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Abstract Animal-mediated nutrient cycling
research tends to emphasize either native or inva-
sive fauna, yet communities comprising both groups
are common, and biogeochemical control may shift
from native to invasive species, altering local nutri-
ent regimes. In North American rivers, co-occurring
native mussels (Unionidae) and the invasive clam,
Corbicula fluminea, have strong nutrient cycling
effects through filter-feeding and bioturbation. When
these two groups co-occur, the degree to which their
nutrient cycling effects differ remains unclear. We
quantified bivalve density, biomass, and nutrient
excretion rates at four reaches in each of two rivers
once during the same year to test whether differences
in density and biomass led to different spatial and
temporal nutrient cycling and stoichiometry patterns
for co-occurring mussels and Corbicula. We hypoth-
esized high densities, coupled with small body size
would elevate Corbicula population-level nutrient
cycling rates above those of less dense assemblages
of larger-bodied mussels. Corbicula occurred at all
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mussel beds and their densities generally exceeded
mussel densities, but Corbicula biomass was consist-
ently lower. High densities and greater mass-specific
excretion rates led to Corbicula population-level
excretion rates that were greater than or equal to mus-
sel aggregate rates at half the reaches. Abiotic condi-
tions limited bivalve nutrient supply relative to ambi-
ent concentrations, but their contributions increased
during low flows and are likely concentrated at finer
spatial scales. Our results suggest spatial variation in
invasive and native trait distribution associated with
phylogenetic tribes influences the potential for ani-
mal-mediated nutrient cycling to shift from native to
invasive species control. Overall, our study highlights
the need for new management paradigms that account
for nutrient cycling by invasive species.

Keywords Body size - Consumer-driven nutrient
cycling - Ecosystem function - Filter-feeders -
Stoichiometry

Introduction

A primary focus of invasion biology is assessing the
impacts of invasive species on ecosystem structure
and function (Vitousek 1990; Parker et al. 1999). In
particular, invasive animals may alter biogeochemical
cycling by sequestering, remineralizing, or translocat-
ing nutrients between habitats (Crooks 2002; Atkin-
son et al. 2017), fundamentally altering ecosystems
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in which native species evolved (Mooney 2010).
Ecosystem level impacts of invasive animals have
received much attention (Capps and Flecker 2013a;
Loss et al. 2013; Subalusky et al. 2021), yet there
are still fundamental gaps regarding how turnover
from native to invasive species influences processes
such as nutrient cycling (Masese et al. 2020; Ric-
ciardi et al. 2021). Directly comparing the possible
nutrient cycling effects of invasive and native species
may facilitate the development of species-specific
management strategies (Pennock et al. 2018; Blanton
et al. 2020) or adjustments to holistic management
plans (Li et al. 2021).

Freshwater ecosystems are increasingly threat-
ened by species introductions (Dudgeon et al. 2006;
Reid et al. 2019). Habitat characteristics, tolerance
to a wide range of environmental conditions, and the
ability to forage at low trophic positions may favor
invader establishment (Kolar and Lodge 2001; Gido
and Franssen 2007). Alternatively, species traits (e.g.
short life spans, rapid maturation and reproduction)
and propagule pressure may also be important factors
allowing species to develop invasive potential (Byers
2002; Simberloff 2009). Invasive species feeding at
low trophic positions can shift nutrient limitation via
differential storage and release of nutrients relative
to the native fauna (Capps and Flecker 2013b; Sousa
et al. 2014; Hopper et al. 2020). Research comparing
nutrient cycling effects of native and invasive spe-
cies in freshwater systems often concentrates on dis-
parate taxonomic and functional groups (Scott et al.
2012), though many invaders are ecologically simi-
lar to the native fauna (Atkinson et al. 2010; Strayer
and Malcom 2013). For example, invasive and native
bivalve mollusks are all sedentary filter-feeders, with
concentrated ecosystem effects in stream benthic
habitats (Higgins and Vander Zanden 2010; Vaughn
and Hoellein 2018). Similar functional classifica-
tion may not equal redundancy if native and invasive
species process resources differently (Atkinson et al.
2010) or maintain divergent life history strategies
that effect population demographics (Hornbach 1992)
that govern invader impacts. For instance, most inva-
sive bivalves feed more generally than their native
counterparts (Atkinson et al. 2011). This can lead to
rapid population increase and control of ecosystem
structure and function by invasive bivalves (Higgins
and Vander Zanden 2010; Minaudo et al. 2021). For
example, invasion by dreissenid mussels (quagga and
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zebra) has qualitatively altered the responses of the
Great Lakes to phosphorus inputs from watersheds,
generating the need for a new management para-
digm for those ecosystems (Li et al. 2021). Increas-
ing prevalence of invaded bivalve communities
globally elevates the need to identify potential conse-
quences associated with turnover of species biomass
(Vaughn and Spooner 2006; Bédis et al. 2014; Sousa
et al. 2014; Strayer and Malcom 2018; McDowell
and Sousa 2019). Therefore, mixed communities of
native and invasive bivalves present an opportunity
to compare the relative influence of functionally simi-
lar native and invasive species on local ecosystem
processes.

Freshwater mussels (Family: Unionidae; hereafter
mussels) are relatively long lived bivalves, with life
spans ranging from 4-50 years and spend that time
in dense aggregations called mussel beds that are
patchily distributed in streams (Haag 2012). Mussel
beds are critical to productivity and biogeochemical
cycling in stream (Vaughn and Hakenkamp 2001;
Atkinson et al. 2013) and riparian food webs (Lopez
et al. 2020). Though all mussels are filter-feeders,
various morphological (e.g., body size), behavioral,
and physiological traits determine their ecosystem
effects (Spooner and Vaughn 2012). For example,
thermally sensitive mussels filter water and release
greater amounts of ammonium at higher temperatures
than thermally tolerant mussels (Vaughn et al. 2004;
Spooner and Vaughn 2008). The highly diverse North
American unionid mussel fauna (~360 species) is
mostly constrained within five distinct phylogenetic
tribes (Anodontini, Amblemini, Lampsilini, Pleu-
robemini, and Quadrulini; Pfeiffer et al. 2019), that
govern aspects of their life history and stoichiometric
niches (Atkinson et al. 2020a). Therefore, classifica-
tion of mussels into tribes can be useful in describing
broad patterns of functional diversity among mussel
beds. Additionally, mussel bed densities and species
composition determine aggregate flux and stoichiom-
etry that effect primary producer and detrital based
food webs (Atkinson et al. 2013, 2021; Hopper et al.
2021). Mussel ecosystem effects vary seasonally with
stream discharge conditions, but are strongest during
low flows when mussels filter a greater fraction of the
water passing over them and warmer temperatures
increase metabolic rates (Vaughn et al. 2004; Spooner
and Vaughn 2008). Moreover, mussels are among the
most imperiled animals globally (Ferreira-Rodriguez
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et al. 2019), and are particularly threatened by func-
tionally similar invasive species, such as Corbicula
fluminea in North America (Ferreira-Rodriguez et al.
2018b; Haag et al. 2021).

Corbicula fluminea (hereafter Corbicula) was
introduced to North America from temperate and
subtropical regions of southeastern Asia in the first
half of the twentieth century and is now present on
all continents except Antarctica (Crespo et al. 2015).
Rapid growth and maturity, short lifespan, high
fecundity, and asexual reproduction (Sousa et al.
2008b; Pigneur et al. 2011) coupled with tolerance to
multiple-stressors (Sousa et al. 2008a), and human-
mediated dispersal (Karatayev et al. 2007) promote its
successful establishment. Corbicula is an efficient fil-
ter-feeder (McDowell and Byers 2019) and their colo-
nization can alter stream benthic communities (Leff
et al. 1990; Hakenkamp et al. 2001; Werner and Roth-
haupt 2007; Ilarri et al. 2015) and alter mussel habi-
tat and food availability (Darrigran 2002; Ferreira-
Rodriguez et al. 2018b; Haag et al. 2021). Corbicula
can also alter nutrient cycles where they are abundant
(Lauritsen and Mozley 1989; Hakenkamp and Palmer
1999) and dense populations of mussels and Corbic-
ula frequently co-occur (Vaughn and Spooner 2006;
Strayer and Malcom 2013). Quantifying contributions
of invasive species biomass to overall nutrient avail-
ability is key to understanding the cumulative effects
resulting from spatially overlapping invasive and
native bivalves.

Functionally similar native and invasive spe-
cies may process resources differently (Atkinson
et al. 2010), leading to altered ecosystem level bio-
geochemical cycling (Strayer et al. 1999). Because
Corbicula and mussels exhibit high spatial overlap
in stream reaches they can be effectively sampled
simultaneously (Vaughn and Spooner 2006; Kelley
et al. 2022), providing an opportunity to evaluate how
diverse native assemblages and invasive species dif-
fer in nutrient cycling rates. The primary goal was
to compare the biomass, densities, and subsequent
nutrient cycling rates and stoichiometry of diverse
assemblages of mussels and co-occurring Corbicula
populations. We hypothesized that major differences
in body size between Corbicula and mussels would
result in aggregations with different proportional
biomass of each group. Specifically, we expected
biomass of larger bodied mussels to exceed Corbic-
ula biomass, despite lower densities of mussels. We

anticipated that allometric scaling of excretion rates
would lead to lower per capita but higher mass-spe-
cific excretion rates for Corbicula compared to mus-
sels (Vanni and Mclntyre 2016). Given this allomet-
ric relationship, combined with high densities, we
expected that Corbicula population-level excretion
rates would exceed those of mussel assemblages.
Last, we expected resource use differences would lead
to interspecific differences in excretion N:P among
mussel species and Corbicula (Atkinson et al. 2010,
2011), resulting in variable aggregate excretion N:P
driven by bivalve assemblage structure.

Materials and methods
Study rivers

The Duck River and Cahaba River are located in the
southeastern region of North America (Fig. 1). The
Duck River is the largest tributary (watershed area
8100 km?) to the Tennessee River and supports 68
mussel species (Ahlstedt et al. 2017). The Duck River
is impounded by two major dams upstream of the
reaches in this study and is a major source of drink-
ing water to residents in the watershed. Forests and
grasslands are approximately 80% of the land cover,
and urban and agriculture land uses make up the rest.
(Murphy et al. 2016). The Cahaba River is a large,
free-flowing, tributary (watershed area 3009 km?) to
the Alabama River prior to its confluence with the
Mobile River with 50 mussel species(Williams et al.
2008). The dominant land use types of the Cahaba
watershed are forest, urban development, and range
land, which in total account for 87% of the area, with
most extensive urban and agricultural development
in the upper portions of the Cahaba River (Dosdogru
et al. 2020; Preetha et al. 2021). Populations of Cor-
bicula have been established since at least 1964 and
1965 in both the Duck and Cahaba River, respec-
tively (Hubricht 1966; Byrne 2015). Corbicula is
widespread in both rivers, but little work has sought
to track population densities, biomass, or subsequent
ecosystem effects (but see Kelley et al. 2022).

Quantitative surveys

We surveyed stream reaches encompassing a
range of mussel densities and diversity to examine
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spatial variation in mussel and Corbicula distribution
(Fig. 1). We quantified Corbicula and mussel den-
sities at four reaches in the Duck River and Cahaba
River during 2020 by excavating 0.25 m? quadrats
to 15 cm deep using a random start method (Strayer
and Smith 2003). We selected reaches known to have
mussels and visually determined the extent of each
mussel aggregation by snorkeling. Reach lengths
ranged from 40-100 m. We counted and measured
all mussels along the anterio-posterior shell axis
and identified them to species. We counted all Cor-
bicula and measured at least 100 individuals along
the anterior—posterior shell axis (mm; L, ) to derive
size distributions for each reach. Length-mass regres-
sions were used to estimate soft tissue dry mass of

@ Springer

mussels (STDM [g]; Atkinson et al. 2020b) and Cor-
bicula(STDM = 0.86x 1076x L2%). Areal biomass
was based on quadrat estimate averages (g-m~2). To
account for unmeasured Corbicula and estimate their
biomass at each reach, we used average lengths from
measured individuals for each reach.

Excretion measurements

We measured nitrogen and phosphorous excretion
rates for 583 individuals representing 28 mussel spe-
cies and 37 individual Corbicula across both rivers
following Atkinson et al. (2013), during September
2020 when water temperatures were 19.6-22.8 °C in
the Cahaba River and 20.4-27 °C in the Duck River.
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Excretion rates were measured for at least 5 indi-
viduals of each species comprising approximately
80% of assemblage biomass. We collected individu-
als for excretion measurements during surveys. We
used a toothbrush and scour pad to gently remove
biofilms from shells and put them in plastic contain-
ers with 50-500 mL of filtered stream water (GF/F;
0.7 pm pore size; Millipore) depending on their size
for 60-80 min (61.65+4.02). Incubation times were
shorter and volumes were greater for larger individu-
als to minimize stress and waste build up. One control
container per 10 individuals was incubated simulta-
neously without bivalves and a subset (1 of 3 con-
trols) had scrubbed stones collected from the stream
to control for biofilm uptake. We measured individual
lengths (mm) after incubation, re-filtered the water to
separate biodeposits (i.e., egesta) from soluble nutri-
ents (i.e., excreta), took 30—50 mL samples and kept
them frozen (— 20 °C) until analyses. We used a Seal
AQ300 discrete analyzer (Seal Analytical, Mequon,
Wisconsin, USA) to analyze soluble reactive phos-
phorous (hereafter P) using the colorimetric method
(Murphy and Riley 1962) and NH,* (hereafter N)
using the phenol method for filtered excretion sam-
ples (APHA 2012). Per capita excretion rates were
calculated as the difference in nutrient concentration
between containers with bivalves and controls while
accounting for incubation time (umol-h™!).

Analysis
Spatial patterns of bivalve body size distribution

All analyses and data visualization were performed
using R v. 3.6.3 (Wickham 2011; Wilke 2016; R
Core Development Team 2019). Because we were
interested in general body size differences between
co-occurring mussels and Corbicula, we grouped
mussels into phylogenetic tribes (Pfeiffer et al. 2019)
and visualized body size distributions for mussels
and the measured Corbicula using density ridgeline
plots with 5 mm size classes (package ggridges Wilke
2018).

Bivalve nutrient excretion rates and stoichiometry

We analyzed relationships between body size (soft
tissue dry mass [g]) and per capita excretion rates
of N, P and N:P using linear regression (pack-
age car; Fox et al. 2018). Because we anticipated
a power-law relationship between body size and
excretion rates (Vanni and Mclntyre 2016), we log;,
transformed excretion rates and body size prior to
analysis. Our analyses focused on interspecific com-
parisons using analysis of covariance (ANCOVA)
with body size as a covariate using the /m function
(Fox et al. 2018) for each river separately. When no
relationship was found between excretion rates and
body size, we used analysis of variance (ANOVA)
to test for interspecific differences. We also calcu-
lated mass-specific excretion rates (umol g=' h™')
and ratios for species grouped into phylogenetic
tribes (Anodontini, Amblemini, Lampsilini, Pleu-
robemini, and Quadrulini; Fig. 1) to show differ-
ences among broadly classified mussels and Cor-
bicula. We used the dunn.test function to perform
Kruskal-Wallis non-parametric tests followed by
multiple comparisons with Bonferroni corrections
to compare differences among group mass-specific
excretion rates and ratios because samples sizes
among groups were highly unequal.

Aggregate density, biomass, excretion rates and
stoichiometry

We tested how much density, biomass and areal N
and P excretion rates differed spatially and between
groups (mussels and Corbicula) using ANOVA.
When the global ANOVA was significant (p <0.05),
we conducted Tukey pairwise contrast for Corbic-
ula and mussels at each reach (function emmeans;
Lenth 2018). To test assumptions of normality and
heterogeneity of variances, we used Shapiro-Wilks
test (function shapiro.test) and Levene’s test (func-
tion leveneTest) in the car package (Fox et al. 2018),
respectively. While biomass met test assumptions,
we square root transformed density estimates and
log,y+ 1 transformed Areal N and P excretion data
to more closely meet assumptions of normality
and equal variances and avoid log,;,(0). We calcu-
lated log response ratios (InRR) and standard error
to visualize proportional differences in biomass,
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density, aggregate N and P excretion rates, and N:P
for mussel assemblages and co-occurring Corbicula
populations.

Scaling bivalve effects to the ecosystem

To understand variability in aggregate excretion as
mediated by temporal variability in discharge and
the fraction contributed by mussels and Corbicula
biomass, we calculated volumetric excretion rates
and turnover distances for each group during the
time of year when water temperatures were within
the range of those measured during excretion trials.
Volumetric excretion rates combine benthic area (A:
length X width), volume (V: length X cross-sectional
area) and travel time (7: length/water velocity) of
each reach: Ey,=(E,XAXT)/V. Volumetric excretion
(E,) describes average additions of dissolved nutrients
(umol-L™") by excretion in a reach assuming perfect
mixing and no uptake (Mclntyre et al. 2008). Excre-
tion turnover distance (m) is the distance required for
excretion to turn over the ambient nutrient pool com-
pletely and is calculated by dividing ambient nutri-
ent concentration by E;, and multiplying by the reach
length (m). E, and excretion turnover distances were
calculated from 1 May 2020 through 31 August 2020
for two reaches in the Duck River (Duck 1 and Duck
4) and two reaches in the Cahaba River (Cahaba 1 and
Cahaba 4). We numbered reaches consecutively from
up-to-downstream for ease of explanation. Following
the analysis of aggregate nutrient release, these four
reaches were selected because they had opposing pat-
terns of nutrient release by Corbicula and mussels
(See Results), providing an opportunity to highlight
how shifting from native to invasive species domi-
nance would influence local nutrient availability. We
used discharge data (Q=volume/travel time through
a reach) from USGS gages near Columbia (USGS
gage 03,599,500) and Milltown, Tennessee (USGS
gage 03599240) for Duck River reaches and Center-
ville, Alabama (USGS gage 02424000) and Cahaba
Heights, Alabama (USGS gage 02,423,425) for
Cahaba River reaches. These gages provide a reason-
able estimate of discharge at each site because they
are located within 4 km of each site and there are no
major tributaries between the gage and the respective
sites. Additionally, to place estimated excretion rates
in the context of long term seasonal temperature vari-
ation, we calculated the mean of the maximum daily
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water temperature for each month using data col-
lected from a nearby USGS gage (02423496, Hoover,
AL) for the Cahaba (1990-2020), and data from a
HOBO temperature logger deployed near the Duck 3
site during 2018-2019.

Results

Spatial variation of bivalve body sizes, density, and
biomass

General patterns

Corbicula lengths ranked the lowest among bivalves
in both rivers (Fig. 2) but were smaller in the Cahaba
River (mean+SD=12.6+4.6 mm) compared
to the Duck River (mean+SD=16.5+6.6 mm;
Fios076=541.7, p=0.02). Corbicula had greater

Duck 4 //w&\ —
Duck 34« %
P

Duck 21 ”

Cahaba 4 /J’\[\‘

Cahaba 3 A/\ >~

Cahaba 2 Mﬁ e

Cahaba 1- ) 25 50 75 100 125 150

Length (mm)

D Amblemini Corbicula Pleurobemini
] Anodontini [_] Lampsilini [[] Quadrulini

Fig. 2 Length frequency distributions (5 mm bins) for Cor-
bicula and five phylogenetic tribes for mussels. Sites are num-
bered consecutively from upstream to downstream for each
river. Note this analysis is exploratory and mean to illustrate
body size differences between broadly classified mussels and
Corbicula
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Fig. 3 Effect size of biomass, density, aggregate areal N
excretionrates, aggregate areal P excretion rates, and aggre-
gate areal excretion N:P from four mussel bed reaches in the
Cahaba and Duck Rivers, USA. Dotted lines in each panel
indicate net zero of each taxonomic group’s effect such that

densities compared to mussels in each river
(Figs. 1, 3). However, densities within and among
reaches were highly variable for Corbicula and mus-
sels (F; 1p56=21.15, p<0.001; Online Resource 8).
Areal mussel biomass typically exceeded Corbicula
(F7 1256=11.63, p<0.001; Online Resource 9).

Cahaba River mussel size distribution

Amblemini (only represented by Amblema plicata)
was abundant at only Cahaba 1 and spanned the full
range of lengths (mean=+SD=90+34.2 mm; Online
Resource 2). Lampsilini was represented by 10 species
in the Cahaba River (mean+SD=72.9+30.4 mm),
yielding lengths that spanned the entire distribu-
tion, but still with clear peaks. Lampsilini body sizes
peaked approximately 75 mm due to highly abundant
Lampsilis ornata. However, Cahaba 1 had higher

positive values indicate greater mussel biomass, density, excre-
tion rate, and N:P and negative values indicate greater Cor-
bicula biomass, density, excretion, and N:P at a reach. Sepa-
rate boxplots of each response variable are available as Online
Resources 8-1

abundances of small Leptrodea fragilis (mode approx-
imately 30 mm) representing the Lampsilini. Three
species represented the Pleurobemini in the Cahaba
River. Modes around 100 mm are Elliptio crassidens,
modes around 50 mm are Pleurobema decisum and
Fusconaia cerina, while F. cerina also falls within the
smaller class around 20 mm. Quadrulini was repre-
sented by four species (mean+SD =49.0+26.1 mm).
Cyclonaias asperata was the only Quadrulini pre-
sent all reaches in the Cahaba River with a mode at
50 mm.

Duck River mussel size distribution
Anodontini (mean+SD=87.3+27.5 mm), rep-
resented by two species, only occurred in the Duck

River and was represented most by the large bod-
ied Lasmigona costata. Amblemini (A. plicata) was
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present at all reaches, often with a dominant length
class around 90 mm (mean+SD=87.2+27.5 mm),
although smaller length classes were observed in
lower abundances. Lampsilini was represented by
21 species (mean+SD=45.8+20.6 mm), with most
individuals having small body lengths (maximum of
approximately 45 mm). Seven Pleurobemini species
were found in the Duck River. The most abundant
species and representative of the largest class was
Eurynia dilatata (mode of approximately 70 mm)
except at the most downstream site where it did not
occur. The less common Pleurobema dolabelloides, P.
oviforme, and Pleuronaia barnesiana were in smaller
length classes of Pleurobemini. Quadrulini comprised
seven species (mean+SD=76.9+27.4 mm) and was
evenly represented across reaches by C. tuberculata
(mode of approximately 80 mm), C. pustulosa (mode
of approximately 50 mm), and Theliderma cylindrica
(mode of approximately 85 mm).

Bivalve nutrient excretion rates and stoichiometry
Cahaba River

Per capita excretion rates varied from
2.57-9.49 umol-h~! for N, and 0.36-2.24 pmol-h~!
for P for Corbicula (Online Resource 3). Per cap-
ita excretion rates for Cahaba mussels ranged
from <0.01- 8.7 pumol N-h™! and <0.01-0.82 umol
P-h~!. Regression across the entire Cahaba River data
set (including both bivalve groups) indicated body
mass was a strong predictor for N (F; 145=386.9,
p<0.001, R*=0.67), and P (Fy,155=106.9, p<0.001,
R?=0.36) excretion rates. Body mass (F,=632.63,
p<0.001) and species identity (F;,=9.19, p<0.001)
separately explained variation for N excretion rates,
but did not interact (F,;,=1.20, p=0.28). The
interaction between species identity and body mass
clearly explained P excretion rates (F,5;,=2.47,
p=0.03) using ANCOVA. Differential scaling of N
and P (Online Resource 3, 4) yielded wide ranges
of excreted N:P ratios for Corbicula (3.54-108.8)
and mussels (0.91-1711.35). Mass-specific N excre-
tion rates (X2=49.86, p<0.001) and P excretion
rates (X2=50.86, p=<0.001) were variable among
bivalve groups. Pairwise comparisons indicated Cor-
bicula mass-specific N and P excretion exceeded all
mussels (p <0.001), while mussel tribes were similar
to each other (p>0.05). Excretion N:P stoichiometry
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varied among groups (X2= 17.51, p=0.002). Cor-
bicula excretion stoichiometry was lower than Lamp-
silini (z=-2.82, p=0.02), and Quadrulini (z=— 346,
p=0.003). Pleurobemini had lower excretion N:P
compared to Quadrulini (z=-2.94, p=0.02).

Duck River

Corbicula per capita excretion rates ranged from
0.23-1.62 pmol-h™! for N and 0.11-0.35 pmol-h~!
for P (Online Resource 3). Per capita excretion rates
for mussels ranged from<0.01 —14.49 pmol N-h~!
and<0.01-12.54 pmol P-h!. Body mass was
strongly related to N (F;3,,=241.6, p<0.001,
R?=0.44) and P (F, 5,,=65.16, p =0.001, R?=0.17)
excretion rates when using regression across the
complete Duck River data set. As in the Cahaba,
ANCOVA revealed strong species effect (F;4=7.26,
p<0.001) and body mass effects (F,=323.40,
p<0.001), but the interaction term did not explain
N excretion rates (Fg,74=1.29, p=0.19), while P
excretion rates were clearly explained by the inter-
action between species identity and body mass
(Fi6278=1.99, p=0.01). Interspecific scaling of N
and P yielded a range of excreted N:P ratios for Cor-
bicula (1.08-4.79) and mussels (0.10-91.38) and
the regression across the complete data set showed
a clear but highly variable relation between N:P and
body mass (F3,=1745 p<0.001, R*=0.05).
Excretion N:P was explained by a species and body
mass interaction (F; 3,0=3.77, p<0.001, R?=0.23).
Mass-specific N excretion rates (x?=61.49,
p<0.001; Online Resource 5) and P excretion rates
(X2=41.57, p=<0.001; Online Resource 5) varied
among bivalve groups. Corbicula mass-specific N
and P excretion rates exceed those of all mussel tribes
(»<0.001; Online Resource 5). Lampsilini N mass-
specific excretion rates were greater than Amblem-
ini (z=-3.34, p=0.01) and Quadrulini (z=5.72,
p<0.001). Lampsilini P mass-specific excretion rates
exceeded Amblemini (z=-— 3.18, p<0.01) and Ano-
dontini (z=- 2.88, p<0.03). Excretion N:P varied
among groups (X2= 14.67, p=0.01; Online Resource
5). Pairwise comparisons indicated this was driven by
increased N:P for Anodontini compared to Quadrulini
(z=3.20, p=0.01).
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Aggregate excretion fluxes and stoichiometry
General patterns

Areal N excretion rates varied spatially and were
greater at Duck River aggregations compared to
those of the Cahaba River (F; 1,5,=16.27, p=0.001;
Fig. 3). Areal P excretion rates by Corbicula and
mussels also varied across sites (F; j56=16.25,
p<0.001), but were only significantly different at
Duck River sites (Fig. 3). Variable areal N and P
excretion rates among sites gave way to a range of
N:P ratios for Corbicula and mussels among sites
with inconsistent differences between the groups in
both rivers (F; j,5=20.62, p <0.001; Fig. 3).

Cahaba River

Corbicula densities exceeded mussels at the two
most upstream (Cahaba 1, t=8.55, p<0.001;
Cahaba 2, t=10.74, p<0.001) reaches by approxi-
mately 20-fold and Cahaba 4 by more than 50-fold
(t=11.12, p<0.001 Fig. 3, Online Resource 8), but
the two groups were similar at Cahaba 3 (t=0.23,
p=0.82). Cahaba River mussel biomass was approx-
imately three-fold greater than Corbicula at the
upstream reach, Cahaba 1 (t=— 5.48, p<0.001) and
approximately five-fold at the third reach (t=6.66,
p<0.001), but was similar at Cahaba 2 (t=— 0.65,
P=0.52) and Cahaba 3 (t=— 1.48, p=0.14; Online
Resource 9). Areal N excretion rates of mussels
were lower than Corbicula at Cahaba 3 (t=— 4.34;
p<0.001), but the opposite was true at Cahaba 2
(t=2.84; p=0.05), while areal N rates at the most
upstream (t=-—0.65; P=0.52) and downstream
site were similar between groups (t=1.82; p=0.07;
Online Resource 10). Pairwise comparisons did not
yield clear differences between mussel and Corbicula
areal P excretion for any reaches (Online Resource
11). Corbicula had greater areal excretion N:P
ratios at both upstream reaches (Cahaba 1; t=6.498;
p<0.001, Cahaba 2: t=7.74; p<0.001) and the
most downstream site (t=9.46; p<0.001) compared
to mussels, but were similar at Cahaba 3 (t=0.004;
p=0.96; Online Resource 12).

Duck River

Density of Corbicula exceeded mussels at the most
upstream reach by threefold (t=5.44, p<0.001)
and the Duck 3 reach by fivefold on average
(t=8.69, p<0.001; Fig. 3). Densities of Corbic-
ula and mussels were similar at Duck 2 (t=1.24,
p=0.22) and Duck 4 (t=-0.34, p=0.73; Online
Resource 8). Corbicula biomass (range of means
0.08-5.61 gom™%) was lower than mussel biomass
(range of means 15.24-40.54 gm™2) at all sites
(»<0.001; Online Resource 9). Corbicula areal N
excretion rates were greater at the upper most site
(t=4.42, p<0.001) and site 3 (t=5.11, p<0.001).
Moreover, mussel areal N rates were marginally
higher at Site 2 (t=-1.78, p=0.07) and signifi-
cantly greater than Corbicula at Site 4 (t=-5.97,
p<0.001; Online Resource 10). Areal P excretion for
Corbicula was greater at Duck 1 (t=7.23, p<0.001)
and Duck 3 (r=8.81, p<0.001), but lower than
mussels at Duck 2 (t=-2.12, p=0.03) and Duck 4
(t=-5.05, p<0.001; Online Resource 11). Only the
most downstream reach in the Duck River had strong
differences between Corbicula and mussel excretion
N:P, with mussels excreting more N relative to P
(t= —2.48, p=0.03; Online Resource 12).

Bivalve volumetric excretion
General patterns

Expressing nutrient excretion as volumetric units
highlighted the influence of stream flow on bivalve
mediated fluxes of N and P, such that nutrient flux
and discharge were inversely related (Fig. 4). Esti-
mated bivalve contributions were low, with volumet-
ric excretion making up<1% of ambient concentra-
tions in the four reaches we modeled.

Cahaba River

At the average discharge 1 May 2020 to 31 August
2020 of 3.3 m® s~!, volumetric N excretion for Cor-
bicula (approximately 39% of aggregate N; approxi-
mately 33% of aggregate P) and mussels at Cahaba
1 were 0.88 and 0.15 nmol L™, while volumetric
P excretion was 0.03 and 0.02 nmol L7, respec-
tively (Fig. 4). Even combining E, of both groups
would require approximately 38 km for the bivalve
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Fig. 4 Volumetric excre-
tion (Ey) of nitrogen (N)

during 01 May 2020 to 31
August 2020 in relation 1072
to discharge (shown on
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~70% Corbicula
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aggregation to turnover N and approximately 820 km
to turnover P. For the Cahaba 4 where mean dis-
charge was 22.52 m? s~!, volumetric N excretion
was 0.19 and 0.31 nmol L_l’ while volumetric P was
0.02 and 0.01 nmol L™ for mussels and Corbicula,
respectively. Corbicula contributed to approximately
61% of aggregate N (Fig. 4) and 21% of P excre-
tion at Cahaba 4 reach. Bivalve aggregate excretion
turnover distances were approximately 112 km for N
and ~850 km for P. Water temperature in the Cahaba
River ranged from 9.2 to 28.7 °C, with lower temper-
ature corresponding to winter months and higher tem-
peratures corresponding to summer months (Online
Resource 13).

Duck River

Volumetric excretion for mussels was 1.19 nmol
L' N and 0.27 nmol L™ P and for Corbicula was
for 2.67 nmol L™' N and 1.12 nmol L™! P at Duck
1 reach (Fig. 4) when mean discharge was 20.22
m>s!. Aggregate turnover distance was ~38 km for N
and~96 km for P. Corbicula was~66% of aggregate
N and>90% of P excretion at Duck 1. Duck 4 had
a mean discharge of 26.19 m*s~!. Corbicula volu-
metric excretion was 0.07 nmol L™' N and 0.03 nmol
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L~! P, whereas mussel volumetric excretion was
0.66 nmol L™' N and 0.11 nmol L' P. Combined
aggregate excretion had turnover distances of approx-
imately 172 km for N and> 1000 km for P. Corbic-
ula was 10% of aggregate N and approximately 2%
of aggregate P excretion at this reach (Fig. 4). Water
temperature in the Duck River ranged from 9.5 to
26 °C, with lower temperature corresponding to win-
ter month and higher temperatures corresponding to
summer months (Online Resource 13).

Discussion

Identifying invasive species that alter processes gov-
erned by native faunal groups is key to the develop-
ment of targeted management programs that improve
or maintain ecosystem function (Pergl et al. 2020; Li
et al. 2021). We examined the potential of an estab-
lished invasive bivalve species to influence local
nutrient availability through excretion of N and P
compared to an ecologically similar native faunal
group in two rivers by combining spatially explicit
biomass estimates and measured per capita excretion
rates. Overall, Corbicula occurred at greater densi-
ties, but mussels typically exceeded the invader in
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biomass due to their larger body sizes (Figs. 2, 3). We
observed that Corbicula nutrient fluxes exceeded or
equaled those of mussels at half of the reaches given
their high mass-specific excretion rates. Collectively,
we demonstrate that small-bodied animals invading
into low trophic positions have the potential to control
fluxes and stoichiometry of nutrients even in the pres-
ence of high-biomass aggregations of functionally
similar native animals.

Corbicula was widespread and reached high densi-
ties in mussel beds throughout the Cahaba and Duck
Rivers. Evidence regarding whether Corbicula and
mussels can successfully co-exist in North American
rivers is often conflicting (Vaughn and Spooner 2006;
Kelley et al. 2022). Although Corbicula was consid-
ered established in these rivers more than 50 years
ago, complete accounts of Corbicula invasion timing
and quantitative population estimates are rarely avail-
able where mussels are found. Although our estimates
represent a snapshot in time, our study captures spa-
tial patterns of density and biomass among reaches
where Corbicula potentially interact with mussels.
Corbicula is widespread throughout both systems and
local populations often exceed densities of co-occur-
ring native mussel assemblages. Widespread habitat
alterations such as dams and water quality degrada-
tion, that harm native mussel communities (Galbraith
and Vaughn 2011; Gascho Landis et al. 2013) likely
promotes Corbicula establishment in these rivers
(Byers 2002; MacDougall and Turkington 2005).
Similar niche requirements, higher tolerance to some
stressors (Ferreira-Rodriguez and Pardo 2017), and
asexual reproduction (Pigneur et al. 2014) could
also aid Corbicula colonization into habitats where
mussels are declining (Strayer et al. 1999). Whereas
Corbicula is more tolerant to many stressors, they
are quite vulnerable to high temperatures and low
dissolved oxygen which can lead to mass mortality
events resulting in water quality issues that can harm
mussel populations (McDowell and Sousa 2019).
Yet, Corbicula populations have the ability to recover
shortly following disturbances, while mussel popu-
lations may take decades to reach pre-disturbance
abundances due to their slow maturation (McMahon
and Bogan 2001; Haag 2012). Altogether, increasing
Corbicula abundances should be alarming because
mussel-provided ecosystem services subsequently
decline or may become controlled by high densities
of Corbicula.

Small-bodied Corbicula had lower per capita
excretion rates, but higher mass-specific excretion
rates compared to all mussels. Body size is the most
important axis of biodiversity and controls the degree
to which animals influence nutrient cycling (Hall
et al. 2009). For most aquatic animals, the relation-
ship between body size and excretion rates increases
less than isometrically due to the strong link with
metabolism, which scales at 3/4 power of body size
but can vary among taxonomic groups (Allen and
Gillooly 2009). Bivalves in our study spanned a wide
range of scaling exponents but most met what is
expected by the metabolic theory of ecology (Online
Resource 2, 3, and 4) and were within the range
reported in global analyses of aquatic invertebrate
excretion rates (Vanni and Mclntyre 2016). Although
other factors (e.g., temperature) influence metabolism
and subsequent nutrient release by animals (Atkin-
son et al. 2017), our study emphasizes how changing
size structure associated with an abundant invasive
species may shift animal-mediated nutrient cycling
(Minaudo et al. 2021; Li et al. 2021).

Combining per capita excretion rates with biomass
estimates allowed us to evaluate spatial variation in
animal-mediated nutrient cycling of co-occurring
invasive and native bivalves in two different rivers.
Corbicula areal N excretion rates often exceeded
mussels. Because small animals have higher metabo-
lism and, therefore, higher mass-specific excretion
rates, when total biomass is equal, fluxes from an
assemblage with small animals may exceed an assem-
blage with large animals (Hall et al. 2009; Vanni and
Mclntyre 2016). Our result of greater N excretion by
high density, but low biomass populations of Cor-
bicula in the presence of low density, high biomass
mussel aggregations supports this concept. Areal P
excretion rates were similar between mussels and
Corbicula in the Cahaba River, but differed spatially
in the Duck River, with mussels only exceeding Cor-
bicula at the most downstream site with compara-
tively low Corbicula density.

Areal excretion N:P for Corbicula was typically
greater than that of mussels in the Cahaba River, but
similar in the Duck River. This pattern resulted from
similar body size-scaling of per capita N and P excre-
tion rates between Cahaba mussels and Corbicula
combined with greater densities of Corbicula. This
means that greater densities and mass-specific excre-
tion rates of N and P in the Cahaba River Corbicula
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populations influence aggregate nutrient fluxes, not
stoichiometric differences between mussels and Cor-
bicula. Differential per capita excretion scaling for
Corbicula compared to mussels in the Duck River
elevated P excretion relative to N, reducing Corbic-
ula N:P. Similarities between Duck River Corbicula
and mussel areal N:P resulted from an approximately
tenfold greater flux of both N and P from Corbicula
populations, while stoichiometry remained stable.
Resource quality, physiology, and life history dif-
ferences among Corbicula populations in the region
may have contributed to such differences in per capita
excretion rates. For example, a stable isotope analysis
of Corbicula and a dominant mussel species (Ellip-
tio crassidens) suggested a more generalized feed-
ing strategy and increased N release in biodeposits
(feces and pseudofeces) for Corbicula (Atkinson et al.
2010). Furthermore, Lauritsen and Mozley (1989)
attributed seasonal differences in N excretion rates
for a single population of Corbicula to gametogenesis
and metabolic adjustments by individuals to resource
quality and temperature. Additionally, there is vari-
ability in Corbicula reproductive cycles that may
influence temporal variation in nutrient release, with
some studies indicating two reproductive peaks per
year in North America, while other suggest a single
peak (Hornbach 1992). Stoichiometric traits, such as
nutrient storage and excretion rates, could be com-
bined with population vital rates to evaluate and fore-
cast the immediate and long-term effects of invasive
and native species to nutrient dynamics (Sharitt et al.
2021).

Biomass distribution, functional trait composition,
stoichiometric requirements and environmental con-
text all modulate the contributions of animal commu-
nities to biogeochemical cycling (Hopper et al. 2018;
Subalusky and Post 2019). Volumetric excretion rates
for bivalve aggregations (combined Corbicula and
mussels) were very low, never exceeding 1% of ambi-
ent concentrations. Previous work demonstrates that
dense aggregations of mussels and other aquatic ani-
mals can generate biogeochemical “hotspots” (Mcln-
tyre et al. 2008; Atkinson and Vaughn 2015), where
nutrient regeneration rates are high relative to demand
(McClain et al. 2003). Bivalve aggregations in our
study had similar biomass as other studies (Atkinson
et al. 2020a; Hopper et al. 2021), but the estimated
mussel excretion contributions here were a small frac-
tion of ambient nutrient concentration comparatively.
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For example, excretion by mussel aggregations from
five rivers in the southeastern region of North Amer-
ica exceeded background N concentrations and were
20% of ambient P concentrations on average (Hopper
et al. 2021). Small contributions to ambient condi-
tions appeared to be driven by discharge associated
with comparatively larger stream sizes that increase
the volume of water over the animals and the lower
water temperatures during our excretion measure-
ments. Water temperature also can play a role because
it governs invertebrate metabolism and mussel excre-
tion rates and ratios can shift seasonally, with asym-
metric responses by co-occurring species (Vaughn
2010; Atkinson and Vaughn 2015). Our field excre-
tion measurement approach did not enable a robust
analysis of interspecific responses to water tem-
perature gradients. Still, a key factor for predicting
biological rates to temperature increase is their Q.
which indicates the relative change of a rate between
two temperatures that differ by 10 °C. Generally, bio-
logical rates, such as excretion, increase by 1.5Xto
3xwith a 10 °C increase, but vary greatly among
species (Clarke 2004). Our excretion measurements
took place when water temperatures were typically
highest or within 5 °C of maximum seasonal water
temperatures (Online Resource 13), thus we expect
the estimated contributions of bivalves in our study
to be within the typical range for the Duck River, but
lower in the Cahaba River. Nevertheless, the greater
aggregate excretion at lower discharge supports other
work showing that animal-mediated nutrient cycling
effects vary with ecosystem size (Vaughn et al. 2004;
Benstead et al. 2010). While bivalve aggregations in
these rivers may not be a major source of nutrients at
broad spatial scales when discharge is high and water
temperatures are low, their effects may be stronger
during warmer summer base flow conditions and
concentrated locally in benthic habitats (Spooner and
Vaughn 2012).

Shifts in community composition of freshwa-
ter systems are commonplace and likely to con-
tinue with global change (Tonkin et al. 2019). For
example, more frequent and severe stream drying
events will undoubtedly reduce flows and increase
temperature that could harm mussels, but may be
less detrimental to Corbicula (Ferreira-Rodriguez
et al. 2018a). Still, low stream discharge can strand
or cause water temperature to exceed tolerances
of Corbicula, leading to mass mortality events
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that release pulsed fluxes of dissolved nutrients
(Cherry et al. 2005; Cooper et al. 2005; McDow-
ell et al. 2017; McDowell and Sousa 2019). Physi-
ological tolerance of mussels to desiccation and
high temperatures can be greater than Corbicula,
but mussels can experience mass mortality when
temperature is high and discharge is low (Vaughn
et al. 2015; DuBose et al. 2019). Because Cor-
bicula has asexual reproduction and matures rap-
idly (<1 year), compared to mussels that mature
much slower (610 years), it seems likely that Cor-
bicula may be more resilient to such low flow dis-
turbances and recover quickly (Sousa et al. 2008b;
Haag 2012). Therefore, we expect that differential
responses of mussels and Corbicula to anticipated
climate change scenarios increase the likelihood
of shifting control of local nutrient cycling toward
Corbicula.

To completely understand the implications of
animal community shifts to ecosystems, it is nec-
essary to refocus or expand monitoring efforts to
include invasive species populations (Ruaro et al.
2021), especially those overlapping with imperiled
fauna such as mussels. The many functional roles
performed by mussels (Vaughn and Hakenkamp
2001; Vaughn 2018) may be replaced by other filter
feeders (Minaudo et al. 2021; Li et al. 2021), but
may not be as stable and differ in impact. Previous
work indicates mussels are declining, sometimes for
unknown reasons (Haag 2019). If Corbicula harms
mussels, invades into previously occupied mussel
habitats, or becomes more widespread, a lack of
information on their distribution will only impede
efforts to mitigate mussel declines, protect remain-
ing habitat and associated ecosystem services. Our
study illustrates that increasing densities of a small
bodied invasive species has the potential to alter
nutrient cycling compared to native species and
highlights variable stoichiometric traits within a
functional feeding group.
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