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Abstract. In this paper, we proposed a coupled Patlak—Keller—-Segel-Navier—Stokes system,
which has dissipative free energy. On the plane R?, if the total mass of the cells is strictly less than
8, classical solutions exist for any finite time, and their H*-Sobolev norms are almost uniformly
bounded in time. For the radially symmetric solutions, this 87-mass threshold is critical. On the
torus T2, the solutions are uniformly bounded in time under the same mass constraint.
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1. Introduction. We consider the following coupled Patlak—Keller-Segel-Navier—
Stokes (PKS-NS) equation modeling chemotaxis in a moving fluid:

On+u-Vn+ V- (nVe) = An,

—Ac=n,
Out(u-V)u+Vp=Au+nVe, V- -u=0,
n(t=0,z) =no(x), u(t=02)=u(xr), zcR%

(1.1)

Here n, ¢ denote the cell density and the chemical density, respectively. The divergence-
free vector field u indicates the ambient fluid velocity. The first equation describes
the time evolution of the cell density subject to chemotaxis-induced aggregation, dif-
fusion caused by random Brownian motion, and transportation by ambient fluid flow
u. Since the cells secrete the chemo-attractants, there exists a deterministic relation
between the two distributions n and ¢. The second equation specifies this connection.
The assumption behind this is that the chemo-attractant diffuses much faster than
the fluid advection and cell aggregation and reaches equilibrium in a faster time-scale.
The Newtonian potential is applied to determine ¢ uniquely, i.e., ¢ = —% log| - | *n.
The third equation on the divergence-free vector field u describes the fluid motion
subject to forcing induced by the cells. The reasoning behind the coupling nVe is
that in order to make the cells move without acceleration, the fluid exerts frictional
force on the moving cells, so reaction forces act on the fluid. The force nVe in the
Navier—Stokes equation matches the aggregation nonlinearity in the cell density evo-
lution. The same forcing appears in the Nernst—Planck—Navier—Stokes system; see,
e.g., [8].

If the ambient fluid velocity is identically equal to zero, i.e., u = 0, the system
(1.1) is the classical Patlak—Keller-Segel (PKS) equation, which was first derived by
Patlak [25] and Keller and Segel [17]. The literature on the classical PKS model is
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extensive, and we refer the interested reader to the representative works [2], [4], [3],
[14], and the references therein. The classical PKS model preserves the total mass
M = ||n(t)||1 = ||no||1 and is L' critical. If the initial data ng has total mass M
strictly less than 87, then the smooth solution exists for all time, whereas if the initial
data has total mass strictly larger than 87 and has a finite second moment, then the
solution blows up in finite time; see, e.g., [4] and [16].

If the ambient fluid flow is not identically zero, i.e., u # 0, the analysis of the
long-time dynamics of the systems (1.1) is delicate. There is no heuristic argument to
rule out global solutions with large masses. Moreover, the underlying fluid flow might
suppress the potential chemotactic blow-up in the system. This assertion is based
on a series of works on the suppression of chemotactic blow-up through passive fluid
flows initiated by Kiselev and Xu [18]. To simplify the analysis, in these models, we
note that the ambient fluid velocity fields u are assumed to be independent of the time
evolution of the cell densities. In this series, there are two main fluid mechanisms for
suppressing the blow-up. The first mechanism is the fluid-mixing-induced enhanced
dissipation effect. The works in this direction are [1], [12], and [15]. The other
mechanism for suppressing the blow-up is the fast splitting scenario introduced in the
paper [13].

The model (1.1) takes into account the active chemotaxis-fluid interaction. The
literature concerning coupled chemotaxis-fluid systems is vast. We refer the interested
reader to the papers [23], [24], [22], [9], [11], [30], [31], [29], [7], [20], [32], [33], [34],
[35], [36], and the references therein. A number of works are devoted to the study
of parabolic-parabolic PKS equations subject to active fluid motions. The coupling
between the chemotaxis and the fluid in these models is through the gravity-buoyancy
relation. The closest models to ours are proposed by Lorz [24] and Kozono, Miura,
and Sugiyama [20]. The chemical densities ¢ in these models are also determined
through elliptic-type equations. On the other hand, these models consider buoyancy
forcing instead of the reaction force from the cells.

Another biologically relevant coupled PKS—-NS model was introduced by Tuval et
al. [30],

Ontu-Vn+ V- (nVe) = An,
Opc+u - Ve = Ac—nf(c),
Out(u-V)u+Vp=Au+nVe, V- -u=0.

Here the chemicals (oxygen) are transported by the fluid stream u and are consumed
at a rate of f(c) > 0. Due to buoyancy, the cells exert force nV¢ on the fluid. Since
the chemicals are consumed along the dynamics, one expects that the cell density will
not concentrate to form finite-time singularities. However, the parabolic nature of
the chemical evolution makes the analysis challenging. In the papers [32], [33], [34],
[36], global regularity, long-time behavior, and the Leray structure of the system are
explored in detail.

In this paper, we study the critical-mass threshold, below which the solutions of
the system (1.1) are guaranteed to exist for all finite time. The main advantage of
the proposed model (1.1) is that it possesses a naturally decreasing free energy,

1 1
(1.2) E[n,u] ::/ nlogn — —nc+ = |u|?dz.
- 2"

Moreover, since the vector field u is divergence-free, the density equation for n pos-

sesses a divergence structure and hence preserves the L' norm.
For the whole plane, we prove the following theorem.
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THEOREM 1 (plane R? case). Consider solutions (n,u) to (1.1) subject to initial
conditions (ng,ug) € H*(R?) x (H*(R?))?, s > 3, and no(1 + |z|?) € LY(R?). If the
initial mass is strictly less than 8,

M = |[no|| 1 (r2) < 8,

then there exists a constant C', which depends on the initial data, such that the fol-
lowing estimate holds:

(1.3) ()= + [[u(t)]| - < Clno,uo,8)e’ Yt € [0,00),

where 0 < § is an arbitrary small constant. Therefore, the strong solutions (n,u) exist
on an arbitrary finite-time interval [0,T] ¥V T < oo.

Remark 1. To our knowledge, this is the first critical-mass result in the coupled
PKS-NS systems.

Remark 2. The exponential bounds stated in the theorem might not be optimal.
We conjecture that the solutions subject to subcritical mass are uniformly bounded
in time.

In the radially symmetric setting, the long-time behavior of the solutions is better
understood. We will show that the chemotactic blow-up occurs if the initial density
ng has total mass ||ng||r1 > 87 and has finite second moment (Corollary 1). On the
other hand, if the total mass is strictly less than 87, and the initial second moment is
finite, then the L? norm of the solutions (n,curlu) decay to zero as time approaches
infinity with algebraic rate (Theorem 7).

Remark 3. Extending Theorem 1, which concerns the parabolic-elliptic Patlak—
Keller—Segel-Navier—Stokes system, to the fully parabolic setting is both interesting
and challenging.

One of the main obstacles to obtaining uniform-in-time bounds on the solutions
is the lack of control over the second moment. To properly illustrate that this is the
only obstacle, we choose to study the model (1.1) on torus T? and show that under
the same subcritical-mass constraint, the solutions are uniformly bounded in time.
To this end, due to its compatibility with the boundary conditions involved, we have
to adjust (1.1) accordingly. Here we specified the equation on the torus T?:

On+u-Vn+ V- (nVe) = An,
—Ac=n—-mn, n= 1 / ndz,
T2

(1.4) [T?|

ut(u-V)u+ Vp=Au+nVe, V-u=0,

n(t =0,z) = no(x), u(t=0,2)=uo(z), z¢&T>
Without loss of generality, we assume that the size of the torus is |[T| = 1. The
chemical ¢ is determined by c(z) = — [, Br2(2,y)n(y)dy, where Brz(z,y) is the

Green’s function of the Laplacian A on the torus T?2.

The second main theorem of the paper describes the global well-posedness of
equations (1.4).

THEOREM 2 (torus T? case). Consider the solution to (1.4) subject to H® initial
data (ng,up) € H*(T?) x (H*(T?))?, s > 3. If the initial mass M := ||ng|p1(r2) is
strictly less than 8w, i.e., M < 8, then the solution (n,u) has a uniform-in-time
bounded H* Sobolev norm, i.e.,

17 2oe ([0,00); 5 + |l L2 (j0,00)55) < Crrs ([[nol|ms, [|uol|ms) < oo
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Remark 4. We comment that similar uniform-in-time bounds are obtained in the
parabolic-parabolic setting given that the total mass is small enough [35].

1.1. Ideas of the proof. We discuss the idea behind Theorem 1. Recall the
free energy FE for the system (1.1) and the second moment V',

(1.5) Vin] := /11&2 nl|z|*dz.

The existence of a decreasing free energy is crucial to obtaining sharp critical-mass
results in PKS-type equations. We recall that for the classical PKS equation (u = 0),
there exists a dissipative free energy,

1
Eclassic = / n logn — —necdx.
R2 2

However, if the fluid transport structure is introduced in the cell density evolution
equation, the classical free energy will no longer decay in general. This is one of the
main difficulties in analyzing the coupled PKS—-NS systems. However, our coupled
system (1.1) possesses a new dissipative free energy (1.2). This is the main content
of the next lemma.

LEMMA 1. Consider regular solutions (n,u) to (1.1). Further assume that (n,u) €
Lip, ([0, T); H:(R?) x (H:(R?))?), s >3, and n(1 + |x|?) € L([0,T); LL(R?)). Then
the free energy (1.2) is dissipated along the dynamics (1.1), i.e.,

(1.6)  Eln(t), u(t)]
¢ ¢
= E[ng, uo) —/ / n|Vlogn — Ve|*dzds —/ |Vu|*dzds Wt € [0,T].
0 JR2 o JR2

Proof. Direct calculation using integration by parts and a divergence-free condi-
tion of w yields that

iE =— / n|Vlogn — Ve|?dr — / nu - Vedz
dt R2 R2

—/ |Vu|2dx—/ u~((u~V)u)dm—/ u-Vpdx—i—/ nu - Vedz
R2 R2 R2 R?
=— / n|Vlogn — Ve|?dr — / |Vul*dz < 0.

R2 R2

Here, in the last line we apply the relation that

/RZu~((u~V)u)dm:/Rzu-V<|u2|2>d:v:0.

Now integration in time yields (1.6). ad

Before utilizing the dissipative free energy to derive global well-posedness of the
solutions, we present the following local well-posedness result, whose proof will be
postponed to the appendix.

THEOREM 3 (local well-posedness).  Consider the solutions to (1.1) subject to
H* initial data, i.e., (no,uo) € H*(R?) x (H*(R?))2, s > 3. There erists a small
constant € = €(||nol|L1nm, [|wol|mr) such that the Sobolev H® norms of the solutions
are bounded on the time interval [0, €],

In@)|lers + |lu@)||as < oo V€ [0,€].
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Next we recall from the classical PKS literature that the entropy bound of the
solution is essential to propagating higher regularities of solutions; see, e.g., [4], [3].
We present here a similar criterion which guarantees propagation of regularity.

THEOREM 4. Consider solution (n,u) to (1.1) subject to initial conditions (ng, ug) €
H*(R?) x (H*(R%))?, s > 3, no(1 + |z|?) € L*(R?). If the positive part of the entropy
is bounded, 1i.e.,

(1.7) Stn(t)] == / n(t,z)logt n(t,z)de < Cprigr < oo ¥t € [0,T],
]R2

and the energy of the fluid u is bounded, i.e.,

(1.8) lu()]]3 < Crp. < oo Vte[0,T],

then the solution has bounded H®, s > 3, norms on the same time interval,

In@|lers + llu@)||as < Crs(Criog L, Cuir2s [ Inollme,

|U0||Hs)<OO VtG[O,T]

We recall the standard procedure for checking the criterion (1.7) for the classical PKS
equations. In the subcritical regime, i.e., ||ng||l1 < 8, combining the decaying free
energy (1.6) and the logarithmic Hardy—Littlewood—Sobolev inequality (2.24) yields
the uniform-in-time bound on the entropy,

sttlp Sin(t)] :==sup /R2 n(t,z)logn(t, z)dx

t
=sup (/ n(t,x)log™ n(t,z)dx — / n(t,x)log™ n(t,x)da;)
t R2 R2
=:sup(ST[n(t)] — S~ [n(t)]) < co.
t
Here log™, log™ denote the positive and the negative parts of the logarithmic function,
respectively. As a result, we observe that as long as the negative component of the
entropy S~ [n] is bounded, the criterion (1.7) is checked. It is classical to apply the
second moment V bound (1.5) to estimate the negative part of the entropy S~ [n]

(see, e.g., inequality (2.25)). We summarize the above heuristics in the next theorem,
with consideration of our system.

THEOREM 5. Consider solutions (n,u) to (1.1) on the time interval [0, T), subject
to initial conditions (ng,up) € (H*(R?), (H*(R?))?), s > 3, no(1 + |z|?) € L*(R?). If
the initial mass s strictly less than 8,

M := [[no|1(r2) < 8,
and the second moment is bounded on the time interval [0,T],

(1.9) Vin(t) < Cy < oo VYt e |0,T],

then the entropy bound (1.7) and the energy bound (1.8) hold, i.e.,
/ n(t,z)log™ n(t,z)dx + ||u(t)||3 < C(Cy, M, E[ng,u]) < ooVt € [0,T].
R2

The condition (1.9) can be easily checked for the following two cases: (a) solutions
on the bounded domain T? (Theorem 2), and (b) radially symmetric solutions on R2.
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COROLLARY 1 (plane R?, radially symmetric solutions). Consider (1.1) subject
to H® radially symmetric initial data (ng,uo) € H*(R?) x (H*(R?))2, s > 3. Further
assume that the second moment is finite [, nolz|?dr < co. If the initial mass M :=
l[n0]| L1 (r2) is strictly less than 8, i.e., M < 8, then the solution (n,u) has a bounded
H? Sobolev norm for any finite time t < co. On the other hand, if the total mass
of the initial density ng is greater than 8w, i.e., ||nol|[r1(r2y > 87, then the solution
(n,u) blows up in finite time.

However, it is difficult to apply Theorem 5 to general solutions to (1.1) on the
plane R? because controlling second moment (1.9) requires ||u||« information, which
is typically missing in the a priori estimates. Here we develop a new method for
checking criterion (1.7).

We modify the free energy E (1.2) so that the new negative component of the
entropy S~ [n] is bounded in terms of the L' norm of the density n. As a result, there
is no need for the second moment control. To this end, we replace the logarithmic
function by its degree two Taylor approximation when the argument n is smaller
than the designated threshold. The drawback is that the modified free energy can
potentially grow slowly. However, this is enough to derive the S*[n] bound for any
finite time. As a result, we end up with the exponential bounds with arbitrarily small
growth rate in the H® Sobolev norms. Uniform-in-time bounds on the solutions are
still open. Details of this modified free energy can be found in section 2.

THEOREM 6. Consider regular solutions to (1.1), subject to initial conditions
(no,up) € H*(R?) x (H*(R?))2, s > 3, no(1 + |z|?) € LY(R?). If the initial mass
is strictly less than 8,

M := [Inol|1 (r2) < 8,

then the entropy bound (1.7) and the energy bound (1.8) hold on any finite-time in-
terval [0,T] C [0,00). Moreover, for any small constant § > 0, there exists a constant
C(FE[ng,uo], M,d) such that

SH®)] + [[ult)]|2 < C(Elno, o], M, ) + 6t ¥t € [0, 00).

From the linearly growing bound on the positive component of the entropy S™[n]
and the energy ||u(t)||3, one can derive the exponential-in-time bound on the H*-
Sobolev norms (1.3) through standard energy estimates. This concludes the proof of
Theorem 1.

In general, the long-time asymptotic behavior of the solution to (1.1) is not clear.
However, for radially symmetric solutions, we have the following description.

THEOREM 7. Consider radially symmetric solutions to (1.1) subject to the
subcritical-mass constraint ||no|l1 < 87 and the conditions in Corollary 1. The L*-
norms of the solutions undergo polynomial decay in the sense that

[[n(t)]|32 + ||curlu(t) Yt € [0, 00),

2

[ —
2 = T
where C' is a constant depending on the initial data.

Remark 5. By applying the same argument as in the proof of Theorem 4, we
obtain that the H® norms of the solutions are uniformly bounded in time.

The paper is organized as follows. In section 2, we treat the planar case and prove
Theorems 1, 4, 5, and 7 and Corollary 1. In section 3, we treat the torus case and
prove Theorem 2.
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Notation. Throughout the paper, the constants B, C are changing from line to
line. However, the constants C(.), e.g., Cr2, CL1og L, Will be defined and fixed unless
otherwise stated. An exception to this rule are the constants Cgns and Cp; they
are the constants appearing in the Gagliardo—Nirenberg—Sobolev inequalities and the
Nash inequalities and are changing from line to line.

We denote P as the Leray projection, i.e.,

(1.10) Pu=u— VAV -u).

Here the operator should be understood as the pseudodifferential operators. Explicitly
speaking, for vector field u = (u',u?), we have
\Y

2
Pui(z) = Z(a;—’r;’rg>ua‘(k) L ie{1,2),

j=1

o~

where (-) and the (-)" denote the Fourier transform and inverse transform on the plane
R? or the torus T2, respectively, and the 6; is the Kronecker delta function. Further
properties of the Leray projection are that it is a self-adjoint Fourier multiplier and
a continuous map from L? to L?. Now we define the Stokes operator as P(—A).
Furthermore, we define the bilinear form

B(u,v) =P((u- V)v).

Properties of these operators can be found in classical literature; e.g., see Chapter 2
of [21].
The following multi-index notation is adopted:

0y = 071077, lal = |aa] + [l

Moreover, we denote 5 < « if 81 < a1, B2 < as, and at least one of the inequalities
is strict.
Recall the classical LP? norms and Sobolev H® norms,

1/p T 1/q
itz = 1l = ( [ 1972 ) |f|Lg<[o,T];Lg>=(/o |f<t,x>||igdt) ;

1/2 1/2

Wl = | D0 N8z | 5 Ifllae = [ Do 02 F1Z: )

la|<s la|=s

1/2

IV flle = | D 1109 f1172

lor]=i

2. Planar case: R2. This section is organized as follows. We first prove Theo-
rem 4. The proof will serve as a prototype for our later analysis on the torus T?. Next
we prove Theorem 5, which assumes that the cell density n has a bounded second
moment on the time interval [0, 7]. Then we prove Corollary 1 by showing that the
second moment bound (1.9) is checked in the radially symmetric setting. Finally, we
introduce the modified free energy to prove Theorem 1.
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Proof of Theorem 4. In this proof, we focus on deriving the a priori estimates
for the H®, s > 3, Sobolev norms of the solutions (n,u). Then by a standard limit-
ing procedure and contraction mapping argument, one can deduce the existence and
uniqueness of the solutions to (1.1). The proof is decomposed into steps.

Step 1. LP estimate of the density n. First, we recall that due to the divergence
structure of the cell density equation in (1.1), the total mass of the cells is conserved
along the dynamics. Therefore, we set M := ||n(t)||1 = ||no||1- In order to estimate
the LP, p > 1, norm of the density n, we decompose it as follows:

n=(n-—K); +min{n, K}, K >1.

Since min{n, K} has a bounded L” norm, it is enough to estimate the size of (n—K)
To this end, define the following quantity:

K ::/ (n— K)ydx.
R2

Since the positive part of the entropy is bounded on the interval [0, 7] (1.7), direct
estimation yields that

10g+n C(LlogL
2.1 < - K dr < .
(2.1) 77K_/Rz<n )+logK TS Tog K

As a result, if we choose the vertical cut-off level K large enough, the 7 can be made
arbitrarily small. Next, we combine the smallness of nx (2.1), the divergence-free
condition of the fluid vector field u, the Gagliardo—Nirenberg—Sobolev inequality, and
the Nash inequality to estimate the time evolution of the L? norm of the truncated
density (n — K)4 as follows:

@2 Gle-KE< - [1Ve-K).f

+ = /( )3dz + K/n— Vide + K°M
—(1=Consni)|IV(n = K) 1[5+ 2K]|(n — K) 4|3 + K*M
1

§—§\|V(n—K)+H§+2K||(”—K)+||§+K2M

1

4 2 2
< —WH(” K) il +2K]|(n — K)4 |5 + K°M.

As a result, we see that

[n(@®)[l2 < [[(n(t) — K)+|[2 + || min{n(t), K}|]2
< C(||noll2, Cn, M, K) + KY2MY2 vt e [0,T).
Since in the estimation above we choose K such that

CrLiog L < 1
log K — 20(;]\[57

we have that K can be any constant greater than exp{2ConsCL 1OgL}. To conclude,
we have that

(2.3) [In(®)]l2 < Cr2(|Inoll2, M, Criog 1) < ooVt €[0,T].
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Direct estimation of the time evolution of the L* norm of the cell density n with
the L? bound on the cell density n (2.3), the Gagliardo-Nirenberg-Sobolev equality,
and the Nash inequality yields

1d 4 3 212 L 3y(.2(15/2
1l < =V @B + S In?13/3
< *§|IV(n2)|I2+C 1V ()15 [1n2]13
=77 2 GNS 2 2
||”2||42l 2(8/3
———=+C
=y Covsil
||”Hz81 16/3

— C n
< C’NC’;‘.:QJF ansl||nlly

Therefore we obtain that
[n(®)[la < Cra([|noll4, Crz(||noll2; M, Criog 1)) <oo  Vt € [0,T].

Combining Morrey’s inequality, the Calderon—Zygmund inequality, and the LP
bounds of the density n (2.5) yields that

24)  [IVe®)llroe@e) < Cln(®)]s@e) < Cveoo(Cra, M) < oo ¥t € [0,T].

Since the vector field u is divergence-free, the fluid transport term w - Vn has no
impact on the direct LP energy estimate on the cell density n. Now by the standard
Moser—Alikakos iteration, we have that there exists a finite constant C' o such that
the LP norms are bounded as follows:

(2.5) [1n(t)||L1nne < C1oo(|InollLinLe=,CrLiog ) < o0 ¥t € [0,T].

For the iteration argument in the classical PKS equation setting, we refer the readers
to the Lemma 3.2 in [5] or the paper [19]. For the PKS equation subject to ambient
divergence-free vector fields, we refer the reader to the appendix of [18].

Step 2. H? estimate of the density n and the velocity u. Before estimating the
H' norms of the solutions (n,u), we present two estimates on the chemical gradient
Ve. Combining the LP boundedness of the Riesz transform for p € (1,00) on R? and
the LP bounds of the density n (2.5) yields that

1V2¢ll2 = [|[V2(=LA)n|l2 < Clln||2 < CC)

(2.6) , ,
IVl = [[VH(=A)n]ls < Clin|ls < CC .

After these preparations, we first estimate the H! norm of the velocity fields u. We
apply the Leray projection P (1.10) on the fluid equation (1.1) to eliminate the pressure
term and end up with

(2.7) Ou+ B(u,u) = Au+P(nVe), B(u,u) :=P((u-V)u).

Here we use the fact that Pu = w since u is divergence-free. Moreover, since the
symbol of P is bounded, the projection P maps L? space to L? space. We also recall
the following classical identity: for divergence-free u € L? N H?,

(2.8) /B(u, u) - Audz = 0.
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The proof of the identity, which involves the stream function of u, can be found in
[21, Lemma 2.1.16]. The HZ2-regularity required by this equality is guaranteed by
the local well-posedness theorem 3. Now we estimate the time evolution of the H?
seminorm of the velocity u with the equality (2.8), the divergence-free condition of
u, the self-adjoint property of P, the Gagliardo—Nirenberg—Sobolev inequality, the
chemical gradient estimates (2.4) and (2.6), and the L? controls of the cell density n
(2.5) as follows:

1d 2 2 2
5 20l == 30" [ 10,,0,,uPda
j=1
2

j=1k=1

2
-> / Oz, B(u,u) - Oy udw + Y / 02, P(nVc) - Oy, udz
Jj=1 j=1

1
< =5 IVZullz + ClIVZulllInl ][ Velloo

V|l 212
<—s7—5 + ClIn][3C] -
2CGNS||UH% H H2 1,00
As a result, we recall the assumption (1.8) and obtain that
(2.9) IVu®)llzz < Cuzr (Cusr2, [[Vuol[2, [Inol[Linze=) ¥t € [0,T7.

Similarly, we estimate the time evolution of the H* seminorm of n using the divergence-
free property of u, the Gagliardo—Nirenberg—Sobolev inequality, the chemical gradient
estimate (2.4), (2.6), the Vu bound (2.9), and the L? bound of the density n (2.3) as
follows:

1d

2
5 Va3

1
< =5 [IV2nllz + IVallEl[Vull: + IV nllo] [Vnll2| Vel oo + [[V2n] |2 lnll4][ V¢l

1
< =5 [IV2nll3 + ClIV2n] 2|Vl [Vulls
+ V20l l2[[Vnll2]|Velloo + ClIVnl|2]n]]2]|Vnl]2
1 1
< =5 [IV2nllz + 2 11V2nll3 + C (IVull3 + [[Vell% + [Inl[3) [[Vnll3

<o Vnll ez oz 4 o) vl
4Canslin|l3 . ’
Now by standard ODE theory, we obtain that
IVn()|3 < C(Ch 1 4 CRene + C22) CFa + || Vnoll3 VE € [0,T].
Combining this with (2.3), (2.4), and (2.9) yields

(210)  [[Vn(@)l]2 + [[Vu(t)]]2
< CHI(CLIOgLaC’u,;Lza ||n0||LlﬁL°°7 ||n0HH17 ||u0||H1) <o Vi€ [O’T]
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An iteration argument yields the H® (s > 2,s € N) estimates. To set up the
iteration, we make the assumption
(2.11)

()= + [u(@)][ =

< CHsfl(CLlogchu;[ﬁa Hn0‘|L10L°°7 ||n0||H5*17 ||/u’0||H3*1) <oo Vte [OyTL
and prove that

n(@)|[rs + [|u()|]ae
< Cus(Criog s Cu:L2, |Ino||L1nne ||nol|ms, ||uwol | s) < oo ¥Vt €[0,T].

Since we have already obtained the H! bound of the solution (n,u), by iterating this
argument one can propagate any H®-Sobolev norm as long as the conditions (1.7) and
(1.8) are satisfied.

We focus on the estimate of the density n first. Applying the density equation
(1.1), the time evolution of the H* seminorm of n can be expressed using integration
by parts as follows:

1d
LS gl Y 9 9enl
lal=s |a]=s

= Z /aanaa u-Vn)dr — /a@naav (Ven)dx =: T, + IZ,,.

loe|=s lor|=s

(2.12)

Now we estimate the first term Z,, in (2.12). We further decompose it into two parts:

Z / ogn)dx

lor|=s

>y (&)( )/aa V(02 Pn)di = Toy + Lo

la|=s (0,0)<B<cx

(2.13)

The divergence-free property of the vector field v and integration by parts yield the
vanishing of the first term Z,.; in (2.13), i.e

(214)  Toa= Y / <|aan|2) -y / (8"‘n|2> dz = 0.

lo]=s lee|=s

To estimate the second term Z,.2 in (2.13), we first apply the Holder inequality to
obtain that

Lo < Y ( 51 ) ( fj )/agnwag—%)afudx
(0,0)<B<a, ! 2
|a|=s

< > (22w

(0,0)<p<a,
loal=s

1 1
Vo Palleel0fullLe,  —+ == .
P q
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Applying the Gagliardo—Nirenberg—Sobolev inequalities yields the bounds

o = 18] +1- 2

190 Pnll1s < Canslinlly..lInllin", 6=,
181~ 2

10%ullz < Cansllullf . lulll, 6= ——% =10,

Combining these two estimates, we see that the H! estimate (2.10) with the previous
estimation and the application of Young’s inequality yield that

In;Q S Cv(;'l\/v»5'||ln‘||Hq (

|n||Hs+1 + HUHHSH) Chr.

Combining this inequality and the Z,.; estimate (2.14) and the decomposition (2.13)
yields the estimate

Zn < Cllnllgz (Il govs +[lull goss) Ca

1 1
(2.15) < SlnllGe + gl + C(Cre)lInl[G..

This completes the estimation of the integral Z,, in (2.12). Next we estimate the
integral ZZ,, in (2.12) as follows:

TT,= 3 [ 9209 < Clnlos 56l

Now by the product estimate for Sobolev functions, the chemical gradient estimate
(2.4), the L? bound on the cell density (2.5), the assumption (2.11), and the L2
boundedness of the Riesz transform, we have that

ITn < CfInll grosa (Il s

Vel + Vel

nf|Le)

1
(2.16) < glnllfin + C(Croo)lInll. + C(Cher, Croc).

Combining the Z,, estimate (2.15), the ZZ,, estimate (2.16), and equation (2.12), we
obtain that there exists a constant C' depending on the H*~! norm of the solution
(n,u) (2.11) and the L? estimate of n (2.5) such that the following inequality holds:

O N S\

(2.17) lorl=s la =5
1
gllull w1 +C(Cra1, Croo)|Inl %, + C(Crro1, Ch o)

Next we focus on the H® estimate of w. Direct calculation with the velocity
equation (2.7) yields that

th Z H@O‘uHQ—i— Z ||V8au||2
la=s || =s

=-> /aau 0% B(u,u) dm+/8au PO (nVe)dr =: T, + IL,,.

loe|=s

(2.18)
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Now we estimate each term in the decomposition (2.18). For the Z,, term, we decom-
pose it into three terms as follows:

(2.19) =Y / (0°) - (u - V)%u)d

|a|=s
ﬂl 2 « 8 a—/f3
IS ( o ) ( o )/@u%((axu-waw u)da
laj=s B<a
[BI=1
+ Z /8§u- (09w - VYu)dr =: Lyq + Ly2 + Lys.
la|=s

Now we estimate each term in the decomposition (2.19). For the first term, we apply
the divergence-free property of the vector field v to obtain

o, |2

lee|=s

For the second term, direct application of the Holder inequality yields that

|la|=s B<a,
[B1>1
5 _ 111
<O Y 3 ullgllofull IVos P ully, =+ == 3.
— poq 2
la]=s B<a,
[8]>1

Now we recall the following Gagliardo—Nirenberg—Sobolev inequalities:

8] - 2
0 1-6
||8fu\|Lp < OGNSHUHI§5+1HU||H1 5 0= Tp;
) (Jol = 18] +1) =2
IV0:~Pullzs < Cansllullf. Il 01 = s T

Combining these inequalities and the estimation above yields that

Zuz < Consllull gross [l ol -

Now we estimate the last term Z,.3 in the decomposition (2.19) using the Holder
inequality and the Gagliardo-Nirenberg—Sobolev inequality as follows:

Tus <C ) fullg

|a|=s

ulles|lVullps < Consllull gllull gos[lull g

Combining the estimations of the 7.1, Z,.2, and Z,;3 terms above and the decompo-
sition (2.19) and applying Young’s inequality yield the following:

1
(2.20) 7, < §||u\|1%15+1 + C(Cpps=1, Cro0)|[ul%. + C(Cpa-1, Ch o).

Now we estimate the term ZZ,, in (2.18) with the product estimate for Sobolev func-
tions, the chemical gradient estimate (2.4), the LP bound on the cell density n (2.5),
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the iteration assumption (2.11), the divergence-free property of the vector field w, the
fact that projection P is self-adjoint, and the L? boundedness of the Riesz transform
as follows:

(2.21)
IZy < |ullg:|InVell g < Cllull g« ([Inl| =1V elloo + [In]loc|[Vel|m+)
< lullF. + Cllnl 3 |1Vel % + Clinl 5| Vel -
< lull. + C(Croo)lInll. + C(Che-1, Cro0)-

Combining the estimates for Z,, (2.20) and ZZ,, (2.21) with the decomposition (2.18),
we end up with the estimate on the time evolution of the H® seminorm of vector field
u’

1d . 1 .
(2.22) > dq Z Haxu||%+§ Z Vo ull3

la]=s lee|=s

< C(Cpe—1, Croo)([ullfy. +11nll.) + C(Crro-i, C1,o0).-

Finally, combining the estimates (2.17) and (2.22), we have that

(2.23)
1d
52 (el +[1nll2.)
1 1
< —ln1cs =l + C(Crrim, Co) Ul + ) + C(Coomr, Cr )

Applying the Gagliardo-Nirenberg—Sobolev inequality, we end up with the following:

242
2
CansllIfll;-

Applying this upper bound on the dissipative terms appeared in (2.23) and recalling
the LP estimate (2.5) and the L? energy condition of the vector fields u (1.8), we
obtain that

e < =

242 242

1d lInll,.° ull .

Sl + ) < -
4CensCi o 4CansCy o

+ C(Cpa—1, Croo)[n]1%. + l[ul3.) + C(Cha1,C100).
Therefore we have that

[In@l|zrs + |[w@)|| s < Crrs(

‘77,0”]—[57 |U0HH@,CHS—1,CLOO,CM;IQ) < oo Vte [O,T]

This concludes the proof. 0
Next we prove Theorem 5.

Proof of Theorem 5. The proof involves two steps. First, we estimate the entropy

S[n] :/ nlogndx.
R2
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Then we estimate its negative part S~ [n] through the second moment bound. Since
S*[n] = S[n] + S~ [n], these estimates yield the bound on the positive part of the
entropy S*[n].

To estimate the entropy, we combine the decay estimate of the free energy (1.2)
and the following logarithmic Hardy—Littlewood—Sobolev inequality (see, e.g., [6]):

THEOREM 8 (logarithmic Hardy-Littlewood-Sobolev inequality). For all non-
negative functions f € L*(R?) such that flog f and flog(1 + |z|?) belong to L'(R?),
there exists a constant C(M) such that the following inequality holds:

(2.24)

flogfd:c+—// y)log |z — yldedy > —C(M), M = fdx > 0.
]R2><R2 R2

Combining (2.24) and Lemma 1 yields that

M
E[ng,up] > Eln,u] = (1 - ) / nlog ndx
8 R2

M 2 2
+ 3 </}R2 nlog ndx + i //RQXW n(x)log|z — y|n(y)da:dy) + %

> <1 - j;{) S[n] — %C(M) + %

As a result, we obtain an a priori bound on the entropy S[n] and on the L? norm of
the velocity ||ul| for any finite time

no, U M
gy st < SR EEEL <O B <o e 07)

Therefore, we obtain the bound on the entropy S[n] and on the energy ||u||3.
Next we estimate the negative part of the entropy S~ [n]. To this end, we recall
the inequality

1 1
(2.25) / glog™ gdx < 7/ glz*dx + log(27r)/ gdr +—, ¢g>0,
R2 2 R2 R2 €

whose proof can be found in Lemma 2.2 of [3]. Since the second moment is assumed
to be bounded (1.9), direct application of the inequality yields the estimate

[lu(t)|]2 —|—/ n(t, x) log™ n(t,x)dz < C(Cy, E[ng, ugl, M) < o0,
RQ

on the interval [0,7]. Now all the conditions in Theorem 4 are checked, and this
concludes the proof of Theorem 5. ]

Proof of Corollary 1. It is enough to show that if the initial data (ng(x),uo(z))
is radially symmetric, then the second moment is bounded for any finite time, i.e.,

(2.26) / n(t, 2)|a2dz < / no(x)|z|2dz + AMT.

Explicit calculation of the time evolution of the second moment yields that
d 1

(2.27) pn n(t,x)|z|*dr = 4M — 2—M2 /x2V - (un)dz.
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To estimate the last term in the above equality, we will rewrite it in a different form.
To this end, we introduce the stream function of the velocity field u,

¢ = A_lcuﬂlh (_amQ) 811)¢ =u.

Since (1.1) preserves radial symmetry, the solutions (n,u) are radially symmetric. As
a result, the stream functions ¢ are also radially symmetric, which implies (219,, —
220z, )¢ = 0. Applying these facts, we rewrite the last term in the time evolution of
the second moment in the following manner:

/|x\2V~(un)d1‘ = —Z/x-undx = —2/x~VL¢>nda: = 2/(33181.2 — 290, )¢pndz = 0.

Combining this and (2.27) yields (2.26). Since the second moment condition (1.9)
is checked, Theorem 5 can be applied. This completes the proof of the first part of
Corollary 1.

If the total mass is greater than 8w, then by the same argument as above, we
observe that

d 2 Lo
— =4M — —M .
o n(t, x)|z|*dz 5 <0

Hence if the solution (n,u) is regular on the time interval

8
0,74, T = ——— 2d
0, T,], T 4M(M—87T) /n0|x| Z,
then the second moment becomes zero at time T, which is impossible. Hence the
solution must blow up on or before time 7). This concludes the proof of the second
part of Corollary 1. ]

Now we introduce the modified free energy Er and its properties. We introduce
the modified free energy
ne  |ul?

(2.28) Er[n,u] = /nf(n) ) + Tdm,

where I' is defined as

(2.29)

I >
2 Ogg’ n= r]::n(é,M):min{l,Jé\/[}.

I(n :{ _
logn+n~'(n—n)— L (n—n)", n<mn

The T' function is chosen such that it matches log when n is large but is bounded
from below when n is small. Here, we have replaced the function log(n + (n — 7)) by
its degree two Taylor expansion centered at 1 when n < n and use the original log
function when n > 7.

The next lemma states that the modified free energy (2.28) grows at most linearly
under the dynamics (1.1).

LEMMA 2. The time deriwvative of the modified free energy Er[n,u], defined in
(2.28), satisfies the following estimate:

d

(2.30) -

Er[n(t),u(t)] < Vte[0,00).
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Furthermore, the following quantity is bounded:
3
(2.31) —/ nl(n)dx < (— logn(s, M) + 2) M.
n<l

Proof. Taking the time derivative of Er[n(t),u(t)] and applying the divergence-
free condition of the vector field u and integration by parts yield

(2.32)
5t</nf‘(n)—7;c+u2|2d )
_ / (n)e(D(n) — c)dz + / n(D(n))dz + / - wda
_ /(nV logn — Ven) - (' (n)Vn — Ve)da — /u  Vnl(n)d + /v - (un)eda

— /V(nf'(n)) - (nVlogn — Ven)dz — /u -Vnnl" (n)dz — / |Vu|?dx + /nu - Vedz

7
= ZTZ
i=1

Applying integration by parts, we have that the third term T3 and the seventh term
T7 in (2.32) cancel each other. Now we consider the second term T5 and the fifth term
Ts. Since the I' function is finite near the origin, we define the following functions:

S(T):/Orf(s)ds, Q(T):/OTSF’(S)CZS.

The second term 75 and fifth term T5 can be explicitly calculated using the divergence-
free condition V - u = 0 and integration by parts as follows:

Tg:—/u-V(S)dx:/(V~u)5dx:0;
T5:—/u-V(g)dx:/(V-u)gdx:O.

Next we estimate the terms 77 + Ty. Applying the definition of I' (2.29), the cut-off

threshold n = min{%7 1}, and the fact that I'(n) = 2np~! — n~2n for n < 7, direct
calculation yields the following equality:

T +T4:—/ (nVlogn—Vcn)~<1Vn—Vc) dx
n>n n
— / (nVlogn — Ven) - ((27]_1 - n_2n) Vn — V) dx
n<n
/ —n"?n) Vn - (nVlogn — Ven)dz

—l—/ nn " 2Vn - (nVlogn — Ven)da

Notice the inequality

su =3 2n+4dnHn< — <2
sup /(=31 nn< o
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which implies
T+ Ty

=-— / n|Vlogn — Ve|*dx — / (47! = 3n7%n) |Vn|’dz
n>n

n<n

+/ V (=3772n + 49~ 1) n\/(=3n~2n + 4n~1) nVe - Vndz
n<n

- / n|Ve|?dx + / Vn - Vedz
n<n n<n

< —/ n|Vlogn — Ve|?dx —/ (4n~' = 3n7%n) |Vn|?dz
n2n

n<n

2
v [ VI Vel Valds -
\/g n<n n<n

Completing a square using the 2nd, 3rd, and 4th terms in the last line yields

n|Vel?dx + / Vn - Vedz.
n<n

2
T+ T, < —/ n|Vlogn — Ve|*dr — f/ (40" = 3n7%n) |Vn|*dz
n>n 3 n<n

1 2
(2.33) - / (\/477—1 —3n72n—|Vn| — \/ﬁ|Vc|> dx —|—/ Vn - Vedz.
n<n \/g n<n

Claim. The following estimate holds:

/ Vn - Vedx < 6.
n<n

To prove the claim, we make the qualitative assumption that n € C*°(R?) N H*(R?),
s > 3. However, the final estimate will be independent of the higher regularity norms
of the densities n and c¢. We apply the choice of n (2.29) and integration by parts to
obtain

/ Vn-Vedr = /V(min{n,n})~Vcdx =— /min{n,n}Acdaj < /nndm <nM <.
n<n

Here we applied the equality Vnl,«, = V(min{n,n}) almost everywhere if n €

WhP(R?), for 1 < p < co. This is a natural consequence of Exercise 17 in Evans [10,

Chapter 5]. To explicitly justify integration by parts, one can use positive the C°

function to approximate the W14/3 function min{n,n} and the W* function Ve.
Therefore, combining the claim and estimate (2.33), we deduce that

T1+T4S—/

n>n

2
n|Vlogn — Ve|>dx — 3 / (4n~" = 3n"°n) |Vn’dz + 6 < 6.

n<n

This finishes the treatment of all the 7;’s in (2.32). Therefore, the estimate (2.30)
follows.

Estimate (2.31) follows from the fact that the function I' is bounded from below
by logn(d, M) — %, which is a finite number. This finishes the proof of Lemma 2. 0O
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Proof of Theorem 6. We rewrite the approximate free energy so that inequality
(2.24) can be applied:

1
Ep[no,uo]+6tz/nf(n)dxf/%dxjt/imﬁdx
:/nlog+ ndx—i—/ nIl'(n)dx

<1
1 1
+ 4= [[1o8le ~ yin@n(dsdy + 51l
M

= (1 - ) /nlogJr ndx —|—/ nl'(n)dx
8m n<l

M n 2 1 ,
+ 3 (/nlog ndx + M//log\x - y|n(1;)n(y)da:dy> + §Hu||2
Applying the log-Hardy-Littlewood—Sobolev (2.24) and (2.31) yields

M M 1
Er[ng, ug] + 6t > <1 - 87r> /nlongnd:E—&—/n<1nl"(n)cl,'lc—C(M)87r + §Hu||§
M 3 M 1
>(1-— log™ ndx— M1 M) =M —C(M)—+ = ||u||?
> (1= g7 ) [ rto” ndo-Mtog o, i)t - Sr-CCan) ¢+ 511l

which leads to a bound on the positive part of the entropy ST [n(¢)] and on the fluid
energy ||u||3 for any finite time, i.e.,

8T 2 8
This yields that
Stn(t)] + [lu®)||3 < C(Erng,u], M,8) + 6t < ooVt € [0,00).

M 1 M
(1 - )/nlong ndx+§||u||§§Ep[n0,uo}—i—ét—i—Mlogn((S, M)_1+§M+C(M)—

This concludes the proof of Theorem 6. 0

Proof of Theorem 1. Now we highlight the adjustment in the remaining part of
the proof of Theorem 1 and compare it to the proof of Theorem 4. The main ad-
justment takes place in the proof of the L? norm of the cell density (2.3). Since the
positive part of the entropy ST[n(t)] is growing linearly with rate §, the quantity
Nk = ||(n — K)4||1 will not be uniformly bounded on an arbitrarily long interval as
in (2.1). To overcome this difficulty, we adjust the vertical cut-off level K as time
progresses. Specifically, we fix an arbitrary time interval [0, 7] and do estimation on
it. First note that on this time interval, we have that

SHn@®)] + ||Ju)]|2 < C(Brlno, uo), M,8) + 6T < ooVt € [0,T].

Now we choose the vertical cut-off level K(T') such that the quantity ng ) = [|(n —
K(T))+]|1 is small in the sense that

C(Er[no,uo], M,8) + 6T 1
< < —
N (T) < log K (T) < SCGN&

where Cgng is the universal constant that appeared in the L? energy estimate (2.2).
The resulting K (T') is larger than

SC(E[‘[TLQ, UQ], M, (5) } exp { 80T }
Cans Cens |

K(T) = eXP{
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Now combining the size of K(T) and a direct L? energy estimation on the quantity
(n — K(T))+, which is the same as (2.2), yields that

[[n(®)|2 < 2[|min{n(t), K(T)}|2 + 2[|(n(t) — K(T))+]2
< 2K (T)Y2MY? 4+ C(||ngl|2, M)K(T)Y/?
< C(|[nolla, Elno, uol, M, 8)eans T Vit € [0,T].

Since the time 7T is arbitrary, we have that the L? norm of n can grow at most

exponentially with rate Céis. Since 9 is arbitrarily small, we abuse the notation and

still denote the rate as §. The remaining part of the proof is similar to the proof of
Theorem 4, so we omit the details. This concludes the proof of Theorem 1. ]

Remark 6. With Theorem 1 proven, we make a comment on the second moment
Vin(t)] (1.5). We estimate the time evolution of the second moment as follows:

d 1 1
ﬁ/n|m\2d:ﬂ:4M—%M2—/m2V~(un)dx:élM— EM2+2/x'undx

1/2
< AM + [[u|oo M/ </n|x|2dac> .

Since the ||u||oo is bounded on an arbitrary finite-time interval, the second moment
is bounded for any finite time.

In the last part of this section, we consider the long-time behavior of the radially
symmetric solutions to (1.1) and prove Theorem 7.

To prove Theorem 7, we first rewrite the equation of the velocity in the vorticity
form and present some necessary lemmas. Recall that the vorticity

w=Vtou=0,u*—0,u", V"= (-0.,,0)

and the velocity u are related through the Biot—Savart law,
1
u(t,r) = VEA T w(t, z) = 2—VL/ log | — ylw(t, y)dy =: V1 a(t, ),
m R2

where 1 is the stream function. In the vorticity formulation, (1.1) has the following
form:

on+u-Vn=An—-V-(nVe), —Ac=n,
(2.34) dwtu-Vw = Aw+ V*t - (nVe), u=V+A ',
n(t =0,z) = no(v), w(t=02)=uwy(z), =R

To show long-time decay of the solution, it is classical to consider the solutions in the
self-similar variables,

n(t,7) =N <log R(t), th)) clt,x) = C (log R(t), %

R2(1) ) , R(t) = (1+20)"/%;

w(t, z) :R%@)Q <log R(t), ft)) , Y(ta) =T (log R(t), ft)) :
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X

We further consider the new coordinate 7 := log R(t), X := 7(py> and rewrite (2.34)
in the following form:

9N -V -(XN)=AN -V -(NVC)-V+¥.VN, —AC=N,
(2.35) 9.0 -V (XQ) =AQ+ V. (NVO) - V¥ .VQ, Q=A7,
N(07X) :nO(x)a Q(va) :CUO(JI).

If the solution is radially symmetric, then the second moment of N is uniformly
bounded in time. This is the content of the next lemma.
LEMMA 3. Consider radially symmetric solutions (N, ) € Lip.([0, 1 log(1+2T)];

H*(R?)), s > 3, to (2.37) subject to initial constraints in Corollary 1. The second
moment of the solution is bounded in time

(2.36) sup N(r, X)|X|?dX < Cyv < 0.
7€[0,00) JR2

Proof. The calculation is similar to the calculation in Corollary 1. Direct calcu-
lation yields that

i/N(T, X)|X[2dX = 4M — Lo 2/N(T,X)|X|2dX
dr 2

—/v A(VEU(r, X)N (1, X))| X |2dX.

Since the solutions are radially symmetric, the last term is zero. Now we see that the
second moment is uniformly bounded in time. ]

For (2.35), if the solution (IV, ) is radially symmetric, there is a dissipative free
energy,

1 1 1
(2.37) Es[N,Q)= [ NlogN — 5NO + 5N|X|2 - 5\1/(2dX.
R2

This is the content of the following lemma.
LEMMA 4. Consider radially symmetric solutions (N, ) € Lip,.([0, 2 log(1+2T)];

H*(R?)), s > 3, to (2.37) subject to initial finite second moment constraint in Corol-
lary 1. The free energy (2.37) is dissipative in the sense that %Es[N(T), Q(7)] <0.
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Proof. Direct calculation yields that

(2.38)

% /NlogN - %NC + %N|X|2 - %Q\I/dX
_ /Nr (logN —C+ ;X|2> dx — /QT\I/dX
:/(V-(NVIOgN)—V-(NVC)

+V-(NX) -V (VIUN)) <10gN -C+ ;|X|2> dX
- /(AQ LV (XQ) = V- (VEU0) + VL - (NVO)) WX
- _/N|VlogN—VC+X\2dX—/QQdX

+/Nv¢qf-(v10gN—vc+X)dX —/V-(XQ)\deJr/NVC-Vl\IJdX

3
= _/N|VlogN—VC+X|2dX —/QQdX-i-ZTs;é-
=1

By the fact that for the radially symmetric solutions, VW is perpendicular to the
vectors X, VC, VN, we have that T, = T3 = 0. For the T.o term in (2.38), we
have that

Tso = /X18X1\IJ(8X1X1\I/+8X2X2\I/)dX+/X28X2\I!(6X1X1\I/+6X2X2\I/)dX

)

- %/axl (0x,¥)2X1dX — %/axl (0x,¥)2X1dX

_ %/5‘X2(8X1\D)2X2dX+ %/3X2(8X2\I/)2X2dX
= 0.

Combining these calculations and the relation (2.38), we have obtained that the free
energy is decaying. ]

Proof of Theorem 7. Since the free energy is bounded and the second moment
is bounded (2.36), through a standard argument involving the logarithmic Hardy—
Littlewood—Sobolev inequality, which is similar to arguments proving Theorems 5 and
4, we have that the solution N, € is uniformly bounded in time, i.e., || V| |L$o([070o);L§() +
192]| e ([0,00);22) < C's < 00. Now by the relation between the L2 norm and the L%
norm, we have that

1
||n(t)\|2Lg + Hw(t)H%g < 0] (HNH%ZO([O,OO);L%() + HQH%,?,O([O,OO);L%())
1 2
= t .
1+2tC’s Yt € [0, 00)
This concludes the proof of the theorem. 0
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3. Torus case: T2. Before we start the proof of Theorem 2, we first collect some
useful facts. Without loss of generality, we assume that the average of the velocity u
is zero, i.e.,

1 .
T o uy(x)de =0, i=1,2.

The average-zero properties are propagated along the dynamics (1.4). To check this,
we calculate the time evolution of the mean using the divergence-free condition of w
and the elliptic equation of the chemical ¢ as follows:

d i 2 i i
pr udx:—;/ujﬁju dw—l—/naicdm
= /(V ~u)utde + / (=(0101 + 0202)c + W) O;edx

2
1
:/8108i810dx+/8208i820dx: 21/281'(83»0)%[33:0.
=

As a result, u’ = 0, i = 1,2, as long as the solution is smooth.
Now we study the 2D free energy of n on T?:

1 1
(3.1) Erz[n,u] = / nlogn — =(n —a)c+ = |ul?dz.
2 2 2
LEMMA 5. Consider the smooth solution to (1.4), the free energy Er2 (3.1) is
dissipated along the dynamics, i.e.,
(3.2) Er2[n(t),u(t)] < Eqz[ng,up] Vit > 0.

Proof. Direct calculation of the time derivative of E[n] can be estimated as fol-
lows:

d

%ETz [n, u) :/nt(logn —c)dx — / |Vul|?dx + /u -Vendx

=— /n(V logn — Vc) - (Vlegn — Vce)dz
+ /V - (un)edz — / |Vul*dz + /u - Vendz
=— /n|V10gn — Ve|*dx — / |Vu|*dz. |
The decaying free energy (3.2), together with a suitable logarithmic Hardy—
Littlewood—Sobolev inequality, yields a uniform-in-time bound on the positive com-

ponent of the entropy S*[n]. To explicitly derive the bound, we recall the following
logarithmic Hardy—Littlewood—Sobolev inequality on a compact manifold.

THEOREM 9 (see [27]). Let M be a two-dimensional, Riemannian, compact
manifold. For all M > 0, there exists a constant C(M) such that for all nonnegative
functions f € L*(M) such that flog f € L', if S fdx = M, then

(3.3) /M frog fas+ = [ /MxM F(@) f) log d(z, y)dzdy > —C(M),

where d(x,y) is the distance on the Riemannian manifold.
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Since the logarithmic Hardy—Littlewood—Sobolev inequality (3.3) is stated with
respect to the distance on the torus, we cannot directly combine it with the decaying
free energy (3.2) here. To overcome this difficulty, we estimate the potential part of
the free energy, i.e., % J(n —m)cdz, from below. This is the main content of the next
lemma.

LEMMA 6. There exists a constant B > 0, such that the following estimate holds:
1 1
—7/ (n —m)edr = —7/ (n —7)(=A)"Y(n —7)dx
2 T2 2 T2
1
> — // log d(y, x)n(y)n(x)dydxz — BM?.
47 T2 x T2

Proof. The proof of the lemma is the same as the parallel treatment in the paper
[1]. For the sake of completeness, we provide the proof in the appendix. ]

Combining Lemma 6 with (3.2) yields

E'JT2 [nOa UO}

M
> (1 — ) / nlogndx
81 T2
[lull3

M 2
i 8 </11‘2 nlogndz + M //’Jr2><11‘2 n() logd(y,x)n(x)dyd_@) + T BM?.

Applying (3.3) in the above estimate, we obtain

M 2
Erz2[ng,ug] > (1 - ) / nlogndx + [ll —C(M) - BM?,
871' T2
which results in
1 ETz[nO,UJO] +C(M) + BM?
nlognds + ————||u||?2 < .
[ mosnaz st < L

Since the function slogs is bounded from below, the negative part of the entropy
S~[n] = [;2nlog” ndx is bounded on the torus. Therefore, there exists a constant
Cr1og 1. depending only on the initial data such that the following estimate holds:

/ nlog™ ndx + |[ul[5 < Cpiog £:22 (Er2[n0, uo], M) < o0.
T2

The estimation above yields the following lemma.

LEMMA 7. If the total mass is bounded in the sense that ||ng||p: < 8, there exists
a constant Cpiog 1.(10, Uo) such that

(3.4)
/ n(t, x)log" n(t, x)dz + [|u(t)|[72 < CLiog ;12 (Er2[no, ugl, M) < 00Vt € [0, 00).
T2 v

As in the plane case, the uniform-in-time bound on the positive part of the entropy
S*[n] yields the bound on the L? norms. This is the content of the next lemma.

LEMMA 8. Assume that the entropy is bounded in the sense that (3.4) holds, then
there exists a constant C1 oo = C1,00(N0, uo) such that the following estimate holds:

(35) Hn(t)”leLoo S Cl,oo(HnO”leLN’E’H‘Z [Tlo,"u,()]) < oo Vi € [0,00)
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The proof is a small variation of classical PKS techniques (see, e.g., [16], [4]).
Before presenting the proof, we recall the following Gagliardo—Nirenberg—Sobolev
inequality on T¢: Suppose v € Hl(’]l‘d) d > 2, and [vdz = 0 . Assume that
q,r>0,00>q>r, andf—f—l- > (0. Then

LT, /dvdx:(), GZT
T d~ 2

l .
T

3=

(3.6)  vllze < C(d, q)lIVollg2llvll

=+ [~

For a fixed d, the constant C(d, q) is bounded uniformly when ¢ varies in any compact
set in (0, 00).

Proof of Lemma 8. We focus on the L? estimate. Let K > max{1,7} be a con-
stant to be chosen later. Observe that (3.4) implies the following:

1 CLiog L
3.7 n—K),dr < ndz < nlog™(n)dz < L
e [w-K _LM —mwoﬁﬂg() < Tt

Next, via (1.4) and the divergence-free property of the vector field u, there holds

(3.8)
so [ K)2ar
—/( K)4[An — V- (nVo)|dz
/|v (n—K |dm+;/( - K)3dx
+3K_”/(n K)2ds + K2 — Kﬁ/(n—K)+dx

<—f/\V n—K |2dx+2/( - K)3dx

/(n CK)2de + (K? - Km)M.

We start with the second term in (3.8). Consider the average-zero function (n —
K), —(n— K); on T?, and apply the Gagliardo-Nirenberg-Sobolev inequality (3.6)
to deduce

Jin=rpas <o ( [io0- Ky - T KL P+ a1,

< CGNS/|V(n—K)+|2dx/(n—K)+dx+CM3.

From (3.7), we choose K depending only on Cf10s 1, such that

—f/|V n—K))|*dr + = /( dx<—f/|V n—K),)|*dr + CM?3.
Plugging (3.9) into (3.8) yields the following for some universal constant B > 0:

(3.10)

1
5% (n — dx<—f/|V n—K |dx+KB/( — K)3dx + BK*M.
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Recalling the Gagliardo—Nirenberg—Sobolev inequality (3.6), for a general function v
on T2, the following Nash inequality holds:

10]1Z2(z2) < CNIIVOllL2r2y [0l L1 2y + O lJ0l[ L1 7).
Applying the Nash inequality in the estimate (3.10) yields

1d
S lln = K| < -

1 ||(”_K)+H§l 3KB 2 2
5B On M2 + 5 ||(n — K)4||5+ BK=M.

Further note that
Il < l[(n— K) 4l > + [Imin{n, K} > < [I(n = K) 4| + K2 M2,

The inequality (3.5) hence follows. As in the proof of Theorem 4, we apply energy
estimates to derive the L* bound on the density n, which in turn implies the chemical
gradient ||Ve||oo estimate through Morrey’s inequality and the Calderon—Zygmund
inequality. Now application of the Moser—Alikakos iteration yields that

[In(t)]|Lee < C1oo(||Mollnrnnee, Er2[no, ugl) < oo ¥t € [0, 00).

This concludes the proof of the theorem. ]
Next, we prove the higher regularity estimates using (3.5).

LEMMA 9. Consider the solution to (1.4). The following H®, 2 < s € N, esti-
mates hold on [0, 00):

()] & 2y + |[w(E)]] s (12)

< CHs( |U,0||Hs,Cl,OO(H’I’LoHleLoo,E'HQ[no,uO])) <oo WVte [0,00)

Inoll s,

Proof. Before proving the lemma, we collect the inequalities we are going to apply.
The L* boundedness of the Riesz transform on T¢ (see, e.g., [28, Chapter VII, section
3]) yields that

V2|2 = [[V*(=A)(n = @)||2 < Clln — 7l |2;
(3.11) 1V2¢ella = [[V2(=A)(n = )[4 < Clln — 7l|a.

Combining Morrey’s inequality and the Calderon—Zygmund inequality yields that
(3.12) IVellLoo(r2) < ClIn =7l (g2 -

Now we estimate the time evolution of the H* norm of the velocity u with the
identity (2.8), the Gagliardo—Nirenberg—Sobolev inequality, the chemical gradient es-
timates (3.12) and (3.11), and the LP, p > 1, controls of the cell density n (3.5) as
follows:

1d 2 2,112 2
3 g 1Vullz = =[IV7ully +[[V7ullaf[n]l2][Vel |0
[[Vull3

<—— 2 4+ On||] .
4CGNSHU_U||% || ||LlﬁL°c

Combining the estimates (3.4), (3.5) yields that

(313) ||Vu(t)||L2 S Ou;Hl (CLIOgL;LZ; Ol,ooa ||VUOH2) Vt S [O, OO)
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Similarly, we can estimate the time evolution of the H' norm of n with estimates
(3.5), (3.12), (3.13) as follows:
1d
2dt
1
< =5 [IV2nll3 + IVallEl[Vulla + IV 2nllo][Val |2l Vel oo + [[V2n] |2l [n]]4] [V2ella

1Vl13

1

< —§||V2n|\§ + C|[V2nl2][Vnl 2] Vull2
+IV2nl2]|Vall2|[Velloo + ClIV2n|l2][n]]a]In — 7|4

1 1 _ _

< *§|IV2HH§ + ZHVinlg +C ([IVull3 +1IVell% + In = 7ll3) [|Val5 + C7*
HVHH% 2 2 2 4

<2 o (C2 0+ C2 ) || Vnl2 + CME.

4CGNS||n_n||% ( u;H1 1, )|| ||2

Combining the solution to the above differential inequality with (3.5), (3.12), and
(3.13), we see that

IVn(@)|[3 + Va3 < Crr(|[nolla, luoll e, [[nol | Lrnze , Brz[no, ug]) < oo

Vt € [0, 00).
Further iterating this argument yields the H®, s > 3, bound. This finishes the proof
of Lemma, 9. 0
Appendix A.

Proof of Theorem 3. We prove the local a priori estimates of the H®, s > 3,
norms of the velocity field v and the density n assuming that the solution is smooth.
These bounds can be justified through standard approximation procedure. Since the
approximation step is classical, we refer the reader to Chapters 6 and 7 of [26] for
further details.

We first derive the L? estimate of the density n. Recall the equation of the density

(A1) on+u-Vn+V-(Ven) = An.

We multiply (A.1) by n and integrate to obtain

2
(A.2) %% n?dx + /u -V (T;) dz + /nV - (Ven)dx = —/|Vn|2dx.

Since u is divergence-free, the second term on the left-hand side of (A.2) is zero. For
the third term on the left-hand side of (A.2), direct integration by parts yields that

2
/nV~(Vcn)dz = f/n3dx+/Vc~V <”2> do = —%/ngdx.

Combining this equation with (A.2) and applying the Gagliardo—Nirenberg—Sobolev

2 1
inequality ||f]]s < Censl||fII3|Vf]|3 with f = n and Young’s inequality yield that
d
Gl < =2 [ 1Vnfdz & [ o < 2090l + Consl|Tnlalinl

3
< =5 1IVall3 + Canslinlls < Canslinllz.
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By ODE theory, we obtain that there exists a small constant eo = e2(Cans, ||no]|2)
such that for time ¢ smaller than e, i.e., 0 < t < €g, the L? norm of the solution n is
bounded:

(A.3) ()13 < 2l[nol[3 Vt € [0, ea].

Once the L? bound of the density is achieved, we can estimate the L* norm of the
chemical gradient Ve on a short time interval ¢ € [0,e2]. Applying the Hardy—
Littlewood—Sobolev inequality, the Holder inequality, and Young’s inequality, we es-
timate the chemical gradient Ve as follows:

(A4)
[[Ve®)llze < Curslin()llpas < Crars(M + [[n(t)]|z2) < C(M, [[noll2) Vt € [0, €]

Next we estimate the L? norm of the fluid velocity fields u. Recall the fluid
equation after we apply the Leray projection operator PP,

(A.5) Ou+P((u- V)u) = —P(—A)u + P(nVe).

Since the Leray projection is self-adjoint and the vector field u is divergence-free,
multiplying (A.5) by u and integrating yield the equality

(A.6) %%/\u|2dx+/u~((u~V)u)dx: /uAudx+/u~ (nVc)dz.

Due to the divergence-free property of the vector field u, we have that the second term
on the left-hand side of (A.6) vanishes. Combining the estimates (A.3) and (A.4), we
see that the Holder inequality and the Gagliardo—Nirenberg—Sobolev inequality yield
that the second term on the right-hand side of (A.6) is bounded on the time interval
[07 62]7

/u(t,x) ~(n(t,x)Ve(t,x))dz
< [|Ve(t)]al[u(t)]lalln(®)]l2
< C(M, [[no]|2)|[u(®)][y/*[[Vu@®)|ly* ¥t € [0, ).

Combining these estimates with (A.6), we apply Young’s inequality to obtain that
d 9 1 9 2/3
2@z = =S lIVullz + O, lInol[2)llu(®)lly"™ ¥t € [0, €2].
Therefore, we have the following local control over |[|u(t)]]2:
lu(®)]]2 < C(M, |nol| L2, [[uoll2) < oo Vit € [0, €.

Next we estimate the H® norm. Before estimating the H* norms, we recall estimates
(2.6),

(A7) [Vl = IV (=A)nll2 < ClInll2,  [[V2ella = [[V*(=A)nlls < Cln]s.

Now we estimate the time evolution of the H' seminorm of the velocity u (2.7)
with the divergence-free condition of u, the self-adjoint property of P, the Gagliardo—
Nirenberg—Sobolev inequality, and the chemical gradient estimates (A.4) and (A.7) as
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follows:
2
1d
Sdt Z Haj“H%
j:

1
2 2 2
= —Z/|V8ju|2dx - Z/ajB(u,u) - Ojudz + Z/@P(Vcn) - Qjudx
j=1 j=1 j=1

1
< =5 IIVZullz + C ([[Vullz + [Inl1Z]Vell2)
< C|IVull3 + C||Valla|lnl|2 (M2 + [n][3).
Similarly, we estimate the time evolution of the H* seminorm of n using the divergence-

free property of u, the Gagliardo—Nirenberg—Sobolev inequality, and the chemical
gradient estimates (A.4) and (A.7) as follows:

1d

2 dt
1

< =5 IIV2nll3 + [IVallEl[Vulls + V22l [ Vllal Vel la + [[V2n]]2]n]|| Vel

1Vnll3

1
< =5 IV2nll3 + Cl[V2nl |2Vl [Vull
+ CIIV2nl[3 %1Vl [y (M + |Inl[2) + ClIV2n]l]In]|5] [V

1
< =7 IIV2nll3 + Cl[Vnllz + Cl[Vullz + C(1+ M + [[n]]2)*||Vnl[3.

Combining these estimations on time evolution of ||n||21 and |\u||§{1 with the L?
bound on the cell density n (2.5) and the assumption on the fluid velocity w (1.8)

yields that there exists a universal constant C' such that
1d
S

Now by standard ODE theory and the L? bound (A.3), we obtain that

Vall3 + [[Vul3) < ClIVullz + Cl[Vall3 + C(M, |Infl2)[[Vnl[3 + C(Inl]2, M).

Va2 + [[Vu(®)ll2 < Crr(llnol |2y, [nol | a [Juol 1) < oo VE € [0,¢],

for some small enough € = €(||no|| L1, |In0] |51, [|wol| &1 )-

Now we can apply the similar procedure shown in the proof of Theorem 4 to gain
control over H® norms of u and n on the interval [0, ¢]. Following the arguments in
Chapter 7 of [26], higher space-time regularity of the solutions can be obtained. This
concludes the proof of the theorem. 0

Proof of Lemma 6. Let x € T? be fixed. Define the cut-off function ¢, (y) € C>
such that

supp(p.) =B(z,1/4),
¢.(y) =1 Vy € B(x,1/8),
supp(Vz(y)) CB(z,1/4)\B(z,1/8).

By extending n(y) and c(y) periodically to R?, we can rewrite the equation —Ac =
n — 7 on T? such that it is posed on R?:

=Ay(pz(y)e(y)) = (n(y) — 1) (y) — 2Vypa(y) - Vye(y) — Aypa(y)e(y).
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Using the fundamental solution of the Laplacian on R?, we obtain
c(x) = c(z)pa(x)

=~ 5= [ ol = 51{ (00) = Wa(9) 29,0200 Vycl0) ~ Aua )l )

2w
1 _
=5 log |z —y|(n(y) — )¢ (y)dy
T Jle—y|<i
1
- */ Vy - (log |z — y|Vypa () c(y)dy
le—y|<3
1
+o- log |z —ylAypa(y)e(y)dy.

lz—yl<3

Due to the support of ¢,, we can identify the above with an analogous integral on
T? with |z — y| replaced by d(z,y). Therefore, we have the following estimate on the
interaction energy:

1 —
5 /11'2 (n(z) —m)e(x)d

1 — _
= [ 10 M)~
+//1 E?XTQ ; (n(z) =m)Vy - (log d(z,y)Vypa(y))e(y)dydz
_7// pogpe (n(2) = 1) logd(z,y)Aypa(y)e(y)dydz
1<d(z,y)<%

:i //d( )< log d(z,y)(n(z) — 1) (n(y) — n)dydz
L // ezt log d(z,y)(n(z) — ) (n(y) — 7). (y)dyda

4

// <d(zm)< (x) =m)Vy - (logd(z,y)Vyps(y))e(y)dydx

1

4

// <d(z, —7)logd(z,y) Ay (y)e(y)dyds

1

4

L / [, ot pn(en)dyds - - / / log d(z, y)n(z)n(y)dyda
T2 x T2 (z,y)>3%
— —n// log d(x, y)n(x)dydx + —n // log d(x, y)dydx
d(z,y)<% (w,y)<3

8

// <d(z,y)<t logd(z,y)(n(z) —n)(n(y) — N)pa(y)dydx

4

// <d( 1 —n)Vy - (log d(z, y)Vyea(y))c(y)dydz

4

// —n)logd(z,y)Ayps(y)c(y)dydz.
<d(z,y)<

1

4
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The 2nd, 3rd, 4th, and 5th terms in the last line are bounded below by —BM? for some
constant B > 0. The 6th and 7th terms are bounded below by —BM||c||L1 for some
constant B > 0, using the fact that V,, - (log|z — y|Vy9.(y)) and log |z — y|Ayva(y)
are bounded in the region & < |z — y| < . Denoting K(y) to be the fundamental
solution of the Laplacian on T? we apply Young’s inequality to obtain that

||C||L1(T2) = ||K>(< (n—ﬁ)HLl('p) S HKHLl(TZ)Hn_ﬁHLl(Tz) § BM D
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