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ON THE 8\bfitpi -CRITICAL-MASS THRESHOLD OF A
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Abstract. In this paper, we proposed a coupled Patlak--Keller--Segel--Navier--Stokes system,
which has dissipative free energy. On the plane \BbbR 2, if the total mass of the cells is strictly less than
8\pi , classical solutions exist for any finite time, and their Hs-Sobolev norms are almost uniformly
bounded in time. For the radially symmetric solutions, this 8\pi -mass threshold is critical. On the
torus \BbbT 2, the solutions are uniformly bounded in time under the same mass constraint.
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1. Introduction. We consider the following coupled Patlak--Keller--Segel--Navier--
Stokes (PKS--NS) equation modeling chemotaxis in a moving fluid:\left\{       

\partial tn+u \cdot \nabla n+\nabla \cdot (n\nabla c) = \Delta n,
 - \Delta c = n,
\partial tu+(u \cdot \nabla )u+\nabla p = \Delta u+ n\nabla c, \nabla \cdot u = 0,
n(t = 0, x) = n0(x), u(t = 0, x) = u0(x), x \in \BbbR 2.

(1.1)

Here n, c denote the cell density and the chemical density, respectively. The divergence-
free vector field u indicates the ambient fluid velocity. The first equation describes
the time evolution of the cell density subject to chemotaxis-induced aggregation, dif-
fusion caused by random Brownian motion, and transportation by ambient fluid flow
u. Since the cells secrete the chemo-attractants, there exists a deterministic relation
between the two distributions n and c. The second equation specifies this connection.
The assumption behind this is that the chemo-attractant diffuses much faster than
the fluid advection and cell aggregation and reaches equilibrium in a faster time-scale.
The Newtonian potential is applied to determine c uniquely, i.e., c =  - 1

2\pi log | \cdot | \ast n.
The third equation on the divergence-free vector field u describes the fluid motion
subject to forcing induced by the cells. The reasoning behind the coupling n\nabla c is
that in order to make the cells move without acceleration, the fluid exerts frictional
force on the moving cells, so reaction forces act on the fluid. The force n\nabla c in the
Navier--Stokes equation matches the aggregation nonlinearity in the cell density evo-
lution. The same forcing appears in the Nernst--Planck--Navier--Stokes system; see,
e.g., [8].

If the ambient fluid velocity is identically equal to zero, i.e., u \equiv 0, the system
(1.1) is the classical Patlak--Keller--Segel (PKS) equation, which was first derived by
Patlak [25] and Keller and Segel [17]. The literature on the classical PKS model is
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2926 YISHU GONG AND SIMING HE

extensive, and we refer the interested reader to the representative works [2], [4], [3],
[14], and the references therein. The classical PKS model preserves the total mass
M := | | n(t)| | 1 = | | n0| | 1 and is L1 critical. If the initial data n0 has total mass M
strictly less than 8\pi , then the smooth solution exists for all time, whereas if the initial
data has total mass strictly larger than 8\pi and has a finite second moment, then the
solution blows up in finite time; see, e.g., [4] and [16].

If the ambient fluid flow is not identically zero, i.e., u \not \equiv 0, the analysis of the
long-time dynamics of the systems (1.1) is delicate. There is no heuristic argument to
rule out global solutions with large masses. Moreover, the underlying fluid flow might
suppress the potential chemotactic blow-up in the system. This assertion is based
on a series of works on the suppression of chemotactic blow-up through passive fluid
flows initiated by Kiselev and Xu [18]. To simplify the analysis, in these models, we
note that the ambient fluid velocity fields u are assumed to be independent of the time
evolution of the cell densities. In this series, there are two main fluid mechanisms for
suppressing the blow-up. The first mechanism is the fluid-mixing-induced enhanced
dissipation effect. The works in this direction are [1], [12], and [15]. The other
mechanism for suppressing the blow-up is the fast splitting scenario introduced in the
paper [13].

The model (1.1) takes into account the active chemotaxis-fluid interaction. The
literature concerning coupled chemotaxis-fluid systems is vast. We refer the interested
reader to the papers [23], [24], [22], [9], [11], [30], [31], [29], [7], [20], [32], [33], [34],
[35], [36], and the references therein. A number of works are devoted to the study
of parabolic-parabolic PKS equations subject to active fluid motions. The coupling
between the chemotaxis and the fluid in these models is through the gravity-buoyancy
relation. The closest models to ours are proposed by Lorz [24] and Kozono, Miura,
and Sugiyama [20]. The chemical densities c in these models are also determined
through elliptic-type equations. On the other hand, these models consider buoyancy
forcing instead of the reaction force from the cells.

Another biologically relevant coupled PKS--NS model was introduced by Tuval et
al. [30], \left\{   \partial tn+u \cdot \nabla n+\nabla \cdot (n\nabla c) = \Delta n,

\partial tc+u \cdot \nabla c = \Delta c - nf(c),
\partial tu+(u \cdot \nabla )u+\nabla p = \Delta u+ n\nabla \phi , \nabla \cdot u = 0.

Here the chemicals (oxygen) are transported by the fluid stream u and are consumed
at a rate of f(c) > 0. Due to buoyancy, the cells exert force n\nabla \phi on the fluid. Since
the chemicals are consumed along the dynamics, one expects that the cell density will
not concentrate to form finite-time singularities. However, the parabolic nature of
the chemical evolution makes the analysis challenging. In the papers [32], [33], [34],
[36], global regularity, long-time behavior, and the Leray structure of the system are
explored in detail.

In this paper, we study the critical-mass threshold, below which the solutions of
the system (1.1) are guaranteed to exist for all finite time. The main advantage of
the proposed model (1.1) is that it possesses a naturally decreasing free energy,

E[n, u] :=

\int 
\BbbR 2

n log n - 1

2
nc+

1

2
| u| 2dx.(1.2)

Moreover, since the vector field u is divergence-free, the density equation for n pos-
sesses a divergence structure and hence preserves the L1 norm.

For the whole plane, we prove the following theorem.
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ON THE MASS THRESHOLD OF A PKS--NS SYSTEM 2927

Theorem 1 (plane \BbbR 2 case). Consider solutions (n, u) to (1.1) subject to initial
conditions (n0, u0) \in Hs(\BbbR 2) \times (Hs(\BbbR 2))2, s \geq 3, and n0(1 + | x| 2) \in L1(\BbbR 2). If the
initial mass is strictly less than 8\pi ,

M := | | n0| | L1(\BbbR 2) < 8\pi ,

then there exists a constant C, which depends on the initial data, such that the fol-
lowing estimate holds:

| | n(t)| | Hs + | | u(t)| | Hs \leq C(n0, u0, \delta )e
\delta t \forall t \in [0,\infty ),(1.3)

where 0 < \delta is an arbitrary small constant. Therefore, the strong solutions (n, u) exist
on an arbitrary finite-time interval [0, T ] \forall T <\infty .

Remark 1. To our knowledge, this is the first critical-mass result in the coupled
PKS--NS systems.

Remark 2. The exponential bounds stated in the theorem might not be optimal.
We conjecture that the solutions subject to subcritical mass are uniformly bounded
in time.

In the radially symmetric setting, the long-time behavior of the solutions is better
understood. We will show that the chemotactic blow-up occurs if the initial density
n0 has total mass | | n0| | L1 > 8\pi and has finite second moment (Corollary 1). On the
other hand, if the total mass is strictly less than 8\pi , and the initial second moment is
finite, then the L2 norm of the solutions (n, curlu) decay to zero as time approaches
infinity with algebraic rate (Theorem 7).

Remark 3. Extending Theorem 1, which concerns the parabolic-elliptic Patlak--
Keller--Segel--Navier--Stokes system, to the fully parabolic setting is both interesting
and challenging.

One of the main obstacles to obtaining uniform-in-time bounds on the solutions
is the lack of control over the second moment. To properly illustrate that this is the
only obstacle, we choose to study the model (1.1) on torus \BbbT 2 and show that under
the same subcritical-mass constraint, the solutions are uniformly bounded in time.
To this end, due to its compatibility with the boundary conditions involved, we have
to adjust (1.1) accordingly. Here we specified the equation on the torus \BbbT 2:\left\{           

\partial tn+u \cdot \nabla n+\nabla \cdot (n\nabla c) = \Delta n,

 - \Delta c = n - n, n =
1

| \BbbT 2| 

\int 
\BbbT 2

ndx,

\partial tu+(u \cdot \nabla )u+\nabla p = \Delta u+ n\nabla c, \nabla \cdot u = 0,
n(t =0, x) = n0(x), u(t = 0, x) = u0(x), x \in \BbbT 2.

(1.4)

Without loss of generality, we assume that the size of the torus is | \BbbT | = 1. The
chemical c is determined by c(x) =  - 

\int 
\BbbT 2 B\BbbT 2(x, y)n(y)dy, where B\BbbT 2(x, y) is the

Green's function of the Laplacian \Delta on the torus \BbbT 2.
The second main theorem of the paper describes the global well-posedness of

equations (1.4).

Theorem 2 (torus \BbbT 2 case). Consider the solution to (1.4) subject to Hs initial
data (n0, u0) \in Hs(\BbbT 2) \times (Hs(\BbbT 2))2, s \geq 3. If the initial mass M := | | n0| | L1(\BbbT 2) is
strictly less than 8\pi , i.e., M < 8\pi , then the solution (n, u) has a uniform-in-time
bounded Hs Sobolev norm, i.e.,

| | n| | L\infty 
t ([0,\infty );Hs) + | | u| | L\infty 

t ([0,\infty );Hs) \leq CHs(| | n0| | Hs , | | u0| | Hs) <\infty .
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2928 YISHU GONG AND SIMING HE

Remark 4. We comment that similar uniform-in-time bounds are obtained in the
parabolic-parabolic setting given that the total mass is small enough [35].

1.1. Ideas of the proof. We discuss the idea behind Theorem 1. Recall the
free energy E for the system (1.1) and the second moment V ,

V [n] :=

\int 
\BbbR 2

n| x| 2dx.(1.5)

The existence of a decreasing free energy is crucial to obtaining sharp critical-mass
results in PKS-type equations. We recall that for the classical PKS equation (u \equiv 0),
there exists a dissipative free energy,

E\mathrm{c}\mathrm{l}\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{i}\mathrm{c} =

\int 
\BbbR 2

n log n - 1

2
ncdx.

However, if the fluid transport structure is introduced in the cell density evolution
equation, the classical free energy will no longer decay in general. This is one of the
main difficulties in analyzing the coupled PKS--NS systems. However, our coupled
system (1.1) possesses a new dissipative free energy (1.2). This is the main content
of the next lemma.

Lemma 1. Consider regular solutions (n, u) to (1.1). Further assume that (n, u) \in 
Lipt([0, T ];H

s
x(\BbbR 2)\times (Hs

x(\BbbR 2))2), s \geq 3, and n(1 + | x| 2) \in L\infty 
t ([0, T ];L1

x(\BbbR 2)). Then
the free energy (1.2) is dissipated along the dynamics (1.1), i.e.,

E[n(t), u(t)](1.6)

= E[n0, u0] - 
\int t

0

\int 
\BbbR 2

n| \nabla log n - \nabla c| 2dxds - 
\int t

0

\int 
\BbbR 2

| \nabla u| 2dxds \forall t \in [0, T ].

Proof. Direct calculation using integration by parts and a divergence-free condi-
tion of u yields that

d

dt
E = - 

\int 
\BbbR 2

n| \nabla log n - \nabla c| 2dx - 
\int 
\BbbR 2

nu \cdot \nabla cdx

 - 
\int 
\BbbR 2

| \nabla u| 2dx - 
\int 
\BbbR 2

u \cdot ((u \cdot \nabla )u)dx - 
\int 
\BbbR 2

u \cdot \nabla pdx+

\int 
\BbbR 2

nu \cdot \nabla cdx

= - 
\int 
\BbbR 2

n| \nabla log n - \nabla c| 2dx - 
\int 
\BbbR 2

| \nabla u| 2dx \leq 0.

Here, in the last line we apply the relation that\int 
\BbbR 2

u \cdot ((u \cdot \nabla )u)dx =

\int 
\BbbR 2

u \cdot \nabla 
\biggl( 
| u| 2

2

\biggr) 
dx = 0.

Now integration in time yields (1.6).

Before utilizing the dissipative free energy to derive global well-posedness of the
solutions, we present the following local well-posedness result, whose proof will be
postponed to the appendix.

Theorem 3 (local well-posedness). Consider the solutions to (1.1) subject to
Hs initial data, i.e., (n0, u0) \in Hs(\BbbR 2) \times (Hs(\BbbR 2))2, s \geq 3. There exists a small
constant \epsilon = \epsilon (| | n0| | L1\cap H1 , | | u0| | H1) such that the Sobolev Hs norms of the solutions
are bounded on the time interval [0, \epsilon ],

| | n(t)| | Hs + | | u(t)| | Hs <\infty \forall t \in [0, \epsilon ].
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ON THE MASS THRESHOLD OF A PKS--NS SYSTEM 2929

Next we recall from the classical PKS literature that the entropy bound of the
solution is essential to propagating higher regularities of solutions; see, e.g., [4], [3].
We present here a similar criterion which guarantees propagation of regularity.

Theorem 4. Consider solution (n, u) to (1.1) subject to initial conditions (n0, u0) \in 
Hs(\BbbR 2)\times (Hs(\BbbR 2))2, s \geq 3, n0(1 + | x| 2) \in L1(\BbbR 2). If the positive part of the entropy
is bounded, i.e.,

S+[n(t)] :=

\int 
\BbbR 2

n(t, x) log+ n(t, x)dx \leq CL \mathrm{l}\mathrm{o}\mathrm{g}L <\infty \forall t \in [0, T ],(1.7)

and the energy of the fluid u is bounded, i.e.,

| | u(t)| | 22 \leq C2
u;L2 <\infty \forall t \in [0, T ],(1.8)

then the solution has bounded Hs, s \geq 3, norms on the same time interval,

| | n(t)| | Hs + | | u(t)| | Hs \leq CHs(CL \mathrm{l}\mathrm{o}\mathrm{g}L, Cu;L2 , | | n0| | Hs , | | u0| | Hs) <\infty \forall t \in [0, T ].

We recall the standard procedure for checking the criterion (1.7) for the classical PKS
equations. In the subcritical regime, i.e., | | n0| | 1 < 8\pi , combining the decaying free
energy (1.6) and the logarithmic Hardy--Littlewood--Sobolev inequality (2.24) yields
the uniform-in-time bound on the entropy,

sup
t
S[n(t)] := sup

t

\int 
\BbbR 2

n(t, x) log n(t, x)dx

=sup
t

\biggl( \int 
\BbbR 2

n(t, x) log+ n(t, x)dx - 
\int 
\BbbR 2

n(t, x) log - n(t, x)dx

\biggr) 
=: sup

t
(S+[n(t)] - S - [n(t)]) <\infty .

Here log+, log - denote the positive and the negative parts of the logarithmic function,
respectively. As a result, we observe that as long as the negative component of the
entropy S - [n] is bounded, the criterion (1.7) is checked. It is classical to apply the
second moment V bound (1.5) to estimate the negative part of the entropy S - [n]
(see, e.g., inequality (2.25)). We summarize the above heuristics in the next theorem,
with consideration of our system.

Theorem 5. Consider solutions (n, u) to (1.1) on the time interval [0, T ], subject
to initial conditions (n0, u0) \in (Hs(\BbbR 2), (Hs(\BbbR 2))2), s \geq 3, n0(1 + | x| 2) \in L1(\BbbR 2). If
the initial mass is strictly less than 8\pi ,

M := | | n0| | L1(\BbbR 2) < 8\pi ,

and the second moment is bounded on the time interval [0, T ],

V [n(t)] \leq CV <\infty \forall t \in [0, T ],(1.9)

then the entropy bound (1.7) and the energy bound (1.8) hold, i.e.,\int 
\BbbR 2

n(t, x) log+ n(t, x)dx+ | | u(t)| | 22 \leq C(CV ,M,E[n0, u0]) <\infty \forall t \in [0, T ].

The condition (1.9) can be easily checked for the following two cases: (a) solutions
on the bounded domain \BbbT 2 (Theorem 2), and (b) radially symmetric solutions on \BbbR 2.
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2930 YISHU GONG AND SIMING HE

Corollary 1 (plane \BbbR 2, radially symmetric solutions). Consider (1.1) subject
to Hs radially symmetric initial data (n0, u0) \in Hs(\BbbR 2)\times (Hs(\BbbR 2))2, s \geq 3. Further
assume that the second moment is finite

\int 
\BbbR 2 n0| x| 2dx < \infty . If the initial mass M :=

| | n0| | L1(\BbbR 2) is strictly less than 8\pi , i.e., M < 8\pi , then the solution (n, u) has a bounded
Hs Sobolev norm for any finite time t < \infty . On the other hand, if the total mass
of the initial density n0 is greater than 8\pi , i.e., | | n0| | L1(\BbbR 2) > 8\pi , then the solution
(n, u) blows up in finite time.

However, it is difficult to apply Theorem 5 to general solutions to (1.1) on the
plane \BbbR 2 because controlling second moment (1.9) requires | | u| | \infty information, which
is typically missing in the a priori estimates. Here we develop a new method for
checking criterion (1.7).

We modify the free energy E (1.2) so that the new negative component of the
entropy S - [n] is bounded in terms of the L1 norm of the density n. As a result, there
is no need for the second moment control. To this end, we replace the logarithmic
function by its degree two Taylor approximation when the argument n is smaller
than the designated threshold. The drawback is that the modified free energy can
potentially grow slowly. However, this is enough to derive the S+[n] bound for any
finite time. As a result, we end up with the exponential bounds with arbitrarily small
growth rate in the Hs Sobolev norms. Uniform-in-time bounds on the solutions are
still open. Details of this modified free energy can be found in section 2.

Theorem 6. Consider regular solutions to (1.1), subject to initial conditions
(n0, u0) \in Hs(\BbbR 2) \times (Hs(\BbbR 2))2, s \geq 3, n0(1 + | x| 2) \in L1(\BbbR 2). If the initial mass
is strictly less than 8\pi ,

M := | | n0| | L1(\BbbR 2) < 8\pi ,

then the entropy bound (1.7) and the energy bound (1.8) hold on any finite-time in-
terval [0, T ] \subset [0,\infty ). Moreover, for any small constant \delta > 0, there exists a constant
C(E[n0, u0],M, \delta ) such that

S+[n(t)] + | | u(t)| | 22 \leq C(E[n0, u0],M, \delta ) + \delta t \forall t \in [0,\infty ).

From the linearly growing bound on the positive component of the entropy S+[n]
and the energy | | u(t)| | 22, one can derive the exponential-in-time bound on the Hs-
Sobolev norms (1.3) through standard energy estimates. This concludes the proof of
Theorem 1.

In general, the long-time asymptotic behavior of the solution to (1.1) is not clear.
However, for radially symmetric solutions, we have the following description.

Theorem 7. Consider radially symmetric solutions to (1.1) subject to the
subcritical-mass constraint | | n0| | 1 < 8\pi and the conditions in Corollary 1. The L2-
norms of the solutions undergo polynomial decay in the sense that

| | n(t)| | 2L2 + | | curlu(t)| | 2L2 \leq C

1 + 2t
\forall t \in [0,\infty ),

where C is a constant depending on the initial data.

Remark 5. By applying the same argument as in the proof of Theorem 4, we
obtain that the Hs norms of the solutions are uniformly bounded in time.

The paper is organized as follows. In section 2, we treat the planar case and prove
Theorems 1, 4, 5, and 7 and Corollary 1. In section 3, we treat the torus case and
prove Theorem 2.
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ON THE MASS THRESHOLD OF A PKS--NS SYSTEM 2931

Notation. Throughout the paper, the constants B,C are changing from line to
line. However, the constants C(\cdot ), e.g., CL2 , CL \mathrm{l}\mathrm{o}\mathrm{g}L, will be defined and fixed unless
otherwise stated. An exception to this rule are the constants CGNS and CN ; they
are the constants appearing in the Gagliardo--Nirenberg--Sobolev inequalities and the
Nash inequalities and are changing from line to line.

We denote \BbbP as the Leray projection, i.e.,

\BbbP u = u - \nabla \Delta  - 1(\nabla \cdot u).(1.10)

Here the operator should be understood as the pseudodifferential operators. Explicitly
speaking, for vector field u = (u1, u2), we have

\BbbP ui(x) =

\left(  2\sum 
j=1

\biggl( 
\delta ij  - 

kikj
| k| 2

\biggr) \widehat uj(k)
\right)  \vee 

, i \in \{ 1, 2\} ,

where\widehat (\cdot ) and the (\cdot )\vee denote the Fourier transform and inverse transform on the plane
\BbbR 2 or the torus \BbbT 2, respectively, and the \delta ij is the Kronecker delta function. Further
properties of the Leray projection are that it is a self-adjoint Fourier multiplier and
a continuous map from L2 to L2. Now we define the Stokes operator as \BbbP ( - \Delta ).
Furthermore, we define the bilinear form

B(u, v) = \BbbP ((u \cdot \nabla )v).

Properties of these operators can be found in classical literature; e.g., see Chapter 2
of [21].

The following multi-index notation is adopted:

\partial \alpha x = \partial \alpha 1
x1
\partial \alpha 2
x2
, | \alpha | = | \alpha 1| + | \alpha 2| .

Moreover, we denote \beta < \alpha if \beta 1 \leq \alpha 1, \beta 2 \leq \alpha 2, and at least one of the inequalities
is strict.

Recall the classical Lp norms and Sobolev Hs norms,

| | f | | Lp
x
= | | f | | p =

\biggl( \int 
| f | pdx

\biggr) 1/p

; | | f | | Lq
t ([0,T ];Lp

x) =

\Biggl( \int T

0

| | f(t, x)| | q
Lp

x
dt

\Biggr) 1/q

;

| | f | | Hs
x
=

\left(  \sum 
| \alpha | \leq s

| | \partial \alpha x f | | 2L2
x

\right)  1/2

; | | f | | \.Hs
x
=

\left(  \sum 
| \alpha | =s

| | \partial \alpha x f | | 2L2
x

\right)  1/2

;

| | \nabla if | | L2 =

\left(  \sum 
| \alpha | =i

| | \partial \alpha x f | | 2L2

\right)  1/2

.

2. Planar case: \BbbR \bftwo . This section is organized as follows. We first prove Theo-
rem 4. The proof will serve as a prototype for our later analysis on the torus \BbbT 2. Next
we prove Theorem 5, which assumes that the cell density n has a bounded second
moment on the time interval [0, T ]. Then we prove Corollary 1 by showing that the
second moment bound (1.9) is checked in the radially symmetric setting. Finally, we
introduce the modified free energy to prove Theorem 1.
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2932 YISHU GONG AND SIMING HE

Proof of Theorem 4. In this proof, we focus on deriving the a priori estimates
for the Hs, s \geq 3, Sobolev norms of the solutions (n, u). Then by a standard limit-
ing procedure and contraction mapping argument, one can deduce the existence and
uniqueness of the solutions to (1.1). The proof is decomposed into steps.

Step 1. Lp estimate of the density n. First, we recall that due to the divergence
structure of the cell density equation in (1.1), the total mass of the cells is conserved
along the dynamics. Therefore, we set M := | | n(t)| | 1 = | | n0| | 1. In order to estimate
the Lp, p > 1, norm of the density n, we decompose it as follows:

n = (n - K)+ +min\{ n,K\} , K > 1.

Since min\{ n,K\} has a bounded Lp norm, it is enough to estimate the size of (n - K)+.
To this end, define the following quantity:

\eta K :=

\int 
\BbbR 2

(n - K)+dx.

Since the positive part of the entropy is bounded on the interval [0, T ] (1.7), direct
estimation yields that

\eta K \leq 
\int 
\BbbR 2

(n - K)+
log+ n

logK
dx \leq CL \mathrm{l}\mathrm{o}\mathrm{g}L

logK
.(2.1)

As a result, if we choose the vertical cut-off level K large enough, the \eta K can be made
arbitrarily small. Next, we combine the smallness of \eta K (2.1), the divergence-free
condition of the fluid vector field u, the Gagliardo--Nirenberg--Sobolev inequality, and
the Nash inequality to estimate the time evolution of the L2 norm of the truncated
density (n - K)+ as follows:

1

2

d

dt
| | (n - K)+| | 22 \leq  - 

\int 
| \nabla (n - K)+| 2dx(2.2)

+
1

2

\int 
(n - K)3+dx+

3

2
K

\int 
(n - K)2+dx+K2M

\leq  - (1 - CGNS\eta K)| | \nabla (n - K)+| | 22 + 2K| | (n - K)+| | 22 +K2M

\leq  - 1

2
| | \nabla (n - K)+| | 22 + 2K| | (n - K)+| | 22 +K2M

\leq  - 1

2CNM2
| | (n - K)+| | 42 + 2K| | (n - K)+| | 22 +K2M.

As a result, we see that

| | n(t)| | 2 \leq | | (n(t) - K)+| | 2 + | | min\{ n(t),K\} | | 2
\leq C(| | n0| | 2, CN ,M,K) +K1/2M1/2 \forall t \in [0, T ].

Since in the estimation above we choose K such that

CL \mathrm{l}\mathrm{o}\mathrm{g}L

logK
\leq 1

2CGNS
,

we have that K can be any constant greater than exp\{ 2CGNSCL \mathrm{l}\mathrm{o}\mathrm{g}L\} . To conclude,
we have that

| | n(t)| | 2 \leq CL2(| | n0| | 2,M,CL \mathrm{l}\mathrm{o}\mathrm{g}L) <\infty \forall t \in [0, T ].(2.3)
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ON THE MASS THRESHOLD OF A PKS--NS SYSTEM 2933

Direct estimation of the time evolution of the L4 norm of the cell density n with
the L2 bound on the cell density n (2.3), the Gagliardo--Nirenberg--Sobolev equality,
and the Nash inequality yields

1

4

d

dt
| | n| | 44 \leq  - 3

4
| | \nabla (n2)| | 22 +

3

4
| | n2| | 5/25/2

\leq  - 3

4
| | \nabla (n2)| | 22 + CGNS | | \nabla (n2)| | 1/22 | | n2| | 22

\leq  - | | n2| | 42
CN | | n2| | 21

+ CGNS | | n2| | 8/32

\leq  - | | n| | 84
CNC4

L2

+ CGNS | | n| | 16/34 .

Therefore we obtain that

| | n(t)| | 4 \leq CL4(| | n0| | 4, CL2(| | n0| | 2,M,CL \mathrm{l}\mathrm{o}\mathrm{g}L)) <\infty \forall t \in [0, T ].

Combining Morrey's inequality, the Calderon--Zygmund inequality, and the Lp

bounds of the density n (2.5) yields that

| | \nabla c(t)| | L\infty (\BbbR 2) \leq C \| n(t)\| L3(\BbbR 2) \leq C\nabla c;\infty (CL4 ,M) <\infty \forall t \in [0, T ].(2.4)

Since the vector field u is divergence-free, the fluid transport term u \cdot \nabla n has no
impact on the direct Lp energy estimate on the cell density n. Now by the standard
Moser--Alikakos iteration, we have that there exists a finite constant C1,\infty such that
the Lp norms are bounded as follows:

| | n(t)| | L1\cap L\infty \leq C1,\infty (| | n0| | L1\cap L\infty , CL \mathrm{l}\mathrm{o}\mathrm{g}L) <\infty \forall t \in [0, T ].(2.5)

For the iteration argument in the classical PKS equation setting, we refer the readers
to the Lemma 3.2 in [5] or the paper [19]. For the PKS equation subject to ambient
divergence-free vector fields, we refer the reader to the appendix of [18].

Step 2. Hs estimate of the density n and the velocity u. Before estimating the
\.H1 norms of the solutions (n, u), we present two estimates on the chemical gradient
\nabla c. Combining the Lp boundedness of the Riesz transform for p \in (1,\infty ) on \BbbR 2 and
the Lp bounds of the density n (2.5) yields that

| | \nabla 2c| | 2 = | | \nabla 2( - \Delta )n| | 2 \leq C| | n| | 2 \leq CC1,\infty ,

| | \nabla 2c| | 4 = | | \nabla 2( - \Delta )n| | 4 \leq C| | n| | 4 \leq CC1,\infty .
(2.6)

After these preparations, we first estimate the \.H1 norm of the velocity fields u. We
apply the Leray projection \BbbP (1.10) on the fluid equation (1.1) to eliminate the pressure
term and end up with

(2.7) \partial tu+B(u, u) = \Delta u+ \BbbP (n\nabla c), B(u, u) := \BbbP ((u \cdot \nabla )u).

Here we use the fact that \BbbP u = u since u is divergence-free. Moreover, since the
symbol of \BbbP is bounded, the projection \BbbP maps L2 space to L2 space. We also recall
the following classical identity: for divergence-free u \in L2 \cap H2,\int 

B(u, u) \cdot \Delta udx = 0.(2.8)
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2934 YISHU GONG AND SIMING HE

The proof of the identity, which involves the stream function of u, can be found in
[21, Lemma 2.1.16]. The H2-regularity required by this equality is guaranteed by
the local well-posedness theorem 3. Now we estimate the time evolution of the \.H1

seminorm of the velocity u with the equality (2.8), the divergence-free condition of
u, the self-adjoint property of \BbbP , the Gagliardo--Nirenberg--Sobolev inequality, the
chemical gradient estimates (2.4) and (2.6), and the Lp controls of the cell density n
(2.5) as follows:

1

2

d

dt

2\sum 
j=1

| | \partial xju| | 22 =  - 
2\sum 

j=1

2\sum 
k=1

\int 
| \partial xk

\partial xju| 2dx

 - 
2\sum 

j=1

\int 
\partial xj

B(u, u) \cdot \partial xj
udx+

2\sum 
j=1

\int 
\partial xj

\BbbP (n\nabla c) \cdot \partial xj
udx

\leq  - 1

2
| | \nabla 2u| | 22 + C| | \nabla 2u| | 2| | n| | 2| | \nabla c| | \infty 

\leq  - | | \nabla u| | 42
2CGNS | | u| | 22

+ C| | n| | 22C2
1,\infty .

As a result, we recall the assumption (1.8) and obtain that

| | \nabla u(t)| | L2
x
\leq Cu;H1(Cu;L2 , | | \nabla u0| | 2, | | n0| | L1\cap L\infty ) \forall t \in [0, T ].(2.9)

Similarly, we estimate the time evolution of the \.H1 seminorm of n using the divergence-
free property of u, the Gagliardo--Nirenberg--Sobolev inequality, the chemical gradient
estimate (2.4), (2.6), the \nabla u bound (2.9), and the L2 bound of the density n (2.3) as
follows:

1

2

d

dt
| | \nabla n| | 22

\leq  - 1

2
| | \nabla 2n| | 22 + | | \nabla n| | 24| | \nabla u| | 2 + | | \nabla 2n| | 2| | \nabla n| | 2| | \nabla c| | \infty + | | \nabla 2n| | 2| | n| | 4| | \nabla 2c| | 4

\leq  - 1

2
| | \nabla 2n| | 22 + C| | \nabla 2n| | 2| | \nabla n| | 2| | \nabla u| | 2

+ | | \nabla 2n| | 2| | \nabla n| | 2| | \nabla c| | \infty + C| | \nabla 2n| | 2| | n| | 2| | \nabla n| | 2

\leq  - 1

2
| | \nabla 2n| | 22 +

1

4
| | \nabla 2n| | 22 + C

\bigl( 
| | \nabla u| | 22 + | | \nabla c| | 2\infty + | | n| | 22

\bigr) 
| | \nabla n| | 22

\leq  - | | \nabla n| | 42
4CGNS | | n| | 22

+ C
\bigl( 
C2

u;H1 + C2
\nabla c;\infty + C2

L2

\bigr) 
| | \nabla n| | 22.

Now by standard ODE theory, we obtain that

| | \nabla n(t)| | 22 \leq C
\bigl( 
C2

u;H1 + C2
\nabla c;\infty + C2

L2

\bigr) 
C2

L2 + | | \nabla n0| | 22 \forall t \in [0, T ].

Combining this with (2.3), (2.4), and (2.9) yields

| | \nabla n(t)| | 2 + | | \nabla u(t)| | 2(2.10)

\leq CH1(CL \mathrm{l}\mathrm{o}\mathrm{g}L, Cu;L2 , | | n0| | L1\cap L\infty , | | n0| | H1 , | | u0| | H1) <\infty \forall t \in [0, T ].
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ON THE MASS THRESHOLD OF A PKS--NS SYSTEM 2935

An iteration argument yields the Hs (s \geq 2, s \in \BbbN ) estimates. To set up the
iteration, we make the assumption

(2.11)

| | n(t)| | Hs - 1 + | | u(t)| | Hs - 1

\leq CHs - 1(CL \mathrm{l}\mathrm{o}\mathrm{g}L, Cu;L2 , | | n0| | L1\cap L\infty , | | n0| | Hs - 1 , | | u0| | Hs - 1) <\infty \forall t \in [0, T ],

and prove that

| | n(t)| | Hs + | | u(t)| | Hs

\leq CHs(CL \mathrm{l}\mathrm{o}\mathrm{g}L, Cu;L2 , | | n0| | L1\cap L\infty , | | n0| | Hs , | | u0| | Hs) <\infty \forall t \in [0, T ].

Since we have already obtained the H1 bound of the solution (n, u), by iterating this
argument one can propagate any Hs-Sobolev norm as long as the conditions (1.7) and
(1.8) are satisfied.

We focus on the estimate of the density n first. Applying the density equation
(1.1), the time evolution of the \.Hs seminorm of n can be expressed using integration
by parts as follows:

1

2

d

dt

\sum 
| \alpha | =s

| | \partial \alpha xn| | 22 +
\sum 
| \alpha | =s

| | \nabla \partial \alpha xn| | 22

=  - 
\sum 
| \alpha | =s

\int 
\partial \alpha xn\partial 

\alpha 
x (u \cdot \nabla n)dx - 

\sum 
| \alpha | =s

\int 
\partial \alpha xn\partial 

\alpha 
x\nabla \cdot (\nabla cn)dx =: \scrI n + \scrI \scrI n.

(2.12)

Now we estimate the first term \scrI n in (2.12). We further decompose it into two parts:

\scrI n =
\sum 
| \alpha | =s

\int 
(\partial \alpha xn)u \cdot \nabla (\partial \alpha xn)dx

+
\sum 
| \alpha | =s

\sum 
(0,0)<\beta \leq \alpha 

\biggl( 
\beta 1
\alpha 1

\biggr) \biggl( 
\beta 2
\alpha 2

\biggr) \int 
\partial \alpha xn(\partial 

\beta 
xu) \cdot \nabla (\partial \alpha  - \beta 

x n)dx =: \scrI n;1 + \scrI n;2.
(2.13)

The divergence-free property of the vector field u and integration by parts yield the
vanishing of the first term \scrI n;1 in (2.13), i.e.,

\scrI n;1 =
\sum 
| \alpha | =s

\int 
u \cdot \nabla 

\biggl( 
| \partial \alpha xn| 2

2

\biggr) 
dx =  - 

\sum 
| \alpha | =s

\int 
(\nabla \cdot u)

\biggl( 
| \partial \alpha xn| 2

2

\biggr) 
dx = 0.(2.14)

To estimate the second term \scrI n;2 in (2.13), we first apply the H\"older inequality to
obtain that

\scrI n;2 \leq 
\sum 

(0,0)<\beta \leq \alpha ,
| \alpha | =s

\biggl( 
\beta 1
\alpha 1

\biggr) \biggl( 
\beta 2
\alpha 2

\biggr) \int 
\partial \alpha xn\nabla (\partial \alpha  - \beta 

x n)\partial \beta xudx

\leq 
\sum 

(0,0)<\beta \leq \alpha ,
| \alpha | =s

\biggl( 
\beta 1
\alpha 1

\biggr) \biggl( 
\beta 2
\alpha 2

\biggr) 
| | n| | \.Hs | | \nabla \partial \alpha  - \beta 

x n| | Lp | | \partial \beta xu| | Lq ,
1

p
+

1

q
=

1

2
.D
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Applying the Gagliardo--Nirenberg--Sobolev inequalities yields the bounds

| | \nabla \partial \alpha  - \beta 
x n| | Lp \leq CGNS | | n| | \theta 1\.Hs+1

| | n| | 1 - \theta 1
\.H1

, \theta 1 =
| \alpha |  - | \beta | + 1 - 2

p

s
;

| | \partial \beta xu| | Lq \leq CGNS | | u| | \theta 2\.Hs+1
| | u| | 1 - \theta 2

\.H1
, \theta 2 =

| \beta |  - 2
q

s
= 1 - \theta 1.

Combining these two estimates, we see that the H1 estimate (2.10) with the previous
estimation and the application of Young's inequality yield that

\scrI n;2 \leq CGNS | | n| | \.Hs (| | n| | \.Hs+1 + | | u| | \.Hs+1)CH1 .

Combining this inequality and the \scrI n;1 estimate (2.14) and the decomposition (2.13)
yields the estimate

\scrI n \leq C| | n| | \.Hs (| | n| | \.Hs+1 + | | u| | \.Hs+1)CH1

\leq 1

8
| | n| | 2\.Hs+1 +

1

8
| | u| | 2\.Hs+1 + C(CHs - 1)| | n| | 2\.Hs .(2.15)

This completes the estimation of the integral \scrI n in (2.12). Next we estimate the
integral \scrI \scrI n in (2.12) as follows:

\scrI \scrI n =
\sum 
| \alpha | =s

\int 
\nabla (\partial \alpha xn) \cdot \partial \alpha x (n\nabla c)dx \leq C| | n| | \.Hs+1 | | n\nabla c| | \.Hs .

Now by the product estimate for Sobolev functions, the chemical gradient estimate
(2.4), the Lp bound on the cell density (2.5), the assumption (2.11), and the L2

boundedness of the Riesz transform, we have that

\scrI \scrI n \leq C| | n| | \.Hs+1(| | n| | Hs | | \nabla c| | L\infty + | | \nabla c| | Hs | | n| | L\infty )

\leq 1

8
| | n| | 2\.Hs+1 + C(C1,\infty )| | n| | 2\.Hs + C(CHs - 1 , C1,\infty ).(2.16)

Combining the \scrI n estimate (2.15), the \scrI \scrI n estimate (2.16), and equation (2.12), we
obtain that there exists a constant C depending on the Hs - 1 norm of the solution
(n, u) (2.11) and the Lp estimate of n (2.5) such that the following inequality holds:

1

2

d

dt

\sum 
| \alpha | =s

| | \partial \alpha xn| | 22 +
1

2

\sum 
| \alpha | =s

| | \nabla \partial \alpha xn| | 22

\leq 1

8
| | u| | 2\.Hs+1 + C(CHs - 1 , C1,\infty )| | n| | 2\.Hs + C(CHs - 1 , C1,\infty ).

(2.17)

Next we focus on the Hs estimate of u. Direct calculation with the velocity
equation (2.7) yields that

1

2

d

dt

\sum 
| \alpha | =s

| | \partial \alpha x u| | 22 +
\sum 
| \alpha | =s

| | \nabla \partial \alpha x u| | 22

=  - 
\sum 
| \alpha | =s

\int 
\partial \alpha x u \cdot \partial \alpha xB(u, u)dx+

\int 
\partial \alpha x u \cdot \BbbP \partial \alpha x (n\nabla c)dx =: \scrI u + \scrI \scrI u.

(2.18)D
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Now we estimate each term in the decomposition (2.18). For the \scrI u term, we decom-
pose it into three terms as follows:

\scrI u =
\sum 
| \alpha | =s

\int 
(\partial \alpha x u) \cdot ((u \cdot \nabla )\partial \alpha x u)dx(2.19)

+
\sum 
| \alpha | =s

\sum 
\beta <\alpha 
| \beta | \geq 1

\biggl( 
\beta 1
\alpha 1

\biggr) \biggl( 
\beta 2
\alpha 2

\biggr) \int 
(\partial \alpha x u) \cdot ((\partial \beta xu \cdot \nabla )\partial \alpha  - \beta 

x u)dx

+
\sum 
| \alpha | =s

\int 
\partial \alpha x u \cdot ((\partial \alpha x u \cdot \nabla )u)dx =: \scrI u;1 + \scrI u;2 + \scrI u;3.

Now we estimate each term in the decomposition (2.19). For the first term, we apply
the divergence-free property of the vector field u to obtain

\scrI u;1 =
\sum 
| \alpha | =s

\int 
u \cdot \nabla 

\biggl( 
| \partial \alpha x u| 2

2

\biggr) 
dx = 0.

For the second term, direct application of the H\"older inequality yields that

\scrI u;2 \leq 
\sum 
| \alpha | =s

\sum 
\beta <\alpha ,
| \beta | \geq 1

\biggl( 
\beta 1
\alpha 1

\biggr) \biggl( 
\beta 2
\alpha 2

\biggr) \int 
| \partial \alpha x u| | \partial \beta xu| | \nabla \partial \alpha  - \beta 

x u| dx

\leq C
\sum 
| \alpha | =s

\sum 
\beta <\alpha ,
| \beta | \geq 1

| | u| | \.Hs | | \partial \beta xu| | p| | \nabla \partial \alpha  - \beta 
x u| | q,

1

p
+

1

q
=

1

2
.

Now we recall the following Gagliardo--Nirenberg--Sobolev inequalities:

| | \partial \beta xu| | Lp \leq CGNS | | u| | \theta 3\.Hs+1
| | u| | 1 - \theta 3

\.H1
, \theta 3 =

| \beta |  - 2
p

s
;

| | \nabla \partial \alpha  - \beta 
x u| | Lq \leq CGNS | | u| | \theta 4\.Hs+1

| | u| | 1 - \theta 4
\.H1

, \theta 4 =
(| \alpha |  - | \beta | + 1) - 2

q

s
= 1 - \theta 3.

Combining these inequalities and the estimation above yields that

\scrI u;2 \leq CGNS | | u| | \.Hs+1 | | u| | \.Hs | | u| | \.H1 .

Now we estimate the last term \scrI u;3 in the decomposition (2.19) using the H\"older
inequality and the Gagliardo--Nirenberg--Sobolev inequality as follows:

\scrI u;3 \leq C
\sum 
| \alpha | =s

| | u| | \.Hs | | \partial \alpha x u| | L4 | | \nabla u| | L4 \leq CGNS | | u| | \.H1 | | u| | \.Hs+1 | | u| | \.Hs .

Combining the estimations of the \scrI u;1, \scrI u;2, and \scrI u;3 terms above and the decompo-
sition (2.19) and applying Young's inequality yield the following:

\scrI u \leq 1

8
| | u| | 2\.Hs+1 + C(CHs - 1 , C1,\infty )| | u| | 2\.Hs + C(CHs - 1 , C1,\infty ).(2.20)

Now we estimate the term \scrI \scrI u in (2.18) with the product estimate for Sobolev func-
tions, the chemical gradient estimate (2.4), the Lp bound on the cell density n (2.5),
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2938 YISHU GONG AND SIMING HE

the iteration assumption (2.11), the divergence-free property of the vector field u, the
fact that projection \BbbP is self-adjoint, and the L2 boundedness of the Riesz transform
as follows:

(2.21)

\scrI \scrI u \leq | | u| | \.Hs | | n\nabla c| | \.Hs \leq C| | u| | \.Hs(| | n| | Hs | | \nabla c| | \infty + | | n| | \infty | | \nabla c| | Hs)

\leq | | u| | 2\.Hs + C| | n| | 2Hs | | \nabla c| | 2\infty + C| | n| | 2\infty | | \nabla c| | 2Hs

\leq | | u| | 2\.Hs + C(C1,\infty )| | n| | 2\.Hs + C(CHs - 1 , C1,\infty ).

Combining the estimates for \scrI u (2.20) and \scrI \scrI u (2.21) with the decomposition (2.18),
we end up with the estimate on the time evolution of the \.Hs seminorm of vector field
u,

1

2

d

dt

\sum 
| \alpha | =s

| | \partial \alpha x u| | 22 +
1

2

\sum 
| \alpha | =s

| | \nabla \partial \alpha x u| | 22(2.22)

\leq C(CHs - 1 , C1,\infty )(| | u| | 2\.Hs + | | n| | 2\.Hs) + C(CHs - 1 , C1,\infty ).

Finally, combining the estimates (2.17) and (2.22), we have that

(2.23)

1

2

d

dt

\bigl( 
| | u| | 2\.Hs + | | n| | 2\.Hs

\bigr) 
\leq  - 1

4
| | n| | 2\.Hs+1  - 

1

4
| | u| | 2\.Hs+1 + C(CHs - 1 , C1,\infty )(| | n| | 2\.Hs + | | u| | 2\.Hs) + C(CHs - 1 , C1,\infty ).

Applying the Gagliardo--Nirenberg--Sobolev inequality, we end up with the following:

 - | | f | | 2\.Hs+1 \leq  - 
| | f | | 2+

2
s

\.Hs

CGNS | | f | | 
2
s

L2

.

Applying this upper bound on the dissipative terms appeared in (2.23) and recalling
the Lp estimate (2.5) and the L2 energy condition of the vector fields u (1.8), we
obtain that

1

2

d

dt
(| | u| | 2\.Hs + | | n| | 2\.Hs) \leq  - 

| | n| | 2+
2
s

\.Hs

4CGNSC
2
s
1,\infty 

 - 
| | u| | 2+

2
s

\.Hs

4CGNSC
2
s

u;L2

+ C(CHs - 1 , C1,\infty )(| | n| | 2\.Hs + | | u| | 2\.Hs) + C(CHs - 1 , C1,\infty ).

Therefore we have that

| | n(t)| | Hs + | | u(t)| | Hs \leq CHs(| | n0| | Hs , | | u0| | Hs , CHs - 1 , C1,\infty , Cu;L2) <\infty \forall t \in [0, T ].

This concludes the proof.

Next we prove Theorem 5.

Proof of Theorem 5. The proof involves two steps. First, we estimate the entropy

S[n] =

\int 
\BbbR 2

n log ndx.
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ON THE MASS THRESHOLD OF A PKS--NS SYSTEM 2939

Then we estimate its negative part S - [n] through the second moment bound. Since
S+[n] = S[n] + S - [n], these estimates yield the bound on the positive part of the
entropy S+[n].

To estimate the entropy, we combine the decay estimate of the free energy (1.2)
and the following logarithmic Hardy--Littlewood--Sobolev inequality (see, e.g., [6]):

Theorem 8 (logarithmic Hardy--Littlewood--Sobolev inequality). For all non-
negative functions f \in L1(\BbbR 2) such that f log f and f log(1 + | x| 2) belong to L1(\BbbR 2),
there exists a constant C(M) such that the following inequality holds:

\int 
\BbbR 2

f log fdx+
2

M

\int \int 
\BbbR 2\times \BbbR 2

f(x)f(y) log | x - y| dxdy \geq  - C(M), M =

\int 
\BbbR 2

fdx > 0.

(2.24)

Combining (2.24) and Lemma 1 yields that

E[n0, u0] \geq E[n, u] =

\biggl( 
1 - M

8\pi 

\biggr) \int 
\BbbR 2

n log ndx

+
M

8\pi 

\biggl( \int 
\BbbR 2

n log ndx+
2

M

\int \int 
\BbbR 2\times \BbbR 2

n(x) log | x - y| n(y)dxdy
\biggr) 
+

| | u| | 22
2

\geq 
\biggl( 
1 - M

8\pi 

\biggr) 
S[n] - M

8\pi 
C(M) +

| | u| | 22
2

.

As a result, we obtain an a priori bound on the entropy S[n] and on the L2 norm of
the velocity | | u| | 2 for any finite time

| | u(t)| | 22
2(1 - M

8\pi )
+ S[n(t)] \leq 

E[n0, u0] +
M
8\pi C(M)

1 - M
8\pi 

\leq C(M,E[n0, u0]) <\infty \forall t \in [0, T ].

Therefore, we obtain the bound on the entropy S[n] and on the energy | | u| | 22.
Next we estimate the negative part of the entropy S - [n]. To this end, we recall

the inequality \int 
\BbbR 2

g log - gdx \leq 1

2

\int 
\BbbR 2

g| x| 2dx+ log(2\pi )

\int 
\BbbR 2

gdx+
1

e
, g \geq 0,(2.25)

whose proof can be found in Lemma 2.2 of [3]. Since the second moment is assumed
to be bounded (1.9), direct application of the inequality yields the estimate

| | u(t)| | 2 +
\int 
\BbbR 2

n(t, x) log+ n(t, x)dx \leq C(CV , E[n0, u0],M) <\infty ,

on the interval [0, T ]. Now all the conditions in Theorem 4 are checked, and this
concludes the proof of Theorem 5.

Proof of Corollary 1. It is enough to show that if the initial data (n0(x), u0(x))
is radially symmetric, then the second moment is bounded for any finite time, i.e.,\int 

n(t, x)| x| 2dx \leq 
\int 
n0(x)| x| 2dx+ 4Mt.(2.26)

Explicit calculation of the time evolution of the second moment yields that

d

dt

\int 
n(t, x)| x| 2dx = 4M  - 1

2\pi 
M2  - 

\int 
x2\nabla \cdot (un)dx.(2.27)
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To estimate the last term in the above equality, we will rewrite it in a different form.
To this end, we introduce the stream function of the velocity field u,

\phi := \Delta  - 1curlu, ( - \partial x2 , \partial x1)\phi = u.

Since (1.1) preserves radial symmetry, the solutions (n, u) are radially symmetric. As
a result, the stream functions \phi are also radially symmetric, which implies (x1\partial x2

 - 
x2\partial x1

)\phi \equiv 0. Applying these facts, we rewrite the last term in the time evolution of
the second moment in the following manner:\int 

| x| 2\nabla \cdot (un)dx =  - 2

\int 
x\cdot undx =  - 2

\int 
x\cdot \nabla \bot \phi ndx = 2

\int 
(x1\partial x2 - x2\partial x1)\phi ndx = 0.

Combining this and (2.27) yields (2.26). Since the second moment condition (1.9)
is checked, Theorem 5 can be applied. This completes the proof of the first part of
Corollary 1.

If the total mass is greater than 8\pi , then by the same argument as above, we
observe that

d

dt

\int 
n(t, x)| x| 2dx = 4M  - 1

2\pi 
M2 < 0.

Hence if the solution (n, u) is regular on the time interval

[0, T \star ], T \star :=
8\pi 

4M(M  - 8\pi )

\int 
n0| x| 2dx,

then the second moment becomes zero at time T \star , which is impossible. Hence the
solution must blow up on or before time T \star . This concludes the proof of the second
part of Corollary 1.

Now we introduce the modified free energy E\Gamma and its properties. We introduce
the modified free energy

E\Gamma [n, u] =

\int 
n\Gamma (n) - nc

2
+

| u| 2

2
dx,(2.28)

where \Gamma is defined as

\Gamma (n) =

\biggl\{ 
log n, n \geq \eta ;

log \eta + \eta  - 1 (n - \eta ) - \eta  - 2

2 (n - \eta )
2
, n < \eta ;

\eta := \eta (\delta ,M) = min

\biggl\{ 
1,

\delta 

M

\biggr\} 
.

(2.29)

The \Gamma function is chosen such that it matches log when n is large but is bounded
from below when n is small. Here, we have replaced the function log(\eta + (n - \eta )) by
its degree two Taylor expansion centered at \eta when n < \eta and use the original log
function when n \geq \eta .

The next lemma states that the modified free energy (2.28) grows at most linearly
under the dynamics (1.1).

Lemma 2. The time derivative of the modified free energy E\Gamma [n, u], defined in
(2.28), satisfies the following estimate:

(2.30)
d

dt
E\Gamma [n(t), u(t)] \leq \delta \forall t \in [0,\infty ).

D
ow

nl
oa

de
d 

07
/3

0/
22

 to
 1

52
.3

.1
02

.2
54

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE MASS THRESHOLD OF A PKS--NS SYSTEM 2941

Furthermore, the following quantity is bounded:

 - 
\int 
n<1

n\Gamma (n)dx \leq 
\biggl( 
 - log \eta (\delta ,M) +

3

2

\biggr) 
M.(2.31)

Proof. Taking the time derivative of E\Gamma [n(t), u(t)] and applying the divergence-
free condition of the vector field u and integration by parts yield

(2.32)

d

dt

\biggl( \int 
n\Gamma (n) - nc

2
+

| u| 2

2
dx

\biggr) 
=

\int 
(n)t(\Gamma (n) - c)dx+

\int 
n(\Gamma (n))tdx+

\int 
u \cdot utdx

=  - 
\int 
(n\nabla log n - \nabla cn) \cdot (\Gamma \prime (n)\nabla n - \nabla c)dx - 

\int 
u \cdot \nabla n\Gamma (n)dx+

\int 
\nabla \cdot (un)cdx

 - 
\int 

\nabla (n\Gamma \prime (n)) \cdot (n\nabla log n - \nabla cn)dx - 
\int 
u \cdot \nabla nn\Gamma \prime (n)dx - 

\int 
| \nabla u| 2dx+

\int 
nu \cdot \nabla cdx

=:

7\sum 
i=1

Ti.

Applying integration by parts, we have that the third term T3 and the seventh term
T7 in (2.32) cancel each other. Now we consider the second term T2 and the fifth term
T5. Since the \Gamma function is finite near the origin, we define the following functions:

\scrE (r) =
\int r

0

\Gamma (s)ds, \scrG (r) =
\int r

0

s\Gamma \prime (s)ds.

The second term T2 and fifth term T5 can be explicitly calculated using the divergence-
free condition \nabla \cdot u = 0 and integration by parts as follows:

T2 = - 
\int 
u \cdot \nabla (\scrE )dx =

\int 
(\nabla \cdot u)\scrE dx = 0;

T5 = - 
\int 
u \cdot \nabla (\scrG )dx =

\int 
(\nabla \cdot u)\scrG dx = 0.

Next we estimate the terms T1 + T4. Applying the definition of \Gamma (2.29), the cut-off
threshold \eta = min\{ \delta 

M2 , 1\} , and the fact that \Gamma \prime (n) = 2\eta  - 1  - \eta  - 2n for n \leq \eta , direct
calculation yields the following equality:

T1 + T4 = - 
\int 
n\geq \eta 

(n\nabla log n - \nabla cn) \cdot 
\biggl( 
1

n
\nabla n - \nabla c

\biggr) 
dx

 - 
\int 
n<\eta 

(n\nabla log n - \nabla cn) \cdot 
\bigl( \bigl( 
2\eta  - 1  - \eta  - 2n

\bigr) 
\nabla n - \nabla c

\bigr) 
dx

 - 
\int 
n<\eta 

\bigl( 
2\eta  - 1  - \eta  - 2n

\bigr) 
\nabla n \cdot (n\nabla log n - \nabla cn)dx

+

\int 
n<\eta 

n\eta  - 2\nabla n \cdot (n\nabla log n - \nabla cn)dx.

Notice the inequality

sup
n<\eta 

\sqrt{} 
( - 3\eta  - 2n+ 4\eta  - 1)n \leq 2\surd 

3
< 2,
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which implies

T1 + T4

= - 
\int 
n\geq \eta 

n| \nabla log n - \nabla c| 2dx - 
\int 
n<\eta 

\bigl( 
4\eta  - 1  - 3\eta  - 2n

\bigr) 
| \nabla n| 2dx

+

\int 
n<\eta 

\sqrt{} 
( - 3\eta  - 2n+ 4\eta  - 1)n

\sqrt{} 
( - 3\eta  - 2n+ 4\eta  - 1)n\nabla c \cdot \nabla ndx

 - 
\int 
n<\eta 

n| \nabla c| 2dx+

\int 
n<\eta 

\nabla n \cdot \nabla cdx

\leq  - 
\int 
n\geq \eta 

n| \nabla log n - \nabla c| 2dx - 
\int 
n<\eta 

\bigl( 
4\eta  - 1  - 3\eta  - 2n

\bigr) 
| \nabla n| 2dx

+
2\surd 
3

\int 
n<\eta 

\sqrt{} 
( - 3\eta  - 2n+ 4\eta  - 1)n| \nabla c| | \nabla n| dx - 

\int 
n<\eta 

n| \nabla c| 2dx+

\int 
n<\eta 

\nabla n \cdot \nabla cdx.

Completing a square using the 2nd, 3rd, and 4th terms in the last line yields

T1 + T4 \leq  - 
\int 
n\geq \eta 

n| \nabla log n - \nabla c| 2dx - 2

3

\int 
n<\eta 

\bigl( 
4\eta  - 1  - 3\eta  - 2n

\bigr) 
| \nabla n| 2dx

 - 
\int 
n<\eta 

\biggl( \sqrt{} 
4\eta  - 1  - 3\eta  - 2n

1\surd 
3
| \nabla n|  - 

\surd 
n| \nabla c| 

\biggr) 2

dx+

\int 
n<\eta 

\nabla n \cdot \nabla cdx.(2.33)

Claim. The following estimate holds:\int 
n<\eta 

\nabla n \cdot \nabla cdx \leq \delta .

To prove the claim, we make the qualitative assumption that n \in C\infty (\BbbR 2) \cap Hs(\BbbR 2),
s \geq 3. However, the final estimate will be independent of the higher regularity norms
of the densities n and c. We apply the choice of \eta (2.29) and integration by parts to
obtain\int 
n<\eta 

\nabla n\cdot \nabla cdx =

\int 
\nabla (min\{ n, \eta \} )\cdot \nabla cdx =  - 

\int 
min\{ n, \eta \} \Delta cdx \leq 

\int 
\eta ndx \leq \eta M \leq \delta .

Here we applied the equality \nabla n1n<\eta = \nabla (min\{ n, \eta \} ) almost everywhere if n \in 
W 1,p(\BbbR 2), for 1 < p <\infty . This is a natural consequence of Exercise 17 in Evans [10,
Chapter 5]. To explicitly justify integration by parts, one can use positive the C\infty 

c

function to approximate the W 1,4/3 function min\{ n, \eta \} and the W 1,4 function \nabla c.
Therefore, combining the claim and estimate (2.33), we deduce that

T1 + T4 \leq  - 
\int 
n\geq \eta 

n| \nabla log n - \nabla c| 2dx - 2

3

\int 
n<\eta 

\bigl( 
4\eta  - 1  - 3\eta  - 2n

\bigr) 
| \nabla n| 2dx+ \delta \leq \delta .

This finishes the treatment of all the Ti's in (2.32). Therefore, the estimate (2.30)
follows.

Estimate (2.31) follows from the fact that the function \Gamma is bounded from below
by log \eta (\delta ,M) - 3

2 , which is a finite number. This finishes the proof of Lemma 2.
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Proof of Theorem 6. We rewrite the approximate free energy so that inequality
(2.24) can be applied:

E\Gamma [n0, u0] + \delta t \geq 
\int 
n\Gamma (n)dx - 

\int 
nc

2
dx+

\int 
1

2
| u| 2dx

=

\int 
n log+ ndx+

\int 
n<1

n\Gamma (n)dx

+
1

4\pi 

\int \int 
log | x - y| n(x)n(y)dxdy + 1

2
| | u| | 22

=

\biggl( 
1 - M

8\pi 

\biggr) \int 
n log+ ndx+

\int 
n<1

n\Gamma (n)dx

+
M

8\pi 

\biggl( \int 
n log+ ndx+

2

M

\int \int 
log | x - y| n(x)n(y)dxdy

\biggr) 
+

1

2
| | u| | 22.

Applying the log-Hardy--Littlewood--Sobolev (2.24) and (2.31) yields

E\Gamma [n0, u0] + \delta t \geq 
\biggl( 
1 - M

8\pi 

\biggr) \int 
n log+ ndx+

\int 
n<1

n\Gamma (n)dx - C(M)
M

8\pi 
+

1

2
| | u| | 22

\geq 
\biggl( 
1 - M

8\pi 

\biggr) \int 
n log+ ndx - M log \eta (\delta ,M) - 1 - 3

2
M - C(M)

M

8\pi 
+
1

2
| | u| | 22,

which leads to a bound on the positive part of the entropy S+[n(t)] and on the fluid
energy | | u| | 22 for any finite time, i.e.,\biggl( 
1 - M

8\pi 

\biggr) \int 
n log+ ndx+

1

2
| | u| | 22\leq E\Gamma [n0, u0]+\delta t+M log \eta (\delta ,M) - 1+

3

2
M+C(M)

M

8\pi 
.

This yields that

S+[n(t)] + | | u(t)| | 22 < C(E\Gamma [n0, u0],M, \delta ) + \delta t <\infty \forall t \in [0,\infty ).

This concludes the proof of Theorem 6.

Proof of Theorem 1. Now we highlight the adjustment in the remaining part of
the proof of Theorem 1 and compare it to the proof of Theorem 4. The main ad-
justment takes place in the proof of the L2 norm of the cell density (2.3). Since the
positive part of the entropy S+[n(t)] is growing linearly with rate \delta , the quantity
\eta K = | | (n  - K)+| | 1 will not be uniformly bounded on an arbitrarily long interval as
in (2.1). To overcome this difficulty, we adjust the vertical cut-off level K as time
progresses. Specifically, we fix an arbitrary time interval [0, T ] and do estimation on
it. First note that on this time interval, we have that

S+[n(t)] + | | u(t)| | 22 \leq C(E\Gamma [n0, u0],M, \delta ) + \delta T <\infty \forall t \in [0, T ].

Now we choose the vertical cut-off level K(T ) such that the quantity \eta K(T ) := | | (n - 
K(T ))+| | 1 is small in the sense that

\eta K(T ) \leq 
C(E\Gamma [n0, u0],M, \delta ) + \delta T

logK(T )
\leq 1

8
CGNS ,

where CGNS is the universal constant that appeared in the L2 energy estimate (2.2).
The resulting K(T ) is larger than

K(T ) \geq exp

\biggl\{ 
8C(E\Gamma [n0, u0],M, \delta )

CGNS

\biggr\} 
exp

\biggl\{ 
8\delta T

CGNS

\biggr\} 
.
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Now combining the size of K(T ) and a direct L2 energy estimation on the quantity
(n - K(T ))+, which is the same as (2.2), yields that

| | n(t)| | 2 \leq 2| | min\{ n(t),K(T )\} | | 2 + 2| | (n(t) - K(T ))+| | 2
\leq 2K(T )1/2M1/2 + C(| | n0| | 2,M)K(T )1/2

\leq C(| | n0| | 2, E[n0, u0],M, \delta )e
4\delta 

CGNS
T \forall t \in [0, T ].

Since the time T is arbitrary, we have that the L2 norm of n can grow at most
exponentially with rate 4\delta 

CGNS
. Since \delta is arbitrarily small, we abuse the notation and

still denote the rate as \delta . The remaining part of the proof is similar to the proof of
Theorem 4, so we omit the details. This concludes the proof of Theorem 1.

Remark 6. With Theorem 1 proven, we make a comment on the second moment
V [n(t)] (1.5). We estimate the time evolution of the second moment as follows:

d

dt

\int 
n| x| 2dx = 4M  - 1

2\pi 
M2  - 

\int 
x2\nabla \cdot (un)dx = 4M  - 1

2\pi 
M2 + 2

\int 
x \cdot undx

\leq 4M + | | u| | \infty M1/2

\biggl( \int 
n| x| 2dx

\biggr) 1/2

.

Since the | | u| | \infty is bounded on an arbitrary finite-time interval, the second moment
is bounded for any finite time.

In the last part of this section, we consider the long-time behavior of the radially
symmetric solutions to (1.1) and prove Theorem 7.

To prove Theorem 7, we first rewrite the equation of the velocity in the vorticity
form and present some necessary lemmas. Recall that the vorticity

\omega = \nabla \bot \cdot u = \partial x1
u2  - \partial x2

u1, \nabla \bot = ( - \partial x2
, \partial x1

),

and the velocity u are related through the Biot--Savart law,

u(t, x) = \nabla \bot \Delta  - 1\omega (t, x) =
1

2\pi 
\nabla \bot 

\int 
\BbbR 2

log | x - y| \omega (t, y)dy =: \nabla \bot \psi (t, x),

where \psi is the stream function. In the vorticity formulation, (1.1) has the following
form: \left\{   

\partial tn+u \cdot \nabla n = \Delta n - \nabla \cdot (n\nabla c),  - \Delta c = n,

\partial t\omega +u \cdot \nabla \omega = \Delta \omega +\nabla \bot \cdot (n\nabla c), u = \nabla \bot \Delta  - 1\omega ,
n(t =0, x) = n0(x), \omega (t = 0, x) = \omega 0(x), x \in \BbbR 2.

(2.34)

To show long-time decay of the solution, it is classical to consider the solutions in the
self-similar variables,

n(t, x) =
1

R2(t)
N

\biggl( 
logR(t),

x

R(t)

\biggr) 
, c(t, x) = C

\biggl( 
logR(t),

x

R(t)

\biggr) 
, R(t) = (1 + 2t)1/2;

\omega (t, x) =
1

R2(t)
\Omega 

\biggl( 
logR(t),

x

R(t)

\biggr) 
, \psi (t, x) = \Psi 

\biggl( 
logR(t),

x

R(t)

\biggr) 
.

D
ow

nl
oa

de
d 

07
/3

0/
22

 to
 1

52
.3

.1
02

.2
54

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE MASS THRESHOLD OF A PKS--NS SYSTEM 2945

We further consider the new coordinate \tau := logR(t), X := x
R(t) , and rewrite (2.34)

in the following form:

\left\{   \partial \tau N  - \nabla \cdot (XN) =\Delta N  - \nabla \cdot (N\nabla C) - \nabla \bot \Psi \cdot \nabla N,  - \Delta C = N,

\partial \tau \Omega  - \nabla \cdot (X\Omega ) =\Delta \Omega +\nabla \bot \cdot (N\nabla C) - \nabla \bot \Psi \cdot \nabla \Omega , \Omega = \Delta \Psi ,
N(0, X) =n0(x), \Omega (0, X) = \omega 0(x).

(2.35)

If the solution is radially symmetric, then the second moment of N is uniformly
bounded in time. This is the content of the next lemma.

Lemma 3. Consider radially symmetric solutions (N,\Omega ) \in Lip\tau ([0,
1
2 log(1+2T )];

Hs(\BbbR 2)), s \geq 3, to (2.37) subject to initial constraints in Corollary 1. The second
moment of the solution is bounded in time

sup
\tau \in [0,\infty )

\int 
\BbbR 2

N(\tau ,X)| X| 2dX \leq Cs;V <\infty .(2.36)

Proof. The calculation is similar to the calculation in Corollary 1. Direct calcu-
lation yields that

d

d\tau 

\int 
N(\tau ,X)| X| 2dX = 4M  - 1

2\pi 
M2  - 2

\int 
N(\tau ,X)| X| 2dX

 - 
\int 

\nabla \cdot (\nabla \bot \Psi (\tau ,X)N(\tau ,X))| X| 2dX.

Since the solutions are radially symmetric, the last term is zero. Now we see that the
second moment is uniformly bounded in time.

For (2.35), if the solution (N,\Omega ) is radially symmetric, there is a dissipative free
energy,

ES [N,\Omega ] =

\int 
\BbbR 2

N logN  - 1

2
NC +

1

2
N | X| 2  - 1

2
\Psi \Omega dX.(2.37)

This is the content of the following lemma.

Lemma 4. Consider radially symmetric solutions (N,\Omega ) \in Lip\tau ([0,
1
2 log(1+2T )];

Hs(\BbbR 2)), s \geq 3, to (2.37) subject to initial finite second moment constraint in Corol-
lary 1. The free energy (2.37) is dissipative in the sense that d

d\tau ES [N(\tau ),\Omega (\tau )] \leq 0.
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2946 YISHU GONG AND SIMING HE

Proof. Direct calculation yields that

(2.38)

d

d\tau 

\int 
N logN  - 1

2
NC +

1

2
N | X| 2  - 1

2
\Omega \Psi dX

=

\int 
N\tau 

\biggl( 
logN  - C +

1

2
| X| 2

\biggr) 
dX  - 

\int 
\Omega \tau \Psi dX

=

\int 
(\nabla \cdot (N\nabla logN) - \nabla \cdot (N\nabla C)

+\nabla \cdot (NX) - \nabla \cdot (\nabla \bot \Psi N))

\biggl( 
logN  - C +

1

2
| X| 2

\biggr) 
dX

 - 
\int 
(\Delta \Omega +\nabla \cdot (X\Omega ) - \nabla \cdot (\nabla \bot \Psi \Omega ) +\nabla \bot \cdot (N\nabla C))\Psi dX

=  - 
\int 
N | \nabla logN  - \nabla C +X| 2dX  - 

\int 
\Omega 2dX

+

\int 
N\nabla \bot \Psi \cdot (\nabla logN  - \nabla C +X)dX  - 

\int 
\nabla \cdot (X\Omega )\Psi dX +

\int 
N\nabla C \cdot \nabla \bot \Psi dX

=:  - 
\int 
N | \nabla logN  - \nabla C +X| 2dX  - 

\int 
\Omega 2dX +

3\sum 
\ell =1

Ts;\ell .

By the fact that for the radially symmetric solutions, \nabla \bot \Psi is perpendicular to the
vectors X,\nabla C,\nabla N , we have that Ts;1 = Ts;3 = 0. For the Ts;2 term in (2.38), we
have that

Ts;2 =

\int 
X1\partial X1\Psi (\partial X1X1\Psi + \partial X2X2\Psi )dX +

\int 
X2\partial X2\Psi (\partial X1X1\Psi + \partial X2X2\Psi )dX

=
1

2

\int 
\partial X1

(\partial X1
\Psi )2X1dX  - 1

2

\int 
\partial X1

(\partial X2
\Psi )2X1dX

 - 1

2

\int 
\partial X2(\partial X1\Psi )2X2dX +

1

2

\int 
\partial X2(\partial X2\Psi )2X2dX

= 0.

Combining these calculations and the relation (2.38), we have obtained that the free
energy is decaying.

Proof of Theorem 7. Since the free energy is bounded and the second moment
is bounded (2.36), through a standard argument involving the logarithmic Hardy--
Littlewood--Sobolev inequality, which is similar to arguments proving Theorems 5 and
4, we have that the solutionN,\Omega is uniformly bounded in time, i.e., | | N | | L\infty 

\tau ([0,\infty );L2
X)+

| | \Omega | | L\infty 
\tau ([0,\infty );L2

X) \leq Cs < \infty . Now by the relation between the L2
x norm and the L2

X

norm, we have that

| | n(t)| | 2L2
x
+ | | \omega (t)| | 2L2

x
\leq 1

R2(t)

\Bigl( 
| | N | | 2L\infty 

\tau ([0,\infty );L2
X) + | | \Omega | | 2L\infty 

\tau ([0,\infty );L2
X)

\Bigr) 
=

1

1 + 2t
C2

s \forall t \in [0,\infty ).

This concludes the proof of the theorem.
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3. Torus case: \BbbT \bftwo . Before we start the proof of Theorem 2, we first collect some
useful facts. Without loss of generality, we assume that the average of the velocity u
is zero, i.e.,

1

| \BbbT 2| 

\int 
\BbbT 2

ui0(x)dx = 0, i = 1, 2.

The average-zero properties are propagated along the dynamics (1.4). To check this,
we calculate the time evolution of the mean using the divergence-free condition of u
and the elliptic equation of the chemical c as follows:

d

dt

\int 
uidx = - 

2\sum 
j=1

\int 
uj\partial ju

idx+

\int 
n\partial icdx

=

\int 
(\nabla \cdot u)uidx+

\int 
( - (\partial 1\partial 1 + \partial 2\partial 2)c+ n) \partial icdx

=

\int 
\partial 1c\partial i\partial 1cdx+

\int 
\partial 2c\partial i\partial 2cdx =

2\sum 
j=1

\int 
1

2
\partial i(\partial jc)

2dx = 0.

As a result, ui = 0, i = 1, 2, as long as the solution is smooth.
Now we study the 2D free energy of n on \BbbT 2:

E\BbbT 2 [n, u] =

\int 
\BbbT 2

n log n - 1

2
(n - n)c+

1

2
| u| 2dx.(3.1)

Lemma 5. Consider the smooth solution to (1.4), the free energy E\BbbT 2 (3.1) is
dissipated along the dynamics, i.e.,

E\BbbT 2 [n(t), u(t)] \leq E\BbbT 2 [n0, u0] \forall t \geq 0.(3.2)

Proof. Direct calculation of the time derivative of E[n] can be estimated as fol-
lows:

d

dt
E\BbbT 2 [n, u] =

\int 
nt(log n - c)dx - 

\int 
| \nabla u| 2dx+

\int 
u \cdot \nabla cndx

= - 
\int 
n(\nabla log n - \nabla c) \cdot (\nabla log n - \nabla c)dx

+

\int 
\nabla \cdot (un)cdx - 

\int 
| \nabla u| 2dx+

\int 
u \cdot \nabla cndx

= - 
\int 
n| \nabla log n - \nabla c| 2dx - 

\int 
| \nabla u| 2dx.

The decaying free energy (3.2), together with a suitable logarithmic Hardy--
Littlewood--Sobolev inequality, yields a uniform-in-time bound on the positive com-
ponent of the entropy S+[n]. To explicitly derive the bound, we recall the following
logarithmic Hardy--Littlewood--Sobolev inequality on a compact manifold.

Theorem 9 (see [27]). Let \scrM be a two-dimensional, Riemannian, compact
manifold. For all M > 0, there exists a constant C(M) such that for all nonnegative
functions f \in L1(\scrM ) such that f log f \in L1, if

\int 
\scrM fdx =M , then\int 

\scrM 
f log fdx+

2

M

\int \int 
\scrM \times \scrM 

f(x)f(y) log d(x, y)dxdy \geq  - C(M),(3.3)

where d(x, y) is the distance on the Riemannian manifold.
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2948 YISHU GONG AND SIMING HE

Since the logarithmic Hardy--Littlewood--Sobolev inequality (3.3) is stated with
respect to the distance on the torus, we cannot directly combine it with the decaying
free energy (3.2) here. To overcome this difficulty, we estimate the potential part of
the free energy, i.e., 1

2

\int 
(n - n)cdx, from below. This is the main content of the next

lemma.

Lemma 6. There exists a constant B > 0, such that the following estimate holds:

 - 1

2

\int 
\BbbT 2

(n - n)cdx =  - 1

2

\int 
\BbbT 2

(n - n)( - \Delta ) - 1(n - n)dx

\geq 1

4\pi 

\int \int 
\BbbT 2\times \BbbT 2

log d(y, x)n(y)n(x)dydx - BM2.

Proof. The proof of the lemma is the same as the parallel treatment in the paper
[1]. For the sake of completeness, we provide the proof in the appendix.

Combining Lemma 6 with (3.2) yields

E\BbbT 2 [n0, u0]

\geq 
\biggl( 
1 - M

8\pi 

\biggr) \int 
\BbbT 2

n log ndx

+
M

8\pi 

\biggl( \int 
\BbbT 2

n log ndx+
2

M

\int \int 
\BbbT 2\times \BbbT 2

n(y) log d(y, x)n(x)dydx

\biggr) 
+

| | u| | 22
2

 - BM2.

Applying (3.3) in the above estimate, we obtain

E\BbbT 2 [n0, u0] \geq 
\biggl( 
1 - M

8\pi 

\biggr) \int 
\BbbT 2

n log ndx+
| | u| | 22
2

 - C(M) - BM2,

which results in\int 
\BbbT 2

n log ndx+
1

2(1 - M
8\pi )

| | u| | 22 \leq E\BbbT 2 [n0, u0] + C(M) +BM2

1 - M
8\pi 

.

Since the function s log s is bounded from below, the negative part of the entropy
S - [n] =

\int 
\BbbT 2 n log

 - ndx is bounded on the torus. Therefore, there exists a constant
CL \mathrm{l}\mathrm{o}\mathrm{g}L depending only on the initial data such that the following estimate holds:\int 

\BbbT 2

n log+ ndx+ | | u| | 22 \leq CL \mathrm{l}\mathrm{o}\mathrm{g}L;L2(E\BbbT 2 [n0, u0],M) <\infty .

The estimation above yields the following lemma.

Lemma 7. If the total mass is bounded in the sense that | | n0| | L1 < 8\pi , there exists
a constant CL \mathrm{l}\mathrm{o}\mathrm{g}L(n0, u0) such that

\int 
\BbbT 2

n(t, x) log+ n(t, x)dx+ | | u(t)| | 2L2
x
\leq CL \mathrm{l}\mathrm{o}\mathrm{g}L;L2(E\BbbT 2 [n0, u0],M) <\infty \forall t \in [0,\infty ).

(3.4)

As in the plane case, the uniform-in-time bound on the positive part of the entropy
S+[n] yields the bound on the Lp norms. This is the content of the next lemma.

Lemma 8. Assume that the entropy is bounded in the sense that (3.4) holds, then
there exists a constant C1,\infty = C1,\infty (n0, u0) such that the following estimate holds:

| | n(t)| | L1\cap L\infty \leq C1,\infty (| | n0| | L1\cap L\infty , E\BbbT 2 [n0, u0]) <\infty \forall t \in [0,\infty ).(3.5)

D
ow

nl
oa

de
d 

07
/3

0/
22

 to
 1

52
.3

.1
02

.2
54

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON THE MASS THRESHOLD OF A PKS--NS SYSTEM 2949

The proof is a small variation of classical PKS techniques (see, e.g., [16], [4]).
Before presenting the proof, we recall the following Gagliardo--Nirenberg--Sobolev
inequality on \BbbT d: Suppose v \in H1(\BbbT d), d \geq 2, and

\int 
vdx = 0 . Assume that

q, r > 0,\infty > q > r, and 1
d  - 1

2 + 1
r > 0. Then

| | v| | Lq \leq C(d, q)| | \nabla v| | aL2 | | v| | 1 - a
Lr ,

\int 
\BbbT d

vdx = 0, a =

1
r  - 1

q
1
d  - 1

2 + 1
r

.(3.6)

For a fixed d, the constant C(d, q) is bounded uniformly when q varies in any compact
set in (0,\infty ).

Proof of Lemma 8. We focus on the L2 estimate. Let K > max\{ 1, n\} be a con-
stant to be chosen later. Observe that (3.4) implies the following:\int 

(n - K)+dx \leq 
\int 
n>K

ndx \leq 1

log(K)

\int 
n>K

n log+(n)dx \leq CL \mathrm{l}\mathrm{o}\mathrm{g}L

log(K)
.(3.7)

Next, via (1.4) and the divergence-free property of the vector field u, there holds

(3.8)

1

2

d

dt

\int 
(n - K)2+dx

=

\int 
(n - K)+[\Delta n - \nabla \cdot (n\nabla c)]dx

=  - 
\int 

| \nabla ((n - K)+)| 2dx+
1

2

\int 
(n - K)3+dx

+
3K  - n

2

\int 
(n - K)2+dx+K2  - Kn

\int 
(n - K)+dx

\leq  - 7

8

\int 
| \nabla ((n - K)+)| 2dx+

1

2

\int 
(n - K)3+dx

+
3K  - n

2

\int 
(n - K)2+dx+ (K2  - Kn)M.

We start with the second term in (3.8). Consider the average-zero function (n - 
K)+  - (n - K)+ on \BbbT 2, and apply the Gagliardo--Nirenberg--Sobolev inequality (3.6)
to deduce\int 

| (n - K)+| 3dx \leq C

\biggl( \int 
| (n - K)+  - (n - K)+| 3dx+ (n - K)+

3
\biggr) 

\leq CGNS

\int 
| \nabla (n - K)+| 2dx

\int 
(n - K)+dx+ CM3.

From (3.7), we choose K depending only on CL \mathrm{l}\mathrm{o}\mathrm{g}L such that

 - 7

8

\int 
| \nabla ((n - K)+)| 2dx+

1

2

\int 
(n - K)3+dx \leq  - 1

2

\int 
| \nabla ((n - K)+)| 2dx+ CM3.

(3.9)

Plugging (3.9) into (3.8) yields the following for some universal constant B > 0:

1

2

d

dt

\int 
(n - K)2+dx \leq  - 1

2

\int 
| \nabla ((n - K)+)| 2dx+KB

\int 
(n - K)2+dx+BK2M.

(3.10)D
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Recalling the Gagliardo--Nirenberg--Sobolev inequality (3.6), for a general function v
on \BbbT 2, the following Nash inequality holds:

| | v| | 2L2(\BbbT 2) \leq CN | | \nabla v| | L2(\BbbT 2)| | v| | L1(\BbbT 2) + CN | | v| | 2L1(\BbbT 2).

Applying the Nash inequality in the estimate (3.10) yields

1

2

d

dt
| | (n - K)+| | 22 \leq  - 1

2B

| | (n - K)+| | 42
CNM2

+
3KB

2
| | (n - K)+| | 22 +BK2M.

Further note that

\| n\| L2 \leq \| (n - K)+\| L2 + \| min\{ n,K\} \| L2 \leq \| (n - K)+\| L2 +K1/2M1/2.

The inequality (3.5) hence follows. As in the proof of Theorem 4, we apply energy
estimates to derive the L4 bound on the density n, which in turn implies the chemical
gradient | | \nabla c| | \infty estimate through Morrey's inequality and the Calderon--Zygmund
inequality. Now application of the Moser--Alikakos iteration yields that

| | n(t)| | L\infty \leq C1,\infty (| | n0| | L1\cap L\infty , E\BbbT 2 [n0, u0]) <\infty \forall t \in [0,\infty ).

This concludes the proof of the theorem.

Next, we prove the higher regularity estimates using (3.5).

Lemma 9. Consider the solution to (1.4). The following Hs, 2 \leq s \in \BbbN , esti-
mates hold on [0,\infty ):

| | n(t)| | Hs(\BbbT 2) + | | u(t)| | Hs(\BbbT 2)

\leq CHs(| | n0| | Hs , | | u0| | Hs , C1,\infty (| | n0| | L1\cap L\infty , E\BbbT 2 [n0, u0])) <\infty \forall t \in [0,\infty ).

Proof. Before proving the lemma, we collect the inequalities we are going to apply.
The L4 boundedness of the Riesz transform on \BbbT d (see, e.g., [28, Chapter VII, section
3]) yields that

| | \nabla 2c| | 2 = | | \nabla 2( - \Delta )(n - n)| | 2 \leq C| | n - n| | 2;
| | \nabla 2c| | 4 = | | \nabla 2( - \Delta )(n - n)| | 4 \leq C| | n - n| | 4.(3.11)

Combining Morrey's inequality and the Calderon--Zygmund inequality yields that

| | \nabla c| | L\infty (\BbbT 2) \leq C \| n - n\| L3(\BbbT 2) .(3.12)

Now we estimate the time evolution of the \.H1 norm of the velocity u with the
identity (2.8), the Gagliardo--Nirenberg--Sobolev inequality, the chemical gradient es-
timates (3.12) and (3.11), and the Lp, p \geq 1, controls of the cell density n (3.5) as
follows:

1

2

d

dt
| | \nabla u| | 22 \leq  - | | \nabla 2u| | 22 + | | \nabla 2u| | 2| | n| | 2| | \nabla c| | \infty 

\leq  - | | \nabla u| | 42
4CGNS | | u - u| | 22

+ C| | n| | 4L1\cap L\infty .

Combining the estimates (3.4), (3.5) yields that

| | \nabla u(t)| | L2 \leq Cu;H1(CL \mathrm{l}\mathrm{o}\mathrm{g}L;L2 , C1,\infty , | | \nabla u0| | 2) \forall t \in [0,\infty ).(3.13)
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Similarly, we can estimate the time evolution of the \.H1 norm of n with estimates
(3.5), (3.12), (3.13) as follows:

1

2

d

dt
| | \nabla n| | 22

\leq  - 1

2
| | \nabla 2n| | 22 + | | \nabla n| | 24| | \nabla u| | 2 + | | \nabla 2n| | 2| | \nabla n| | 2| | \nabla c| | \infty + | | \nabla 2n| | 2| | n| | 4| | \nabla 2c| | 4

\leq  - 1

2
| | \nabla 2n| | 22 + C| | \nabla 2n| | 2| | \nabla n| | 2| | \nabla u| | 2

+ | | \nabla 2n| | 2| | \nabla n| | 2| | \nabla c| | \infty + C| | \nabla 2n| | 2| | n| | 4| | n - n| | 4

\leq  - 1

2
| | \nabla 2n| | 22 +

1

4
| | \nabla 2n| | 22 + C

\bigl( 
| | \nabla u| | 22 + | | \nabla c| | 2\infty + | | n - n| | 22

\bigr) 
| | \nabla n| | 22 + Cn4

\leq  - | | \nabla n| | 42
4CGNS | | n - n| | 22

+ C
\bigl( 
C2

u;H1 + C2
1,\infty 
\bigr) 
| | \nabla n| | 22 + CM4.

Combining the solution to the above differential inequality with (3.5), (3.12), and
(3.13), we see that

| | \nabla n(t)| | 22 + | | \nabla u(t)| | 22 \leq CH1(| | n0| | H1 , | | u0| | H1 , | | n0| | L1\cap L\infty , E\BbbT 2 [n0, u0]) <\infty 
\forall t \in [0,\infty ).

Further iterating this argument yields the Hs, s \geq 3, bound. This finishes the proof
of Lemma 9.

Appendix A.

Proof of Theorem 3. We prove the local a priori estimates of the Hs, s \geq 3,
norms of the velocity field u and the density n assuming that the solution is smooth.
These bounds can be justified through standard approximation procedure. Since the
approximation step is classical, we refer the reader to Chapters 6 and 7 of [26] for
further details.

We first derive the L2 estimate of the density n. Recall the equation of the density

(A.1) \partial tn+ u \cdot \nabla n+\nabla \cdot (\nabla cn) = \Delta n.

We multiply (A.1) by n and integrate to obtain

(A.2)
1

2

d

dt

\int 
n2dx+

\int 
u \cdot \nabla 

\biggl( 
n2

2

\biggr) 
dx+

\int 
n\nabla \cdot (\nabla cn)dx =  - 

\int 
| \nabla n| 2dx.

Since u is divergence-free, the second term on the left-hand side of (A.2) is zero. For
the third term on the left-hand side of (A.2), direct integration by parts yields that\int 

n\nabla \cdot (\nabla cn)dx =  - 
\int 
n3dx+

\int 
\nabla c \cdot \nabla 

\biggl( 
n2

2

\biggr) 
dx =  - 1

2

\int 
n3dx.

Combining this equation with (A.2) and applying the Gagliardo--Nirenberg--Sobolev

inequality | | f | | 3 \leq CGNS | | f | | 
2
3
2 | | \nabla f | | 

1
3
2 with f = n and Young's inequality yield that

d

dt
| | n| | 22 \leq  - 2

\int 
| \nabla n| 2dx+

\int 
n3dx \leq  - 2| | \nabla n| | 22 + CGNS | | \nabla n| | 2| | n| | 22

\leq  - 3

2
| | \nabla n| | 22 + CGNS | | n| | 42 \leq CGNS | | n| | 42.
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By ODE theory, we obtain that there exists a small constant \epsilon 2 = \epsilon 2(CGNS , | | n0| | 2)
such that for time t smaller than \epsilon 2, i.e., 0 \leq t < \epsilon 2, the L

2 norm of the solution n is
bounded:

(A.3) | | n(t)| | 22 \leq 2| | n0| | 22 \forall t \in [0, \epsilon 2].

Once the L2 bound of the density is achieved, we can estimate the L4 norm of the
chemical gradient \nabla c on a short time interval t \in [0, \epsilon 2]. Applying the Hardy--
Littlewood--Sobolev inequality, the H\"older inequality, and Young's inequality, we es-
timate the chemical gradient \nabla c as follows:

| | \nabla c(t)| | L4 \leq CHLS | | n(t)| | L4/3 \leq CHLS(M + | | n(t)| | L2) \leq C(M, | | n0| | 2) \forall t \in [0, \epsilon 2].
(A.4)

Next we estimate the L2 norm of the fluid velocity fields u. Recall the fluid
equation after we apply the Leray projection operator \BbbP ,

(A.5) \partial tu+ \BbbP ((u \cdot \nabla )u) =  - \BbbP ( - \Delta )u+ \BbbP (n\nabla c).

Since the Leray projection is self-adjoint and the vector field u is divergence-free,
multiplying (A.5) by u and integrating yield the equality

(A.6)
d

dt

1

2

\int 
| u| 2dx+

\int 
u \cdot ((u \cdot \nabla )u)dx =

\int 
u\Delta udx+

\int 
u \cdot (n\nabla c)dx.

Due to the divergence-free property of the vector field u, we have that the second term
on the left-hand side of (A.6) vanishes. Combining the estimates (A.3) and (A.4), we
see that the H\"older inequality and the Gagliardo--Nirenberg--Sobolev inequality yield
that the second term on the right-hand side of (A.6) is bounded on the time interval
[0, \epsilon 2], \int 

u(t, x) \cdot (n(t, x)\nabla c(t, x))dx

\leq | | \nabla c(t)| | 4| | u(t)| | 4| | n(t)| | 2
\leq C(M, | | n0| | L2)| | u(t)| | 1/22 | | \nabla u(t)| | 1/22 \forall t \in [0, \epsilon 2].

Combining these estimates with (A.6), we apply Young's inequality to obtain that

d

dt
| | u(t)| | 22 \leq  - 1

2
| | \nabla u| | 22 + C(M, | | n0| | L2)| | u(t)| | 2/32 \forall t \in [0, \epsilon 2].

Therefore, we have the following local control over | | u(t)| | 2:

| | u(t)| | 2 \leq C(M, | | n0| | L2 , | | u0| | 2) <\infty \forall t \in [0, \epsilon 2].

Next we estimate the H1 norm. Before estimating the \.H1 norms, we recall estimates
(2.6),

| | \nabla 2c| | 2 = | | \nabla 2( - \Delta )n| | 2 \leq C| | n| | 2, | | \nabla 2c| | 4 = | | \nabla 2( - \Delta )n| | 4 \leq C| | n| | 4.(A.7)

Now we estimate the time evolution of the \.H1 seminorm of the velocity u (2.7)
with the divergence-free condition of u, the self-adjoint property of \BbbP , the Gagliardo--
Nirenberg--Sobolev inequality, and the chemical gradient estimates (A.4) and (A.7) as
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follows:

1

2

d

dt

2\sum 
j=1

| | \partial ju| | 22

=  - 
2\sum 

j=1

\int 
| \nabla \partial ju| 2dx - 

2\sum 
j=1

\int 
\partial jB(u, u) \cdot \partial judx+

2\sum 
j=1

\int 
\partial j\BbbP (\nabla cn) \cdot \partial judx

\leq  - 1

2
| | \nabla 2u| | 22 + C

\bigl( 
| | \nabla u| | 42 + | | n| | 24| | \nabla c| | 24

\bigr) 
\leq C| | \nabla u| | 42 + C| | \nabla n| | 2| | n| | 2(M2 + | | n| | 22).

Similarly, we estimate the time evolution of the \.H1 seminorm of n using the divergence-
free property of u, the Gagliardo--Nirenberg--Sobolev inequality, and the chemical
gradient estimates (A.4) and (A.7) as follows:

1

2

d

dt
| | \nabla n| | 22

\leq  - 1

2
| | \nabla 2n| | 22 + | | \nabla n| | 24| | \nabla u| | 2 + | | \nabla 2n| | 2| | \nabla n| | 4| | \nabla c| | 4 + | | \nabla 2n| | 2| | n| | 4| | \nabla 2c| | 4

\leq  - 1

2
| | \nabla 2n| | 22 + C| | \nabla 2n| | 2| | \nabla n| | 2| | \nabla u| | 2

+ C| | \nabla 2n| | 3/22 | | \nabla n| | 1/22 (M + | | n| | 2) + C| | \nabla 2n| | 2| | n| | 2| | \nabla n| | 2

\leq  - 1

4
| | \nabla 2n| | 22 + C| | \nabla n| | 42 + C| | \nabla u| | 42 + C(1 +M + | | n| | 2)4| | \nabla n| | 22.

Combining these estimations on time evolution of | | n| | 2\.H1 and | | u| | 2\.H1 with the L2

bound on the cell density n (2.5) and the assumption on the fluid velocity u (1.8)
yields that there exists a universal constant C such that

1

2

d

dt
(| | \nabla n| | 22 + | | \nabla u| | 22) \leq C| | \nabla u| | 42 + C| | \nabla n| | 42 + C(M, | | n| | 2)| | \nabla n| | 22 + C(| n| | 2,M).

Now by standard ODE theory and the L2 bound (A.3), we obtain that

| | \nabla n(t)| | 2 + | | \nabla u(t)| | 2 \leq CH1(| | n0| | L1 , | | n0| | H1 , | | u0| | H1) <\infty \forall t \in [0, \epsilon ],

for some small enough \epsilon = \epsilon (| | n0| | L1 , | | n0| | H1 , | | u0| | H1).
Now we can apply the similar procedure shown in the proof of Theorem 4 to gain

control over Hs norms of u and n on the interval [0, \epsilon ]. Following the arguments in
Chapter 7 of [26], higher space-time regularity of the solutions can be obtained. This
concludes the proof of the theorem.

Proof of Lemma 6. Let x \in \BbbT 2 be fixed. Define the cut-off function \varphi x(y) \in C\infty 

such that

supp(\varphi x) =B(x, 1/4),

\varphi x(y) \equiv 1 \forall y \in B(x, 1/8),

supp(\nabla \varphi x(y)) \subset B(x, 1/4)\setminus B(x, 1/8).

By extending n(y) and c(y) periodically to \BbbR 2, we can rewrite the equation  - \Delta c =
n - n on \BbbT 2 such that it is posed on \BbbR 2:

 - \Delta y(\varphi x(y)c(y)) = (n(y) - n)\varphi x(y) - 2\nabla y\varphi x(y) \cdot \nabla yc(y) - \Delta y\varphi x(y)c(y).
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Using the fundamental solution of the Laplacian on \BbbR 2, we obtain

c(x) = c(x)\varphi x(x)

= - 1

2\pi 

\int 
\BbbR 2

log | x - y| 
\biggl( 
(n(y) - n)\varphi x(y) - 2\nabla y\varphi x(y) \cdot \nabla yc(y) - \Delta y\varphi x(y)c(y)

\biggr) 
dy

= - 1

2\pi 

\int 
| x - y| \leq 1

4

log | x - y| (n(y) - n)\varphi x(y)dy

 - 1

\pi 

\int 
| x - y| \leq 1

4

\nabla y \cdot (log | x - y| \nabla y\varphi x(y))c(y)dy

+
1

2\pi 

\int 
| x - y| \leq 1

4

log | x - y| \Delta y\varphi x(y)c(y)dy.

Due to the support of \varphi x, we can identify the above with an analogous integral on
\BbbT 2 with | x - y| replaced by d(x, y). Therefore, we have the following estimate on the
interaction energy:

 - 1

2

\int 
\BbbT 2

(n(x) - n)c(x)dx

=
1

4\pi 

\int \int 
\BbbT 2\times \BbbT 2

d(x,y)\leq 1
4

log d(x, y)(n(x) - n)(n(y) - n)\varphi x(y)dydx

+
1

2\pi 

\int \int 
\BbbT 2\times \BbbT 2

1
8\leq d(x,y)\leq 1

4

(n(x) - n)\nabla y \cdot (log d(x, y)\nabla y\varphi x(y))c(y)dydx

 - 1

4\pi 

\int \int 
\BbbT 2\times \BbbT 2

1
8\leq d(x,y)\leq 1

4

(n(x) - n) log d(x, y)\Delta y\varphi x(y)c(y)dydx

=
1

4\pi 

\int \int 
d(x,y)\leq 1

8

log d(x, y)(n(x) - n)(n(y) - n)dydx

+
1

4\pi 

\int \int 
1
8\leq d(x,y)\leq 1

4

log d(x, y)(n(x) - n)(n(y) - n)\varphi x(y)dydx

+
1

2\pi 

\int \int 
1
8\leq d(x,y)\leq 1

4

(n(x) - n)\nabla y \cdot (log d(x, y)\nabla y\varphi x(y))c(y)dydx

 - 1

4\pi 

\int \int 
1
8\leq d(x,y)\leq 1

4

(n(x) - n) log d(x, y)\Delta y\varphi x(y)c(y)dydx

=
1

4\pi 

\int \int 
\BbbT 2\times \BbbT 2

log d(x, y)n(x)n(y)dydx - 1

4\pi 

\int \int 
d(x,y)> 1

8

log d(x, y)n(x)n(y)dydx

 - 1

2\pi 
n

\int \int 
d(x,y)\leq 1

8

log d(x, y)n(x)dydx+
1

4\pi 
n2
\int \int 

d(x,y)\leq 1
8

log d(x, y)dydx

+
1

4\pi 

\int \int 
1
8\leq d(x,y)\leq 1

4

log d(x, y)(n(x) - n)(n(y) - n)\varphi x(y)dydx

+
1

2\pi 

\int \int 
1
8\leq d(x,y)\leq 1

4

(n(x) - n)\nabla y \cdot (log d(x, y)\nabla y\varphi x(y))c(y)dydx

 - 1

4\pi 

\int \int 
1
8\leq d(x,y)\leq 1

4

(n(x) - n) log d(x, y)\Delta y\varphi x(y)c(y)dydx.
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The 2nd, 3rd, 4th, and 5th terms in the last line are bounded below by - BM2 for some
constant B > 0. The 6th and 7th terms are bounded below by  - BM | | c| | L1 for some
constant B > 0, using the fact that \nabla y \cdot (log | x - y| \nabla y\varphi x(y)) and log | x - y| \Delta y\varphi x(y)
are bounded in the region 1

8 \leq | x  - y| \leq 1
4 . Denoting K(y) to be the fundamental

solution of the Laplacian on \BbbT 2 we apply Young's inequality to obtain that

| | c| | L1(\BbbT 2) = | | K \ast (n - n)| | L1(\BbbT 2) \leq | | K| | L1(\BbbT 2)| | n - n| | L1(\BbbT 2) \leq BM.
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