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Abstract—Many studies suggest that water quality parameters
can be estimated by applying statistical and machine learning
methods using remote sensing or in-situ data. However, iden-
tifying best practices for implementing solutions appears to be
done on a case-by-case basis. In our case, we have in-situ data
that covers a large period, but only small areas of Biscayne Bay,
Florida. In this paper, we combine available in-situ data with
remote sensing data captured by Landsat 8 OLI-TIRS Collection
2 Level 2(L8), Sentinel-2 L2A(S2), and Sentinel-3 OLCI L1B(S3).
The combined data set is for use in a water quality parameter
estimation application. Our contributions are two-fold. First, we
present a pipeline for data collection, processing, and co-location
that results in a usable data set of combined remote sensing and
in-situ data. Second, we propose a classification model using the
combined data set to identify areas of interest for future data
collection missions based on chlorophyll-a in-situ measurements.
To further prove our methodology, we conduct a data collection
mission using one of the predicted paths from our model.

Index Terms—remote sensing, machine learning, water quality,
logistic regression, estimation, robots, chlorophyll-a

I. INTRODUCTION

Fig. 1. A shore station using data gathered from water buoys and a satellite
to deploy an AUV on data collection missions.

In recent years, Florida’s coastal waters have endured sev-
eral algal blooms, and the Biscayne Bay in Miami experienced
significant fish kill events in August 2020 [1] and September
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2021 [2]. Investigations on the Biscayne Bay fish kills con-
clude that the cause is from a culmination of several years
of nutrient-rich run-off seeping into the bay. The source of
the nutrients is a combination of physical and environmental
factors including, but not limited to leaking septic tanks, grass
fertilizer, and trash buildup in the sewage and canal system.
The Biscayne Bay has responded with a decrease in seagrass
and drops in oxygen levels. Conditions get worse in the
summer months due to rising temperatures causing marine life
to suffocate. To minimize losses during these events, Miami
city officials respond by deploying vessels that can oxygenate
water onto the bay [1], [3].

As a result, water quality measuring, monitoring, and es-
timation are critical for threat detection and mitigation. To
further understand the nature of these harmful water events,
Florida International University [4] continuously collects in-
situ data in coastal waters by deploying water quality sensing
buoys. Deployments cover over a limited amount of locations
and also using in-house built robotic platforms with fine
spatial and temporal resolutions. There are two caveats when
using the in-situ data. First, data collection deployments are
resource-intensive. Second, collected data may only report
on small pockets of areas due to constraints such as battery
life. To overcome these problems, we consider complementing
our in-situ data with remote sensing images captured in the
same area. To expand our coverage, we plan to implement a
supervised machine learning-based approach in which in-situ
data, buoys, and robot data are for use as the labels to the
collocated and plentiful satellite training data set. [5].

Water buoy placement and data collection mission deploy-
ments are a reaction to a disaster event. This results in the loss
of data leading up to the disaster event. Our goal is to identify
locations we should target for future water buoy placements
and data collection missions. An overview of our approach
is in Figure 1 and depicts a shore station deploying in-situ
data collection robots in key areas identified by a trained
classification model.

In our work, we aim to combine the strengths of both
sources, in-situ and remote, to obtain synergies. Our approach
has the following caveat; we test our methodology using
remote sensing data points across multiple scenes captured on
different dates downloaded from Sentinel-Hub. Scene contam-
ination occur by changes in the atmosphere, clouds, rain, sun
glint, vehicles, and other disturbances. Atmospheric correction
processes attempt to correct some of these issues, however



not all processes may be appropriate for shallow estuaries
such as the Biscayne Bay. This is because the Biscayne Bay
is a Class-II water. Class-I waters are open ocean waters
and Class-II are estuaries and coastal waters. [6] Class-I and
Class-II waters differ in their inherent optical properties(IOPs).
For our experiments, we use atmospherically corrected data
sets from L8 and S2 satellites. L8 and S2 are a result from
using LaSRC [7] and Sen2Cor [8] algorithms respectively.
Algorithms designed for Case-I waters may not function
correctly on Case-II waters [6]. Selecting a proper atmospheric
correction algorithm for our ocean work environment needs to
be studied further. S3 is not atmospherically corrected, so it
is used purely to test the methodology.

II. RELATED WORK

Studies by Gholizadeh et al. [9], Nazeer et al. [10], Hafeez
et al. [11], Cruz et al. [12] examine several approaches to
applying statistical methods and machine learning algorithms
with in-situ and remote sensing data and report metrics such
as cross-validation accuracy scores and root-mean-square error
(RMSE). These findings provide some context for our exper-
iment design as we highlight relevant studies below.

A. Approaches using only in-situ data

Chen et al. [13] implemented an auto-regressive integrated
moving average (ARIMA) model to predict chlorophyll-a to
detect algal blooms in the Taihu Lake of Jiangsu, China. For
11 months, water quality samples were collected every 1-3
days. The ARIMA model was implemented using chlorophyll-
a measurements and compared against a multi-variate linear
regression (MVLR) model that uses water temperature, water
transparency, total inorganic nitrogen concentration, and phos-
phate concentration. The results of this study showed that the
ARIMA model outperformed the MVLR model despite being
a uni-variate method. Logistic regression has been used to
effectively predict and classify algal blooms by Yun [14] using
in-situ data collected by the National Institute of Fisheries
Science in South Korea.

B. Approaches using only Remote Sensing data

There are cases where remote-sensing is the only data avail-
able for a given area of interest and we must rely on deriving
measurements using band ratios and spectral indices. Mishra
et al. [15] propose the Normalized Difference Chlorophyll
Index (NDCI) for use in chlorophyll-a estimation on Case-
II waters. Caballero et al. [16] use NDCI to detect algal
blooms in coastal waters, but use in-situ data to be able to
detect harmful algal blooms caused by toxic algae species.
Furthermore, Tang et al. [17] built logistic regression models
using remote sensing data from 2013 to predict the distribution
area of the Enteromorpha prolifera in the Yellow Sea, China.

C. Combining in-situ and remote sensing using only one scene

NDCI is possible to derive using S2 and S3. [18] L8
is missing bands for the red-edge spectral range between
700nm and 720nm for this particular index. [16] However,

this does not mean L8 images cannot be used to derive a
chlorophyll-a measurement. Yang et al. [19] conducted a study
comparing different band ratios and their correlation with
chlorophyll-a in-situ measurements. They co-located in-situ
data with remote sensing data of two L8 images, one for
Summer and the other for Fall. In-situ data was collected by
20 different sampling stations in Jordan Lake, North Carolina,
within two days of the date of the closest L8 image. Their
results showed that the correlations found between the two
co-located remote sensing data differed in the ratio band
with the highest correlation and could mean that different
models should be implemented for different seasons. Han and
Jordan [20] identify Band1(443nm)

Band3(561.5nm) as the L8 band ratio with
the highest correlation with chlorophyll-a measurements in
Pensacola Bay, Florida.

III. PROBLEM FORMULATION

We consider the area of interest as a 2-D environment where
the ocean surface is denoted as W ⊂ R2. We discretize the
workspace into a 2-D grid. Let C be the collection of all 2-D
cells within a bounding convex polygon P where P ⊆ W .
Each cell has a center in the form of WGS84 coordinates
denoted as (x, y), where x, y ∈ R. The geographic coordinate
(x, y) represents the center of an equal-sized grid tile. This
grid size represents the resolution of the remote sensing data.
Let Q ← (d, b, i,m) be a satellite query configuration where
d is a satellite identifier and b, i,m are lists of requested band
measurements, indices, and metadata respectively. We will rep-
resent the remote sensing data as ρ : C×Q×T1 → Rk, where
T1 = [0, t1) is the time interval data and k ← |b| + |i| + |m|
is the total number of variables. The unit of frequency of the
remote sensing data examined is days (e.g., five days in the
satellite data we use, S2).

Our domain will have a fixed buoy B at position (xb, yb)
in cell cb [4]. This buoy collects in-situ data modeled as
β : T2 → Rn, where T2 = [0, t2) represent the time
collection interval and n is the number of in-situ sensors [4].
In the buoys we are using, the sensors include dissolved
oxygen, temperature, salinity, and turbidity. The measurement
frequency of this buoy is higher, in our example observations
are made every 15 minutes [4].

We will also deploy an Autonomous Underwater Vehicle
(AUV) A. The state-space for the vehicle is defined as X =
W×[0, 2π) in which [0, 2π) is the set of angles that represents
the vehicle’s orientations. We use the unicycle vehicle model
as described in [21]. A path for the vehicle is denoted as
π : T3 → X , where T3 = [0, t3) is the deployment mission
time.

Problem 1. Computing a critical data collection plan for
the AUV based on remote and in-situ information: Given
an environmentW of interest, a bounding convex polygon P , a
satellite configuration Q, a collection of remote sensing data
ρ, a collection of buoy data β, produce a path π that visit
locations of importance.



IV. METHODS

A. Data Collection

TABLE I
RESEARCH BUOYS DEPLOYMENTS

Buoy Deployment Detailsa
Location Period Longitude Latitude

Miami Shores 08/27/2020-09/19/2021 -80.16712 25.86171
Haulover Inlet 10/05/2018-07/30/2020 -80.13311 25.90273

North Bay Village 08/13/2020-01/27/2021 -80.14203 25.83991
aMay have small gaps for servicing and maintenance.

TABLE II
DATA COLLECTED

Buoy Sourcea
Location In-Situ Landsat 8 Sentinel-2 Sentinel-3

Miami Shores 37,042 24 78 702
Haulover Inlet 47,532 43 138 818

North Bay Village 15,345 10 33 315
aCollected every 15 minutes, 16 days, 5 days, and 1-2 days respectively

Fig. 2. Research buoy deployment locations.

Fig. 3. The ocean work environment W is colored in yellow.

First, we collect data from the water buoys which are
stored as comma-separated value files(CSV) with 26 columns
to create β [4]. However, we only examine four metadata
columns (date, time, latitude, and longitude) and n = 6

measurement columns (pH, Temperature, Salinity, Turbidity,
Oxygen, and Chlorophyll-a). Table I shows the locations and
time span of the water buoy deployments. Figure 2 illustrates
the location of the water buoy deployments.

We create P by collecting remote sensing data using several
satellite query configurations for L8, S2, and S3 satellites and
a bounding polygon at the location of the water buoy and
querying a public satellite data store for the time interval
covered by the water buoys [4]. Each water buoy placement
is associated with a pixel on a satellite image capture. Pixels
represent one or more longitude and latitude coordinates. If
the pixel is contaminated by land, such as a nearby island, we
select a bounding box with the nearest pixel associated only
with coordinates to water. Figure 3 depicts our ocean work en-
vironmentW . Table II shows a count of in-situ measurements
and satellite images gathered for each deployment location.

B. Classification Model

We will formalize the problem of finding regions with
high chlorophyll-a as a classification or supervised learning
problem. More concretely, a two-class classification where y
is the class where 0 represents normal chlorophyll-a levels and
1 represents high levels. The features used for the classification
x represent the spectral bands and indices data from an image
captured by L8, S2, or S3.

hw(x) =
1

1 + exp(−wTx)
(1)

p(y = 1|x;w) = hw(x) (2)

p(y = 0|x;w) = 1− hw(x) (3)

We would like a score that represents how likely a given
pixel has high chlorophyll-a. We will use logistic regression
where the classification hypothesis is represented by a logistic
function in equation 1 [22]. w represents the parameters that
need to be learned. We will interpret the output of the logistic
regression as equation 2 and equation 3.

TABLE III
TOTAL NUMBER OF CO-LOCATED DATA POINTS

Satellite Chlorophyll-a
Landsat 8 15
Sentinel-2 118
Sentinel-3 1071

The model will be fitted using multi-variate samples and
the indices will be included with the raw band values from
remote sensing satellite images co-located with the in-situ
measurements. Any quality assurance bands, data masks, and
probabilities are not included in the samples. To start the co-
location process, we first eliminate data points from satellite
images that have errors or are contaminated by clouds using
data masks. L8 data can derive a water mask using the quality
assurance band and S2 data has a cloud mask available. We
attempt to remove in-situ data with errors by removing values



that are all zero values or “NaN” values, but a quality assur-
ance column is not available at the moment. Any appropriate
indices such as NDCI for S2 and S3 images are now calculated
and concatenated to the in-situ data. For L8 we use the indices
identified by Yang et al. [19]. Next, the in-situ data are re-
sampled to daily maximums. Each satellite image data point
is paired with a measurement column in the re-sampled in-
situ data. If a satellite image data point is unable to be paired
with a measurement recorded on the same date of capture,
it is paired with the last known value. The total number of
co-located data points for each satellite is in Table III. Then
each co-located data point to classified as a “1” if it meets or
exceeds a selected threshold, otherwise it is classified as a “0”.
For chlorophyll-a, the threshold we select is 72µg/L as it is the
minimum value chosen for one of the highest concentration
groups in [19].

C. Robot Path Construction

Once the classification model is fitted, we make a request
to Sentinel Hub for an image with the most recent cloud-
free pixels within a bounding box representing our area of
interest in the Biscayne Bay. Sentinel Hub returns an image
with multiple pixels. Each pixel covers multiple longitude
and latitude coordinates, this means multiple entries for the
same pixel are needed to render it as an RGB image. Since
multiple longitude and latitude coordinates are associated
with each pixel, we drop duplicate pixels from each satellite
image and keep the coordinates of the first pixel encountered.
The remaining pixels is input for the classification model’s
prediction step. The model assigns a probability percentage
for each class to each pixel and the top ten pixels is input
for a Christofides algorithm implementation; this results in
an ordered path that is within a factor of 3/2 of the optimal
path [23]. The resulting path is π and is translated to a valid
navigation path for a data collection robot. The translation is
necessary since not all robots may be able to make sharp turns
or run into obstacles.

V. RESULTS

TABLE IV
5-FOLDS ACCURACY SCORES

Satellite Score
Landsat 8 66%
Sentinel-2 87%
Sentinel-3 88%a

abased on atmospherically uncorrected satellite images.

The performance of the classification model is measured
using a K-Folds cross validator set to use 5 folds with shuffling
and random state disabled. Table IV shows accuracy scores of
66% fitted with co-located L8 images, 87% fitted with co-
located S2 images, 88% fitted with co-located S3 images. The
model predicts which coordinates have high concentrations
of chlorophyll-a in several areas of interest of varying sizes.

TABLE V
CLASSIFICATION INPUT DETAILS

Satellite Input Size(Pixels) Resolutiona

Landsat 8 690× 1523 30m
Sentinel-2 132× 174 10m
Sentinel-3 2245× 2311 300m
aApproximate resolution of RGB bands, others bands may be up-sampled.

Please note S3 performance is based on atmospherically
uncorrected satellite images and should hold no meaning.

The size of the input images needs to be appropriate to the
satellite used to train the model or there may not be enough
pixels to classify. For example, attempting to classify an L8
image with the same bounding box used for S2 will result
in classifying less than ten pixels. Table V shows the reso-
lution of each RGB pixel, however not all band information
downloaded for each satellite is of the same resolution and
may have been up-sampled. Sentinel-Hub API use nearest-
neighbor interpolation by default when requesting pixels with
resolution greater than the source for L8, S2, and S3 [24]. All
areas of interest are within the ocean work environment W so
RGB pixels are expected to be different shades of blue due
to different water quality, and the amount of sunlight or cloud
shadow over the water. White pixels may represent clouds or
objects such as boats and piers. Green pixels could indicate
an increase in chlorophyll-a.

A. Classification Results - BBC Campus Pier

Our first area of interest is a pier located at the Florida
International University Biscayne Bay Campus. Due to how
small this area is, images from S2 are ideal because of the
10m resolution bands. This area is also where we conducted
an actual data collection mission planned using our model.
Figure 4(a) shows a YSI EcoMapper IVER2 AUV [25] de-
ployed at the area of interest conducting the calculated data
collection mission escorted by a manned vessel. The bounding
box representing the area of interest is in Figure 4(b) and the
RGB bands for the S2 image used by the model to make its
classification is in Figure 4(c). And Figure 4(d) shows the
Christofides path used in the motion planning of the deployed
IVER2 AUV.

B. Classification Results - Haulover

The next area of interest expands the previous one more into
the Haulover Inlet. For this area, we examine the use of L8
imagery. Unlike the previous area, the resolution of the 30m
resolution bands of L8 gives us many pixels for the model to
classify. We also have easy access to a water mask using the
quality assurance band in the Level 2 collection to help us
filter out contaminated pixels. The bounding box representing
this area of interest is in Figure 5(a) and the RGB bands for
the L8 image used by the model to make its classification is
in Figure 5(b). Figure 5(c) shows the Christofides path to be
used in the motion planning of a future robot data collection
mission.



(a) (b)

(c) (d)

Fig. 4. (a) The AUV deployed to the area of interest in the ocean work
environment; (b) The bounding convex polygon; (c) A recent S2 RGB image
capture downloaded from Sentinel Hub within the bounding convex polygon.
(d) Resulting path using our classification model to identify areas with highest
chlorophyll-a concentrations on the Biscayne Bay pier at Florida International
University Biscayne Bay Campus.

(a) (b) (c)

Fig. 5. (a) The bounding convex polygon; (b) A recent L8 RGB image
capture downloaded from Sentinel Hub within the bounding convex polygon.
(c) Resulting path using our classification model to identify areas with the
highest chlorophyll-a concentrations on the Biscayne Bay Haulover Inlet near
Florida International University Biscayne Bay Campus.

C. Classification Results - North Biscayne Bay

(a) (b) (c)

Fig. 6. (a) The bounding convex polygon; (b) A recent S3 OLCI RGB image
capture downloaded from Sentinel Hub within the bounding convex polygon.
(c) Resulting path using our classification model to identify areas with the
highest chlorophyll-a concentrations near the Biscayne Bay North Bay Village.

The last area of interest we examine is in North Bay
Village and it is located near the center in between all the
water buoy deployment locations. The bounding box depicted
in Figure 6(a) was primarily chosen due to size limitations
enforced by the Sentinel Hub API. Figure 6(b) shows a
S3 RGB image downloaded from Sentinel Hub. The 300m
resolution of S3 requires a large bounding box to get a good
amount of pixels for our model to classify. Figure 6(c) shows
the Christofides path to be used in the motion planning of a
future robot data collection mission. For this area of interest,
the starting point of the closest pier happens to be outside the
bounding box.

VI. CONCLUSIONS AND FUTURE WORK

The results reported are based on actual ocean model
prediction data that demonstrate the applicability of our
method. We implemented and applied a logistic regression
model to a chlorophyll-a classification problem using three
different satellites and achieved acceptable accuracy scores.
The model can be further improved through the selection of an
atmospheric correction algorithm, different indices, increasing
the number of in-situ measurements collected, different data
masks, changing the classification model algorithm, and other
avenues.

This work primarily focused on implementing models based
on chlorophyll-a, but the water buoy in-situ data has five other
measurements to explore. Measurements such as temperature
and salinity can be used to identify the conditions in which
a toxic algae species can bloom [26]. Furthermore, Kim
et al. [27] show remote sensing can be used to monitor
dissolved oxygen of coastal waters. A classification model
based on oxygen can help city officials determine where to
send oxygenation vessels on the Biscayne Bay in the summer
months.

A promising atmospheric correction processor is the ACO-
LITE processor. Vanhellemont and Ruddick [28] show ACO-
LITE corrected L8 and S2 images can be used to effectively
detect and map phytoplankton blooms in coastal and inland
waters. Caballero et al. [16] also use the ACOLITE process
for their work due to its effectiveness to correct sun glint.
We have already begun investigating the applicability of the



ACOLITE processor to remote sensing data of the Biscayne
Bay.

We are also interested in using other remote sensing data
sets. Claverie et al. [29] present the Harmonized L8 and
S2 surface reflectance data set. The rate of revisit is higher
by combining L8 and S2 data sets. Another promising data
set is from the recently launched Landsat 9 satellite which
complements L8 remote sensing data and offers improved
observations of coastal waters. [30]

Additional work includes accounting for bathymetric infor-
mation to correct remote sensing data, introduction of other
variables of interest, and conducting more field experiments
with AUVs as well as unmanned surface vehicles (USVs) and
unmanned aerial vehicles (UAVs).
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