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Abstract—The use of underwater robot systems, including
Autonomous Underwater Vehicles (AUVs), has been studied as
an effective way of monitoring and exploring dynamic aquatic
environments. Furthermore, advances in artificial intelligence
techniques and computer processing led to a significant effort
towards fully autonomous navigation and energy-efficient ap-
proaches. In this work, we formulate a reinforcement learning
framework for long-term navigation of underwater vehicles in
dynamic environments using the techniques of tile coding and
eligibility traces. Simulation results used actual oceanic data from
the Regional Ocean Modeling System (ROMS) data set collected
in Southern California Bight (SCB) region, California, USA.

I. INTRODUCTION

Marine robots play a significant role in understanding the
complex spatio-temporal dynamics of the ocean environment.
Their applications range from ocean exploration, and sampling
[1], [2] to coral reef assessment [3], tracking harmful algae
blooms, and evaluating endangered marine species. In this way,
long-term deployments of aquatic agents (e.g., drifters and
gliders) are required for sensing, modeling, and predicting such
aquatic environments. However, these underactuated agents
present limitations in executing prescribed paths due to their
slow motion and physical constraints [4], [5], [6]. Another way
for ocean monitoring is to use a propeller-driven autonomous
underwater vehicle (AUV) such as the Ecomapper shown in
figure 1. Although the EcoMapper AUV can measure water
quality, currents, and bathymetric information, its mission
endurance is limited to a few hours. For this reason, the de-
velopment of a planning strategy for this vehicle is imperative
to extend its autonomy during long-range missions.

Fig. 1. The Ecomapper vehicle.

Using the formal framework of Markov decision processes
to define the interaction between the agent and its surrounding
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environment (states, actions and rewards), reinforcement learn-
ing strategies have been extensively applied to a broad range of
aquatic applications [7], [8], [9]. Given the spatial and temporal
variability of oceanic environments and the complexity of
developing accurate fluid dynamics models, we investigate
the use of model-free reinforcement learning for autonomous
navigation in aquatic environments.

II. RELATED WORK

Long-term navigation in aquatic environments is challenging
since sensing, modeling, and prediction of these environments
vary in space and time [4]. Advances in the field of machine
learning and computer processing allowed significant improve-
ments in ocean exploration, sampling, and navigation. As a
result, marine application requirements have extended towards
the use of fully-autonomous agents, and reinforcement learning
has been introduced into AUV navigation as a way to improve
its autonomy [10], [11].

In recent years, reinforcement learning has been applied to
aquatic navigation, and monitoring [12]. In [13], a marine
survey of seafloor hydrothermal plumes is performed by a
model-free reinforcement learning approach. Authors modeled
plume tracing and source finding problems as partially ob-
served Markov decision processes and compared different de-
terministic policy gradient (DPG) strategies. In [14], a learning
approach based on proximal policy optimization (PPO) is used
for patrolling and surveillance missions of cooperative under-
water vehicles. In [15], authors proposed a trajectory tracking
control for underwater vehicles based on deep reinforcement
learning. With a dual neural network scheme, one network
is responsible for selecting an action to be performed by the
agent, and the other network evaluates whether the selected
action is accurate. A deterministic gradient policy updates both
networks. In [16], authors have proposed a deep deterministic
policy gradient (DDPG) algorithm for energy optimization
of underwater agents. Although the original approach was
designed for underactuated vehicles, e.g., gliders, it can also be
adapted and deployed in propeller-driven underwater vehicles.

The design of optimal navigation strategies considering
the motion of background flow fields can contribute to the
monitoring of aquatic environment by intelligent agents [17],
[18]. Different algorithms have been explored for this pur-
pose. Graph-based planning and stochastic-based optimization
strategies for computing time and energy optimal paths for
navigation in current fields with complex spatial variability
are investigated in [19]-[23].



In this work, we formulate a learning framework for long-
term navigation of underwater vehicles in dynamic environ-
ments and simulate it with actual oceanic data.

III. MODEL AND PROBLEM DEFINITION

The marine environment is modeled as a 2-D water layer
denoted as W C R? where W is an open and bounded set. The
free state space for the agent is represented by S = W \ O,
where O represents the set of locations that are inaccessible
for the agent.

The agent is modeled as a unicycle vehicle as described by
Eq. 1.

T = vcoSP + Vg

Y = vsing + vy (1)

p=w
where v, and v, account for the velocity components of the
environment in x and y directions, w is the rotational velocity
and the heading error e is given by Eq. 2

e=¢q—¢
¢q = arctan (yd — y) )
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where ¢4 is the desired heading, and (z4,yq) is the goal
location.

Let zg € S be the initial location of the agent and
let zo € S be the goal location of the agent. We also
assume that the agent benefits from water current dynam-
ics as it drifts, moves forward with or against the cur-
rents, and rotates clockwise or counterclockwise. The ac-
tion space is defined as U = [0, Umaz]X[Omin, Pmaz] and
a finite subset of the action space U is chosen A =
{(Umaw70)7(Um%ao)v(Umaw7_¢)a(Umaa:7+¢)7(vm%a_¢)a
(Pme=, +¢),(0,0)}. Where (vmnqz,0) represents move for-
ward at maximum speed vz, (%%=,0) is move forward
at 'Umaa:/2» (vmaa:;

—¢) is turn clockwise with a given head-
ing angle ¢ and maximum forward speed, (Vymaz,+¢) is
turn counterclockwise with a given heading angle ¢ and
maximum forward speed, (“=2=, +¢) is turn clockwise with
a given heading angle ¢ and Vpar/2, (Y522, +¢) is turn
counterclockwise with a heading given angle ¢ and v4./2,
and (0,0) represents drift with background flow field. The
observation space for received sensing data is denoted as
Y = [xmina xmaz]x[ymina ymam}x[gbminv ¢max]~
This leads us to formulate the following problem.

Problem: Computing an optimal policy for the agent: Given
an ocean environment S, the action set of the agent A, the
vehicle’s motion model, the ocean flow pattern, and the goal
location xq, compute a policy m that drives the agent from
the start location xg of the environment to the goal location
TG minimizing the number of steps taken.

IV. METHOD

In this section, we detail our method for solving the problem
formulated in Section III.

A. Data Acquisition

For the simulations, we use the Regional Ocean Modeling
System (ROMS) [24] predicted oceanic currents data in the
Southern California Bight (SCB) region, California, USA, as
illustrated in Fig. 2 and 3. ROMS is an open-source ocean
model designed to support ocean studies along the western
U.S. coast, and the ROMS data set provides current velocity
prediction data consisting of three spatial dimensions (longi-
tude, latitude, and depth) associated with time.

Fig. 2. Area of interest in the South California Bight region, USA.
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Fig. 3. Velocity field generated from ROMS oceanic current prediction data
[24] in the area of interest at surface level. Green dot represents the initial
position of the agent and red dot represents the goal position.

B. Proposed Learning Framework with Function Approxima-
tion

Problems with large state spaces make the use of tabular
learning methods impractical because of the computational
effort needed to solve them [25]. In this way, approximation
solutions of reinforcement learning methods combined with
generalization techniques provide a computationally viable
approach for real-world problems.

In this work, we use SARSA(\) algorithm in combination
with a linear function approximation method based on the
stochastic semi-gradient descent to update the agent policy
based on actions taken. At each time step ¢, the agent is in
state s; € S, executes action a; € A, and receives a reward
r¢. In this way, we systematically estimate the action-value
function (s, a) for the behavior policy «. In addition to that,



SARSA(\) algorithm selects an action based on the e-greedy
strategy. That is, actions with the highest estimated values are
selected most of the time, but a random action is selected
independently of its value estimates with a small probability
€.

The action-value function approximation is defined as

q(s,a,w) = q(s,a) 3)

where w € R? is the weight vector of the semi-gradient
descent method and Eq. 4 defines the weight vector update as

Wil = Wi + a[Gt - Q(St,at,wt)] V (st a,wi) (4

where « is the step size, and G; is the return function. Using
linear function approximation, Eq. 3 can be modified to

d
i(s,a,w) =w'x(s,a) = Zwla:,(s, a) (5)
i=1

where x € R is the feature vector. Each component z;(s, a)
of the feature vector corresponds to a feature of the state-action
pair (s,a) and maps it to a real value. As a consequence,
the gradient of the approximate action-value function can be
rewritten as \/§(s, ar, wi) = x(s¢, a;) and Eq. 4 reduces to

Wit = Wi + a[Gt - Q(St,at,wt)]x(st, at) (6)

The reward function for reaching goal location is defined as

r(s,a) = 100,
’ —0.1,
where e,,, = goal location - current location is the location
error and c is a positive constant arbitrarily defined.

if [|epos|| < ¢
otherwise

@)

C. Tile Coding for feature construction

Feature construction plays an essential role in reinforcement
learning systems as it values each state of the agent. The
main techniques for feature construction of linear methods
are polynomial-based, Fourier basis, tile coding [26]. As an
example of a computationally efficient feature construction
technique, tile coding groups portions of the state space in
partitions called tiling, and each element of the tiling is called a
tile. Different tilings are offset from one another by a fixed-size
fraction of tile width [25]. If there are n tilings and each tiling
contains m x m tiles, the feature vector is x(s) € R™*™*™,

Figure 4 shows a simple representation of tile coding for
two-dimensional continuous state space. In this example, the
feature vector x(s) has a total of 8 components corresponding
to each tile in each tiling. Each component of x(s) is zero
(inactive) except active components zq(s) and x4(s) that
represent location states in which the agent is currently in. Let
the weight vector w be [wp, ..., w7]’ and the action space
be A = {ap, a1}. The feature vector regarding action ay and
action a; is x(s,ag) = x(s,a;) = [1,0,0,0,1,0,0,0] . Thus,
the action-value function approximation §(s, a, w) described in
Eq. 5 is simply Zle w; for each action in action space.

Fig. 4. Tile coding representation of a continuous 2D state space. Active
feature components have value 1 and inactive components have value 0.
Therefore, the feature vector is x(s) = [1,0,0,0,1,0,0,0].

Design considerations should be taken into account regard-
ing discrimination and generalization with tile coding. As an
example, the number and size of tiles determine the granularity
of discrimination between states, i.e., how far the agent moves
in state space in order to modify at least one component of
the feature vector. Besides that, the shape and offset distance
between tilings will affect generalization [25].

D. The eligibility trace

Eligibility trace is a mechanism to improve the computa-
tional efficiency of reinforcement learning methods, especially
in the ones involving large state spaces. It consists of a vector
z; € R? such that its components z; temporarily records
the occurrence of estimation events and keeps track of which
components of the weight vector w; have contributed to recent
state valuations. The components of the eligibility trace are
updated according to the trace-decay parameter A € [0, 1] that
provides the rate at which the trace exponentially fades away.

The action-value return function G is generalized to a
function approximation of the n-step return as

Grtin = Tep1++7" 4(St4m, Gtin, Wesn—1), t+n<T

(®
where ~ is the discount rate. Thus, the A-return Gi‘ is defined
as

T—t—1
Gr=(1=X) > XN 'Grn+XTIG 9)
n=1
In this way, the update rule for the weight vector described
by Eq. 4 is modified as follows

Wir1 = Wi + OZ[G? - Q(St,atth)] V (se,at, wi)

10
= W¢ + a5tzt ( )

where the the action-value estimation error ¢; is defined as



Ot = rep1 + YG(Set1, ary1, We) — G(St, as, W) (11)
The action-value representation of the eligibility trace is then
defined as
zZ_1 = 0
. (12)
Zy = ’Y)\Zt_l + Vq(st,at,Wt), 0 S t S T

The complete SARSA(M) procedure is summarized in the
Algorithm 1 below.

Algorithm 1 SARSA(\) with linear function approximation

Input: x(s, a), feature vector from tile coding with the set of
active features

Parameters: step size a > 0, trace decay rate A € [0,1],
e € [0,1]

Initialization: w € R?, z € R¢

1: For each episode:

2 Initialize state s

3 Choose action a according to e-greedy

4: z<+0 > Initialize elig. trace
5: For each step of episode:

6 Take action a, collect reward r, update state s’

7 0

8 For i active features in x(s,a) :

9: 0+ 60— w;

10: zi 1 > update elig. trace
11 If &’ is terminal then:

12: W~ W+ adz > Eq. 10
13: Go to next episode

14: Choose a’ according to e-greedy

15: For i active features in x(s’,a’) :

16: 06+ yw; > Eq. 11
17: W W+ adz > Eq. 10
18: Z — Yz > Eq. 12
19: s+ 8
20: a<+a

V. RESULTS AND DISCUSSION

Simulation results presented in Fig. 7 are based on real
data from the Regional Ocean Modeling System (ROMS, [3])
acquired in the Southern California Bight (SCB) region, USA.
For each simulation, we ran a set of simulations of 2000
episodes each to investigate how the agent behaves under the
effect of the given ROMS data and under the variation of
the e-greedy parameter, the step size «, and the trace decay
parameter A at surface level and at depth = Sm. For tile coding,
we used eight tilings, each tiling containing 8 x 8 tiles. Thus,
the feature vector is x(s) € R¥*8*8, Figure 5 shows the start
position, goal position, and final location of the agent for a
2000-episode simulation with background ROMS flow field,
and Fig. 6 illustrates the agent path from start to goal location
for one episode.

Figure 7(a)-(d) shows the number of steps per episode and
the return per episode under the variation of the e-greedy

parameter. Higher values of the e-greedy parameter can lead
to higher exploratory agent behavior that contributes to an
increase in the overall number of steps and a decrease in the
overall returns. At different depths, the pattern is the same,
with a slight increase in the maximum number of steps at
surface level. Figure 7(e)-(h) shows the number of steps per
episode and the return per episode under the variation of the
step-size «. The step size can be interpreted as the fraction of
the way the agent moves towards the target. Higher values of
the step size o contributed to a slight increase in the overall
number of steps as well as a slight decrease in the overall
returns either at surface level or at depth = 5 m. Figure 7(i)-
(1) shows the number of steps per episode and the return per
episode under the variation of the trace decay rate A\ of the
eligibility trace z; in Eq. 12. The maximum value of the return
is approximately the same in each simulated scenario, either at
surface level or at depth = 5 m, but the convergence is slightly
higher with higher decay rates.
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Fig. 5. Start position, goal position and final location of the agent for a 2000-
episode simulation with background ROMS flow field and e-greedy parameter
=0.15, step size « = 0.7, and trace decay parameter A = 0.9 at surface level.
The dashed red circle indicates a 10% position error as described by the reward
function (Eq. 7).
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Fig. 6. Agent path from start to goal location for one episode with background
ROMS flow field and e-greedy parameter = 0.15, step size o« = 0.7, and trace
decay parameter A = 0.9 at surface level. The dashed red circle indicates a
10% position error as described by the reward function (Eq. 7).
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Simulation of learning framework using ROMS data under the variation of the e-greedy parameter at surface level (a)-(b) and at depth = Sm (c)-(d),

step size a at surface level (e)-(f) and at depth = 5m (g)-(h) and trace decay rate A at surface level (i)-(j) and at depth = Sm (k)-(1) with respect to the total

number of steps per episode and the returns per episode.

VI. CONCLUSION AND FUTURE WORK

In this paper, we formulated a learning framework for long-
term navigation in dynamic environments and simulated it with
real oceanic data. Variations of different learning parameters
such as the e-greedy parameter, step size «, and trace decay
rate \ were analyzed with respect to the total number of steps
per episode and the returns per episode.

For future work, we plan to validate our learning framework
with deployments in aquatic environments around the Biscayne
Bay area in Florida, USA. In addition to that, we plan to
investigate the integration of bathymetric information and
water quality parameters in the proposed approach as a way
of enhancing the learning performance of the agent.
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