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In this work we report on a pilot study where we used machine learning to predict whether students will correctly solve the classic “ballistic 

pendulum” problem based on an essay written by students elucidating their approach to solving the problem. Specifically, students were asked 

to describe the “principles, assumptions, and approximations” they used to solve the problem. Student essays were codified using the practices 

of natural language processing. Essays from two non-consecutive semesters were used for training/validation (N = 1441) and testing (N=1480). 

The final model used to make predictions was an ensemble classification scheme using random forest, eXtreme Gradient Boosting classifier 

(XGBoost), and logistic regression as estimators. Our accuracy in predicting students’ correctness was around 80% with slightly higher 

accuracy in identifying students who incorrectly solved the problem and slightly lower in predicting student who correctly solved the problem. 



 
I. INTRODUCTION 

Research has shown that facilitating students to attend 

to the underlying concepts and principles needed to solve a 

problem improve problem solving performance [1,2]. We 

implemented strategy writing [2] in a pilot study with 

students in a calculus-based physics course at a large public 

mid-western university. Students were asked to write an 

essay describing their strategy for solving a problem. Their 

essays were analyzed using Natural Language Processing 

(NLP) to determine whether they could predict the ground 

truth label i.e. the correctness of the student’s answer to the 

problem. 

NLP is a branch of artificial intelligence (AI) in which 

computers perform operations on human language. NLP 

has numerous applications such as determining the 

sentiment of tweets; chatbots/assistants which perform 

speech recognition/generation; and machine text 

translation. Classification in NLP is at the intersection of 

machine learning and NLP. Machine learning (ML) can be 

thought of as a collection of methods where a statistical 

model is developed that maps numerical data on to a target 

variable (label). A ML algorithm is trained when an 

objective function which quantifies the error made by 

incorrect predictions is minimized with respect to the 

model’s parameters (e.g. weights and biases in the case of 

multiple linear regression). The trained model is then used 

to predict the class membership of unseen data known as a 

testing set. The fundamental rule of ML is testing data is 

not used for training or any manner of model parameter 

tuning.  

In this work we report on the use of NLP to predict 

whether students in a first semester calculus-based course 

would correctly solve a problem (Fig. 1) during a quiz 

taken in lab. We asked students to write an essay describing 

their strategy for solving the problem, including underlying 

principles used, and objects in the system/surroundings. 

Data were labeled 0/1 based on whether students solved the 

problem incorrectly/correctly. This work was exploratory in 

nature to determine how well we could make accurate 

predictions. Our vision for the future of this work is a 

platform to provide in-situ feedback to improve student 

learning. 

The text data from the essay were transformed using the 

term frequency-inverse document frequency (TFIDF) 

method. We constructed a ML model using the Scikitlearn 

[3] library in Python. The final prediction model was a hard 

voting scheme using Random Forest [4], Logistic 

Regression, and eXtreme Gradient Boosting classifier [5] as 

estimators. We used data from Spring 2020 for model 

training and general validation, and data from Spring 2021 

for testing. More details are presented in the following 

sections. 

We addressed the following Research Question: With 

what accuracy can we predict if a student will correctly 

solve the “ballistic pendulum” problem given an essay 

outlining the student’s strategy? 

II. METHODS 

A. Task 

Students completed the task shown in Fig. 1 on Quiz 3, 

which was administered in Week 7 of the semester. The 

quiz was administered in a sterile environment where notes 

and collaboration were not allowed. We chose this problem 

because it is a well-known problem in introductory physics 

that students have difficulties with. 

 
FIG 1: Problem solved by students in online Quiz 3 in Week 7 

B. Data 

The descriptive statistics for the word length of the 

essay data are shown in Table I. A thorough analysis of the 

differences between the words and phrases used by each 

group is beyond the scope of this paper. There is no 

significant difference in essay length between the correct 

and incorrect responses, or between the data sets. 

 
TABLE I. Descriptive Statistics for Length of the Essays 

Data Set Mean ± S.D. Median 

Spring 2020 

(Training) 

Correct (N1=703): 57.8±31.2 51 

Incorrect (N0=738): 56.5±29.9 51 

Spring 2021 

(Testing) 

Correct (N1=679): 60.2±32.0 55 

Wrong (N0=801): 59.8±37.3 52 

C. Text Processing 

I. Text Cleaning 

The essays from both sets were cleaned using a function 

in Python, that removes unimportant commonly used words 

(stop words) [6] to reduce noise, as well as punctuation, 

numbers, and equations which some students (6.1% in 

training, 4.5% in testing set) included in the essay. Finally, 



the essays were spell checked using a context-unaware spell 

checker from the textblob [7] library. 

II. TFIDF transformation 

ML algorithms cannot perform computation on raw 

text. Most standard methods in NLP involve transforming 

text into a vector. The simplest approach is the bag-of-

words model in which text is transformed into a vector of 

dimensionality equal to the number of unique words in the 

corpa and whose components are the word counts in a 

particular corpus. A higher level of sophistication is the TF-

IDF transformation, which converts each essay (corpus) 

into a vector whose dimensionality is the number of unique 

words in all the essays (corpa). The components of each 

vector are a calculated score for each unique word in the 

corpa based on its frequency of appearance in that corpus 

and inverse frequency in the corpa: 

𝑊(𝑡, 𝑑, 𝐷) =  𝑓𝑡,𝑑 log (
𝑁

𝑛𝑡
) 

The TFIDF score, 𝑊, for each word, 𝑡, is calculated 

corpus-wise for each document 𝑑 in the corpa 𝐷. 𝑊 is large 

for words with a high frequency (𝑓) appearing in a small 

number of documents (𝑛𝑡). 𝑊 is low for words that have 

low frequency appearing in a large number of documents. 

D. Prediction Model 

The prediction model uses three independent estimators, 

Random Forest [4], eXtreme Gradient Boosting (XGBoost) 

[5], and Logistic Regression. The predictions emerging 

from these algorithms are combined to make a single final 

prediction, a scheme known as ensemble learning. 

I. Random Forest Classifier 

A decision tree is a flowchart like structure where a 

datum is classified after passing through a network of nodes 

representing features of the model. In some cases, the 

decision tree can be conceptualized as a series of yes/no 

questions that ultimately results in a classification [8]. 

Decision trees are robust to irrelevant features (noise) and 

are capable of learning complex patterns. However, they 

tend to learn the training set very well while struggling with 

unseen testing data (overfitting).  

The random forest classifier is an ensemble (forest) of 

decision trees [4]. Each tree in the forest is built by 

randomly sampling the training data with replacement, a 

method known as bootstrap aggregation, and using a 

random subset of the features (variables) to make 

predictions. The final classification is the majority vote of 

all the trees. This has the effect of reducing overfitting 

relative to a single decision tree by producing a series of 

weak uncorrelated learners which averaged together make 

more accurate predictions [9]. 

 
FIG 2: The figure shows a random forest classifier where n 

decision trees are generated from a random subset of the data, 

using a random subset of features. Each tree makes an 

independent classification and the final result is the majority vote. 

II. eXtreme Gradient Boost (XGBoost) 

Boosting is a technique whereby the classifier learns 

from its’ mistakes (incorrect predictions) [5]. The version 

of XGBoost used in this work is based on the random forest 

classifier. XGBoost uses boosted tree learning to improve 

upon the consistently high performance of random forest. 

The goal of XGBoost is to learn a decision function 

(classifier) that encapsulates the structure and function of a 

random forest. Boosting happens in iterations called 

boosting rounds. The decision function is initialized to a 

constant value, obtained by solving an optimization 

problem. During each of the 𝑚 subsequent boosting rounds 

the decision function is updated recursively to correct 

mistakes made in the previous round. This scheme results 

in a classification algorithm that is robust to overfitting but 

can be susceptible to outliers [10]. For labeled data {𝑥𝑖 , 𝑦𝑖}, 

the decision function 𝐹𝑚 after the m-th boosting round, and 

the objective function (error function) L: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) − 𝛾𝑚 ∑ ∇𝐹𝑚−1𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖))

𝑛

𝑖=1

 

While the usual gradient descent algorithm that is at the 

heart of machine learning aims to minimize the objective 

function with respect to the parameters of the decision 

function, gradient boosting endeavors to minimize the 

objective function with respect to the decision function. 

III. Logistic Regression 

In logistic regression we predict samples using the 

sigmoid function: 

ℎ(𝑥) =
1

1 + 𝑒−𝜽𝒙
 

Where 𝜽 is a vector of weights and biases (high 

dimensional analog to slope and intercept) and x is a feature 

vector (data point). The vector 𝜽 is obtained by minimizing 

the log-loss objective function with respect to 𝜽. 



 

FIG. 3. A diagram showing the machine learning workflow. (1) Training data (blue), validation data (red), and testing data (green) are 

processed by (2) removing stop words, punctuation, and checking spelling. (3) A Tfidf transformer object is fitted to the training data and 

used to transform training, validation, testing sets. The testing set is put aside. The training set is used to train a candidate model, and the 

candidate model is evaluated on the validation set. (4) The model is tuned in a feedback loop to improve classification performance on the 

validation set. The process continues until performance is saturated and the final model (5) emerges. The training and validation sets are 

used to train the final model and (6) predictions are made on the testing set  

𝐽(𝜃) = −
1

𝑚
∑ [𝑦(𝑖) × log (ℎ𝜃(𝑥(𝑖)))

𝑚

𝑖=1

+ (1 − 𝑦(𝑖)) × log (ℎ𝜃(𝑥(𝑖)))] 

The sigmoid function is a continuous valued function 

bounded on (0,1). When making a binary classification, a 

thresholded decision function ℎ′(𝑥) is used such that: 

 

ℎ′(𝑥) =  {
1     𝑖𝑓 ℎ(𝑥) ≥ 0.5

0    𝑖𝑓 ℎ(𝑥) < 0.5
 

E. Training, Validation, and Testing 

     Model training is the process (Fig. 3) of using the 

training data to select the optimal parameters for a given 

model. The optimal parameters are usually determined by 

minimizing an objective function with respect to the model 

parameters. This gives a candidate model. The success of a 

model is determined by its ability to correctly classify 

unseen data. The hypothetical scenario is that the testing set 

is not available to you when you create the model, and it 

will be used in production to classify new data in real time. 

Thus, it is necessary to validate the model before 

production on some data that was not used during training 

(validation set). 

     In k-fold validation, we split all the data into k equal 

sized partitions. k-1 sets are used for training and the 

remaining set is used for testing. This is repeated until all k 

sets have been used in training and testing. The accuracy is 

averaged across the k trials. 

III. RESULTS 

The classification accuracy is an important metric by 

which to judge the performance of the prediction model. 

However, accuracy should not be considered in isolation. 

Other important metrics to consider are precision, recall, 

and F-score. 

We define a true positive (𝑡𝑝) classification as a student 

who is labeled ‘1’ and is predicted as ‘1’, likewise a false 

positive (𝑓𝑝) classification is a student is labeled as ‘0’ but 

predicted as ‘1’. We define a true negative (𝑡𝑛) as a student 

who is labeled as ‘0’ and predicted as ‘0’, likewise a false 

negative (𝑓𝑛) is a student who is labeled ‘1’ but predicted as 

‘0’. 

Precision is the fraction of correct classifications made 

by the classifier. 

𝑃1 =
𝑡𝑝

𝑡𝑝+𝑓𝑝
  𝑃0 =

𝑡𝑛

𝑡𝑛+𝑓𝑛
 

Recall is the fraction of each population correctly 

identified by the classifier. 

𝑅1 =
𝑡𝑝

𝑡𝑝+𝑓𝑛
  𝑅0 =

𝑡𝑛

𝑡𝑛+𝑓𝑝
 

The F-score is the harmonic mean of precision and 

recall. F-score is a balanced metric to determine the overall 

quality of the classifier. 

𝑓1 = 2
𝑃1 𝑅1

𝑃1+𝑅1
  𝑓0 = 2

𝑃0 𝑅0

𝑃0+𝑅0
   

Cohen’s kappa [11] is a measure of agreement between 

raters, controlling for agreement by chance. 

𝜅 =
𝑝0 − 𝑝𝑒

1 − 𝑝𝑒
 

Where 𝑝0 is the observed agreement between raters, and 

𝑝𝑒 is the probability of agreement by chance.  

The results of the classification are in Tables II and III 

below. 

 



TABLE II. Precision, Recall, f-score, and Average Accuracy 

Class N Precision Recall F-Score Accuracy 

0 801 0.79 0.87 0.82 
0.80 

1 679 0.82 0.72 0.77 

 

TABLE III. Confusion matrix: Correct predictions are on the 

diagonal. Incorrect predictions are off diagonal. 

 Predicted Negative Actual Positive 

Actual Negative 695 106 

Actual Positive 190 489 

Finally, Cohen’s kappa was calculated to be  = 0.594, and 
5-fold validation accuracy is 0.78.  

IV. DISCUSSION 

A proposed instrument for essay scoring should only be 

deployed if it is shown to be valid, fair, and reliable. A 

method is considered valid if it measures what it claims to 

measure. A method is fair if it does not unfairly penalize 

correct responses, and it is reliable if the results are 

repeatable [12]. It is difficult to gauge the validity of this 

model without a direct comparison with other models 

which perform the same function. Many projects that 

attempt automatic essay scoring (AES) use comparison 

with human raters as a metric [13].  A competition among 

commercial AES vendors used eight student essay corpa 

from six member states of the Race-To-The-Top 

assessment consortium as a dataset [13]. Students wrote 

persuasive, expository, narrative, and source-based essays 

(where they formulated an argument based on a passage). 

This dataset used the state adjudicated score conferred by 

human scorers (resolved score) as the ground truth (label) 

and compared the performance between different 

proprietary scoring engines. A metric used in this study is 

percent agreement between computer scoring systems and 

the resolved score. Percent agreement (identical to 

accuracy) is the percentage of times the resolved score and 

the computer score were identical. The percent agreement 

of the scoring engines ranged from 0.29 to 0.76, and the 

Cohen’s  ranged from 0.04 to 0.84 across eight datasets. 

Thus, our results (accuracy = 0.80, and Cohen’s  = 0.594) 

are within the range of proprietary scoring engines used in 

[13]. A key difference with our study is that in [13] the 

essays themselves were scored by a multi-point rubric, 

while we did not score the essays per se, rather we used 

problem correctness (0/1) as a proxy for scoring of the 

essays themselves. It is also worth noting that the scoring 

engines in [13] had high performance on “adjacent 

agreement” when the computer score was within 2 points of 

the resolved score on a rubric of 8 points (maximum). 

There is no way to directly compare our results on this 

metric due to the differences in essay scoring. 

Presently, there is not enough information to establish 

that our prediction model is valid for scoring student essays 

themselves. However, the goal of the present study was to 

use the strategy essay to predict if the student will correctly 

solve a problem. If we could substantially reduce the error 

rate, this model could be useful to provide feedback to 

students so they can correct errors before submission. 

In regards to fairness, about 20% of students were 

incorrectly scored, out of which 13% were predicted 

incorrect despite solving the problem correctly. Finally, 

since we currently only have two sets of data to work with, 

we cannot establish the reliability of this model. 

V. CONCLUSIONS, LIMITATIONS & 

IMPLICATIONS 

Despite the shortcomings of our classification scheme 

these results are promising since the model is able to 

predict, based on the strategy essay written by a student, 

whether or not the student has answered the problem 

correctly with 80% accuracy. For the purposes of predicting 

incorrect answers, the prediction rate is 87%. 

This study has the following limitations. First these 

results leave room for improvement in accuracy and 

fairness, which could be achieved with a larger training set 

and more powerful state-of-the-art machine learning 

methods, such as deep learning. Second, the study used 

only a single problem that required students to determine 

their answer in symbolic representation using a multiple-

choice format. Therefore, the results are not generalizable 

to problems in other formats and representations, not to 

mention other topical areas in introductory physics. Finally, 

the study did not score the essays themselves, rather it 

predicted the scores of the problem that students wrote the 

strategy essay for, and they may have written this essay not 

necessarily before solving the problem. Future studies will 

require students to write the essays before they provide a 

solution. Further, we will use human raters to score the 

essays based on the validity of the outlined approach, and 

therefore the likelihood that the strategy will lead to a 

correct solution. 

Despite these limitations, the study has several 

implications for research and education. This study 

provides proof-of-concept that it is possible to predict 

students’ correctness of a problem with a high degree of 

accuracy, based on the essay they have written describing 

their strategy to solve the problem. Research has shown that 

asking students to describe their strategies for solving 

problems can be useful in helping them develop more 

expert-like problem solving strategies [2]. However, past 

studies did not provide feedback to students on their 

strategy writing. The time cost of providing such feedback, 

especially in large enrollment introductory classes can be 

prohibitive. The results of this study are promising because 

they provide proof of concept that it might be possible, 

using NLP methods to provide students feedback on their 

strategy writing in real time, thereby giving them the 

opportunity to reflect on, and if necessary, alter their 

problem-solving strategy before they apply it to solve the 

problem. Such a system would also allow us to investigate 



whether real time strategy feedback can improve students’ 

metacognitive skills and make them more expert-like 

problem solvers in the future. 
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