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Abstract: The current work centers on multi-scale approaches to simulate and predict metallic1

nano-layers thermomechanical responses in crystal plasticity large deformation finite element2

platforms. The study is divided into two major scales; nano- and homogenized levels where3

Cu/Nb nano-layers are designated as case studies. At the nano-scale, a size-dependent constitutive4

model based on entropic kinetics is developed. A deep-learning adaptive boosting technique5

named single layer calibration is established to acquire associated constitutive parameters through a6

single process applicable to a broad range of setups entirely different from those of the calibration.7

The model is validated through experimental data with solid agreement followed by behavioral8

prediction of multiple cases regarding size, loading pattern, layer type, and geometrical combination9

effects for which the performances are discussed. At the homogenized scale, founded on statistical10

analyses of microcanonical ensembles, a homogenized crystal plasticity-based constitutive model is11

developed with the aim of expediting while retaining the accuracy of computational processes.12

Accordingly, effective constitutive functionals are realized where the associated constants are13

obtained via metaheuristic genetic algorithms. The model is favorably verified with nano-scale14

data while accelerating the computational processes by several orders of magnitude. Ultimately,15

a temperature-dependent homogenized constitutive model is developed where the effective16

constitutive functionals along with the associated constants are determined. The model is validated17

by experimental data with which multiple demonstrations of temperature effects are assessed and18

analyzed.19
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1 Introduction23

Crystalline nano-layers are formed by alternating nanoscale metallic lamellae where the reduction24

of size to the order of nanometers instigates physicochemical attributes notably depart from those25

of the bulk counterparts. Metallic nano-systems exhibit exceptional mechanical properties in which26

the layer size is comparable with the electron or phonon mean free path [1]. Size effects are pivotal27

aspects in copiously modulated thermodynamically non-equilibrium metallic nano-composites where28

the rigid body relaxation is limited due to the constraints of neighboring nano-phases [2]. The salient,29

differentiating traits in mechanical responses are assigned to the primary role of layer thicknesses and30

significant density of interfaces. These features are considered the controlling parameters to modify31

and modulate the strength and multi-functionality of metallic nano-structures [3] where the dynamic32

characteristics of the atomic energy with local non-equilibrium multi-valley potentials [4,5] promote33

the performances of nano-metals to be governed and altered towards desired applications.34

Typically, interfaces function as sources, sinks, and barriers for defects, particularly dislocations.35

Dislocations, with anisotropic mobility and spreading cores throughout interfaces, describe various36

aspects of metallic nano-layers physical properties [6,7] and represent them as tunable structures37

with remarkable responses in extreme environments [8,9]. Interfaces of distinct atomic structures38

supply glissile dislocations into contiguous building blocks by virtue of inelastic deformation. The39

reduction of activation volume induces dislocation mechanisms at a shorter distance [10,11] where40

the amplified emission of interface dislocations and the onset of plasticity through interphases41

are of consequence. The inverse dependence of strength on grain size refinement in metals and42

metallic alloys with an average size in the order of micrometers follows the Hall–Petch relation [12,13]43

emphasizing on deformation kinematics rooted from dislocation pile-up against interfaces along with44

other transgranular dislocation mechanisms. This quality remains intact regardless of synthesizing45

approaches such as physical vapor deposition (PVD) [14,15] or accumulative roll bonding (ARB) [16].46

However, once the average grain size is reduced to the orders of nanometers evincing the participation47

of a fewer dislocations in pile-up, the inadequacy of this relation conceivably emerges in a reduced48

Hall–Petch slope. Instead, it is governed by the Orowan mechanism [17] especially pronounced at49

heterophase boundaries [18].50

Hereby, a more detailed governing relation including the main features of size and constituent effects51

must be accommodated to analyze metallic nanolamellars responses at nano regions. In general,52

these types of models deliver verifiable, solid results, however, with complex, nonlinear structures,53

hence, the elevated cost of computational processes. Consequently, multi-scale analyses are sought54

as proper resolutions especially when nonlinearity is involved.[19]. In circumstances where size55

effects are crucial to final assessments, homogenized ensembles inherently possess the governing56

elements through the variation of the fundamental thermodynamics behaviors including internal57
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energy and entropy that are intrinsically nonlinear and can be statistically generalized on a larger scale.58

In this sense, capturing temperature effects by homogenization approaches is a significant advantage59

considering limited experimental results due to a variety of encountered challenges throughout testing.60

These difficulties include rigorously controlling the atmosphere under which tests are performed to61

prevent specimens’ chemical and microstructural alterations, precise management of thermal gradients62

between the sample and fixture during the process to avoid thermally misfit deformation and noise in63

the load and displacement sensors drifting the results, and challenges as such [20,21].64

This work centers on constructing a robust theoretical approach while alleviating computational65

encumbrance through curtailing partly dependent phenomena into optimized independent variables.66

The crystal plasticity finite element (CPFE) approach in the large deformation platform is utilized due67

to its high capacity of analyzing anisotropic nature of crystalline materials, grain interactions, interface68

abrupt mechanical transitions, mixed deformation mechanisms, complex boundary conditions, and69

diverse phenomenological and physics-based constitutive models [22,23].70

The multi-scale computational schemes are pursued leading to the development of multiple governing71

relations. At the nano-scale, a size-dependent constitutive model and a deep-learning approach72

named the single layer calibration (SLC) method with the ability to obtain generalized parameters73

applicable to a broad range of setups are developed. These models simulate, predict, and design74

the responses of metallic nano-layers in the range of 20 nm to 1 µm with any arbitrary geometrical75

combinations through a single process. A homogenized crystal plasticity-based model is established76

with the rendition of the nano-structural critical features. The effective functionals are realized for77

which the associated relations and parameters obtained by way of metaheuristic genetic algorithms.78

The model is designed consistent with the nano-model backbone remarkably conducive in simulations79

of polycrystalline microstructures and significantly expediting computational processes by several80

(> 4) orders of magnitude, while retaining accuracy. Ultimately, a temperature-dependent constitutive81

model is developed to determine the effects of temperature on the overall responses of metallic82

nanolamellars. The validation of nano and homogenized models proceeds through the simulation of83

several copper-niobium, Cu/Nb, nano-layers compared with experimental data. Accordingly, at each84

spatial spectrum, multiple predictive case studies are assessed and discussed revealing the impacts of85

size, loading patterns, layer type, geometrical combination, elevated temperature, and process speed86

on the overall thermomechanical responses of metallic nano-composites.87

The developed nano-scale size-dependent constitutive model, the deep-learning single layer calibration88

method, homogenized constitutive model, temperature-dependent constitutive model, genetic89

algorithms, numerical solvers, and process optimizers are implemented through three-dimensional90

crystal plasticity nonlinear finite element codes in the large deformation platform. A dedicated cluster91

has been constructed with specific architecture and orchestration policies compatible with the current92

data processing and workloads.93
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2 Materials and Methods94

Metallic nano-layers are investigated through crystal plasticity large deformation finite element95

platforms to analyze and predict the associated thermomechanical responses. Deformations up to 10%96

strain will be used for illustrative purposes based on existing data for training the models, though in97

the future it would be possible to continue to refine the simulation if sufficient data can be collected.98

An advanced multi-scale approach is established to expedite computational procedures while the99

precision is maintained. Thereby, diverse theoretical domains including plastic deformation kinematics,100

entropic kinetics, and statistical mechanics of a system at two nano and homogenized level are utilized101

in order to acquire proper constitutive models addressing the main features of size effects in these102

types of materials. Subsequently, the parameters in the developed constitutive models are calibrated103

and determined through a deep-learning method.104

2.1 Plastic Deformation Kinematics105

Finite strain kinematics are accommodated through a multiplicative decomposition of total106

deformation gradient, F, into the elastic, Fe, and plastic, Fp, parts as F = FeFp. The rate dependence is107

manifested in the rate of the deformation gradient, Ḟ, through the velocity gradient, l = ḞF−1. The108

plastic velocity gradient, lp = ḞpF−p, involving plastic shear strain rate, γ̇α, on the slip systems, α,109

[24,25], specified with lp = ∑N
α=1 γ̇αsα

0 , are utilized to solve the indeterminate equation of F = FeFp,110

where sα
0 = mα

0 ⊗ nα
0 is the Schmid tensor in which mα

0 and nα
0 are the slip direction and normal,111

respectively.112

The plastic shear strain rate for each slip system is calculated through the Orowan equation [26],113

γ̇α = ρα
m b vα, where ρα

m is the mobile dislocation density, b the Burgers vector, and vα the average mobile114

dislocation velocity. The integration of Ḟp determines Fp and, accordingly, Fe through Fe = FF−p
115

which yields the second Piola-Kirchhoff stress, S, in terms of Lagrangian strain, E = 1
2 (F

eTFe − I),116

and the anisotropic material elastic tensor, C , with S = C E. Solving the equilibrium equation in the117

current configuration requires the calculation of Cauchy stress, σ = 1
|Fe |F

eSFeT , and its derivative with118

respect to true strain to obtain the system stiffness. This relation holds due to plastic incompressibility,119

i.e., detFp = 1.120

At this stage, a constitutive model must be incorporated to acquire Fp and further kinetics121

representations. The next section describes the rationale behind the proposed constitutive model.122

2.2 Entropic Kinetics and Constitutive Model at Nano-Scale123

Considering metals and metallic alloys with nanoscale size under generic loading conditions,

stress- and temperature-driven interface and surface evolution phenomena bear significance in

Zara Moleinia
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mechanical responses. Dislocation-mediated deformations are entropy sources compelling a system

towards a higher probability state independent of ordinary thermal fluctuations. Thus, a system

kinematics must encompass dislocation-specific thermodynamics representation [27,28].

Assuming quasi-static transitions in all configurations, the contributions due to total dynamic quantities

are negligible, however, the system is not necessarily in thermodynamic equilibrium. Total entropy

generation per unit time, Γ(t), as the difference between the reference rate of change of entropy,

Ṡ = DS
Dt , and the rate of entropy input, Q̇, of a body with volume Λ and boundary surface ∂Λ follows

the global format in the reference configuration with

Γ(t) =
DS
Dt
− Q̇ =

D
Dt

∫
Λ

η(λ, t) dv +
∫

∂Λ
H(λ, t) · n ds−

∫
Λ

R(λ, t) dv ≥ 0

=
D
Dt

∫
Λ

η(λ, t) dv +
∫

∂Λ

Q(λ, t)
Θ(λ, t)

· n ds−
∫

Λ

R(λ, t)
Θ(λ, t)

dv ≥ 0 , (2.1)

where η(λ, t) is the entropy per unit volume as a function of material position vector, λ, and time,

t, H(λ, t) the true entropy flux, Q(λ, t) the material heat flux, n the normal boundary surface

vector, Θ(λ, t) the thermal scalar field, and R(λ, t) the entropy source. Since the rate of entropy

change is always greater than the rate of entropy input, the total entropy generation is time- and

direction-dependent specifying the irreversibility of thermodynamical processes [29,30] including

plastic deformation. The rate of thermal work involving the total heat flux and source is inversely

related to the rate of entropy input through the thermal scalar field and first Piola-Kirchhoff stress,

P(λ, t). Based on the divergence theorem,
∫

s Ψv · n ds =
∫

v∇ · (Ψv)dv, the local form of the entropy

inequality can be expressed as

η̇(λ, t)− R(λ, t)
Θ(λ, t)

+
1

Θ(λ, t)
∇ ·Q(λ, t)− 1

Θ2(λ, t)
Q(λ, t) · ∇Θ(λ, t) ≥ 0 , (2.2)

and

Θ(λ, t) η̇(λ, t) +
1

Θ(λ, t)
Q(λ, t) · ∇Θ(λ, t) + P(λ, t) : Ḟ− ė ≥ 0 , (2.3)

in which the local form of balance of energy, ė = P(λ, t) : Ḟ −∇ ·Q(λ, t) + R(λ, t), is considered,

where ∇ is the differential operator. The heat conduction inequality, Q(λ, t) · ∇Θ(λ, t) ≤ 0, applies a

constraint on the heat flux vector, i.e., there is no heat flux without a temperature. For elastoplastic

behavior of a crystal, the local entropy production, Υin, is positive or at least zero where heat flux

approaches to zero in reversible processes, i.e.,

Υin = P(λ, t) : Ḟ− ė+ Θ(λ, t) η̇(λ, t) ≥ 0 . (2.4)
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Therefore, the internal dissipation stems from three sources; the rate of internal mechanical work per

unit volume, the rate of internal energy, and the absolute temperature coupled with the rate of entropy,

respectively. With the aid of the balance of energy, the lower bound of Eq. 2.4 can be represented by

Θ(λ, t) η̇(λ, t) = Υin + R(λ, t)−∇ ·Q . (2.5)

The constitutive relation Q(λ, t) = κ∇Θ(λ, t) relates the the material heat flux to the temperature

gradient with thermal conductivity, κ, as a function of deformation and temperature where

κ∇2Θ(λ, t) ≥ 0 signifying the elliptical nature of the equation for which the solutions are accordingly

to be realized. For an adiabatic thermodynamic process, P(a), the thermal power and the rate of entropy

input are zero since thermal energy can not traverse the system boundary surfaces, be generated, or

destroyed. In this circumstance, no decay in the total entropy is possible while that is not the case for

point-wise entropy that degenerates the energy balance equation and annihilates that for an additional

reversibility condition, P(a,r) [31].


Θ(λ, t)η̇ = Υin ; P(a)

Θ(λ, t)η̇ = 0 ; P(a,r)

(2.6)

Considering the anisotropic elastoplastic behavior of crystalline materials, internal variables need to

be independently assimilated in any thermodynamical approaches, hence, the Helmholtz free-energy

function, H (F, Θ(λ, t), Vi), is defined as a function of deformation gradient, thermal field, and

internal variables, Vi ; i = 1, ..., n, respectively. Here, Vi represents plastic deformation mechanisms,

associated with any admissible inelastic phenomena, n, for presumed external thermomechanical

loading conditions. Thus, the Helmholtz free-energy function can be described in terms of the internal

dissipation inequality as

Υin = P(λ, t) : Ḟ− ˙H (F, Θ(λ, t), Vi)− Θ̇(λ, t) η(λ, t), Vi) ≥ 0 , (2.7)

where the chain rule time differentiation of the Helmholtz free-energy function yields

˙H (F, Θ(λ, t), Vi) =

(
∂H (F, Θ(λ, t), Vi)

∂F

)
Θ,Vi

: F +

(
∂H (F, Θ(λ, t), Vi)

∂Θ

)
F,Vi

Θ̇(λ, t)

+
n

∑
i=1

(
∂H (F, Θ(λ, t), Vi)

∂Vi

)
F,Θ

: V̇i . (2.8)
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The acquired constitutive equation involves stress, thermal flux, and internal entropy associated with

plastic deformations through internal strain rates, ˙Vi, for which

Υin =
n

∑
i=1

Di : V̇i ≥ 0 ; Di = −
(

∂Hi(F, Θ(λ, t), Vi)

∂Vi

)
F,Θ

, (2.9)

is deduced in terms of internal dissipations, Di. For the stretch type deformation, compatible with

dislocation mechanisms, considering symmetric internal variables, Ui, and stretch tensor, C, Eq. 2.9

becomes

n

∑
i=1

∂Hi(C, Θ(λ, t), Ui)

∂Ui
: U̇i ≤ 0 , (2.10)

where the rate of the symmetric internal variables, U̇i, evolves in irreversible mechanisms with a

designated function, E , through Ḋi = E (C, Θ(λ, t), U1, U2, ..., Un). The second Piola-Kirchhoff stress,

S, is involved in the evolution equations due to its dependence on the free energies of either reversible

or irreversible processes which represents that as a function of external variables, S = S (C, Θ(λ, t)).

The internal states of disorder in a crystalline solid contain the majority of barriers including point

defects, grain boundaries, junctions, intersections, locks, stacking faults, or combinations of those in

dislocation dynamic annihilations and recoveries [28].

The average velocity of dislocations, vd, and the time spent between obstacles, td, both are functions

of applied stress, τ, and absolute temperature, T, which define the dislocation mean free path with

ld = td(τ, T) vd(τ, T). The probability function indicating the possible states of slip due to thermal

fluctuation and applied loading is Ps = exp
(
− ∆G

kBT

)
, where ∆G is the activation free enthalpy and kB

the Boltzmann constant. If a dislocation is effectively vibrating with the frequency of fd, it successfully

overcomes barriers at a rate of Ṗs = fd exp
(
− ∆G

kBT

)
, therefore, the dislocation velocity associated

with the mean free path for each conquered obstacle with the presence of thermal fluctuation will be

vd = ld fd

[
exp

(
− ∆G

kBT

)]
.

The dependence of flow strength on temperature and applied stress is determined based on the

required energy to overcome any types of barriers while dislocations slip. In a general nonlinear

temperature-dependent case it can be demonstrated in terms of the Helmholtz free energy as

∆G = ∆H

[
1−

(
|τα| − τ

‖
r

τ⊥r

)p]q

, (2.11)

where τα is the resolved shear stress and τ
‖
r and τ⊥r are the resistance stresses parallel and orthogonal

to slip surface, respectively. The exponents, p and q, can be initially identified with mechanistic

assessments and finalized through calibration processes.

The rate of Helmholtz energy in Eq. 2.8 is a function of external and internal dissipative variables.
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Consequently, the energy needed to overcome hinderances is manifested in deformation mechanisms

controlled by thermal activation and applied loading [32,33]. Considering the alternating directions of

dislocation motion over an obstacle, thermally activated plastic shear strain rate for each slip system can

be expressed as γ̇ = ρα
m b lα

d f α
d sinh

(
− Va

kBT (|τ
α| − τ

‖
r )
)

exp
(
−∆H

kBT

)
, where Va is the activation volume.

The pre-exponential terms can be merged into the initial plastic strain rate, γ̇α
0 = ρα

mblα
d f α

d = ρα
mb2 fD,

where fD denotes the Debye frequency of constituents. This term is considered a slow variable since the

change of mobile dislocation density is not decisive relative to that of free energy, yet, not completely

uneventful.

The obstacles surmounted by thermal energy and mechanical work are described by (|τα| − τ
‖
r ) Va

[27]. In metals with nano-range sizes, activation volumes decline significantly due to diminished local

volumes involved in the depinning of a propagating dislocation [34], thermally activated mechanism

generating interface mediated dislocations [35], and so forth. Thereby, considering an increase in a

system entropy due to thermal fluctuations, internal and external state variables, statistical probabilities

of dislocation positions, and unidirectional dislocation jumps, a constitutive model is developed at the

size spectrum of 20 nm to 1 µm encapsulating size and constituent effects in the abrupt variations of

activation volume, stress concentration, and complex dislocation mechanisms with

γ̇α =


γ̇α

0 exp

{
−Qactive

kBT

[
1−

(
(τα

eff)
2

τα
cut

csπ
µb d

)p]q
}

sgn(τα) τα
eff > 0

0 τα
eff ≤ 0

(2.12)

The model is constructed based on exclusively addressing size effects in d as the layer thickness

and the constituent type and morphology through cs as the material shape parameter. The effective

shear stress is defined as τα
eff = |τα| − τα

pass, where passing, τα
pass, and cutting, τα

cut, stresses are

athermal and thermal shear resistances, respectively, Qactive is the activation energy, and µ the shear

modulus. Long-range athermal resistances stem from the composition, heat treatment, and dislocation

structure of the material including the stress fields of other dislocations and incoherent inclusions,

while short-range thermal barriers involve sources such as the Peierls-Nabarro force, stress fields of

coherent inclusions, cross slip, climb, and dislocations intersections.

Plasticity initiation is recognized when the effective shear stress is positive while elastic behavior is

resumed otherwise. The athermal resistance is designed with an evolution in terms of contrasting slip

systems, β, by

τ̇α
pass =

N

∑
β=1

hαβ|γ̇β| , (2.13)
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where γ̇β specifies the effect of other N slip systems considering the initial value of the athermal

resistance, τα
pass-init, and hαβ includes both self and latent hardening with

hαβ =


N

∑
β=1

hβ
0

∣∣∣∣∣∣1−
∣∣∣∣∣∣τβ

cut + τ
β
pass

∣∣∣∣∣∣
2

τ
β
sat

∣∣∣∣∣∣
r [

qαβ + (1− qαβ)δαβ
] ∣∣∣∣∣∣τβ

cut + τ
β
pass

∣∣∣∣∣∣
2
≤ τ

β
sat

0
∣∣∣∣∣∣τβ

cut + τ
β
pass

∣∣∣∣∣∣
2
> τ

β
sat

(2.14)

in which || x ||2 denotes the Euclidean norm, hβ
0 is the initial hardening, qαβ a magnitude for self and124

latent hardening considered 1.0 for coplanar slip systems and 1.4 otherwise, r the hardening exponent,125

and δαβ the slip systems Kronecker delta function. τ
β
sat is the saturation shear stress designed as126

τsat = csat dm, where csat and m are the saturation coefficient and exponent, respectively.127

In order to utilize the constitutive model in crystal plasticity procedures and solve system equations,128

derivation techniques and computational approaches are required to be carried out as delineated in129

appendices A and B. Inevitably, multiple parameters in the model must be realized, as demonstrated130

in Table 1, for which the next section is assigned.131

Constitutive Model Parameters

γ̇α
0 p q r cs csat m τα

cut τα
pass-init hβ

0132

Table 1. Material parameters to be determined from a deep-learning method and experimental data.133

2.3 Deep-Learning Single Layer Calibration (SLC) Method134

In order to acquire constitutive parameters a deep-learning single-layer calibration (SLC) method135

is developed. This technique is able to reduce the experimental data, recognize and distinguish136

dominant and trivial patterns, and efficiently decide trade-offs between bias and variance paths along137

with some other optimization, recognition, and decision capabilities.138

2.3.1 Training and Learning Techniques in The SLC Approach139

This approach is based on adaptive boosting technique [36] over a committee of models. The

operation proceeds through combining classifiers, Mj ; j = 1, 2, ..., m, by sequentially training n models

and concluding the final prediction based on the ultimate outcome. One of the main advantages

of this procedure is obtaining favorable results even if the base classifiers are not strong learners.

However, the possibility of achieving solid outcomes exponentially increases in the cases of moderate

or advanced classifiers that are believed characterizes the current work features. Boosting can be

extended to regression problems [37] which in some optimization stages is employed as well.

Here, the classifiers are trained using a weighted array in which the coefficient values depend on the

performances of the previous classifiers. The descending sorted coefficients are proportional to the

level of the misclassification of data and are key in the final decision. At the beginning, each of n

Zara Moleinia
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weighting coefficient, c(i)w , in the array is uniformly initialized based on the data point vectors, vi, and

binary target values, ti ∈ {−1, 1} , i = 1, 2, .., n, among the classifiers as c(i)(j)
w = 1

n . Then, each model

is trained while the associated weighted error function, ej = ∑n
i=1 c(i)(j)

w N (Mj(vi) 6= tn), is minimized,

where N (Mj(vi) 6= tn) is the indicator function. Weighting coefficients are continuously adjusted for

succeeding models by a modifier,

ψj =

1−∑n
i=1 c(i)(j)

w N (Mj(vi) 6= tn)

∑n
i=1 c(i)(j)

w

 , (2.15)

allocating larger weighting values to more precise classifiers. Afterwards, the weighting coefficient

array is updated by

c(i+1)(j)
w = c(i)(j)

w

 ∑n
i=1 c(i)(j)

w

∑n
i=1 c(i)(j)

w N (Mj(vi) 6= tn)
− 1

N (Mj(vi) 6=tn)

. (2.16)

The exponential error function [38] is defined as E = 1
2 ∑n

i=1 ∑m
j=1 exp

[
−tiψj Mj(vi)

]
which is

sequentially minimized in terms of ψj and Mj(vi). This relation holds with the assumptions of

fixed base classifiers and their modifiers.

The boosting framework is illustrated schematically in Fig. 1 where each base classifier is trained

according to the assigned weighted function acquired in terms of the precision of previous classifiers

in data allocation with the error function between two consecutive classifiers as

E =
n

∑
i=1

m

∑
j=1

exp
(
−1

2
[
tiψj−1Mj−1(vi)− tiψj Mj(vi)

])
. (2.17)

140

Figure 1. Demonstration of adaptive boosting technique where base classifiers with simple thresholds
are trained according to the assigned weighted function acquired relative to the precision of the

previous classifier in data allocation. Each sample shows the number of classifiers, m, trained up to
that point. The solid and dashed lines in the domains are the decision made and revised choices,
respectively, based on the weight of the misplaced data illustrated with expanded boundaries.
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If data points are divided into proper, C+
j , and improper, C−j , categories, Eq. 2.17 can be restated by

E =
√

ψj − 1 ∑
i∈C+

j

c(i)(j)
w +

√
1
ψj
− 1 ∑

i∈C−j

c(i)(j)
w

=

(√
ψj − 1−

√
1
ψj
− 1

)
n

∑
i=1

c(i)(j)
w N (Mj(vi) 6= tn) +

√
1
ψj
− 1

n

∑
i=1

c(i)(j)
w . (2.18)

Thus, from Eqs. 2.17 , 2.18 and ti Mj(vi) = 1− 2N (Mj(vi) 6= tn), weighting coefficients are modified

as

c(i+1)(j)
w = c(i)(j)

w exp
(
−1

2
tiψj Mj(vi)

)
= c(i)(j)

w

√
ψj − 1

(
1
ψj
− 1

)N (Mj(vi) 6=tn)
2

. (2.19)

Finally, when the training of the classifiers are completed, the sign of the combined function for each

data point vector is obtained with

SGN(vi) = sgn

Mj(vi) ln

 ∑m
j=1 c(i)(j)

w

∑n
i=1 c(i)(j)

w N (Mj(vi) 6= tn)
− 1

 . (2.20)

2.4 Statistical Mechanics and Homogenized Crystal Plasticity Constitutive141

Model142

The notion of multi-scale modeling has been of constant interest in the realm of computational

mechanics and materials. Despite diverse length-scale-dependent methods, hierarchical systems are

able to resolve the geometrical and physical details of the underlying mechanisms in lower-scale

with higher speed of computation, yet, reasonable precision and simplicity. The reliability extent of

acquired responses is evaluated by the adequacy of lower scales assessments, that is, these levels

exhibit momentous complementary effects.

Classical thermodynamics relations need to be revised for homogenized solids due to the fundamental

differences in the degrees of freedom with gases and fluids especially when the goal is eliminating

fast atomic degrees of freedom and attaining a homogenization theory. In the case of crystals,

elimination is related to the dynamics of crystal defects, particularly dislocations, leading to an

additional coarse-graining with the system of governing equations that is no longer Hamiltonian,

but dissipative. Unlike ergodic systems characterized by macrovariables and energy parameters,

dissipative systems are extremely diverse [39] for which developing frameworks is possible with

specific considerations.

Here, the statistical mechanics of the microcanonical ensemble [40] are utilized for the lower scale since

the upper scale kinematics are to be characterized considering dissipative transport and nonlinear

geometrical models of dislocations [41] along with the independent point-wise temperature. The
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Clausius-Duhem inequality is incorporated to link the scales through entropy flux where the probability

of a phase-space invariant measure with probability density function is assumed plausible.

Dislocation positions are not statistically independent and affect the overall energy of a nano-structure,

however, since the precise instantaneous locations associated with the initially considered dislocations

can not be identified as deformation evolves, energy is considered as an independent additional

characteristic of a dislocation geometrical network [42]. Thereby, the total number of the dislocations,

Nd, and associated energy, Ed, are the independent features of the dislocation network with the priori

of equal probability of the ensemble sub-states.

If x denotes the position of a material point in a system at time t with the continuum mass density,

ρ(x, t), divided into Nns, total sub-nano-systems, with identical masses, mns, and individual volumes,

Vi
ns, in the total spatial volume, Λ, the system average velocity is defined as 〈v〉 = 1

Nns
∑Nns

i=1 vi
ns. Velocity

fluctuation is determined through ṽi
ns = 〈v〉 − vi

ns, where vi
ns is the velocity of each sub-system. The

dissipative nature of a system is characterized via the velocity fluctuation of each sub-system, hence,

the system disorder manifests itself in the total energy of a system from the lower-scale standpoint as

mns

2

(
〈v〉 · 〈v〉+

Nns

∑
i=1

ṽi
ns · ṽi

ns

)
+ U

∣∣∣∣
Ui

ns ; εi
, (2.21)

where U is the total potential energy acquired from the subsystems. The internal energy, Ui
ns, is

determined over a surrounding volume, Vi
ns, such that the deviation at each infinitesimal part of the

volume surface, εi, depends on the long- and short-range interactions considered among dislocations

therein, thus, varies by time evolution, heat flux, and active deformation mechanisms. This relation

is associated with the total energy of an ensemble stated by
∫

Λ ρ(x, t)
(

1
2 v̌ · v̌ + e

)
dv, with v̌ as the

velocity and e the internal energy density of the system. Consequently, the Helmholtz free energy,

H = Us

∣∣∣∣
Ui

ns ; εi
+

mns

2

Nns

∑
i=1

ṽi
ns · ṽi

ns = U − TS , (2.22)

is obtained in which the entropy, S , is associated with the subsystems velocity fluctuations.143
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Figure 2. Schematic representation of a microcanonical ensemble with equal probability of state, pi,
and energy, Ei, of each subsystem in the total volume, Λ, with the average velocity of 〈v〉 and energy

U.

In order to link the lower and upper scale, the statistical Boltzmann entropy principle is utilized as

S = −kB ∑
i

pi ln pi (2.23)

pi =
exp(− Ei

kBT
)

∑
i

exp(− Ei
kBT

)
, (2.24)

where pi is the probability of the ith subsystem with Ei energy as displayed in Fig. 2. The hypothesis

of an ensemble with a uniform probability distribution in phase-space, necessitates the confinement of

a subsystem in a particular volume with constant total energy, thus, the system entropy has the format

of

S = −kB ∑
i

exp(− Ei
kBT )

∑i exp(− Ei
kBT )

ln

 exp(− Ei
kBT )

∑i exp(− Ei
kBT )


= −kB ∑

i

exp(− Ei
kBT )

∑i exp(− Ei
kBT )

(
− Ei

kBT

)
+ kB ∑

i

exp(− Ei
kBT )

∑i exp(− Ei
kBT )

ln ∑
i

exp(− Ei
kBT

) . (2.25)

Comparing Eq. 2.25 with Eq. 2.22 results

U = ∑
i

Ei pi = 〈E〉 , (2.26)

where 〈E〉 corresponds to the average energy of the subsystems. Here, boundary conditions of the

homogenized medium presume no relative fluctuations, thus, the extensive variables in the upper

scale follow the average principles whose the plausibility is proven.

The homogenized crystal plasticity-based model is founded upon the continuum slip theory

of generalized Taylor scale-transition [43,44]. It contains parameterized representation of the

nano-structure features with embedded rate-dependence and latent hardening effects accounting for
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thermomechanical properties in both elastic and plastic responses. The concept of the representative

volume element (RVE) statistically representing the nano-system is incorporated based on retaining the

relative dimensions between the homogenized ensemble and nano-structures as well as the underlying

deformation mechanisms and dominant features. The hierarchical homogenization analysis follows the

Hill-Mandel principle of macro-homogeneity [45,46] where the volume average of the work increment

applied on an RVE is considered equal to the variation of the work on the homogenized system. In the

absence of body forces and inertia, the energy consistency is stated in terms of the Eulerian strain rate,

ė, and Cauchy stress with

1
Vn

∫
Λ

σn : ėn dVn = σH : ėH , (2.27)

where Vn is the volume of the RVE and subscripts n and H correspond to nano and homogenized

systems, respectively. Considering the quasi-static applied strain rates, the self-equilibrated spatial

stress field is achieved by ∇ · σ = 0. In order to solve the boundary value problem in Eq. 2.27 and

equilibrium equations, a homogenized crystal plasticity-based constitutive model with the identical

nano-scale model backbone, yet, a simplified structure is developed as

γ̇α = γ̇α
0 exp

[
−Qactive

kBT

(
1−

τα
eff

τα
cut

)]
sgn(τα) . (2.28)

Considering previously defined parameters, the CPFE approach is utilized to solve the equilibrium144

equation as described in appendices A and B. The constitutive parameters are formulated in terms145

of structural variables and calibrated through the computational homogenization of the lower scale146

model and the RVE that consists of layer thicknesses of stacked nano-layers.147

Prior to plasticity, the elastic responses of a homogenized system must be realized, thus, the equivalent148

elastic constants, Čij, are attained as a combination of the constituents elastic constants, Cij, with149

respect to their thicknesses, dk, in a multi-nano-layer as Čij =
Nmat

∑
k=0

Cij
dk
d

, where d is the total thickness150

of the specimen and Nmat the number of materials. The rate dependence feature is modified for the151

homogenized ensemble with the total Nl layers by lp =
Nl

∑
i=1

λi γ̇i (mi
0⊗ ni

0) in which λi = Vi
Vtotal

signifies152

each layer volume fraction.153

3 Results and Discussions154

In this section, the results are categorized into two nano and homogenized scale where Cu/Nb155

multi-layers are designated as case studies for both regimes.156

At the nano-scale, material parameters calibrated against experimental data through the deep-learning157

SLC method are utilized to validate the constitutive model predictive capabilities. subsequently, the158
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nano-layer responses are predicted and discussed regarding size and constituent effects, the extent of159

impacts in variation of layer and/or loading orientation, and the influence of layer setups in the initial160

conditions of calibration settings.161

At the homogenized level, deep-learning SLC and genetic algorithms are utilized to realize and162

obtain effective functionals relations and constants, then, the results are favorably compared with163

the nano-scale model while expediting the computational processes by several orders of magnitude.164

Further assessments of temperatures effects on the nano-metals properties are performed for which165

deep-learning SLC and genetic algorithms are utilized to realize and obtain effective functionals166

relations and constants utilizing multiple experimental results which also incorporated for final167

validations. Ultimately, several responses regarding the effects of elevated temperature and the168

degradation of properties are predicted.169

3.1 Nano-scale Constitutive Parameters and Predictions170

The presented deep-learning SLC approach utilizes the single crystal stress-strain curve of each171

constituent and delivers generalized parameters via a single process applicable to a broad scope of172

setups that are entirely different than those of the calibration ones. The models in the committee are173

defined based on the developed constitutive model and variation of each parameter considered as an174

independent variable along with the cases that assume simultaneous parameter variation effects. The175

developed SLC method is an identifier of constitutive and effective parameters based on the physics176

behind the role of the parameters on the overall behavior of the concerned material. Thereby, it trains177

and realizes the best compatible parameters in the constitutive model while applicable to a broad178

range of material morphologies.179

Here, several Cu and Nb nano-layers are separately simulated for which elastic constants are Initially180

obtained through analytical processes and databases displayed in Table 2.181

Material Elastic Constants Cu Nb

C11(GPa) 168.4 246.0

C12(GPa) 121.4 134.0

C44(GPa) 75.4 28.7

µ(GPa) 48.0 38.0

Qactive(J) 8.05e−19 8.9e−19

b(m) 2.56e−10 2.86e−10
182

Table 2. Material constants of copper and niobium acquired from analytical processes and databases.183

Subsequently, the constitutive parameters are obtained, Table 3, via experimental data of single184

crystalline Cu [47] and Nb [48]. The exponential error functions, E , associated with training segments185

are defined based on the binary target values and classifiers and minimized iteratively through186
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modifiers, where the range of variation is captured from 0.008% to 0.01% for which static thresholds of187

≤ 0.05% are designated.188

Material Parameters Cu Nb

γ̇α
0 5.0e6 6.0e6

p 0.98 1.01

q 1.12 1.14

r 1.115 1.121

cs 0.2 0.002

csat 70,000.0 76,741.0

m -0.50 -0.50

τα
cut(MPa) 4.80 6.30

τα
pass-init(MPa) 5.20 7.10

hβ
0 (MPa) 3,000.0 20,000.0

189

Table 3. Material parameters of copper and niobium acquired from the deep-learning SLC and
experimental data.190

Sequential modeling steps from an actual metallic nano-layer image to a three-dimensional Cu/Nb191

nano-layer unit cell discretized into hexahedral elements are demonstrated in Fig. 3.192

In order to illustrate the capabilities of the developed models in generic perspectives and demonstrate193

the accuracy of the SLC method, additional simulations are performed utilizing the acquired194

parameters. The responses of the specimens in the form of true stress-strain curves are compared with195

the experimental results in [49,50], Fig. 4, having entirely different setups than those of the calibrations196

in [47,48]. The engineering stress-strain curves in [49] are obtained for the average layer thicknesses of197

16 nm, 34 nm, and 63 nm under the constant strain rate of 10−3/sec while a true stress-strain curve is198

achieved in [50] involving the average layer thickness of 40 nm with 2× 10−4/sec strain rate. The199

experimental and simulations are performed with the Kurdjumov-Sachs (KS) orientation relationships,200

{111}Cu||{110}Nb.201

202
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Figure 3. (a) A high resolution scanning electron microscopy image of a metallic nano-layer. (b) A
generalized representative structure of a metallic nano-layer with n elements/layers. (c) A

3-dimensional Cu/Nb nano-layer unit cell discretized into (d) hexahedral elements.

Since the developed models yield true stress-strain responses, an excellent agreement with 40 nm203

experimental data is observed due to the similarity of formats. Small divergences between the rest of the204

curves are related to the nature of the reported results, being engineering stress-strain, which naturally205
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placed them in the lower positions than the true ones. The general trend of the computationally206

predicted properties is in agreement with the experimental data, however, the amount of deviation207

from 16 nm is related to the softening phenomenon at the sizes lower than about 20 nm [51,52] due to208

which this work is appointed its nano-scale size range from 20 nm to 1 µm.209

Figure 4. The verification of the size-dependent constitutive model and deep-learning SLC results
plotted by "SIM" and solid lines with the experimental data [49,50] designated by "EXP" and symbolic

points.

At this stage, considering the models that are validated and also the validities are solidly tested, several210

predictive case studies are assessed and discussed.211

Emphasizing the size and geometrical effects, four thickness combinations of 34 nm and 63 nm along212

with another case with their uniform average thickness of 48.5 nm are simulated with otherwise213

identical settings. The outcomes are presented in Fig. 5a where the strain rate of 10−3/sec and the KS214

orientation relationships are considered.215
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(a) (b)

(c)
Figure 5. (a) True stress-strain curves for four thickness combinations of 34 nm and 63 nm as well as
48.5 nm Cu/Nb multi-layers illustrating the effect of layer combinations on the plastic deformation

and flow strength. (b) Equivalent plastic strain versus true strain curves for the cases in (a) clarifying
the size and layer geometrical order effects. (c) True stress-strain curves of 34 nm, 40 nm, and 63 nm

Cu/Nb multi-layers demonstrating the effects of transverse (TRANS) and longitudinal (LONGL)
loading directions plotted with solid and dash lines, respectively.

As noted, the strongest pattern is the one with the smallest similar thicknesses signifying the216

predominant influence of size over the other traits. Among the rest, with a total thickness of 97217

nm, the samples with the lower and higher thickness of niobium exhibit the strongest and weakest218

responses, respectively. The curve with the equal average thickness reveals a trend between the upper219

and lower bound, however, close to the latter. It is inferred that in cases of bilayers with two different220

crystal structures, one of the constituents has more influence on the overall mechanical properties221

than the other. Here, the effect of the body-centered cubic niobium with lower activation volumes is222

more decisive and almost twice as of the face-centered cubic copper on the whole responses either in223

the reduction or promotion of thicknesses. These effects are better recognized through the equivalent224
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plastic strain defined as Ep
eq =

√
2
3 (E

p : Ep), where Ep = 1
2 (F

pTFp − I) and plotted in Fig. 5b for each225

case. In the general trends and magnified region, the equivalent strain curves demonstrate the inverse226

relation with the layer strengths captured in Fig. 5a and indicate the largest values for the weakest and227

smallest ones for the strongest case.228

To investigate the load or layer direction effects, the simulations are performed for laminates of 34 nm,229

40 nm, and 63 nm under both longitudinal and transverse loading directions, displayed in Fig. 5c. Slight230

differences at the beginning stages of the plasticity are detected increasing with subsidence in layer231

spacing. However, the identical results in the extended plastic region demonstrate the inconsequential232

impacts of variations in the loading or layer orientation especially for detecting the flow strength of233

bilayers at the strain of about 10%.234

The significance of size effects is delineated in Fig. 6 where the flow and yield strength as well as235

the transition strain in a wide nano-scale interval, 25 nm to 400 nm, are plotted. Considering the236

transition strain as the strain sustained from the yield to the onset of flow, a nonlinear descending237

trend of flow and yield strength is noted as layer spacings decline. Yield points are recognized238

when the resulted data from computational analyses start to deviate from the linear trend, albeit,239

with a tolerance consideration, and transition strains are detected once a hardening trend and the240

tangential line of a post-yield curve intersect. The increase in strain transition is primarily due to241

mechanical thresholds and dislocation structure evolutions aligned with low strain hardening and242

dynamic annihilation-recovery mechanisms. A small variation in thickness results a dramatic change243

in flow and yield strengths at the thicknesses of /100 nm.244

Zara Moleinia
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Figure 6. The variation of flow and yield strength (left vertical axis) as well as transition strain (right
vertical axis), respectively, with respect to layer thickness in the range of 25 nm to 400 nm. The true
stress-strain curves in this range is attached to the top right corner to clarify the overall constitutive

behavior.

This bias has a descending followed by an asymptotic trend whilst the thickness approaches 1 µm.245

The similar trajectory in transition strain is indicative of an extended prehardening phenomenon246

pronounced especially at this range that continues to shrink and assume a higher curvature nearing 1247

µm.248

Although the developed models satisfyingly capture metallic nano-layers responses over a broad249

length scale, the time- and energy-consuming feature of the analysis is a hurdle to be overcome for250

which the multi-scale concept is sought and implemented for which effective functionals must be251

realized as discussed in the next section.252

3.2 Homogenized Level Effective Functionals and Constants253

Sensitivity analyses detect two influential constitutive functionals to be calibrated from the lower

scale; saturation shear stress, τsat, and initial hardening, h0. These are functions of each constituent layer

thickness, e.g., τsat(dCu, dNb) and h0(dCu, dNb) for Cu/Nb nano-layers. In order to obtain the relations

of the effective functionals in terms of each material, several cases with different layer thicknesses

of Cu and Nb are made. Two major sets of nano-layers are considered in which the thickness of one

material is fixed at 34 nm, 63 nm, and 100 nm while the other one varied from 25 nm to 400 nm and

vice versa. Then, the simulations are performed based on the size-dependent constitutive model at
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nano-scale regime, Eq. 2.12, and processed through Hill-Mandel principle resulting in the calibration

plots of τsat and h0 demonstrated in Fig. 7.

The variation of τsat with constant dCu and varying dNb is plotted in Fig. 7a where the best fitted

function for simulated data has the form of α1 +
α2√
dNb

. The same process for Nb yields the similar

functional structure with α3 +
α4√
dCu

plotted in Fig. 7b. However, the best fitted functions for h0 is

different and has the format of β1 +
β2

3
√

dCu
when dNb is fixed and β3 +

β4
3
√

dNb
while dCu is constant as

illustrated in Figs. 7c, 7d, respectively. Consequently, the final formulations of the effective functionals

are derived as

τsat =

(
α1 +

α2√
dCu

)(
α3 +

α4√
dNb

)
, (3.1)

and

h0 =

(
β1 +

β2
3
√

dCu

)(
β3 +

β4
3
√

dNb

)
, (3.2)

for generalized circumstances when both dCu and dNb are changing. These equations have four

unknowns to be determined. Due to the high nonlinearity of the acquired equations, ascertaining

αi , βi necessitates a thorough, compatible optimization scheme. Thereby, a metaheuristic genetic

algorithm approach is utilized to attain the parameters which results in the following equations.

τsat =

(
12.6169 +

0.0028
dCu

)(
9.0473 +

0.0032
dNb

)
, (3.3)

and

h0 =

(
48.3222 +

0.4358
3
√

dCu

)(
23.4275 +

0.7791
3
√

dNb

)
. (3.4)
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(a) (b)

(c) (d)
Figure 7. Variations of effective parameters in homogenized constitutive model with layer thicknesses

where one layer thickness is fixed while the other one changes. Symbolic points signify simulation
(SIM) results and solid lines the best fitted equivalent curves (EQ). Variations of τsat, for (a) fixed Cu

layer spacing, d_Cu, and (b) fixed Nb layer spacing, d_Nb. Variations of h0, for (c) fixed Cu layer
spacing, d_Cu, and (d) fixed Nb layer spacing, d_Nb.

The homogenized constitutive model enhances the efficacy of computational processes in diverse254

aspects. Clarifying this matter, five random microstructures with different layer thicknesses are255

simulated; first, with the size-dependent constitutive model at nano-scale, Eq. 2.12, and second,256

through the homogenized constitutive model, Eq. 2.28, along with the realized effective functionals in257

Eqs. 3.3 and 3.4.258
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Figure 8. Verifications of the homogenized constitutive model with the nano-scale ons through 25 nm,
40 nm, 48.5 nm, 75 nm, and 300 nm Cu/Nb laminates. Symbolic points denote homogenized (HM) and

solid lines the nano-scale (NS) model results.

The nano-scale simulations proceed through the model with the explicit representation of layer259

thickness while the homogenized model is executed by the implicit impact of size rendered through260

effective functionals in Eqs. 3.3 and 3.4. The results and comparisons shown in Fig. 8 exhibit cogent261

agreements between two models, albeit, the homogenized constitutive model significantly reduces the262

computational time and cost by several (> 4) orders of magnitude.263

3.3 Homogenized Level Temperature Effects264

In general, the elevated temperature induces relative diffusive mass flux due to energy gradients.265

Diffusional creep is considered the main deformation mechanism at the vicinity of the melting point,266

Tm, in metallic nano-layers [53] where the stress-driven diffusion of vacancies along grain boundaries267

compels atomic diffusion of the grain interiors in the opposite direction. This effect is alleviated268

by atomic diffusion along grain boundaries at lower temperature [54] while the dislocation glide269

along grain boundaries becomes the dominant mechanism at intermediate and low homologous270

temperatures. Cu/Nb cases, at temperatures up to 800◦C, exhibit dislocation-based plastic deformation271

where diffusion creep can be ignored due to generated thermally stable structures [55,56]. Being272

cognizant of the experimental difficulties mentioned in Sec. 1 for obtaining mechanical responses273

of metallic nano-layers at elevated temperatures, a temperature-dependent constitutive model is274

developed with the advantages of acquiring responses through fast and cost-effective performances.275

The homogenized constitutive model in Eq. 2.28 works with a mild variation of ambient temperature;276

however, generic temperature variations require additional changes in some of the material constants277
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and constitutive parameters.278

The elastic constants can be written as a function of absolute temperature by Cij = χij + ωijT [57] and279

shear modulus with µ = m1 + m2T, where the constants, χij , ωij , m1 , m2 are designated in Table 4280

for Cu/Nb nano-layers.281

Cu Nb

χ11(GPa) 184.13 ω11(GPa/K) −0.05 χ11(GPa) 262.70 ω11(GPa/K) −0.06

χ12(GPa) 133.32 ω12(GPa/K) −0.04 χ12(GPa) 143.33 ω12(GPa/K) −0.03

χ44(GPa) 88.15 ω44(GPa/K) −0.04 χ44(GPa) 40.18 ω44(GPa/K) −0.01

m1(GPa) 52.95 m2(GPa/K) −0.02 m1(GPa) 30.88 m2(GPa/K) −0.01

282

Table 4. Elastic parameters of copper and niobium acquired from the calibration process.283

The effective functionals, saturation shear resistance and initial hardening, also change in terms of

temperature. To achieve the general format of these functionals and obtain the associated parameters,

experimental data in [49,55] are incorporated through the deep-learning SLC and metaheuristic genetic

algorithms. As a result, effective temperature-dependent functionals are obtained as

τsat =

[
ψ0 exp

(
ζ

T − Tc

)
+ ψ1

] (
12.6169 +

0.0028
dCu

)(
9.0473 +

0.0032
dNb

)
, (3.5)

and

h0 = (η0 + η1T)
(

48.3222 +
0.4358

3
√

dCu

)(
23.4275 +

0.7791
3
√

dNb

)
, (3.6)

where the associated parameters of ψ0 , ψ1 , ζ , Tc , η0, and η1 are calibrated as shown in Table 5.284

ψ0 ψ1 ζ Tc η0 η1

7.31 −5.72 100.00 1450.00 1.42 −0.0014
285

Table 5. Saturation shear resistance and initial hardening parameters.286

For verification, simulations are performed for Cu/Nb multi-layers with thicknesses of 34 nm, 60 nm,287

and 63 nm at 25◦C, 400◦C, and 500◦C as demonstrated in Fig. 9a. As observed, the simulations and288

experimental results exhibit solid agreements in which dramatic declines in flow stresses by increasing289

temperature are plainly detected.290

Further illuminating this phenomenon, Cu/Nb multi-layers with 25 nm, 50 nm, 75 nm, and 100 nm291

thicknesses are modeled from room temperature up to 700◦C where the variation of flow strengths in292

terms of temperature is displayed in Fig. 9b. Each curve is indicative of slight variation in flow stress293

at initial stages while revealing an appreciable drop as temperature grows. For instance, in 25 nm294

specimen, the flow stress notably, about 80%, drops from room temperature to 700◦C.295

From another angle, the increase of temperature degrades the mechanical responses of a thin metallic296

nano-layer to a thicker one at room temperature; this can be clearly perceived in Fig. 9a where a 34 nm297

Cu/Nb at 400◦C exhibits the strength of a 63 nm Cu/Nb at 25◦C.298
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(a) (b)
Figure 9. (a) The validation of the temperature-dependent constitutive model with 34 nm, 60 nm, and

63 nm Cu/Nb laminates at 25◦C, 400◦C, and 500◦C. Symbolic points are the experimental (EXP)
[49,55] and solid lines the simulation (SIM) data. (b) Flow strength versus temperature curves of 25 nm,
50 nm, 75 nm, and 100 nm Cu/Nb laminates at 25◦C up to 700◦C demonstrating the nonlinear effects

of temperature growth on flow strength.

4 Conclusions299

The current work develops multi-scale constitutive models and deep-learning SLC approaches in300

two major scales of the nano and homogenized levels. CPFE in the large deformation platform was301

utilized to reflect the anisotropic and rate-dependent nature of the metallic nano-systems, simulate,302

and predict associated responses where Cu/Nb nano-layers as case studies were incorporated in303

diverse three-dimensional thermomechanical loading conditions.304

At the nano-scale, a size-dependent constitutive model founded on entropic kinetics has been305

developed with the explicit size and constituent effects along with hardening evolution. The SLC306

as a deep-learning adaptive boosting technique was established to acquire generalized constitutive307

parameters through a single process while remaining applicable to a broad scope of settings regardless308

of any difference with calibration setups. The models were validated through experimental results and309

utilized for further behavioral prediction in terms of size, loading pattern, layer type, and geometrical310

effects where size and constituent effects were plainly captured on flow strength and transition strain.311

At the homogenized scale, statistical analyses were employed to develop a homogenized crystal312

plasticity-based constitutive model for expediting the computational process. The elastic constants and313

effective functionals were realized and associated parameters obtained via metaheuristic genetic314

algorithms. The homogenized responses were solidly verified with nano-scale data while the315

computational processes were accelerated by several orders of magnitude.316

A temperature-dependent homogenized constitutive model was developed for which elastic constants317
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and effective functionals were constructed. The related constants were obtained and the model was318

favorably validated with experimental data. Ultimately, the nonlinear effects of temperature on flow319

strength for several cases were predicted, analyzed, and discussed.320
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Appendix A: General Steps of Solving Equilibrium Equation–FE328

1. Equilibrium Equation329 ∫
v σ : δe dv−

∫
Γ t δv dΓ = 0330

2. Finite Element Discretization331

δe =
1
2
(δl + δlT)332

v =
nNode

∑
i=1

Niv̂i δl =
∂δv
∂x

=
nNode

∑
i=1

v̂i ⊗∇x Ni = ∇(ξ,η,ζ)Ni

[
nNode

∑
i=1

xi ⊗∇(ξ,η,ζ)Ni

]
v̂333

3. Residual Force334

R(v̂) =
∫

v(∇x Ni)
Tσdv−

∫
s NitδdΓ = 0335

4. Newton-Raphson Solver336

v̂n+1 = v̂n −
(∂R

∂v̂

)−1

n
Rn337

5. Residual Derivative338

∂R
∂v̂

=
∫

v
(∇x Ni)

Tk(∇x Ni)dv +
∫

v
(∇x Ni)

Tσ⊗ (∇x Ni)dv339

6. Material Stiffness340

KM =
∫

v(∇x Ni)
Tk(∇x Ni)dv =

∫
v BT DepBdv341

7. Geometrical Stiffness342

Kσ =
∫

v(∇x Ni)
Tσ⊗ (∇x Ni)dv =

∫
v BT

σ σBσdv343

8. Calculation of σ and Dep in Appendix B.344

Appendix B: General Steps of Acquiring System Stiffness–CP345

1. Kinematics346

F(τ) = Fe(τ) Fp(τ) , Ḟp(τ) = lp(τ) Fp(τ)347

2. Plastic Deformation Rate Dependence348

lp =
nslip

∑
α=1

γ̇α(τ) mα
0 ⊗ nα

0 ⇒ Ḟp =

(
nslip

∑
α=1

γ̇α(τ) mα
0 ⊗ nα

0

)
Fp

349
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3. Second Piola-Kircchoff Stress350

S(τ) =
1
2

C
(

FeT(τ)Fe(τ)− I
)

351

S(τ) =
C
2

[
nslip

∑
α=1

(
I− ∆γα (mα

0 ⊗ nα
0)

T
)

Fp−T(t)FT(τ)F(τ)F−p(t)
nslip

∑
α=1

(I− ∆γα mα
0 ⊗ nα

0)− I

]
352

4. Elastoplastic Parts353

Sel(τ) =
C
2

(
Fp−T(t)FT(τ)F(τ)F−p(t)− I

)
354

Spl(τ) = −C
2

(
Fp−T(t)FT(τ)F(τ)F−p(t)

nslip

∑
α=1

(∆γα mα
0 ⊗ nα

0)

)
355

− C
2

(
nslip

∑
α=1

(∆γα mα
0 ⊗ nα

0)
T Fp−T(t)FT(τ)F(τ)F−p(t)

)
356

5. Nonlinear Solution–Defined Residual Function357

G(S) = S(τ)− Sel − C
2

nslip

∑
α=1
F (α)∆γα

358

6. Nonlinear Iteration Obtaining 2nd Piola-Kircchoff Stress359

S(i+1) = S(i) − J−1

[
S(i) − Str +

nslip

∑
α=1
F (α) ∆γα

]
360

J = I +
nslip

∑
α=1
F (α)⊗ ∂γα

∂S
361

7. Updated Constitutive Model and Evolving Parameters362

γ̇α = γ̇α
0 exp

{
−Qactive

KBT

[
1−

(
(τα

eff)
2

τα
cut

csπ
µb d

)p]q
}

sgn(τα)363

τ̇α
pass =

nslip

∑
β=1

hαβ|γ̇β|364

8. Elastic Deformation Gradient365

(Converged σ , Fp)→ Fe(τ) = F(τ)F−p(τ)366

9. Cauchy Stress367

σ(τ) =
1

det Fe(τ)
FeT(τ)S(τ)Fe(τ)368

10. Elastoplastic Material Tensor369

Dep ↓= W =
∂σ

∂E
370
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