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Abstract: The current work centers on multi-scale approaches to simulate and predict metallic
nano-layers thermomechanical responses in crystal plasticity large deformation finite element
platforms. The study is divided into two major scales; nano- and homogenized levels where
Cu/Nb nano-layers are designated as case studies. At the nano-scale, a size-dependent constitutive
model based on entropic kinetics is developed. A deep-learning adaptive boosting technique
named single layer calibration is established to acquire associated constitutive parameters through a
single process applicable to a broad range of setups entirely different from those of the calibration.
The model is validated through experimental data with solid agreement followed by behavioral
prediction of multiple cases regarding size, loading pattern, layer type, and geometrical combination
effects for which the performances are discussed. At the homogenized scale, founded on statistical
analyses of microcanonical ensembles, a homogenized crystal plasticity-based constitutive model is
developed with the aim of expediting while retaining the accuracy of computational processes.
Accordingly, effective constitutive functionals are realized where the associated constants are
obtained via metaheuristic genetic algorithms. The model is favorably verified with nano-scale
data while accelerating the computational processes by several orders of magnitude. Ultimately,
a temperature-dependent homogenized constitutive model is developed where the effective
constitutive functionals along with the associated constants are determined. The model is validated
by experimental data with which multiple demonstrations of temperature effects are assessed and

analyzed.
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1 Introduction

Crystalline nano-layers are formed by alternating nanoscale metallic lamellae where the reduction
of size to the order of nanometers instigates physicochemical attributes notably depart from those
of the bulk counterparts. Metallic nano-systems exhibit exceptional mechanical properties in which
the layer size is comparable with the electron or phonon mean free path [1]. Size effects are pivotal
aspects in copiously modulated thermodynamically non-equilibrium metallic nano-composites where
the rigid body relaxation is limited due to the constraints of neighboring nano-phases [2]. The salient,
differentiating traits in mechanical responses are assigned to the primary role of layer thicknesses and
significant density of interfaces. These features are considered the controlling parameters to modify
and modulate the strength and multi-functionality of metallic nano-structures [3] where the dynamic
characteristics of the atomic energy with local non-equilibrium multi-valley potentials [4,5] promote
the performances of nano-metals to be governed and altered towards desired applications.

Typically, interfaces function as sources, sinks, and barriers for defects, particularly dislocations.
Dislocations, with anisotropic mobility and spreading cores throughout interfaces, describe various
aspects of metallic nano-layers physical properties [6,7] and represent them as tunable structures
with remarkable responses in extreme environments [8,9]. Interfaces of distinct atomic structures
supply glissile dislocations into contiguous building blocks by virtue of inelastic deformation. The
reduction of activation volume induces dislocation mechanisms at a shorter distance [10,11] where
the amplified emission of interface dislocations and the onset of plasticity through interphases
are of consequence. The inverse dependence of strength on grain size refinement in metals and
metallic alloys with an average size in the order of micrometers follows the Hall-Petch relation [12,13]
emphasizing on deformation kinematics rooted from dislocation pile-up against interfaces along with
other transgranular dislocation mechanisms. This quality remains intact regardless of synthesizing
approaches such as physical vapor deposition (PVD) [14,15] or accumulative roll bonding (ARB) [16].
However, once the average grain size is reduced to the orders of nanometers evincing the participation
of a fewer dislocations in pile-up, the inadequacy of this relation conceivably emerges in a reduced
Hall-Petch slope. Instead, it is governed by the Orowan mechanism [17] especially pronounced at
heterophase boundaries [18].

Hereby, a more detailed governing relation including the main features of size and constituent effects
must be accommodated to analyze metallic nanolamellars responses at nano regions. In general,
these types of models deliver verifiable, solid results, however, with complex, nonlinear structures,
hence, the elevated cost of computational processes. Consequently, multi-scale analyses are sought
as proper resolutions especially when nonlinearity is involved.[19]. In circumstances where size
effects are crucial to final assessments, homogenized ensembles inherently possess the governing

elements through the variation of the fundamental thermodynamics behaviors including internal
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energy and entropy that are intrinsically nonlinear and can be statistically generalized on a larger scale.
In this sense, capturing temperature effects by homogenization approaches is a significant advantage
considering limited experimental results due to a variety of encountered challenges throughout testing.
These difficulties include rigorously controlling the atmosphere under which tests are performed to
prevent specimens’ chemical and microstructural alterations, precise management of thermal gradients
between the sample and fixture during the process to avoid thermally misfit deformation and noise in
the load and displacement sensors drifting the results, and challenges as such [20,21].

This work centers on constructing a robust theoretical approach while alleviating computational
encumbrance through curtailing partly dependent phenomena into optimized independent variables.
The crystal plasticity finite element (CPFE) approach in the large deformation platform is utilized due
to its high capacity of analyzing anisotropic nature of crystalline materials, grain interactions, interface
abrupt mechanical transitions, mixed deformation mechanisms, complex boundary conditions, and
diverse phenomenological and physics-based constitutive models [22,23].

The multi-scale computational schemes are pursued leading to the development of multiple governing
relations. At the nano-scale, a size-dependent constitutive model and a deep-learning approach
named the single layer calibration (SLC) method with the ability to obtain generalized parameters
applicable to a broad range of setups are developed. These models simulate, predict, and design
the responses of metallic nano-layers in the range of 20 nm to 1 ym with any arbitrary geometrical
combinations through a single process. A homogenized crystal plasticity-based model is established
with the rendition of the nano-structural critical features. The effective functionals are realized for
which the associated relations and parameters obtained by way of metaheuristic genetic algorithms.
The model is designed consistent with the nano-model backbone remarkably conducive in simulations
of polycrystalline microstructures and significantly expediting computational processes by several
(> 4) orders of magnitude, while retaining accuracy. Ultimately, a temperature-dependent constitutive
model is developed to determine the effects of temperature on the overall responses of metallic
nanolamellars. The validation of nano and homogenized models proceeds through the simulation of
several copper-niobium, Cu/Nb, nano-layers compared with experimental data. Accordingly, at each
spatial spectrum, multiple predictive case studies are assessed and discussed revealing the impacts of
size, loading patterns, layer type, geometrical combination, elevated temperature, and process speed
on the overall thermomechanical responses of metallic nano-composites.

The developed nano-scale size-dependent constitutive model, the deep-learning single layer calibration
method, homogenized constitutive model, temperature-dependent constitutive model, genetic
algorithms, numerical solvers, and process optimizers are implemented through three-dimensional
crystal plasticity nonlinear finite element codes in the large deformation platform. A dedicated cluster
has been constructed with specific architecture and orchestration policies compatible with the current

data processing and workloads.
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2 Materials and Methods

Metallic nano-layers are investigated through crystal plasticity large deformation finite element
platforms to analyze and predict the associated thermomechanical responses. Deformations up to 10%
strain will be used for illustrative purposes based on existing data for training the models, though in
the future it would be possible to continue to refine the simulation if sufficient data can be collected.
An advanced multi-scale approach is established to expedite computational procedures while the
precision is maintained. Thereby, diverse theoretical domains including plastic deformation kinematics,
entropic kinetics, and statistical mechanics of a system at two nano and homogenized level are utilized
in order to acquire proper constitutive models addressing the main features of size effects in these
types of materials. Subsequently, the parameters in the developed constitutive models are calibrated

and determined through a deep-learning method.

2.1 Plastic Deformation Kinematics

Finite strain kinematics are accommodated through a multiplicative decomposition of total

deformation gradient, F, into the elastic, F¢, and plastic, F?, parts as F = F°FF. The rate dependence is
manifested in the rate of the deformation gradient, F, through the velocity gradient, 1 = FF~!. The
plastic velocity gradient, 1”7 = FPF 7, involving plastic shear strain rate, 7%, on the slip systems, «,
[24,25], specified with 1P = ngzl ¥"sg, are utilized to solve the indeterminate equation of F = F°F?,
where s§ = my @ ng is the Schmid tensor in which m{ and n; are the slip direction and normal,
respectively.
The plastic shear strain rate for each slip system is calculated through the Orowan equation [26],
T* = p4, bv*, where p¥, is the mobile dislocation density, b the Burgers vector, and v* the average mobile
dislocation velocity. The integration of F? determines F¥ and, accordingly, F¢ through F¢ = FF P
which yields the second Piola-Kirchhoff stress, S, in terms of Lagrangian strain, E = %(FETF" -1,
and the anisotropic material elastic tensor, ¢, with § = ¢’E. Solving the equilibrium equation in the
current configuration requires the calculation of Cauchy stress, o = ‘Fl—quSFeT, and its derivative with
respect to true strain to obtain the system stiffness. This relation holds due to plastic incompressibility,
ie., detFF =1.

At this stage, a constitutive model must be incorporated to acquire F? and further kinetics

representations. The next section describes the rationale behind the proposed constitutive model.

2.2 Entropic Kinetics and Constitutive Model at Nano-Scale

Considering metals and metallic alloys with nanoscale size under generic loading conditions,

stress- and temperature-driven interface and surface evolution phenomena bear significance in
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mechanical responses. Dislocation-mediated deformations are entropy sources compelling a system
towards a higher probability state independent of ordinary thermal fluctuations. Thus, a system
kinematics must encompass dislocation-specific thermodynamics representation [27,28].

Assuming quasi-static transitions in all configurations, the contributions due to total dynamic quantities
are negligible, however, the system is not necessarily in thermodynamic equilibrium. Total entropy
generation per unit time, I'(¢), as the difference between the reference rate of change of entropy,
S = D 2, and the rate of entropy input, Q, of a body with volume A and boundary surface dA follows

the global format in the reference configuration with

T(t)

7_Q—Dt/ Atdv—i—/ nds—/ R(A,t)dv >0
:Dt/ (A1) v+/ Q“ /@M >0, 2.1)

where 77(A, t) is the entropy per unit volume as a function of material position vector, A, and time,

t, H(A,t) the true entropy flux, Q(A,t) the material heat flux, n the normal boundary surface
vector, ©(A, t) the thermal scalar field, and R(A, t) the entropy source. Since the rate of entropy
change is always greater than the rate of entropy input, the total entropy generation is time- and
direction-dependent specifying the irreversibility of thermodynamical processes [29,30] including
plastic deformation. The rate of thermal work involving the total heat flux and source is inversely
related to the rate of entropy input through the thermal scalar field and first Piola-Kirchhoff stress,
P(A,t). Based on the divergence theorem, [ ¥v-nds = [ V- (¥v)do, the local form of the entropy

inequality can be expressed as

(A t) — g&g + G)(/l\,t)v “Q(A ) — @2(1)“)()()\, t)-VO(At) >0, (2.2)
and
O, ) n(At) + ®(}\ t)Q(/'\,t) VO )+ PN\ t): F—¢>0, (2.3)

in which the local form of balance of energy, ¢ = P(A,t) : F— V- Q(A,t) + R(A, t), is considered,
where V is the differential operator. The heat conduction inequality, Q(A, t) - VO(A, t) < 0, applies a
constraint on the heat flux vector, i.e., there is no heat flux without a temperature. For elastoplastic
behavior of a crystal, the local entropy production, Yj,, is positive or at least zero where heat flux

approaches to zero in reversible processes, i.e.,

Yin =P(At) : F—e+O(A, 1) 57(A 1) > 0. (2.4)
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Therefore, the internal dissipation stems from three sources; the rate of internal mechanical work per
unit volume, the rate of internal energy, and the absolute temperature coupled with the rate of entropy,

respectively. With the aid of the balance of energy, the lower bound of Eq. 2.4 can be represented by
O ) (A L) =Yy +R(A L) -V -Q. (2.5)

The constitutive relation Q(A,t) = »#VO(A,t) relates the the material heat flux to the temperature
gradient with thermal conductivity, », as a function of deformation and temperature where
%V?@(A,t) > 0 signifying the elliptical nature of the equation for which the solutions are accordingly
to be realized. For an adiabatic thermodynamic process, P(,), the thermal power and the rate of entropy
input are zero since thermal energy can not traverse the system boundary surfaces, be generated, or
destroyed. In this circumstance, no decay in the total entropy is possible while that is not the case for
point-wise entropy that degenerates the energy balance equation and annihilates that for an additional

reversibility condition, P, ) [31].

O =Y ; P,
( )77 in (a) 2.6)

@(/\, i’)ﬂ = 0 ; P(a,,,)

Considering the anisotropic elastoplastic behavior of crystalline materials, internal variables need to
be independently assimilated in any thermodynamical approaches, hence, the Helmholtz free-energy
function, #(F,©(A,t),¥;), is defined as a function of deformation gradient, thermal field, and
internal variables, ¥;; i = 1, ..., n, respectively. Here, ¥; represents plastic deformation mechanisms,
associated with any admissible inelastic phenomena, 7, for presumed external thermomechanical
loading conditions. Thus, the Helmholtz free-energy function can be described in terms of the internal

dissipation inequality as
Yin = P(A,t) : F = Z(F,O(A t), %) —O(A, 1) (A ), %) >0, 2.7)

where the chain rule time differentiation of the Helmholtz free-energy function yields

(B, 0(M 1), %) — (8%(Ff®(?\,t),”f/i))® E (&%”(F,@(/\,t),%)

oF » 90 >m oA

n (9 (F,O(A 1), ) .
+§( 3 )F@'%' -
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The acquired constitutive equation involves stress, thermal flux, and internal entropy associated with

plastic deformations through internal strain rates, 7/, for which

n ] f
Y % d>0; 9= (AEONDT)Y 2.9)
37,

i=1 1 FO©

is deduced in terms of internal dissipations, ;. For the stretch type deformation, compatible with
dislocation mechanisms, considering symmetric internal variables, %;, and stretch tensor, C, Eq. 2.9

becomes

n
Z U U <0, (2.10)
i=1 i

where the rate of the symmetric internal variables, %, evolves in irreversible mechanisms with a
designated function, &, through P = &(C,0(M, t), 24, %, ..., %,). The second Piola-Kirchhoff stress,
S, is involved in the evolution equations due to its dependence on the free energies of either reversible
or irreversible processes which represents that as a function of external variables, S = . (C,®(A, t)).
The internal states of disorder in a crystalline solid contain the majority of barriers including point
defects, grain boundaries, junctions, intersections, locks, stacking faults, or combinations of those in
dislocation dynamic annihilations and recoveries [28].

The average velocity of dislocations, v, and the time spent between obstacles, t;, both are functions
of applied stress, T, and absolute temperature, T, which define the dislocation mean free path with
ly = ty(7, T) v4(7, T). The probability function indicating the possible states of slip due to thermal
fluctuation and applied loading is &5 = exp ( ) where A¥ is the activation free enthalpy and kp
the Boltzmann constant. If a dislocation is effectively vibrating with the frequency of f;, it successfully
overcomes barriers at a rate of &, = faexp ( ) therefore, the dislocation velocity associated
with the mean free path for each conquered obstacle with the presence of thermal fluctuation will be
v =lafs [exp ( AB(?)}

The dependence of flow strength on temperature and applied stress is determined based on the
required energy to overcome any types of barriers while dislocations slip. In a general nonlinear

temperature-dependent case it can be demonstrated in terms of the Helmholtz free energy as

a) H
1_<IT |r,i )] , (2.11)

NG = A

where 7" is the resolved shear stress and 7;' and 7;- are the resistance stresses parallel and orthogonal
to slip surface, respectively. The exponents, p and g, can be initially identified with mechanistic
assessments and finalized through calibration processes.

The rate of Helmholtz energy in Eq. 2.8 is a function of external and internal dissipative variables.
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Consequently, the energy needed to overcome hinderances is manifested in deformation mechanisms
controlled by thermal activation and applied loading [32,33]. Considering the alternating directions of
dislocation motion over an obstacle, thermally activated plastic shear strain rate for each slip system can
be expressed as v = py, b1} f§ sinh (— k‘g—“T (J7% = T,H )) exp (— %) , Where V}, is the activation volume.
The pre-exponential terms can be merged into the initial plastic strain rate, 7§ = p%bl% f¥ = p% b fp,
where fp denotes the Debye frequency of constituents. This term is considered a slow variable since the
change of mobile dislocation density is not decisive relative to that of free energy, yet, not completely
uneventful.

The obstacles surmounted by thermal energy and mechanical work are described by (|t%| — Tr”) Va
[27]. In metals with nano-range sizes, activation volumes decline significantly due to diminished local
volumes involved in the depinning of a propagating dislocation [34], thermally activated mechanism
generating interface mediated dislocations [35], and so forth. Thereby, considering an increase in a
system entropy due to thermal fluctuations, internal and external state variables, statistical probabilities
of dislocation positions, and unidirectional dislocation jumps, a constitutive model is developed at the
size spectrum of 20 nm to 1 ym encapsulating size and constituent effects in the abrupt variations of

activation volume, stress concentration, and complex dislocation mechanisms with

cut

L0 _ Qactive 1— (Tgff)z CsTT d ak o e O
70 €Xp kpT ™ b sgn(T") oy >
T = (2.12)

e
0 Tog <0

The model is constructed based on exclusively addressing size effects in d as the layer thickness
and the constituent type and morphology through ¢, as the material shape parameter. The effective
shear stress is defined as 7y = [T%| — Tfass, Where passing, 75, and cutting, 7¢,, stresses are
athermal and thermal shear resistances, respectively, Q,.ive is the activation energy, and u the shear
modulus. Long-range athermal resistances stem from the composition, heat treatment, and dislocation
structure of the material including the stress fields of other dislocations and incoherent inclusions,
while short-range thermal barriers involve sources such as the Peierls-Nabarro force, stress fields of
coherent inclusions, cross slip, climb, and dislocations intersections.

Plasticity initiation is recognized when the effective shear stress is positive while elastic behavior is
resumed otherwise. The athermal resistance is designed with an evolution in terms of contrasting slip

systems, 3, by

N
Tguss = Z haﬁ\7ﬁ| ’ (2.13)
=1
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where P specifies the effect of other N slip systems considering the initial value of the athermal

resistance, Tgass—init/ and h*P includes both self and latent hardening with

B B ’
N Tcut + Tpass
Y )3 hg 1- ‘ B 2 [qaﬁ +(1- ’1“’5)50‘5} ‘ Tfut + Tr/?ass ) S Tsﬁut
h* = 4§ g=1 Tsat (2.14)
0 ‘ Tfut + Tﬁass ) > Tﬁu

in which || x ||, denotes the Euclidean norm, hg is the initial hardening, g*f a magnitude for self and
latent hardening considered 1.0 for coplanar slip systems and 1.4 otherwise, r the hardening exponent,
and 6% the slip systems Kronecker delta function. Tﬁlt is the saturation shear stress designed as
Tsat = Csat A", Where gy and m are the saturation coefficient and exponent, respectively.

In order to utilize the constitutive model in crystal plasticity procedures and solve system equations,
derivation techniques and computational approaches are required to be carried out as delineated in
appendices A and B. Inevitably, multiple parameters in the model must be realized, as demonstrated

in Table 1, for which the next section is assigned.

Constitutive Model Parameters

44

70

Table 1. Material parameters to be determined from a deep-learning method and experimental data.

a « B
P14 |7 |G | Cat | M | Teut | Tpass-init ho

2.3 Deep-Learning Single Layer Calibration (SLC) Method

In order to acquire constitutive parameters a deep-learning single-layer calibration (SLC) method
is developed. This technique is able to reduce the experimental data, recognize and distinguish
dominant and trivial patterns, and efficiently decide trade-offs between bias and variance paths along

with some other optimization, recognition, and decision capabilities.

2.3.1 Training and Learning Techniques in The SLC Approach

This approach is based on adaptive boosting technique [36] over a committee of models. The
operation proceeds through combining classifiers, M;; j = 1,2, ..., m, by sequentially training #» models
and concluding the final prediction based on the ultimate outcome. One of the main advantages
of this procedure is obtaining favorable results even if the base classifiers are not strong learners.
However, the possibility of achieving solid outcomes exponentially increases in the cases of moderate
or advanced classifiers that are believed characterizes the current work features. Boosting can be
extended to regression problems [37] which in some optimization stages is employed as well.

Here, the classifiers are trained using a weighted array in which the coefficient values depend on the
performances of the previous classifiers. The descending sorted coefficients are proportional to the

level of the misclassification of data and are key in the final decision. At the beginning, each of n
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(i)

weighting coefficient, c;,’, in the array is uniformly initialized based on the data point vectors, v;, and
binary target values, t; € {—1,1} , i =1,2,.,n, among the classifiers as cgé)(j ) = % Then, each model
is trained while the associated weighted error function, ¢; = Y3 ; cz(z)(j N (M;(v;) # tn), is minimized,
where N (M;(v;) # t,) is the indicator function. Weighting coefficients are continuously adjusted for

succeeding models by a modifier,

(12 YN M (v) # 1)
= n 00) ’

-1 Cw

(2.15)

allocating larger weighting values to more precise classifiers. Afterwards, the weighting coefficient

array is updated by
n 0)0) ahichcia
D) 00) (i)(‘)i:1 Cw -1 ) (2.16)
i1 Cw ! N(Mj(vi) # tn)

The exponential error function [38] is defined as & = %2?:1 Z]’»’Ll exp [—tip;M;(v;)] which is
sequentially minimized in terms of y; and M;(v;). This relation holds with the assumptions of
fixed base classifiers and their modifiers.

The boosting framework is illustrated schematically in Fig. 1 where each base classifier is trained
according to the assigned weighted function acquired in terms of the precision of previous classifiers

in data allocation with the error function between two consecutive classifiers as

E=Y ) exp <—; [t M1 (vi) — fileMj(Vi)]> : (2.17)
i=1j=1
.T 0m=1 ° .T 0m=3 _l
.. ... .C .. ... " ° ng?
o & 0 O [ BN o & 0 O ° (] °
" B 5 L LN ) o.o
u e® @ [ N [ | 0® @ =
..l... ....... ..-..I. .. -:-—Jl-.“i
[
o ® o o ® . o * . e
[ ... ® ... ® ...
e o 0 0 e o0 0 e 0o 0 0
*"H N | | E | | |§|
.l @E:)© -I 'é“ -l _0—:'
.. E® = .. ul® (] .. n® ™

Figure 1. Demonstration of adaptive boosting technique where base classifiers with simple thresholds
are trained according to the assigned weighted function acquired relative to the precision of the
previous classifier in data allocation. Each sample shows the number of classifiers, m, trained up to
that point. The solid and dashed lines in the domains are the decision made and revised choices,
respectively, based on the weight of the misplaced data illustrated with expanded boundaries.
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If data points are divided into proper, C].Jr, and improper, C j categories, Eq. 2.17 can be restated by

= Jo—1 % 0+ \/F 00

Bt =
1EC]. lEC/-

_ < [pi—1—, /l;j 1) ;c§,§)(f)N(Mj(vi) # tn) + /1;]- ~1 ;cg?(f) . (2.18)

Thus, from Eqs. 2.17, 2.18 and t;M;(v;) = 1 — 2N (M;(v;) # t,), weighting coefficients are modified

as

N(M;j(vj)#tn)

i+1)(j i)(j 1 i)(j 1 ’
cz(uﬂ)(]) = cz(o)(]) exp (—ztil/)]'Mj(Vi)> = cz(y)(]) P —1 <¢] — l) . (2.19)

Finally, when the training of the classifiers are completed, the sign of the combined function for each

data point vector is obtained with

(2.20)

}11_1 Cl(li)(])
SGN(v;) =sgn | M;(v;) In — -1
Z a i1 Cz(é)(])N(Mj(Vi) # tn)

2.4 Statistical Mechanics and Homogenized Crystal Plasticity Constitutive
Model

The notion of multi-scale modeling has been of constant interest in the realm of computational
mechanics and materials. Despite diverse length-scale-dependent methods, hierarchical systems are
able to resolve the geometrical and physical details of the underlying mechanisms in lower-scale
with higher speed of computation, yet, reasonable precision and simplicity. The reliability extent of
acquired responses is evaluated by the adequacy of lower scales assessments, that is, these levels
exhibit momentous complementary effects.

Classical thermodynamics relations need to be revised for homogenized solids due to the fundamental
differences in the degrees of freedom with gases and fluids especially when the goal is eliminating
fast atomic degrees of freedom and attaining a homogenization theory. In the case of crystals,
elimination is related to the dynamics of crystal defects, particularly dislocations, leading to an
additional coarse-graining with the system of governing equations that is no longer Hamiltonian,
but dissipative. Unlike ergodic systems characterized by macrovariables and energy parameters,
dissipative systems are extremely diverse [39] for which developing frameworks is possible with
specific considerations.

Here, the statistical mechanics of the microcanonical ensemble [40] are utilized for the lower scale since
the upper scale kinematics are to be characterized considering dissipative transport and nonlinear

geometrical models of dislocations [41] along with the independent point-wise temperature. The
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Clausius-Duhem inequality is incorporated to link the scales through entropy flux where the probability
of a phase-space invariant measure with probability density function is assumed plausible.
Dislocation positions are not statistically independent and affect the overall energy of a nano-structure,
however, since the precise instantaneous locations associated with the initially considered dislocations
can not be identified as deformation evolves, energy is considered as an independent additional
characteristic of a dislocation geometrical network [42]. Thereby, the total number of the dislocations,
Ny, and associated energy, E;, are the independent features of the dislocation network with the priori
of equal probability of the ensemble sub-states.

If x denotes the position of a material point in a system at time ¢ with the continuum mass density,
p(x,t), divided into Ny, total sub-nano-systems, with identical masses, 11,5, and individual volumes,

1

Vi, in the total spatial volume, A, the system average velocity is defined as (v) = N y s

i vi,. Velocity
fluctuation is determined through ¥/,; = (v) — vi,., where v/, is the velocity of each sub-system. The
dissipative nature of a system is characterized via the velocity fluctuation of each sub-system, hence,

the system disorder manifests itself in the total energy of a system from the lower-scale standpoint as

) (2.21)

i
Ups ; €

m Nus ;
5 <<v> : <v>+2v;s-v;s> +u

where U is the total potential energy acquired from the subsystems. The internal energy, U, is
determined over a surrounding volume, Vi, such that the deviation at each infinitesimal part of the
volume surface, ¢/, depends on the long- and short-range interactions considered among dislocations
therein, thus, varies by time evolution, heat flux, and active deformation mechanisms. This relation
is associated with the total energy of an ensemble stated by [, p(x, ) (%\Vr -V + e) dv, with ¥ as the

velocity and ¢ the internal energy density of the system. Consequently, the Helmholtz free energy,

an . .
a=U|  + mz”s Y Vi ¥, =U—TS, (2.22)
Ups ; € i=1

is obtained in which the entropy, S, is associated with the subsystems velocity fluctuations.
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f pi’Ei’mi

A,<\‘/),U { ) . .

X x x x = =

Figure 2. Schematic representation of a microcanonical ensemble with equal probability of state, p;,
and energy, E;, of each subsystem in the total volume, A, with the average velocity of (v) and energy
u.

In order to link the lower and upper scale, the statistical Boltzmann entropy principle is utilized as

S=—kg)_ pilnp; (2.23)
i
E;
ew(ig)
pi= ———f (2.24)

where p; is the probability of the ith subsystem with E; energy as displayed in Fig. 2. The hypothesis
of an ensemble with a uniform probability distribution in phase-space, necessitates the confinement of

a subsystem in a particular volume with constant total energy, thus, the system entropy has the format

of
E; E;
exp(—+ ex
R p(—¢ ) [ &P kBZ)
Y eXP( 1)\ Tiexp(—gr)
_ —kB 2 ( ( E ) B 2 E 1 Zexp (225)
Y exp(—kB—T> Y exp(
Comparing Eq. 2.25 with Eq. 2.22 results
U=Y Epi=(E), (2.26)

where (E) corresponds to the average energy of the subsystems. Here, boundary conditions of the
homogenized medium presume no relative fluctuations, thus, the extensive variables in the upper
scale follow the average principles whose the plausibility is proven.

The homogenized crystal plasticity-based model is founded upon the continuum slip theory
of generalized Taylor scale-transition [43,44]. It contains parameterized representation of the

nano-structure features with embedded rate-dependence and latent hardening effects accounting for
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thermomechanical properties in both elastic and plastic responses. The concept of the representative
volume element (RVE) statistically representing the nano-system is incorporated based on retaining the
relative dimensions between the homogenized ensemble and nano-structures as well as the underlying
deformation mechanisms and dominant features. The hierarchical homogenization analysis follows the
Hill-Mandel principle of macro-homogeneity [45,46] where the volume average of the work increment
applied on an RVE is considered equal to the variation of the work on the homogenized system. In the
absence of body forces and inertia, the energy consistency is stated in terms of the Eulerian strain rate,

¢, and Cauchy stress with

1

- / o endVy = oy ey, (2.27)
Vn A

where V), is the volume of the RVE and subscripts n and H correspond to nano and homogenized
systems, respectively. Considering the quasi-static applied strain rates, the self-equilibrated spatial
stress field is achieved by V - o = 0. In order to solve the boundary value problem in Eq. 2.27 and
equilibrium equations, a homogenized crystal plasticity-based constitutive model with the identical

nano-scale model backbone, yet, a simplified structure is developed as

7* = 8 exp [—Q”Ctm <1 _ Tt ﬂ sgn (7). (2.28)
0 kg T %

Considering previously defined parameters, the CPFE approach is utilized to solve the equilibrium
equation as described in appendices A and B. The constitutive parameters are formulated in terms
of structural variables and calibrated through the computational homogenization of the lower scale
model and the RVE that consists of layer thicknesses of stacked nano-layers.

Prior to plasticity, the elastic responses of a homogenized system must be realized, thus, the equivalent

elastic constants, éij, are attained as a combination of the constituents elastic constants, C;;, with
. Ninat d

respect to their thicknesses, d, in a multi-nano-layer as C;; = Z Gij Ek' where d is the total thickness

k=0

of the specimen and Nj,;; the number of materials. The rate dgpendence feature is modified for the
N

homogenized ensemble with the total Nj layers by 17 = Z; Al (ml) @ n) in which Af = VZ:HZ signifies
1=

each layer volume fraction.

3 Results and Discussions

In this section, the results are categorized into two nano and homogenized scale where Cu/Nb
multi-layers are designated as case studies for both regimes.
At the nano-scale, material parameters calibrated against experimental data through the deep-learning

SLC method are utilized to validate the constitutive model predictive capabilities. subsequently, the
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nano-layer responses are predicted and discussed regarding size and constituent effects, the extent of
impacts in variation of layer and/or loading orientation, and the influence of layer setups in the initial
conditions of calibration settings.

At the homogenized level, deep-learning SLC and genetic algorithms are utilized to realize and
obtain effective functionals relations and constants, then, the results are favorably compared with
the nano-scale model while expediting the computational processes by several orders of magnitude.
Further assessments of temperatures effects on the nano-metals properties are performed for which
deep-learning SLC and genetic algorithms are utilized to realize and obtain effective functionals
relations and constants utilizing multiple experimental results which also incorporated for final
validations. Ultimately, several responses regarding the effects of elevated temperature and the

degradation of properties are predicted.

3.1 Nano-scale Constitutive Parameters and Predictions

The presented deep-learning SLC approach utilizes the single crystal stress-strain curve of each
constituent and delivers generalized parameters via a single process applicable to a broad scope of

setups that are entirely different than those of the calibration ones.

180

181

Here, several Cu and Nb nano-layers are separately simulated for which elastic constants are Initially

obtained through analytical processes and databases displayed in Table 2.

Material Elastic Constants Cu Nb
C41(GPa) 168.4 246.0
C1»(GPa) 1214 134.0
Cu4(GPa) 754 28.7

u(GPa) 48.0 38.0
Quctive]) 8.05e—19  8.9¢—19
b(m) 2.56e—10 2.86e—10

Table 2. Material constants of copper and niobium acquired from analytical processes and databases.

Subsequently, the constitutive parameters are obtained, Table 3, via experimental data of single

crystalline Cu [47] and Nb [15]. [ EXBORGHaN SO FUEHORS) € ASS0GAIEA Wil g SOREnts
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Material Parameters Cu Nb
Y5 5.0e6 6.0e6
p 0.98 1.01
q 1.12 1.14
r 1.115 1.121
Cs 0.2 0.002
Csat 70,000.0 76,741.0
m -0.50 -0.50
T4,(MPa) 4.80 6.30

T?)ass—init (MPa) 5.20 7.10

1 (MPa) 3,000.0  20,000.0

Table 3. Material parameters of copper and niobium acquired from the deep-learning SLC and

experimental data.

Sequential modeling steps from an actual metallic nano-layer image to a three-dimensional Cu/Nb

nano-layer unit cell discretized into hexahedral elements are demonstrated in Fig. 3.

fiss parameters. The responses of the specimens in the form of true stress-strain curves are compared with

the experimental results in [49,50], Fig. 4, having entirely different setups than those of the calibrations
in [47,48]. The engineering stress-strain curves in [49] are obtained for the average layer thicknesses of
16 nm, 34 nm, and 63 nm under the constant strain rate of 103 /sec while a true stress-strain curve is
achieved in [50] involving the average layer thickness of 40 nm with 2 x 10™*/sec strain rate. The
experimental and simulations are performed with the Kurdjumov-Sachs (KS) orientation relationships,

{111}Cul|{110}Nb.
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\

F’/

(d)

Figure 3. (a) A high resolution scanning electron microscopy image of a metallic nano-layer. (b) A
generalized representative structure of a metallic nano-layer with # elements/layers. (c) A
3-dimensional Cu/NDb nano-layer unit cell discretized into (d) hexahedral elements.

203 Since the developed models yield true stress-strain responses, an excellent agreement with 40 nm
20a experimental data is observed due to the similarity of formats. Small divergences between the rest of the

20s curves are related to the nature of the reported results, being engineering stress-strain, which naturally
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placed them in the lower positions than the true ones. The general trend of the computationally
predicted properties is in agreement with the experimental data, however, the amount of deviation
from 16 nm is related to the softening phenomenon at the sizes lower than about 20 nm [51,52] due to

which this work is appointed its nano-scale size range from 20 nm to 1 ym.

357
SIM_16 nm
i D EXP_16 nm
3 SIM_34 nm
i O EXP_34 nm
SIM_40 nm
2 5 __ O EXP_40 nm
Tl SIM_63 nm
© i {>  EXP_63nm A
o A
) 2 AW ANrAY FAN
')
o o0 @0
0
@ 1.5
- OO O o O
1
0.5

I L L
0.02 0.04 0.06 0.08 0.1

True Strain

Figure 4. The verification of the size-dependent constitutive model and deep-learning SLC results
plotted by "SIM" and solid lines with the experimental data [49,50] designated by "EXP" and symbolic
points.

At this stage, considering the models that are validated and also the validities are solidly tested, several
predictive case studies are assessed and discussed.

Emphasizing the size and geometrical effects, four thickness combinations of 34 nm and 63 nm along
with another case with their uniform average thickness of 48.5 nm are simulated with otherwise
identical settings. The outcomes are presented in Fig. 5a where the strain rate of 1072 /sec and the KS

orientation relationships are considered.
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Figure 5. (a) True stress-strain curves for four thickness combinations of 34 nm and 63 nm as well as
48.5 nm Cu/Nb multi-layers illustrating the effect of layer combinations on the plastic deformation
and flow strength. (b) Equivalent plastic strain versus true strain curves for the cases in (a) clarifying
the size and layer geometrical order effects. (c) True stress-strain curves of 34 nm, 40 nm, and 63 nm
Cu/NDb multi-layers demonstrating the effects of transverse (TRANS) and longitudinal (LONGL)
loading directions plotted with solid and dash lines, respectively.

As noted, the strongest pattern is the one with the smallest similar thicknesses signifying the
predominant influence of size over the other traits. Among the rest, with a total thickness of 97
nm, the samples with the lower and higher thickness of niobium exhibit the strongest and weakest
responses, respectively. The curve with the equal average thickness reveals a trend between the upper
and lower bound, however, close to the latter. It is inferred that in cases of bilayers with two different
crystal structures, one of the constituents has more influence on the overall mechanical properties
than the other. Here, the effect of the body-centered cubic niobium with lower activation volumes is
more decisive and almost twice as of the face-centered cubic copper on the whole responses either in

the reduction or promotion of thicknesses. These effects are better recognized through the equivalent
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plastic strain defined as Efq = %(EF’ : EP), where EP = 1(FPTF? —I) and plotted in Fig. 5b for each
case. In the general trends and magnified region, the equivalent strain curves demonstrate the inverse
relation with the layer strengths captured in Fig. 5a and indicate the largest values for the weakest and
smallest ones for the strongest case.

To investigate the load or layer direction effects, the simulations are performed for laminates of 34 nm,
40 nm, and 63 nm under both longitudinal and transverse loading directions, displayed in Fig. 5c. Slight
differences at the beginning stages of the plasticity are detected increasing with subsidence in layer
spacing. However, the identical results in the extended plastic region demonstrate the inconsequential
impacts of variations in the loading or layer orientation especially for detecting the flow strength of
bilayers at the strain of about 10%.

The significance of size effects is delineated in Fig. 6 where the flow and yield strength as well as
the transition strain in a wide nano-scale interval, 25 nm to 400 nm, are plotted. Considering the
transition strain as the strain sustained from the yield to the onset of flow, a nonlinear descending
trend of flow and yield strength is noted as layer spacings decline. Yield points are recognized
when the resulted data from computational analyses start to deviate from the linear trend, albeit,
with a tolerance consideration, and transition strains are detected once a hardening trend and the
tangential line of a post-yield curve intersect. The increase in strain transition is primarily due to
mechanical thresholds and dislocation structure evolutions aligned with low strain hardening and
dynamic annihilation-recovery mechanisms. A small variation in thickness results a dramatic change

in flow and yield strengths at the thicknesses of $100 nm.
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Figure 6. The variation of flow and yield strength (left vertical axis) as well as transition strain (right
vertical axis), respectively, with respect to layer thickness in the range of 25 nm to 400 nm. The true
stress-strain curves in this range is attached to the top right corner to clarify the overall constitutive

behavior.

This bias has a descending followed by an asymptotic trend whilst the thickness approaches 1 ym.
The similar trajectory in transition strain is indicative of an extended prehardening phenomenon
pronounced especially at this range that continues to shrink and assume a higher curvature nearing 1
pm.

Although the developed models satisfyingly capture metallic nano-layers responses over a broad
length scale, the time- and energy-consuming feature of the analysis is a hurdle to be overcome for
which the multi-scale concept is sought and implemented for which effective functionals must be

realized as discussed in the next section.

3.2 Homogenized Level Effective Functionals and Constants

Sensitivity analyses detect two influential constitutive functionals to be calibrated from the lower
scale; saturation shear stress, Tsat, and initial hardening, hg. These are functions of each constituent layer
thickness, e.g., Tsat (dcy, dnp) and ho(dey,, dyyp) for Cu/Nb nano-layers. In order to obtain the relations
of the effective functionals in terms of each material, several cases with different layer thicknesses
of Cu and Nb are made. Two major sets of nano-layers are considered in which the thickness of one
material is fixed at 34 nm, 63 nm, and 100 nm while the other one varied from 25 nm to 400 nm and

vice versa. Then, the simulations are performed based on the size-dependent constitutive model at
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nano-scale regime, Eq. 2.12, and processed through Hill-Mandel principle resulting in the calibration
plots of Tsat and hy demonstrated in Fig. 7.

The variation of Tg,+ with constant d¢, and varying dyy is plotted in Fig. 7a where the best fitted
a2

VN

o
functional structure with a3 + \/TL plotted in Fig. 7b. However, the best fitted functions for hy is
Cu

. B2 - B4
different and has the format of 1 + —=—= when dy, is fixed and B3 +
ﬁ \/3 dCu 'B \/3 dNb

illustrated in Figs. 7c, 7d, respectively. Consequently, the final formulations of the effective functionals

function for simulated data has the form of a1 + . The same process for Nb yields the similar

while d,, is constant as

are derived as

Toat = (061 + Zi:u) (063 + 0;;”7> , (3.1)
and

(o) e )
ho = , 3.2
o= (B ) (pa = 62)

for generalized circumstances when both d¢, and dy; are changing. These equations have four
unknowns to be determined. Due to the high nonlinearity of the acquired equations, ascertaining
a;, Bi necessitates a thorough, compatible optimization scheme. Thereby, a metaheuristic genetic

algorithm approach is utilized to attain the parameters which results in the following equations.

0.0028 0.0032
Toat = (12.6169+ ) (9.0473+ ) , (3.3)
dCu dNb
and
0.4358 0.7791
ho = (48.3222 + ) (23.4275 + > . (3.4)
V3 dCu \/3 dNb



255

257

Version January 11, 2021 submitted to Journal Not Specified 23 of 30

800 |- d_Cu 800 |- d_Nb
EQ_34nm EQ_34nm
\vj SIM_34nm v SIM_34nm
i EQ_63nm | EQ_63nm
] SIM_63nm a SIM_63nm
EQ_100nm EQ_100nm
O SIM_100nm (@] SIM_100nm
. 600 _ 600
] ©
o o
=] 2
| 5 |
[ [
400 - 400 -
D
200 1 [ 1 200 1 [ 1 .
0 1E-07 2E-07 3E-07 4E-07 0 1E-07 2E-07 3E-07 4E-07
d_Nb (m) d_Cu(m)
(a) (h)
45000 - 50000
- d Cu i d Nb
40000 |- EQ_34nm 45000 EQ_34nm
B v SIM_34nm v SIM_34nm
N EQ_63nm EQ_63nm
B [m] SIM_63nm [m} SIM_63nm
35000 - EQ_100nm 40000 EQ_100nm
N O SIM_100nm N O SIM_100nm
T 30000 [ ® 35000 F
o - o N
= | =]
2 25000 2 30000
20000 |- 25000
15000 [- 20000 |
10000 L. L | I L 1 ! T I 15000 | | 1
1E-07 2E-07 3E-07 4E-07 1E-07 2E-07 3E-07 4E-07
d_Nb (m) d_Cu (m)
(o) (d)

Figure 7. Variations of effective parameters in homogenized constitutive model with layer thicknesses
where one layer thickness is fixed while the other one changes. Symbolic points signify simulation
(SIM) results and solid lines the best fitted equivalent curves (EQ). Variations of Ts,¢, for (a) fixed Cu
layer spacing, d_Cu, and (b) fixed Nb layer spacing, d_Nb. Variations of kg, for (c) fixed Cu layer
spacing, d_Cu, and (d) fixed Nb layer spacing, d_Nb.

The homogenized constitutive model enhances the efficacy of computational processes in diverse
aspects. Clarifying this matter, five random microstructures with different layer thicknesses are
simulated; first, with the size-dependent constitutive model at nano-scale, Eq. 2.12, and second,
through the homogenized constitutive model, Eq. 2.28, along with the realized effective functionals in

Egs. 3.3 and 3.4.
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Figure 8. Verifications of the homogenized constitutive model with the nano-scale ons through 25 nm,
40 nm, 48.5 nm, 75 nm, and 300 nm Cu/Nb laminates. Symbolic points denote homogenized (HM) and
solid lines the nano-scale (NS) model results.

The nano-scale simulations proceed through the model with the explicit representation of layer
thickness while the homogenized model is executed by the implicit impact of size rendered through
effective functionals in Egs. 3.3 and 3.4. The results and comparisons shown in Fig. 8 exhibit cogent
agreements between two models, albeit, the homogenized constitutive model significantly reduces the

computational time and cost by several (> 4) orders of magnitude.

3.3 Homogenized Level Temperature Effects

In general, the elevated temperature induces relative diffusive mass flux due to energy gradients.
Diffusional creep is considered the main deformation mechanism at the vicinity of the melting point,
T, in metallic nano-layers [53] where the stress-driven diffusion of vacancies along grain boundaries
compels atomic diffusion of the grain interiors in the opposite direction. This effect is alleviated
by atomic diffusion along grain boundaries at lower temperature [54] while the dislocation glide
along grain boundaries becomes the dominant mechanism at intermediate and low homologous
temperatures. Cu/Nb cases, at temperatures up to 800°C, exhibit dislocation-based plastic deformation
where diffusion creep can be ignored due to generated thermally stable structures [55,56]. Being
cognizant of the experimental difficulties mentioned in Sec. 1 for obtaining mechanical responses
of metallic nano-layers at elevated temperatures, a temperature-dependent constitutive model is
developed with the advantages of acquiring responses through fast and cost-effective performances.
The homogenized constitutive model in Eq. 2.28 works with a mild variation of ambient temperature;

however, generic temperature variations require additional changes in some of the material constants
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and constitutive parameters.
The elastic constants can be written as a function of absolute temperature by C;; = x;; + w;;T [57] and
shear modulus with y = mj + m, T, where the constants, Xij» Wij, My, My are designated in Table 4

for Cu/Nb nano-layers.

Cu Nb

x11(GPa) | 184.13 | w1(GPa/K) | —0.05 || x11(GPa) | 262.70 | wy;(GPa/K) | —0.06
x12(GPa) | 133.32 | wa(GPa/K) | —0.04 || x12(GPa) | 14333 | wip(GPa/K) | —0.03
x24(GPa) | 88.15 | wyy(GPa/K) | —0.04 || x44(GPa) | 40.18 | ww(GPa/K) | —0.01
m1(GPa) | 5295 | my(GPa/K) | —0.02 || my(GPa) | 30.88 | my(GPa/K) | —0.01

Table 4. Elastic parameters of copper and niobium acquired from the calibration process.

The effective functionals, saturation shear resistance and initial hardening, also change in terms of
temperature. To achieve the general format of these functionals and obtain the associated parameters,
experimental data in [49,55] are incorporated through the deep-learning SLC and metaheuristic genetic

algorithms. As a result, effective temperature-dependent functionals are obtained as

Toat = [4:0 exp ( ¢ ) +¢1] <12.6169 - 00028) (9.0473 + 00032) , (3.5)
T-T, deuy dnp
and
0.4358 0.7791
ho = (no+mT (48.3222+ ) (23.4275+ ) , (3.6)
0 (170 m ) \3/@ m

where the associated parameters of ¥g, 1, ¢, Tc, 1o, and %7 are calibrated as shown in Table 5.

Po Py g T. 1o m
731 | —5.72 | 100.00 | 1450.00 | 1.42 | —0.0014

Table 5. Saturation shear resistance and initial hardening parameters.

For verification, simulations are performed for Cu/Nb multi-layers with thicknesses of 34 nm, 60 nm,
and 63 nm at 25°C, 400°C, and 500°C as demonstrated in Fig. 9a. As observed, the simulations and
experimental results exhibit solid agreements in which dramatic declines in flow stresses by increasing
temperature are plainly detected.

Further illuminating this phenomenon, Cu/Nb multi-layers with 25 nm, 50 nm, 75 nm, and 100 nm
thicknesses are modeled from room temperature up to 700°C where the variation of flow strengths in
terms of temperature is displayed in Fig. 9b. Each curve is indicative of slight variation in flow stress
at initial stages while revealing an appreciable drop as temperature grows. For instance, in 25 nm
specimen, the flow stress notably, about 80%, drops from room temperature to 700°C.

From another angle, the increase of temperature degrades the mechanical responses of a thin metallic
nano-layer to a thicker one at room temperature; this can be clearly perceived in Fig. 9a where a 34 nm

Cu/Nb at 400°C exhibits the strength of a 63 nm Cu/Nb at 25°C.
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Figure 9. (a) The validation of the temperature-dependent constitutive model with 34 nm, 60 nm, and
63 nm Cu/Nb laminates at 25°C, 400°C, and 500°C. Symbolic points are the experimental (EXP)
[49,55] and solid lines the simulation (SIM) data. (b) Flow strength versus temperature curves of 25 nm,
50 nm, 75 nm, and 100 nm Cu/Nb laminates at 25°C up to 700°C demonstrating the nonlinear effects
of temperature growth on flow strength.

4 Conclusions

The current work develops multi-scale constitutive models and deep-learning SLC approaches in

two major scales of the nano and homogenized levels. CPFE in the large deformation platform was
utilized to reflect the anisotropic and rate-dependent nature of the metallic nano-systems, simulate,
and predict associated responses where Cu/Nb nano-layers as case studies were incorporated in
diverse three-dimensional thermomechanical loading conditions.
At the nano-scale, a size-dependent constitutive model founded on entropic kinetics has been
developed with the explicit size and constituent effects along with hardening evolution. The SLC
as a deep-learning adaptive boosting technique was established to acquire generalized constitutive
parameters through a single process while remaining applicable to a broad scope of settings regardless
of any difference with calibration setups. The models were validated through experimental results and
utilized for further behavioral prediction in terms of size, loading pattern, layer type, and geometrical
effects where size and constituent effects were plainly captured on flow strength and transition strain.
At the homogenized scale, statistical analyses were employed to develop a homogenized crystal
plasticity-based constitutive model for expediting the computational process. The elastic constants and
effective functionals were realized and associated parameters obtained via metaheuristic genetic
algorithms. The homogenized responses were solidly verified with nano-scale data while the
computational processes were accelerated by several orders of magnitude.

A temperature-dependent homogenized constitutive model was developed for which elastic constants
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and effective functionals were constructed. The related constants were obtained and the model was
favorably validated with experimental data. Ultimately, the nonlinear effects of temperature on flow

strength for several cases were predicted, analyzed, and discussed.
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Appendix A: General Steps of Solving Equilibrium Equation-FE

1. Equilibrium Equation
J,0:6edv— [tovdl =0
2. Finite Element Discretization
de = %(51 +017)
nNode o5y  "Node [nNode 1 o

vV = Z N;v; 6l = aix = Z V; ® ViN; = V(C,W,C)Ni Z X @ V(C,W,C)Ni
i=1 i=1

i=1
3. Residlual Force
R(¥) = [ (VxN;)Todo — [, Njtsdl' =0
4. Newton-Raphson Solver

oR\ !
an+l __ an
vV =Yy (av)n Ry
5. Residual Derivative
oR
= /v(vai)Tk(vai)dH/y(vai)Ta@@(va,-)dv
6. Material Stiffness

Kt = [,(VxN) k(VN;)dv = [, BT De, Bdv

7. Geometrical Stiffness
Ko = [ (VxN))To @ (VxN;)dv = [ BloB,dv
8. Calculation of ¢ and D, in Appendix B.

Appendix B: General Steps of Acquiring System Stiffness—CP

1. Kinematics
F(t) =F(7t)FP(1) , Fr(t)=1P(1)FP(7)

2. Plastic Deformation Rate Dependence

nslip nslip
=Y 41t)mfeonj = Fr = (Z () m8‘®n6‘> FF
a=1 =1
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10.

=
. Elastoplastic Parts

. Second Piola-Kircchoff Stress

S(t) = %c (FT(x)F(x) 1)
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