5349-8621
mailto: longzlh@suda.edu.cn

13 Page2of34 Adv Comput Math (2022) 48:13

1 Introduction

In this paper, we are concerned with the maximization of a homogeneous quadratic
function f(X) = tr(XTAX) over the Cartesian product of m Stiefel manifolds:

. T
max {f(X) = (X AX)} , (1

where A € R"*" is symmetric and tr(XTAX) is the trace of XTAX,

M = Q> x . x Qmxt
=X =[X1;...; Xl e R | XTX; = 1,, X; e RU*¢L,
1

> n; = n, and the Stiefel manifold
0"t = (X; e R"™ | X[ X; = I}.

Necessarily, £ < n; for all i. Here and in the rest of this paper, we will use notation
[X1;...; X,u] as a matrix/vector constructor that stacks up the blocks X; in order (as
in MATLAB programming).

Our motivation for such a maximization is from the MAXBET problem [13] aris-
ing from the applied multivariate statistical analysis and data mining. The MAXBET
problem is a generalization of the classical canonical correlation analysis (CCA) [10,
18, 20] for multi-view (also known as multi-set) situation, and the special case £ = 1
is referred to as the maximal correlation problem (MCP) in the literature. In particu-
lar, the multi-view of a given random variable s € R” here means that s can be split
into multiple sub-variables, i.e., s = [s1;,82;...; 8] with each s; € R"™ repre-
senting a group of features to describe a certain statistical character. The MAXBET
problem is to find projection matrices X; € R™**, one for each group of variables
si, to reduce the original n; dimensional random variable s; to an £-dimensional one
yi = Xl.Tsi € R? within this group. Suppose we now have p samples of s collected
in the data matrix S = [S1; S2;...; Su] € R"*P with each S; € R"*? and has
been centralized, i.e., S;1, = 0. Under the MAXBET criterion (see [6, 13, 32]), the
optimal projections for the sample data is formulated as the solution to the following
maximization problem

m
max Ztr(XiTS,-S]TXj). )
(X;e0mix) =

Set A;j = §; S} € R"*"/, and

Al A .. Ay
Axl Ap ... Ay

= 3)

Amt Am2 - Apm

Then the maximization problem (2) is the same as (1). Problem (2) has many applica-
tions. For example, it has been pointed out that MAXBET (2) coincides with another
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least-squares criterion “MAXNEAR” [13]. In [31], an equivalent problem is consid-
ered in order to rotate the m configuration matrices for p objects to maximize certain
agreement. Also, (2) is a generalization of the traditional multi-view CCA which
sums over i # j and under constraints Xl.TS,- Sl.T X; = I, for all i (see [13]). Addi-
tionally, (2) is used to model the multi-view spectral clustering problem [49] in data
mining. Many other applications can be found, for example, in [7, 9, 14, 17, 19, 44,
48].

MAXBET (1) has a very simple homogeneous quadratic objective function
f(X) = tr(XTAX), where the symmetric matrix A can be even assumed to be pos-
itive definite because f(X) and f(X) 4+ ¢ = tr(X (A + ﬁ]n)X ) over M have the
same maximizers. The difficulty, however, comes from the constraint X € M. In an
extreme case when £ = 1l andn; = 1 forall 1 <i < m, (1) reduces to an integer
programming which is NP-hard (see, e.g., [14]). Another special case of m = 1 is
equivalent to the classical eigenvalue problem of finding the eigenparis of A associ-
ated with the first £ largest eigenvalues, and many sophisticated modern eigensolvers
have been developed [15]. Motivated by the latter and a recent development on the
unbalanced procrustes problem [56], in this paper, we will establish a connection of
MAXBET to a particular nonlinear eigenvalue problem and develop efficient algo-
rithms to tackle MAXBET (1). The efficiency of the new methods is demonstrated
on various examples and on solving the model in the multi-view feature extraction
problem [45] in data mining.

The rest of this paper is organized as follows. In Section 2, we will review the stan-
dard first-order optimality condition for (1) and explore new necessary conditions.
Relying on these conditions, in Section 3, we will connect MAXBET to a coupled
nonlinear eigenvalue system where each block X; in X turns out to be an orthonormal
eigenbasis matrix of a nonlinear eigenvector-dependent eigenvalue problem (NEPv).
In Section 4, we will derive a simple self-consistent field (SCF) iteration based on
our established characterization, and discuss the convergence behavior of this basic
SCF iteration in Section 5. For a numerically efficient implementation of this SCF
iteration, we will further integrate a practical strategy to accelerate the convergence.
Numerical demonstrations of our proposed SCF iteration as well as its application to
the multi-view feature extraction for unsupervised learning are reported in Section 7.
Finally, concluding remarks are drawn in Section 8.

Notation R”>" (C™*") is the set of m x n real (complex) matrices and e and
! stand for the transpose and conjugate transpose of matrices/vectors, respectively.

I, = ey, ..., e,] € R"™"is the identity matrix, and 1,, € R" is the vector of all ones.
For B € R™*", "R(B) is the column subspace and its singular values are denoted by
oi(B) fori =1, ..., min(m, n) arranged in the nonincreasing order. For B € R"*",

sym(B) = (B + BT)/2; if B is also symmetric, then eig(B) = {)L,-(B)},’.’:1 denotes
the set of its eigenvalues (counted by multiplicities) arranged in the nonincreasing
order. B > 0 (> 0) means that B is symmetric and positive definite (semi-definite),
and B < 0(x 0)if —B > 0(>= 0). ||B]|2 and || B||r are the spectral and Frobenius
norm of matrix B, respectively. MATLAB-like notation is used to access the entries
of a matrix or vector: X(;.; k) to denote the submatrix of a matrix X, consisting of
the intersections of rows i to j and columns k to /, and when i : j is replaced by :,
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it means all rows, similarly for columns; v, refers the kth entry of a vector v and
v(i:j) 1s the subvector of v consisting of the ith to jth entries inclusive.

Given two X, Y € 0"*’, the canonical angles between two subspaces R(X) and
R(Y) of dimension € are given by

0<6;(R(X),R(Y)) := arccosag_H_l(XTY) < % forl <i <¢¥,

and let
O(R(X), R(Y)) = diag(01 (R(X), R(Y)), ..., 0c(R(X), R(Y))). (4)
For simplicity, we often write ® (X, Y) to mean ®(R(X), R(Y)).

2 Optimality conditions for MAXBET

We begin with the standard first- and second-order optimality conditions for MAX-
BET (1). These are the extension of [50] for £ = 1 to the general case { >
1.

In what follows, we will adopt the convention that any matrix R”*¢ will be implic-
itly partitioned into m blocks as X = [X1; X»;...; Xj] with X; € R%*E a5 the ith
block. Let A; be the ith block rows of A in (3):

Ai =[An, Aig, ..., Aj] € RM 5)
The tangent space of 0™ ** at X; € 0" ** is denoted by T, Q. It is known that (see,
e.g., [2])

(6)

Tx, QM *E = {Z- c Rnixt Zi = XiK + (Iy, _XiXiT)J }
i = i

VK = —KT e REt J ¢ Rrixt

Consequently, the tangent space Ty M at X € M = Q"*¢ x ... x O"** can be
given by

TxM={Z=1[Z1;Z2;...; Zn] e R"™" | Z; € Tx, O"*¢ i =1,2,...,m).
For any Z € R"**, the orthogonal projection onto Tx.M is given by
Zy— Xy -sym(Z{ X))
Mx(2) = : € Tx M. (7
Zn — X - sym(Z} X,)

The first-order optimality condition in Lemma 2.1 has been developed in [32,
Theorem 2.1] through the traditional Lagrangian multiplier theory [36]. Here we use
the manifold structure of M to give a simple proof.

Lemma 2.1 X € M is a KKT point X of MAXBET (1) if and only if there are m
symmetric £-by-£ matrices {A;};"_ | such that

AiXZXiA,', i:1,2,...,m. (8)
As aresult, f(X) =Y 7", tr(A)).
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Proof Note that the gradient g(X) of f : M — Rat X € M is given by
X1 ~sym(X1TA1X)
g(X) =Mx(Vf(X)) =2AX -2 : . )
Xm - sym(X;AmX)
If X € MisaKKT point, then g(X) = Oyielding (8) with A; = sym(XlTAl-X). Sup-
pose (8) with symmetric A;. Pre-multiply (8) by XlT to get A; = X,.TAZ-X. Since A;
is symmetric, A; = sym(4A;) = sym(XiTAiX) and hence A; X = X; sym(Xl.TAiX),
implying g(X) = 0, i.e., X is a KKT point. Finally, f(X) = Y /L, tr(X;rAiX) =
Z;il tr(A;). O]

Corollary 2.1 Let X be a KKT point. Then Xl.TAiX and Xl.TGi(X) forl <i <m
are symmetric, where

A =[Ai1, .., Aii=1), 0, Aii41), - - » Aim] € R, (10a)
Gi(X) =Y AijX, =A; X eRixt 1 <i<m. (10b)

Proof XI.TA,-X is symmetric because by (8) Xl.TA,-X = A; which is symmetric.
Expanding the left-hand side of (8) yields

m
AiXi+ Y AXj=XiA;, i=12,....m (1)

J#
Hence, XiTGi(X) =A; — XiTAiiXi e R** is symmetric. O

The result in Lemma 2.2 is a consequence of the second-order optimality condition
(see, e.g., [36, 47]) on the manifold M.

Lemma 2.2 Let X € M be any local maximizer of (1). Then

r(ZTAZ) — Ztr(ZiTZiAi) <0 forZ e TxM, (12)
i=1

where A; = XiTAinori =1,2,...,m. If X € M s a KKT point and (12) holds
strictly for any nonzero Z € Tx M, then X is a strict local maximizer.

Proof We first compute the Hessian operator of f : M — R acting on a tangent
vector Z:
Hess f(X)[Z] = TTx (Dg(X)[Z]), (13a)

where g(X) is as in (9) and Dg(X)[Z] is the directional derivative of g(X) along Z.
We have

| Z1A X1 sym(XTA1Z — XTZ1Ay)
EHessf(X)[Z] =AZ— : - ; . (13b)
ZmAm X sym(XLAnZ — XL Z )
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Now, by X['Z; + ZI'X; = 0 forany Z; € Tx,0"**, it holds tr(Z] X;S) = 0 for any
symmetric matrix S € Rt and hence

tr (ZiTX[ sym(XiTAiZ — XiTZ[Ai)) =0 forl<i<m.

The second-order necessary optimality condition tr(ZTHess f(X)[Z]) < O for any
Z € Tx M (see, e.g., [47]) together with (13) leads to (12). Furthermore, X is a strict
local maximizer if tr(ZTHess f(X)[Z]) < O for any nonzero Z € TxM, ie., (12)
holds strictly. O

Corollary 2.2 If X € M be a local maximizer of (1), then tr(JiTA,-iJ,-) < tr(A;) for
any J; € Q"¢ sych that Jl.TX,- = 0. Ifalso £ > 2, then tr(Xl.TG,-(X)) > 0.

Proof Note that any such J; € Ty, 0" *¢ and thus, Z € R"™¢ with Z ; = 0for all
j #iand Z; = J; is in Ty M. Plug it into (12) to get tr(JiTAiiJi) < tr(A;).
Suppose £ > 2. According to (6), construct Z € TxM by setting Z; = 0 for
j #iand Z; = X;K for some skew-symmetric matrix K € R®* to be specified.
Plug it into (12) to get (keep in mind that X l.TGi (X) is symmetric)
tr(KTXTA; X, K) < w(KTKA;)

= (K"KX] Aii X)) + w(KTK X[ G (X))

= (KX A; X, K) + u(K'X] G (X)K),
yielding tr(K TXiTG,-(X)K ) > 0. We now specify K as follows. Let the spectral
decomposition XI.TG,-(X) = U diag(uy, - . ., /M)UT. Given any fixed (j, k) with 1 <

J<k=<{fand& #0,let K = Kj; = éU(ejeZ — eke?)UT. It is skew-symmetric,
and thus

0 < (K} X! Gi(X)Kjx) = & (i + 1))

Summing all of them up over 1 < j < k < ¢, we have

4
0<& Y (j+m)=8U-1)Y
1

I<j<k<t i=

= £t~ D - u(X] Gi(X)),
yielding tr(X] G;(X)) > 0. O
Besides these standard optimality conditions for a local maximizer, we will make

use of the special structure of MAXBET (1) to establish the following necessary
condition for a global maximizer.

Theorem 1 Let Xope = [Xopt,15---; Xoptm] € M be a global maximizer of
MAXBET (1). Then xgpt :Gi(Xop) = 0fori=1,2,....,m.
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Proof For any fixed 1 < i < m, consider Y € M with Y; = Xq ; for j # i and
Yi = Xop,i O, where Q € 0>t is arbitrary. Since f(Xqp) — f(¥Y) > O for any
0 € 0O, we have

0 < f(Xopt) - f(Y)

m m
= Z U‘(Xgpt,jAijOpt,k)_ Z tr(YjTAjkYk)
j=lk=1 j=Lk=1

m
(X0 Aii Xopt) +2 Y (X0 Aij Xopt,))
j=1, j#i

m
—tr(QTXY A Xopti @) =2 Y r(QTXT Al Xopt )

j=1. j#i
= 2[tr(X 2 Gi Xopt)) — tr(QT X3, Gi (Xopt)) ],
which implies that
(X g, :Gi (Xop) = ng;c[tr(QTXoTpt,iGi(xopo). (14)
€ Xt
Now applying [55, Lemma 3], we conclude Xgpt ;Gi(Xopt) = 0. O

3 Connect to a coupled nonlinear eigenvalue system

To connect the solution of MAXBET (1) with a nonlinear eigenvalue problem, we
rewrite the KKT condition (11) as

[Ai + GiXOX])Xi = XiAi, i=1,2,....m

where G;(X) is defined in (10). This implies that at a KKT point X, each X; is an
orthonormal eigenbasis matrix of A;; + G; (X)X lT However, the matrix G; (X)X IT €
R™ ™ is not necessarily symmetric, even at KKT points. A further step is then to
symmetrize it by considering the following matrices:

Ei{(X):=A; + G,‘(X)Xl-T +X:G:X)T, i=1,2,....,m, (15)

which are symmetric and thus have real eigensystems at any given X.
The following theorem connects MAXBET with a coupled system of NEPv (16).

Theorem 2 X € M is a KKT point (i.e., satisfying the system (8)) if and only if
XTGi(X) e R"*"i for1 <i < m are symmetric, and
1
E,‘(X)X,‘ =X,'\I»’l‘, i = 1,2,...,m, (16)
for some V; € RO, As a result,

m

fXO =)+ > u(XTAjpX0, Yi=1.2...m (17)
JHikA
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Proof Let X be a KKT point. Then A; X = X; A; by (8) and XiTGi (X) is symmetric
by Corollary 2.1. We then have

E(0OX; = (A + GiOOX] + XiGi00T) Xi = Xi(Ai + Gi0OTX) = Xp ¥,

where ¥; = A; + G; (X)TX,-. On the other hand, if E;(X)X; = X;V¥; for a sym-
metric V;, then ¥; = Xl.TEi(X)Xi and thus symmetric. Also, A; X = X;(¥; —
Gi(X)TX;) = X;A;, where A; = ¥; — G;(X)TX; is symmetric because both W;
and G;(X)TX; are symmetric.

Lastly, by the definition of E;(X) in (15) we have

m m

> uXTAjuX) + (XA XD +2 Y w(XTA;X)
J#LkE j=1, j#i

m

> w(XTApXp) + (X E;(X)X))
J#L kD

m

Y w(X[ARX0 + (), (b (16))
J#LkFE

F(X)

as expected. U
3.1 Eigenspaces associated with a local maximizer

When X is a local maximizer, by Theorem 2, it satisfies (16), a coupled system of m
nonlinear eigenvalue problems. Each E; (X) depends on all eigenvector matrices X ;
for 1 < j < m, and X; is an orthonormal eigenbasis matrix of E; (X) associated with
£ of its eigenvalues in eig(\¥;). Let

eig(Wi) = {Ay, ((Ei(X)) = --- = A, (Ei(X))}, (18)

where | <m; 1 <--- <mi¢ <n.

Theorem 3 Suppose X € M is a local maximizer of (1) and 2 < € < n. Then
A (Ei (X)) = 21 (Wi) = Ae(Ei(X)).

Proof Suppose, to the contrary, that Az, | (E; (X)) < A¢(E; (X)). Then we can choose

an orthonormal eigenbasis matrix J; € Q"> associated with the first £ largest
eigenvalues of E;(X). This implies that Jl.TX i = 0and

tr(JTE; (X)) = w(JT A i) > r(XTEi(X) X))

= tr(\W;)

= (X[ Ay X;) +2 ) (X[ Ay X)) (19)
J#i

= tr(A) + > (X[ A X)). (20)

J#
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On the other hand, by Corollary 2.2, we know that tr(JiTAil-Ji) < tr(4;),

which leads to tr(XlTGi X)) = Zj#i tr(Xl.TAij X;j) < 0. This con-
tradicts tr(X lT G;(X)) = 0 again by Corollary 2.2, and the conclusion
follows. O

3.2 Eigenspaces associated with a global maximizer

To further explore the eignspaces R(X;) of E;(X) associated with a global maxi-
mizer, we will use the following well-known von Neumann’s trace inequality [43]
(see also [40]).

Lemma 3.1 [43] For C1, C; € R™*" we have
n
r(C{C2) < Y 0i(C1ai (Ca).
i=1

Theorem 4 Let Xope = [Xopt,15 ... Xoptm] € M be a global maximizer of
MAXBET (1). Then, each Xop,; is an orthonormal eigenbasis matrix of E;(Xopt)
associated with its £ largest eigenvalues.

Proof Suppose there is an i (1 < i < m) for which the statement is not true. Then
there exists a J; € Q" *¢ such that

tr(Wopt,i) = tr(X L Ei (Xopt) Xopt.i) < tr(JEi (Xopt) Ji). (21)

opt,i

Now, let JTG; (Xop) = UZVT be the SVD, and set Q = UVT € O“*¢. Consider
Y e MwithY; = X forall j #ibutY¥; = J; Q. We have by (17)

fFO) = f(X) = (@M IT A J; Q) +2 ) w(QT I Ay Xopt,j) — tr(Wopt.i)

J#i
> w(JTAiJ) +2) (@I Ay Xop ) (22)
J#i
— w(J; Ei (Xop0) ;) (by (21))
= Z[tr(QTJiT Z AijXopt,j) — tr(JiT Z AinOPt,jX:)Fpt,i ‘Ii):l
Ji J#L
= 2[ (@I Gi(KXop)) — (I D Aij Xopi,j X oy )]
J#i
> 0, (23)
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where the last inequality holds because by Lemma 3.1

tr(‘ITX:Al/XOPtIxoptl ) ZU/(JTZA!/X0P11)O-/(X0ptl i)

J#i j=1 J#i
= ZGJ(J ZAz]Xopt])
J#i

Z 0 (JGi(Xopt)
j=1
= w(Q" ] 4ii i Q)
where we have used 0 < aj(Jl,TX,‘) < ||Jill2l| Xill2 = 1 forall j. As a consequence of

(23), we have f(Y) > f(Xopt), a contradiction, because Xy is a global maximizer,
and the proof is complete. O

Both Theorems 1 and 4 establish necessary conditions for a global maximizer.
Unfortunately, the converse of Theorem 4 may not be true; that is, X may not be a
global maximizer even if X is a KKT point satisfying that each X; is an orthonormal
eigenbasis matrix of E;(X) associated with its £ largest eigenvalues. The following
is such an example that numerically substantiates this statement.

Example I Considerm =2, £ =2, n =ny =3, and
(201

002
122

c R6X6.

— OO ==
O = = = =N

1
1
1
0
0
1

NN =
N
[N

Using the Riemannian trust-region (RTR) method! [1, 2], we found two approxi-
mated KKT points

[ —0.9587 0.2769 ] [ —0.9415 0.3334 ]
—0.1173 —-0.5924 —0.1586 —0.5691
X — —0.2590 —0.7566 and X — -0.2974 —-0.7517
—0.0653 —0.9263 —0.5916 0.4355
—0.7841 0.2776 —0.3557 —0.8962
| —0.6171 —0.2547 | | —0.7236 0.0845 |

for which [|g(X)[l2 ~ 3.7 x 10710, ||g(X)[l2 ~ 9.7 x 1071, and
f(X) =15.1940 > 134575 = f(X),

showing at least that Xi is not a global maximizer. Numerically, it has been checked
that for either ¥ € {X, X }, each Y; is an orthonormal eigenbasis matrix of E;(Y)

IRTR is available at www.manopt.org.
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associated with its £ largest eigenvalues. Also, we sampled 10’ random tangent “vec-
tors” at X and X and found that the second-order sufficient inequality condition
(12) strictly hold, indicating that both X and X are likely strictly local maxima. This
numerical observation suggests that, unlike the traditional eigenvalue problem (i.e.,
m = 1), MAXBET (1) (with m > 1) may admit local but non-global maximizers.

4 An SCF iteration for MAXBET

We would like to mention that the SCF iteration is commonly used to solve NEPv [8]
from the Kohn—Sham density functional theory in electronic structure calculations
[33, 39]. Lately, it has been attracting a great deal of attention in data science (e.g.,
[4, 8, 30, 46, 52, 53, 55, 56]).

Our eigen-based method for MAXBET (1) is an inner-outer iteration scheme
that alternatingly solves the coupled system (16) of m nonlinear eigenvalue prob-
lems in a self-consistent manner. Specifically, during the kth outer-loop iteration an

approximate solution X®) = [X ik); X ,(,f )] is updated one block at a time in the
Gauss-Seidel style inner loop to produce m intermediate approximations

x*+m = [X%kH); Xl.(kH); Xfi)]; X,(,f)] i=1,2,...,m,

the last one of which is the next approximation X **1_ The updating of each block is
based on the necessary conditions in Theorem 4 for a global maximizer. Algorithm 1
outlines the main algorithmic idea.

Remark 1 There are a few comments about Algorithm 1 in order.

Algorithm 1 Basic SCF iteration for MAXBET (1).

Require: symmetric A € R"*", X ¢ M;
Ensure: a maximizer of MAXBET (1).

1: for k =1, ..., until convergence do
2: fori=1,...,mdo
3: Compute partial eigen-decomposition:

El_(X(kJr%));(‘(kH) _ S(‘i(kJrl)ai(kJrl), 5(\i(k+1> c Qi

i

i—1
associated with the ¢ largest eigenvalues of E; (X ¥+5));

4: Compute SVD: ()?gk+l))TGi(X(k+%)) = U3, Vl.T and set Xl.(k'H) =
X\}k+1)Ui Vl‘T;
5: end for

6: end forreturn the last X,
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1. Both }A(i(kH) and Xl.(kH) at lines 3 and 4 maximize tr (XZTE, (X“JF%))X[) over

X; € 0" *¢ Hence,
tr ((X(k+1))TE (X(k-'r ))5(\(](4‘1)) tr ((X(k+1))TE (X(k+ ))X(k+1))
>t ((XTE (x ) x ). (24)

When the inequality in (24) is strict, later in Theorem 6 we will prove that
fX (k55 )) > f(X (k+ 5 )) i.e., the objective function value in the ith inner
step strictly increases. An implication from line 4 is (X (k+]))TG (X (k+*)) =
Vi ¥ VlT > 0, and thus

¢
i-1 i-1
tr ((X(k+1)) G (X(k+ ))) ZUJ ((X;k+1))TGi(X(k+ m ))) . (25)
j=1
Moreover, the following relation holds

E; (X(k-‘r*))x(kJrl) X(k+1)\1_,(k+]) \Ij(k+l) (U; VT)T\I—’(k+1)(U VT)
(26)
2. As there are infinitely many choices of orthonormal eigenbasis matrix (at line 3)
associated with the first £ largest eigenvalues of E; (X k5 )) we are particu-
larly interested in the one that maximizes the objective function f(X) over X;
while with X ; = X(.k+1) (j <i)and X, = X(.k) (j > i) fixed. Note

FX) =tu(XTA; X)) +2u(X]G; X 5D) ¢ e (27)

for some constant c;. Given the subspace R(Xl.(kH)), any other orthonormal
eigenbasis matrix takes the form X; = X l.(kH)P for some P € Q**. We would
like to maximize the right-hand side of (27) over such X;, which leads to P =
U; ViT as in line 4.

3. For a stopping criterion at line 1, we can use the relative difference of the two
successive objective function values and/or the scaled norm of the gradient:

| fXED) — FXD) | ls X _
| F(XW) | AL =
The scaling factor ||A||; is introduced in the latter because a global maximizer

Xopt is invariant under arbitrary positive scaling on A, but the gradient is depen-
dent on such scaling. The ¢;-matrix norm is used for numerical convenience.

< &scf, and/or (28)

We commented before that X l.(kH) at line 3 as an orthonormal eigenbasis matrix

is not unique even if the eigenvalue gap

k
£ = a (B (X 5)) = hgpn (B (X F5)) > 0. (29)
Nonetheless, the next proposition shows that X l.(kﬂ)
full rank assumption.

is still unique under (29) and a
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Proposition 5 In Algorithm 1, if (29) holds and if rank (X *)TG, (x®+50))) =
£, then Xi(kJr ) at line 4 is uniquely determined.

Proof Under (29), it is known that the eigenspace corresponding to the ¢ largest
eigenvalues of E;(X (et 55 )) is unique [41, p. 244], and thus any two orthonormal
eigenbases matrices X X% and X i(kﬂ) for the eigenspace are related by X l.(k'H) =

Xl.(kH)Q for some Q € OY*¢. In what follows, we will show that with if“l)

instead of 3(\[(1{“) Xl.(kH)

, the resulting at the end of line 4 is independent of Q.

For convenience, we simplify notation by denoting X i = X l.(kH), X i = X i(kH) and

G; = Gi(X(kJr%)). Now Xl.(kH) = )?,-P, where P is the orthogonal polar fac-
tor of %iTGi, which under rank()?iTG,') = { is orthogonal and unique [27], and can
be written as P = )~(TG (GT§ )NKTG )_1/2 Thus with )Nfl, the output of line 4 is
x D = X,XTG; (GTX XTGi)~ 2 = X;XTG:(GTX;XTG;)~'72, independent of
Q. O

Remark 2 1In practice, the generic condition (29) will be always true. Nevertheless,
we point out that this generic condition is not a must for the execution of Algorithm 1.

s(k) )?(k-&-l)

Indeed, when = 0, we can choose as an arbitrary orthonormal eigenbasis

matrix associated with the ¢ largest eigenvalues of E; (X k+5 )) and we will see in

Theorem 7 that a particular limit point of {X®} can still be a KKT point satisfying
the necessary global optimality conditions in Theorems 1 and 4.

5 Convergence analysis of the SCF iteration

We next establish some convergence results for Algorithm 1 in order to better under-
stand the behavior of this basic SCF iteration in Algorithm 1 so that a more practical
algorithm can be designed in the next section.

Lemma 5.1 [23, 24, 28] Let U € Q"™ such that R(U)is an eigenspace of a
symmetric matrix H € R™" associated with its { largest eigenvalues A ;(H),
j=1,2,....4 andlet V e Q" If hyy1(H) < Ag(H), then

L () =2 (VRHY)
D=1 (MJ(H) — ](H) ) < |Isin®(V, U)|}}
< Z§'=1 (2 (H) = 2;(VEHV))

B Ae(H) — her1(H)

Theorem 6 Let {X®)} be the sequence from Algorithm 1. Then

1. The sequence { f (X *)yy converges monotonically, and

m
FEED) = px®y = 3 el sinox (VxR G0
i=1
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where Ei(k) is defined in (29). Therefore for any 1 < i < m, ifl}(rggféi(k) > 0
then lim sin@(Xi(k), X§k+l)) =0
k—o00 )
2. If F(X®) = FXEDY and rank (XETDTG (X)) = € for i =
1,...,m, then X® = X* D qnd X js g KKT point satisfying the necessary
global optimality conditions in Theorems I and 4.

Proof We have
k+1 =1 k k+1

=

M~

i—1
o; ((X,.("“))TG,-(X<1<+7>)) o) ((X}"))Txfk“)) (by Lemma 3.1)
1

.
Il

=

-

0j ((X,-(k+1))TG,-(X(k+%))) (since 0 < o <(X(k))TX(k+1)> <1
1

J
i—1
= (TG E)) . by @s) 31
Noticing that X *k+5) differs from X ¢+ ) only in their ith blocks, we get
PO — pxEETD)
= o (T XY 20 (TG x D) )
— (TE (x*T)x )
> tr ((X}"*”)TAZ-,-XI.("“)) Fou ((X,?k*”)TG,»(X<k+%>)(xfk>)Txfk+”)
—u (OTEEEEHXP) oy aD)
= o (ETEEEXE) e (TR 62
>0, (by (24)) (33)
where the last inequality is strict if (24) holds strictly. Hence
FEED) = px®HD) = pxE) = s pxEE) = px®). 34

Also, f(X**1)y > £(X%) if one of the inequalities in (34) holds strictly. Since
X l.(kH) is an orthonormal eigenbasis matrix of E; (X (et 55 )) associated with its first

£ largest eigenvalues while X l( ) is an approximation, by Lemma 5.1 we get

k . k k+1
g9 sinox [, X V)|2

~

< Z (s Bi (X500 = oy (X ) TE (x50 X))

k+1 k+1 k =1 k
((X( B (T X D) — e () TE () x ).
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Therefore, together with (32), we have?
i i-1 k . k k+1
FEFD) — Fx ) = 0 sinex P, x|,

and (30) follows by summing it up from i = 1 to m.
For item (b), by assumption, we conclude from (34) that

f(X(ker)) - f(x(k+ )

foralli =1,2,..., m, which implies that (31) must become an equality. That is, for
1<i<m,

¢ .
<(X(k+1))TG (X(k+ ))(X(k))TX(k-H)) ZUJ' <(Xi(k+l))TGi(X(k+%))>.
1
- 35)

Since (X;k“))TGi (X(k+%)) > 0, its spectral decomposition takes the form usuT
where U € Ot and ¥ = diag(oy. ..., 0y) with 0; = oj((X(kH))TG (X k+TD),
We know all o; > 0 because rank ((X(kH))TG (X(H*))) = (. Denote by Q =
UT(X(k))TX(k+1)U Equation (35) leads to

j=1

This shows that Q = I, by the fact that X(k) X(k+l) 0" and U € O**¢ and
thus 1 < Q(j.j) < 1. Hence XX = X* D for 1 <i <m,ie, X® = x*+D,

For the claim that X® is a KKT point satisfying the necessary conditions in Theo-
rems 1 and 4, we note that X % D= x® = x0+D for | < i < m.Because X(k+1)
is an orthonormal eigenbasis matrix associated with the first £ largest elgenvalues
of E;(x*+5)) = E;(Xx®) and (X{")TGi(x®) = (xF)TG(x&+50) > o,
Theorem 2 guarantees that X®) is a KKT point, which also fulfills the necessary
global optimality conditions in Theorems of 1 and 4. O

Remark 3 Tn the proof of Theorem 6, we find that f(X* 1)) — f(X*+5) > 0
as long as )?i(kﬂ)
(33) holds true, and as a consequence the monotonic convergence of { f (X (k))} can
be ensured. This opens up the door to using modern iterative eigensolvers [3, 29, 37].
In our numerical results, we use LOBPCG? for the task at line 3 of Algorithm 1, in

which the (j + 1)st iterate Ui(j + (as an approximation of X l.(kH)) of LOBPCG [22]

at line 3 of Algorithm 1 is a good enough approximation such that

2This relation also holds when Si(k> = 0 because of (33).
3https://cn.mathworks.com/matlabcentral/fileexchange/48-lobpcg-m.
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for an approximate eigenbasis matrix corresponding to the first £ largest eigenvalues
of E;(X%+5)Y is obtained by solving

j+1 ﬂ
Ui(J ) ¢ ~ argmax tr(U,»TE,'(X(k"’ =NU) (36)
UieR (10, UV, PRDY), Urenri*t

where P € R™*" is a preconditioner, and RV) = E; (X(H*))X(/) )?é”@,
denotes the residual corresponding to the Ritz eigenpair (X X\ , ©;). With initially

Ul.(o) = Xl.(k>, (24) is obviously true, and thus the monotonic convergence of
{ £(X©)} follows.

For analyzing the convergence of {X®}, the following lemma [16, Lemma 2.7]
(see also [34, Lemma 4.10]) provides a sufficient condition that will be used.

Lemma 5.2 Assume that X is an isolated accumulation point of a sequence {X®©}
such that, for every subsequence {X & exc converging to X, there is an infinite sub-
set K C K such that the sequence {1 x® — xk+D lF}cic converges to O. Then the

whole sequence {X (k)},fio converges to X.

Note that X being an isolated accumulation point does not exclude the existence of
finitely many or even infinitely many accumulation points. If there are only finitely
many accumulation points, then each must be isolated.

Theorem 7 Let {X(k)} be the sequence from Algorithm 1, and X = [X1;...; Xpn] €
M be an accumulation point of {X®}. Suppose that

& = r(Ei(X)) = he41(Ei(X)) > 0, (37)

and rank (XITAZX) =Lfori =1,2,...,m, where Ai is defined by (10a).

1. X is a KKT point satisfying the necessary global optimality conditions in
Theorems 1 and 4;
2. If X is an isolated accumulation point {X®}, then limy_, oo X®© = X.

Proof For item (a), suppose {X " exc is the subsequence that converges to X, and
let {X(“}ke,g be a subsequence of {X®},cx so that {X(k“)}ke,g converges to Z,

ie., K C K and

lim x® =x, lim _x*tD =7
k—o00, kelC k— 00, kelC

We have f(X) = f(Z). Now, fori = 1 in (26), Algorithm 1 says

EI(X(k))Xik‘f‘l) — X§k+l)\p§k+l) (38)
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and in the limit, we have E{(X)Z; = Z;WV; and, because of & > 0, Z; is an
orthonormal eigenbasis matrix of E;(X) associated with its £ largest eigenvalues.
Moreover, for any i,

lim fX*F0) = lim fXEHT) = £,
k— 00 k— o0
and by (33), we have

. (R N T (S N (S S DA ON (S N (AN
lim [tr((Xi YTE (X )X ) o ((xl. YT E (X )X )] 0, (39)
which for i = 1 leads to tr (ZlTEl (X)Zl) =1tr (XlTEl (X)Xl). This, together with
&1 > 0, ensures that X is an orthonormal eigenbasis matrix of E;(X) associated
with its £ largest eigenvalues as well, and hence X1 = Z;Q for some Q; € Ofx¢,

Similarly to the argument in concluding X®) = X*+1 in the proof of Theorem 6(b),
we can use rank (X G (X)) = rank (Z] G (X)) = £ to prove X| = Z,. Applying

the same argument for i = 2 with limy_, o, ke x k) X, we can obtain Z, =
X». Continue this procedure until i = m to get Z = X and (16). As XiTG,-(X) >0
foralli =1,2,...,m, by Theorem 2 we conclude that X is a KKT point satisfying
the necessary conditions for the global maximizer established in Theorems 1 and 4.
For item (b), since we have shown that any convergent subsequence {X )} weic of
{X®} e satisfies limy_ o et | X® — Xx*+D g = 0, Lemma 5.2 guarantees that

the whole sequence {X®} converges to X. O

Let X be an accumulation point of {X &)1 In what follows, we will establish
a bound on || sin G)(Xi(k), Xi)||lr to reveal how the convergence of the ith block
X l.(k) depends on other blocks. The bound in Theorem 8 below is by no means

tightest for || sin@(ng), X;)|lr but it is informative enough to guide practical
eigen-computations at line 3 of Algorithm 1. Let

co = [|All2 + v/m max [ A;]l2.
1<i<m

Lemma 5.3 Let X be a KKT point of MAXBET (1). Then for any Y € M, we have
| fO) = FX)| < collX = YIIE. (40)

Proof Denoteby R=Y — X =[Ry;...; R;]. We have

f(Y)— f(X) =t(RTAR) + 2tr(RTAX) = tr(RTAR) + 2 Z tr(RTA; X). (41)
i=1

Since X is a KKT point, by Lemma 2.1 we have A;X = X;A; and thus,
tr(Rl.TAiX) = tr(Rl.TX,-AI-). Also, from the symmetry of A; and

L=Y"Y, =X, +R)"(X; + R) =L + X/ R + R/ X; + R'R;,
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we know that tr(RiTXiAi) =— tr(RiTRiAl-)/2. With this, (41) leads to

m

fOY) = f(X) =tu(RTAR) = ) " tr(RTR; A)).
i=1
The conclusion (40) hence follows by further noticing that (see Lemma 3.1)

m
| r(RTAR) | <Al IRIE. | e(RTR:ADI <A 2 IRl D IR IE=IIRIE.
i=1

and [[Aill2 = X[ AiX |2 < V/ml Ail2. O
Theorem 8 Under the assumptions of Theorem 7(b), for sufficiently large k, it holds
that fori =1,2,...,m
. k+1
Isin© (X", Xp)lg
4114; uz(\/n?uxﬁxw Ity S 1% - X124 8, ||X,-fx;“n%)
<
— él 9

(42)

and
(k)

i . k k+1
1X9 = XIE = 3= sin@ (X, x{HD)2, (43)

where Ai is defined by (10a), &; and Si(k) are given by (37) and (29), respectively.

Proof The proof for (42) relies on a matrix perturbation result and follows closely to
that of [8, Theorem 4.1]. For any 1 < i < m, decompose X(k+l) XiKi+ Xi1Li,
where X; | € Q" *xmi=0 guch that [X;, Xi1] € (O)"IX”!, and K; € RXE L, €
R®i=Ox¢ Then ||L;|[g = || sin ®(X* ™", X;)|lr. By calculations, for any Y € M,
we have

1Ei(X) — Ei(Mllr = I1Xi = Yillg- (IGi(X)l2+11Gi (YV)l2) + 21Gi (X) =G (Y)|[p
I1Xi = Yille - (A X 12 + 1A Y 12) + 21 Ai (X = V)l
2J/mllXi = Yille - 1Aill2 + 2 Aill2 - 1 X = Yllg

201 Ai 2 (Vm| Xi = Yille + X = Ylg).

Let AE; = E;(X*+50) — E;(X). Setting ¥ = X**5) gives

IAN A TA

IAE; |IF = | E/(X %) — E;(X) ||

by k k+1 k
<2 4ill2 (ﬁuxi—Xf Mty 16— XS 3 1x— X >||%). (44)

Since E; (X)X; = X;W; for the limit X and X “™" satisfies the first equation in (26),
we get

E: (X)Xi(k“) X(k+1)\ll(k+1) [E (X) — E (X(k+ = ))]X"‘*”
Pre-multiplying both sides of this equation by X T ;1> We get

Wi L — LY = —xT AE XD, (45)
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where V; | = X 1 Ei(X)X; 1 whose eigenvalues are given by eig(E; (X)) \ eig(¥;).
Observe that L; in (45) is a solution to Sylvester (45), and by [12, (5.1)], we find

k+1
X7 AE X D g _ 20AE e
A =%

. k+1
ILillr = Isin®(X* D x|k <

where S( ) = |[A¢ (\If(kH)) A1(W;,1)]l is the gap between the eigenvalues of \IJ(kH)
and W; |, which satisfies Sl.( ) > §;/2 for sufficiently large k. Consequently, (42)
follows according to (44).
For (43), by applying Lemma 5.3 with ¥ = X® and (30), we get

m

Y ePsinox{? xR = rx®) — Fx®)

i=1

< fOO = fXD) < collx — XV,

as was to be shown. O]

We observe from (42) that the convergence of the ith block X l.(k) depends on (i)
||Ai||2, (ii) the eigenvalue gap &;, and (iii) the convergence of other blocks X;k).

For (i), it reflects the fact that when A = diag(A1y1, ..., Amm) (.e., A = 0), the
convergence is achieved in one outer iteration step. The factor &; in (ii) says that
the larger &; is, the faster the convergence will be. For (iii), it implies that the slow
convergence of X ;.k) for j # i canspread to X i(k), and therefore, if | A jll2 is relatively
large, we need to set a reasonably high accuracy requirement for the eigencompuation
for X+

Note that the right-hand side of (43) can be computed after the (k + 1)st outer
iteration step, providing a lower bound for the uncomputable error | X® — X ||E.

6 Subspace accelerated SCF

For a practical implementation, we accelerate the SCF iteration (Algorithm 1) by a
subspace acceleration technique. Similarly to [56], we collect the information from
the previous 7 (f < ¢ and ¢ > 0) outer-loop iterates and X *1) immediately after
the inner loop to form a subspace C for acceleration. Specifically, immediately after
line 5 but before line 6 of Algorithm 1, define

C = x*=1+D  x® xkihy g grx+De,
k—t+1 k k+1
Ci =[x x® x

i
and let
Ci=R({C;) and C=C1D...®Cp.
We then refine the current approximation X 1) by maximizing f(X) over X € M
subject to R(X;) € C; for all i:

x D argmax f(X). (46)
XeM, R(X;)<C; Vi
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To solve (46), we first compute orthonormal basis matrix QEkH) e Q"> of C;,

and represent any X; € Q%> such that R(X;) € C; by Q§k+l)‘/,- for V; € Qi
We have

m m

FOO =33 (VI T4;08 V) = w(vTAV) = f(v)

i=1 j=1

where A = [/i,'j] e R™" with Alj = (Q(kH))TAQ(kH) R and r = 30 7.
The optimal V = [Vy; ...; V},;] can be found by solvmg

max f(V).
{VieQri*ty “mn

Problem (47) is still a MAXBET problem in the form of (1) but of a much smaller
size, as r; is generally far less than n;. Because of that, we can use the Rieman-
nian trust-region method [2, 51] without inflicting much computational burden. Once
optimal {V;} of (47) is found, we construct a new refined iterate X *k+1) with block
X&) = g® Dy o —

Equipped with this subspace acceleration, we propose our practical version of the
SCF iteration (named as Scf_Maxbet) for (1) as in Algorithm 2.

Algorithm 2 Scf _Maxbet: subspace accelerated SCF for MAXBET (1).

Require: symmetric A € R™", X© ¢ M, and ¢ > 0;
Ensure: a maximizer of MAXBET (1).
1: SetC =[]andt =0.

2: for k =1, ..., until convergence do
3: fori=1,...,mdo
4: Compute (by e.g., LOBPCG) an approximate orthonormal eigenbasis

matrix X; X %1 associated with the € largest eigenvalues of E; (X k5 )) accurate
enough so that

tr ((X(k+1))TE (X(k-i- >)§<k+1>) - tr <(X(k))TE (x K+ ,,,‘))X(ia)

5; Compute SVD: (X(H]))TG (x k5 )) and set X(kH) X(H])U v
6: end for

7: if r > 1 then

8: Set C = [C, X**D] and solve (47) to get a refined X **+1;

9: Replace the last £ columns of C by the refined X **1;
10: end if
11: if # = ¢ then delete the first £ columns of C else r = ¢ + 1 end if;

12: end forreturn the last X®.
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7 Numerical experiments

In this section, we present numerical experiments on synthetic problems and
real-world applications to evaluate the performance of the proposed algorithm
Scf Maxbet and compare it with the basic SCF (Algorithm 1) and the Riemannian
trust-region method (RTR) [2, 51], a generic solver for optimization on a general Rie-
mannian manifold. All tests were conducted by MATLAB (R2016a) on a PC under
Windows 7 (64bit) system with Intel(R) Core(TM) i7-4510U CPU (2.6 GHz) and 4
GB memory.

To manage the cost for partial eigen-decompositions in Algorithm 2, we invoke
LOBPCG (see [22]) at line 4 to compute X ,.(kH) if n; > 500, otherwise we simply call
the MATLAB built-in function eig. We terminate the basic SCF and the accelerated
SCF iteration Scf_Maxbet when one of

|AX® — x®A® |,

-6
res = < gres = 1077,
1Al

| FXEDy — p(x @y s
Fx@y = =10

is satisfied or the number of outer-loop iterations reaches 3000.

7.1 Evaluation on synthetic problems

We first report numerical results of the basic SCF, Scf Maxbet and RTR for solv-
ing (1) on synthetic correlation matrices A. For RTR, we note that it stops when the
Frobenius norm of the Riemannian gradient is less than a tolerance &,. To be consis-
tent with our stopping criteria, we choose a relaxed tolerance ey = 5 x 107> for RTR
and also set the maximum number of RTR iterations to 3000; all other parameters in
RTR are the default ones.

We use the following four ways to generate the random correlation matrix A:

corr. The MATLAB built-in function corr (n) produces a random n X n
correlation matrix;

gall. The MATLAB built-in function gallery (' randcorr’ ,n) generates
arandom n X n correlation matrix with random eigenvalues from a uniform
distribution [5, 11];

ksih. The function ksih (n) generates a random correlation matrix having the
distribution ¥, (n) [42];

rand. The function* randcorr (n) [38] generates a random n x n correlation
matrix.

7.1.1 Different feature sizes n

In this subsection, we use functions corr (n), gallery ('’ randcorr’ ,n),
kgih(n), and randcorr (n) to generate a number of instances with n ranging

“https://www.mathworks.com/matlabcentral/fileexchange/688 10-randcorr.
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from 2000 to 7000, £ = 10, m = 2, and n; = % for i = 1, 2. Numerical results
in terms of CPU time and the scaled norm of the gradient (denoted by res) averaged
over 5 random correlation matrices are plotted in Figs. 1 and 2.

From Figs. 1 and 2, we have the following observations: (i) the basic SCF,
Scf Maxbet and RTR require more CPU time as n increases, as expected,
but Scf Maxbet outperforms the basic SCF and RTR for each given n. (ii)
Scf Maxbet achieves more accurate approximations in terms of res for all
instances generated by corr (n) and gallery (' randcorr’ ,n), and for those
generated by ksih (n) and randcorr (n), RTR and Scf_Maxbet have roughly
the same accuracy (residuals res from RTR in Fig. 2 are calculated at their computed
solutions). (iii) The accelerated SCF Scf _Maxbet improves significantly both the
accuracy and the efficiency over the basic SCF; in particular, it is observed that in
most cases, the basic SCF iteration cannot achieve res < 10~° within the maximal
number of iterations. Therefore, in our subsequent testing, we only report the results
of Scf_Maxbet and RTR.

7.1.2 Different reduced dimensions £

With n = 6000,m = 2 and n; = % for i = 1,2, Scf_Maxbet and RTR are
now evaluated with £ varying from 10 to 20 for correlation matrices A generated by

CPU time for RTR, Scf_Maxbet and basic SCF CPU time for RTR, Scf_Maxbet and basic SCF
35001 B RTR 1 BlRTR i
[Scf Maxbet 3500 -\ I Scf _Maxbet 1
%% M]basic SCF 1 oo | [[Jasic SCF
2500 _ m
© o 2500
E 2000} A = corr(n) £ A = gallery(n)
;_) ;_) 2000 (-
m | &
Q 1500 O 1500
tooor 1 1000 -
il _JD -ﬂ -.ﬂ l.ﬂ
2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000
n
CPU time for RTR, Scf_Maxbet and basic SCF CPU time for RTR, Scf_Maxbet and basic SCF
BlRTR i 00T I RTR 1
0% IS cf_Maxbet 1 I Scf _Maxbet
[lbasic SCF %% basic SCF
2500 b
M 2500 [~ m
£ 2000} &
= A =ksih(n) -5 2000 A = randcorr(n)
o | =
% 1500 % 1500 |
1000 b 1000 |
i lﬂ lﬂ ] ’l -ﬂ IJ_‘
.l o Q[
2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000

n

Fig.1 CPU time for RTR, Scf_Maxbet and basic SCF with varying n
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res for RTR, Scf_Maxbet and basic SCF res for RTR, Scf_Maxbet and basic SCF
" l[~—RTR °F[_—RTR

Scf Maxbet Scf _Maxbet

basic SCF basic SCF
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gallery, rand, ksih, and corr. Numerical results on these random instances
are plotted in Figs. 3 and 4. The results show that Scf_Maxbet consumes less CPU
time and yet achieves more accurate approximate solutions.

7.1.3 Different numbers of views m

Next, we evaluate the performances of Scf _Maxbet and RTR with different num-
bers of views. For m € {2,3,4,5,6,8,10}, n = 6000, ¢ = 10, and n; = %,
for i = 1,2,...,m, we generate A as before and report the numerical results
by Scf_Maxbet and RTR in Figs. 5 and 6. It shows that as m increases, espe-
cially for the instances generated by gallery (’ randcorr’ ,n), the efficiency
of Scf Maxbet slightly dwindles, partially due to the increase of the number of
for-loops: lines 3—6 in Algorithm 2. Nevertheless, Scf _Maxbet overall is still more

efficient than RTR and is suitable for solving (1) particularly when n > m¢.
7.2 An application to multi-view feature extraction
In many recent applications, real-world data points frequently are represented by

multiple sets of features which usually reflect various characteristics of the targeted
object. In this subsection, we will apply Scf_Maxbet for unsupervised multi-view
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feature extraction [45]. The number of features is dramatically reduced much fewer
and the extracted features are often used later for following up learning tasks much
more efficiently.

Suppose S € R"*? is a centralized multi-view data matrix that consists of ¢
random samples. The matrix A in (1) is one of the following:

A = SST (the corresponding MAXBET (1) is known as SUMCOR [21, 54]);
e A=SsT_ diag(A11, ..., Amm) (the corresponding MAXBET (1) is known as
MPLS [35]).

Note that if we ignore the multi-view structure embedded in the data, we can
simply use the principal component analysis (PCA) to extract multiple features. In
particular, PCA extracts first £ principal components obtained by a proper orthogonal
projection matrix X € Q"*¢. Note that MAXBET (1) reduces to PCA if m = 1. As
a baseline, we will also report learning results by PCA.

Another closely related model in MCCA (multi-view canonical correlation anal-
ysis) is the successive deflation MCP [54] which serves as an approximate model
of MAXBET (1). Specially, MCP first solves (1) with £ = 1 to obtain a vector x1,
and then uses a successive deflation scheme to obtain the subsequent x7, ..., xg.
The final X = [xq, ..., x¢] collects these vectors and satisfies X € M. It should
be pointed out that the projection matrix X from the successive deflation MCP is
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generally not the solution to the MAXBET problem when £ > 1. We will also present
the results from the successive deflation MCP [54] to compare with the performance
of MAXBET.

Numerically, the projection matrix X from PCA can be simply obtained by the
SVD of S. For the projection matrix X from the successive deflation MCP [54], we
use two approaches, namely, the nested Lanczos-type iteration (named as nLMcp)
[54] and the Riemannian trust-region method (named as RTRMCP) [2, 51] with
tolerance 10~ for the associated residuals, to solve MCP resulting from each defla-
tion step. F40r MAXBET (1), we apply our proposed algorithm Scf _Maxbet with
Eres = 1077

7.2.1 Datasets

Datasets used in our experiment are summarized in Table 1 [10, 55]: the first one
is a synthetic dataset while the others are publicly available image datasets®. We

SThe datasets Caltech101-7 and Caltech101-20 [26] are available at https://www.vision.caltech.edu/
Image_Datasets/Caltech101/, and the dataset Scenel5 [25] is available at figshare.com/articles/15-
Scene_Image_Dataset/7007177.
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Fig.5 CPU time for RTR and Scf_Maxbet with varying m

generate the synthetic data in a similar way to [10, 55]. Specifically, S =
[S1;...; 8] with

® ¢ = 5 (i.e., the number of classes), ¢ = 2000 samples (i.e., each class has 400
samples), m = 5 (i.e., the number of multi-views), and n; = 2000 features for
each view, and thus n = Zf": 1 ni = 10000;

e The ith view data matrix S; = P;Z; + 0 E € R"*4 where P; € R"*100 whose
entries are i.i.d. sampled from Gaussian distribution N (i /10, 1), noise level o =
1073, and E € R"*9 whose entries are i.i.d. sampled from normal distribution
N(0, 1), matrix Z; = [Zl.m, e Zl.[c]] € R100%¢ and entries of Zl.m € [R100x400
are i.i.d. and are sampled from a Gaussian distribution N((j — 1)/5, 1) for 1 <
j<c=5.

7.2.2 Performances
To demonstrate the effectiveness of feature extraction by each approach, we rely on

supervised learning, the 1-nearest neighbor (1NN) classifier, on the extracted features
by the learned projection matrix X, as follows:
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1. Each dataset is split into training and testing data portions (30% training and

70% testing);

2. Projection matrices X are trained by the training data by PCA, Scf _Maxbet,

nLMcp and RTRMCP, respectively;

3. Data points of each view for both training and testing are projected onto a
reduced common space via the projection matrices X

4. Labels of testing data points are predicted via the 1-nearest neighbor (INN)
classifier on the projected testing data points.

Table 1 Multi-view datasets

Dataset Samples (q) m Multiple views (n;) Features (n) Classes (¢)
Synthetic 2000 5 2000;2000;2000;2000;2000 10,000 5
Caltech101-7 1474 6 254;512;1180;1008;64;1000 4018 7
Caltech101-20 2386 6 254;512;1180;1008;64;1000 4018 20
Scenel5 4310 6 254,512;531;360,64;1000 2721 15
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Table 3 CPU time on synthetic datasets

Dataset CPU_sumcor CPU_plst
4 Scf_Maxbet RTRMCP nLMcp Scf_Maxbet RTRMCP nLMcp
Synthetic 5 65.01 607.47 152.79 33.24 557.68 106.41
10 41.72 1307.68 284.30 27.42 1244.19 192.75

We report both classification accuracy (i.e., the percentage of correct predictions over
the testing data) and CPU time for computing X as measures of performance. We use
“accuracy_sumcor” and “accuracy._plst” to refer to the average accuracy
corresponding to the two different choices of A mentioned at the beginning of sub-
Section 7.2, and accordingly “CPU_sumcor” and “CPU_plst” are for the average
CPU times. Label “accuracy_pca” is for the classification accuracy by PCA.

For synthetic data, we report means and standard deviations (std) of classifica-
tion accuracy and average CPU time over 10 random splittings for each dataset (30%
training and 70% testing) in Tables 2 and 3. It can be seen that Scf_Maxbet consis-
tently outperforms other methods in terms of classification accuracy and CPU time.
We did not show CPU time by PCA because it just calls MATLAB’s svd on S .
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For real-world data, we plot average CPU time and classification accuracy over
10 random draws in Figs. 7, 8, and 9. We observe that (i) Scf_Maxbet achieves
better accuracies on both SUMCOR and PLST, (ii) Scf_Maxbet consumes much
less CPU time, and (iii) in contrast to nLMcp and RTRMCP, the variation of CPU
time with different £ by Scf_Maxbet is relatively moderate.

8 Concluding remarks

From a new perspective of maximizing a homogeneous quadratic function over the
product of Stiefel manifolds, in this paper, we first reformulate the MAXBET prob-
lem as a coupled NEPv. The new formulation naturally leads itself to an alternating
SCF iteration in which the blocks of projection matrix X are updated alternatingly
in a Gauss-Seidel fashion. We have developed a theory for the relation between
MAXBET and this coupled NEPv, and also established convergence results for the
Gauss-Seidel-type updating scheme combined with the SCF iteration. The plain SCF
iteration is then accelerated by a subspace acceleration strategy, and our prelimi-
nary numerical evaluations demonstrate that the subspace-accelerated SCF iteration
is more efficient than the generic Riemannian trust-region solver RTR for problems
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with large block sizes n;. Finally, we use an application of MAXBET to unsupervised
feature extraction learning to show the effectiveness of the MAXBET criterion in
MCCA and the efficiency of the alternating SCF iteration for the MAXBET problem.
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