
Using natural language processing to predict student problem solving performance

Jeremy Munsell,
Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave., West Lafayette, Indiana, USA, 47906

N. Sanjay Rebello
Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave., West Lafayette, Indiana, USA, 47906

Department of Curriculum and Instruction, Purdue University,100 N. University St., West Lafayette, Indiana, USA, 47906

Carina M. Rebello
Department of Physics and Astronomy, Purdue University, 525 Northwestern Ave., West Lafayette, Indiana, USA, 47906

In this work we report on a pilot study where we used machine learning to predict whether students will correctly solve the classic “ballistic

pendulum” problem based on an essay written by students elucidating their approach to solving the problem. Specifically, students were asked

to describe the “principles, assumptions, and approximations” they used to solve the problem. Student essays were codified using the practices

of natural language processing. Essays from two non-consecutive semesters were used for training/validation (N = 1441) and testing (N=1480).

The final model used to make predictions was an ensemble classification scheme using random forest, eXtreme Gradient Boosting classifier

(XGBoost), and logistic regression as estimators. Our accuracy in predicting students’ correctness was around 80% with slightly higher

accuracy in identifying students who incorrectly solved the problem and slightly lower in predicting student who correctly solved the problem.

I. INTRODUCTION

Research has shown that facilitating students to attend

to the underlying concepts and principles needed to solve a

problem improve problem solving performance [1,2]. We

implemented strategy writing [2] in a pilot study with

students in a calculus-based physics course at a large public

mid-western university. Students were asked to write an

essay describing their strategy for solving a problem. Their

essays were analyzed using Natural Language Processing

(NLP) to determine whether they could predict the ground

truth label i.e. the correctness of the student’s answer to the

problem.

NLP is a branch of artificial intelligence (AI) in which

computers perform operations on human language. NLP

has numerous applications such as determining the

sentiment of tweets; chatbots/assistants which perform

speech recognition/generation; and machine text

translation. Classification in NLP is at the intersection of

machine learning and NLP. Machine learning (ML) can be

thought of as a collection of methods where a statistical

model is developed that maps numerical data on to a target

variable (label). A ML algorithm is trained when an

objective function which quantifies the error made by

incorrect predictions is minimized with respect to the

model’s parameters (e.g. weights and biases in the case of

multiple linear regression). The trained model is then used

to predict the class membership of unseen data known as a

testing set. The fundamental rule of ML is testing data is

not used for training or any manner of model parameter

tuning.

In this work we report on the use of NLP to predict

whether students in a first semester calculus-based course

would correctly solve a problem (Fig. 1) during a quiz

taken in lab. We asked students to write an essay describing

their strategy for solving the problem, including underlying

principles used, and objects in the system/surroundings.

Data were labeled 0/1 based on whether students solved the

problem incorrectly/correctly. This work was exploratory in

nature to determine how well we could make accurate

predictions. Our vision for the future of this work is a

platform to provide in-situ feedback to improve student

learning.

The text data from the essay were transformed using the

term frequency-inverse document frequency (TFIDF)

method. We constructed a ML model using the Scikitlearn

[3] library in Python. The final prediction model was a hard

voting scheme using Random Forest [4], Logistic

Regression, and eXtreme Gradient Boosting classifier [5] as

estimators. We used data from Spring 2020 for model

training and general validation, and data from Spring 2021

for testing. More details are presented in the following

sections.

We addressed the following Research Question: With

what accuracy can we predict if a student will correctly

solve the “ballistic pendulum” problem given an essay

outlining the student’s strategy?

II. METHODS

A. Task

Students completed the task shown in Fig. 1 on Quiz 3,

which was administered in Week 7 of the semester. The

quiz was administered in a sterile environment where notes

and collaboration were not allowed. We chose this problem

because it is a well-known problem in introductory physics

that students have difficulties with.

FIG 1: Problem solved by students in online Quiz 3 in Week 7

B. Data

The descriptive statistics for the word length of the

essay data are shown in Table I. A thorough analysis of the

differences between the words and phrases used by each

group is beyond the scope of this paper. There is no

significant difference in essay length between the correct

and incorrect responses, or between the data sets.

TABLE I. Descriptive Statistics for Length of the Essays

Data Set Mean ± S.D. Median

Spring 2020

(Training)

Correct (N1=703): 57.8±31.2 51

Incorrect (N0=738): 56.5±29.9 51

Spring 2021

(Testing)

Correct (N1=679): 60.2±32.0 55

Wrong (N0=801): 59.8±37.3 52

C. Text Processing

I. Text Cleaning

The essays from both sets were cleaned using a function

in Python, that removes unimportant commonly used words

(stop words) [6] to reduce noise, as well as punctuation,

numbers, and equations which some students (6.1% in

training, 4.5% in testing set) included in the essay. Finally,

the essays were spell checked using a context-unaware spell

checker from the textblob [7] library.

II. TFIDF transformation

ML algorithms cannot perform computation on raw

text. Most standard methods in NLP involve transforming

text into a vector. The simplest approach is the bag-of-

words model in which text is transformed into a vector of

dimensionality equal to the number of unique words in the

corpa and whose components are the word counts in a

particular corpus. A higher level of sophistication is the TF-

IDF transformation, which converts each essay (corpus)

into a vector whose dimensionality is the number of unique

words in all the essays (corpa). The components of each

vector are a calculated score for each unique word in the

corpa based on its frequency of appearance in that corpus

and inverse frequency in the corpa:

𝑊(𝑡, 𝑑, 𝐷) = 𝑓𝑡,𝑑 log (
𝑁

𝑛𝑡
)

The TFIDF score, 𝑊, for each word, 𝑡, is calculated

corpus-wise for each document 𝑑 in the corpa 𝐷. 𝑊 is large

for words with a high frequency (𝑓) appearing in a small

number of documents (𝑛𝑡). 𝑊 is low for words that have

low frequency appearing in a large number of documents.

D. Prediction Model

The prediction model uses three independent estimators,

Random Forest [4], eXtreme Gradient Boosting (XGBoost)

[5], and Logistic Regression. The predictions emerging

from these algorithms are combined to make a single final

prediction, a scheme known as ensemble learning.

I. Random Forest Classifier

A decision tree is a flowchart like structure where a

datum is classified after passing through a network of nodes

representing features of the model. In some cases, the

decision tree can be conceptualized as a series of yes/no

questions that ultimately results in a classification [8].

Decision trees are robust to irrelevant features (noise) and

are capable of learning complex patterns. However, they

tend to learn the training set very well while struggling with

unseen testing data (overfitting).

The random forest classifier is an ensemble (forest) of

decision trees [4]. Each tree in the forest is built by

randomly sampling the training data with replacement, a

method known as bootstrap aggregation, and using a

random subset of the features (variables) to make

predictions. The final classification is the majority vote of

all the trees. This has the effect of reducing overfitting

relative to a single decision tree by producing a series of

weak uncorrelated learners which averaged together make

more accurate predictions [9].

FIG 2: The figure shows a random forest classifier where n

decision trees are generated from a random subset of the data,

using a random subset of features. Each tree makes an

independent classification and the final result is the majority vote.

II. eXtreme Gradient Boost (XGBoost)

Boosting is a technique whereby the classifier learns

from its’ mistakes (incorrect predictions) [5]. The version

of XGBoost used in this work is based on the random forest

classifier. XGBoost uses boosted tree learning to improve

upon the consistently high performance of random forest.

The goal of XGBoost is to learn a decision function

(classifier) that encapsulates the structure and function of a

random forest. Boosting happens in iterations called

boosting rounds. The decision function is initialized to a

constant value, obtained by solving an optimization

problem. During each of the 𝑚 subsequent boosting rounds

the decision function is updated recursively to correct

mistakes made in the previous round. This scheme results

in a classification algorithm that is robust to overfitting but

can be susceptible to outliers [10]. For labeled data {𝑥𝑖 , 𝑦𝑖},

the decision function 𝐹𝑚 after the m-th boosting round, and

the objective function (error function) L:

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) − 𝛾𝑚 ∑ ∇𝐹𝑚−1𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖))

𝑛

𝑖=1

While the usual gradient descent algorithm that is at the

heart of machine learning aims to minimize the objective

function with respect to the parameters of the decision

function, gradient boosting endeavors to minimize the

objective function with respect to the decision function.

III. Logistic Regression

In logistic regression we predict samples using the

sigmoid function:

ℎ(𝑥) =
1

1 + 𝑒−𝜽𝒙

Where 𝜽 is a vector of weights and biases (high

dimensional analog to slope and intercept) and x is a feature

vector (data point). The vector 𝜽 is obtained by minimizing

the log-loss objective function with respect to 𝜽.

FIG. 3. A diagram showing the machine learning workflow. (1) Training data (blue), validation data (red), and testing data (green) are

processed by (2) removing stop words, punctuation, and checking spelling. (3) A Tfidf transformer object is fitted to the training data and

used to transform training, validation, testing sets. The testing set is put aside. The training set is used to train a candidate model, and the

candidate model is evaluated on the validation set. (4) The model is tuned in a feedback loop to improve classification performance on the

validation set. The process continues until performance is saturated and the final model (5) emerges. The training and validation sets are

used to train the final model and (6) predictions are made on the testing set

𝐽(𝜃) = −
1

𝑚
∑ [𝑦(𝑖) × log (ℎ𝜃(𝑥(𝑖)))

𝑚

𝑖=1

+ (1 − 𝑦(𝑖)) × log (ℎ𝜃(𝑥(𝑖)))]

The sigmoid function is a continuous valued function

bounded on (0,1). When making a binary classification, a

thresholded decision function ℎ′(𝑥) is used such that:

ℎ′(𝑥) = {
1 𝑖𝑓 ℎ(𝑥) ≥ 0.5

0 𝑖𝑓 ℎ(𝑥) < 0.5

E. Training, Validation, and Testing

 Model training is the process (Fig. 3) of using the

training data to select the optimal parameters for a given

model. The optimal parameters are usually determined by

minimizing an objective function with respect to the model

parameters. This gives a candidate model. The success of a

model is determined by its ability to correctly classify

unseen data. The hypothetical scenario is that the testing set

is not available to you when you create the model, and it

will be used in production to classify new data in real time.

Thus, it is necessary to validate the model before

production on some data that was not used during training

(validation set).

 In k-fold validation, we split all the data into k equal

sized partitions. k-1 sets are used for training and the

remaining set is used for testing. This is repeated until all k

sets have been used in training and testing. The accuracy is

averaged across the k trials.

III. RESULTS

The classification accuracy is an important metric by

which to judge the performance of the prediction model.

However, accuracy should not be considered in isolation.

Other important metrics to consider are precision, recall,

and F-score.

We define a true positive (𝑡𝑝) classification as a student

who is labeled ‘1’ and is predicted as ‘1’, likewise a false

positive (𝑓𝑝) classification is a student is labeled as ‘0’ but

predicted as ‘1’. We define a true negative (𝑡𝑛) as a student

who is labeled as ‘0’ and predicted as ‘0’, likewise a false

negative (𝑓𝑛) is a student who is labeled ‘1’ but predicted as

‘0’.

Precision is the fraction of correct classifications made

by the classifier.

𝑃1 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
 𝑃0 =

𝑡𝑛

𝑡𝑛+𝑓𝑛

Recall is the fraction of each population correctly

identified by the classifier.

𝑅1 =
𝑡𝑝

𝑡𝑝+𝑓𝑛
 𝑅0 =

𝑡𝑛

𝑡𝑛+𝑓𝑝

The F-score is the harmonic mean of precision and

recall. F-score is a balanced metric to determine the overall

quality of the classifier.

𝑓1 = 2
𝑃1 𝑅1

𝑃1+𝑅1
 𝑓0 = 2

𝑃0 𝑅0

𝑃0+𝑅0

Cohen’s kappa [11] is a measure of agreement between

raters, controlling for agreement by chance.

𝜅 =
𝑝0 − 𝑝𝑒

1 − 𝑝𝑒

Where 𝑝0 is the observed agreement between raters, and

𝑝𝑒 is the probability of agreement by chance.

The results of the classification are in Tables II and III

below.

TABLE II. Precision, Recall, f-score, and Average Accuracy

Class N Precision Recall F-Score Accuracy

0 801 0.79 0.87 0.82
0.80

1 679 0.82 0.72 0.77

TABLE III. Confusion matrix: Correct predictions are on the

diagonal. Incorrect predictions are off diagonal.

 Predicted Negative Actual Positive

Actual Negative 695 106

Actual Positive 190 489

Finally, Cohen’s kappa was calculated to be  = 0.594, and
5-fold validation accuracy is 0.78.

IV. DISCUSSION

A proposed instrument for essay scoring should only be

deployed if it is shown to be valid, fair, and reliable. A

method is considered valid if it measures what it claims to

measure. A method is fair if it does not unfairly penalize

correct responses, and it is reliable if the results are

repeatable [12]. It is difficult to gauge the validity of this

model without a direct comparison with other models

which perform the same function. Many projects that

attempt automatic essay scoring (AES) use comparison

with human raters as a metric [13]. A competition among

commercial AES vendors used eight student essay corpa

from six member states of the Race-To-The-Top

assessment consortium as a dataset [13]. Students wrote

persuasive, expository, narrative, and source-based essays

(where they formulated an argument based on a passage).

This dataset used the state adjudicated score conferred by

human scorers (resolved score) as the ground truth (label)

and compared the performance between different

proprietary scoring engines. A metric used in this study is

percent agreement between computer scoring systems and

the resolved score. Percent agreement (identical to

accuracy) is the percentage of times the resolved score and

the computer score were identical. The percent agreement

of the scoring engines ranged from 0.29 to 0.76, and the

Cohen’s  ranged from 0.04 to 0.84 across eight datasets.

Thus, our results (accuracy = 0.80, and Cohen’s  = 0.594)

are within the range of proprietary scoring engines used in

[13]. A key difference with our study is that in [13] the

essays themselves were scored by a multi-point rubric,

while we did not score the essays per se, rather we used

problem correctness (0/1) as a proxy for scoring of the

essays themselves. It is also worth noting that the scoring

engines in [13] had high performance on “adjacent

agreement” when the computer score was within 2 points of

the resolved score on a rubric of 8 points (maximum).

There is no way to directly compare our results on this

metric due to the differences in essay scoring.

Presently, there is not enough information to establish

that our prediction model is valid for scoring student essays

themselves. However, the goal of the present study was to

use the strategy essay to predict if the student will correctly

solve a problem. If we could substantially reduce the error

rate, this model could be useful to provide feedback to

students so they can correct errors before submission.

In regards to fairness, about 20% of students were

incorrectly scored, out of which 13% were predicted

incorrect despite solving the problem correctly. Finally,

since we currently only have two sets of data to work with,

we cannot establish the reliability of this model.

V. CONCLUSIONS, LIMITATIONS &

IMPLICATIONS

Despite the shortcomings of our classification scheme

these results are promising since the model is able to

predict, based on the strategy essay written by a student,

whether or not the student has answered the problem

correctly with 80% accuracy. For the purposes of predicting

incorrect answers, the prediction rate is 87%.

This study has the following limitations. First these

results leave room for improvement in accuracy and

fairness, which could be achieved with a larger training set

and more powerful state-of-the-art machine learning

methods, such as deep learning. Second, the study used

only a single problem that required students to determine

their answer in symbolic representation using a multiple-

choice format. Therefore, the results are not generalizable

to problems in other formats and representations, not to

mention other topical areas in introductory physics. Finally,

the study did not score the essays themselves, rather it

predicted the scores of the problem that students wrote the

strategy essay for, and they may have written this essay not

necessarily before solving the problem. Future studies will

require students to write the essays before they provide a

solution. Further, we will use human raters to score the

essays based on the validity of the outlined approach, and

therefore the likelihood that the strategy will lead to a

correct solution.

Despite these limitations, the study has several

implications for research and education. This study

provides proof-of-concept that it is possible to predict

students’ correctness of a problem with a high degree of

accuracy, based on the essay they have written describing

their strategy to solve the problem. Research has shown that

asking students to describe their strategies for solving

problems can be useful in helping them develop more

expert-like problem solving strategies [2]. However, past

studies did not provide feedback to students on their

strategy writing. The time cost of providing such feedback,

especially in large enrollment introductory classes can be

prohibitive. The results of this study are promising because

they provide proof of concept that it might be possible,

using NLP methods to provide students feedback on their

strategy writing in real time, thereby giving them the

opportunity to reflect on, and if necessary, alter their

problem-solving strategy before they apply it to solve the

problem. Such a system would also allow us to investigate

whether real time strategy feedback can improve students’

metacognitive skills and make them more expert-like

problem solvers in the future.

ACKNOWLEDGMENTS

This work is supported in part by U.S. National Science

Foundation grant 1712201. We would also like to thank Dr.

Tianlong Zu for his excellent suggestions about this study.

[1] R. Dufresne, W. Gerace, J. Mestre, and P. Hardiman, J.

Learn. Sci. 2 (3), 307 (1992)

[2] W. Leonard, R. Dufresne, and J. Mestre, Am. J. Phys. 64

(12), 1495 (1996)

[3] Pedregosa, F, Varoquaux, G.,Gramfort, A., Michel, V.,

Thiron, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss,

R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D.,

Brucher, M., Perrot, M., and Duchesnay, E., Journal of Ma-

chine Learning Research, 12, p. 2825-2830 (2011)

[4] Tin Kam Ho, Proceedings of 3rd International Conference

on Document Analysis and Recognition, p. 278-282, 1 (1995)

[5] Chen, Tianqi and Guestrin, Carlos, Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, (2016)

[6] Bird, Steven, Edward Loper and Ewan Klein, Natural

Language Processing with Python. (O’Reilly Media Inc.,

2009)

[7] Loria, S. textblob Documentation. Release 0.15, 2. (2018)

[8] Quinlan, J. R. International Journal of Man-Machine Studies

27 (3). p. 221-234 (1987)

[9] Jyiu, T., Towards Data Science. (June 12, 2019)

[10] J.H. Freidman, The Annals of Statistics, 29 (5), p. 1189 –

1232, (2001)

[11] McHugh M. L., Biochemia medica, 22 (3), p. 276–282

 (2012)

[12] Chung, Gregory K.W.K., and Baker, E.L., Automated Essay

Scoring: A Cross-Disciplinary Perspective. In Issues in the

Reliability and Validity of Automated Scoring of Constructed

Responses (Lawrence Erlbaum Associates, Mahwah, New

Jersey, 2003)

[13] Shermis, M.D., Assessing Writing, 20, p. 53–76. (2014)

