

A Call To Reconceptualize Lichen Symbioses

Jessica L. Allen^{1,*} & James C. Lendemer^{2,*}

¹Eastern Washington University, Biology Department, Cheney, WA, 99004 U.S.A.

²Institute of Systematic Botany, The New York Botanical Garden, Bronx NY 10458-5126, U.S.A.

*The authors contributed equally to this work.

*Correspondence:

Allen, J.L. (jallen73@ewu.edu)

Lendemer, J.C. (jlendemer@nybg.org)

Websites:

Allen Lab: <https://allenlichenlab.wordpress.com/>

Twitter.

Abstract

Several decades of research across disciplines have overturned historical perspectives of symbioses dominated by binary characterizations of highly-specific species-species interactions. This paradigm shift has unlocked the previously underappreciated and overlooked dynamism of fungal mutualisms such as mycorrhizae. Lichens are another example of important fungal mutualisms where reconceptualization is urgently needed to realize their potential as model systems. This reconceptualization requires both an objective synthesis of new data and envisioning a revised integrative approach that unifies the spectrum of ecology and evolution. We propose a ten theme framework that if pursued would propel lichens to the vanguard of symbiotic theory.

Keywords

Anthropocene resiliency, multi-omics, network biology, systems theory, transdisciplinary.

Main Text

35 **Success of lichen symbioses**

36 Fungi that form mutualistic **symbioses** (see Glossary) are successful organisms, with
37 high species richness, essential ecosystem functions, global geographic distribution, and
38 abundance, even dominance, in many habitats even extreme ones ([1-6]). **Mycorrhizae** and
39 **lichens** are two examples of broadly successful, keystone fungal symbioses with global
40 importance [7,8]. Their success is attributed to benefits inherent in their lifestyles [9,10]. By and
41 large mutualistic fungal symbioses are characterized by **symbiont flexibility** in striking contrast
42 to the specificity seen in many comparable plant and animal systems (e.g., corals or orchids and
43 their pollinators [1, 11-13]. Symbiont flexibility has long been recognized in mycorrhizal fungi, in
44 part due to tractability of the symbiotic system to experimental study in diverse settings [6, 8,
45 14]. Until recently symbiont flexibility was believed largely to be the exception in lichens, in part
46 due to the intractability of the symbiotic system to experimentation in highly controlled laboratory
47 conditions [15-17]. In fact, a growing body of evidence challenges this assumption as rapid
48 advances in molecular data generation and analysis have led to increasing recognition that
49 lichen symbioses are far more complex, diverse and flexible than has long been assumed [18-
50 23].

51 Narrow focus on studying the classical conception of the symbiosis (i.e. binary pairs of
52 symbionts exclusively driven by the fungal species) has overshadowed overwhelming evidence
53 that symbiont diversity and flexibility, rather than the symbiosis itself, is the causal mechanism
54 for lichen success. New data and analytical tools have repeatedly forced reconceptualization of
55 lichens for centuries [24, 25], recent reconceptualizations have focused on the existence and
56 nature of the symbiosis [26, 27]. Current advances in understanding the implications and
57 outcomes stemming from symbiont diversity and flexibility demand a novel perspective on the
58 patterns and processes within lichens, the communities they form and the ecosystems within
59 which they function. Here we present a transformational framework for lichen biology, ecology
60 and evolution through which the potential of these dynamic organisms can be unlocked and
61 placed at the vanguard of science. This framework is organized around ten facets that illuminate
62 the full spectrum of intrinsic characteristics and reciprocal interactions that exist within lichen
63 symbioses.

64

65 **1. Lichen Origins**

66 Lichens have evolved more than ten times independently across the fungal tree of life [28].
67 Their forms are an exquisite example of **convergent evolution**, fulfilling congruent functions in
68 unrelated evolutionary lineages. Yet we lack a comprehensive understanding of their

69 evolutionary and mechanistic origins from the perspectives of all the symbionts including the
70 primary fungus and its cohort of photosynthesizing partners [29, 30]. How and why do lichens
71 evolve? Do the fungi consistently transition from saprotrophs as appears to be the case in the
72 Dothideomycetes [31]? Does the holobiont arise consistently through abrupt lichenization
73 events or as stepping stones from partial to full lichenization? For the fungi, investigation of
74 gene content and genome architecture supports the stepping-stone model [32, 33], but analyses
75 with multiple independent contrasts placed in a strong statistical framework are needed. Finally,
76 do specific climatic conditions drive interactions between lichen symbionts and facilitate **trophic**
77 transitions to lichenization [34]?

78

79 **2. Speciation Rates and Mechanisms**

80 There are more than 20,000 described species of lichen fungi belonging to over 100 fungal
81 families [28]. These range from highly diverse lineages undergoing rapid radiations, to less
82 diverse, ancient lineages that may be living fossils [35-40]. Species richness and evolutionary
83 diversity of the photosynthesizing partners remains incompletely known, but recent advances
84 suggest remarkable and previously underappreciated diversity across evolutionary scales [12,
85 41]. Despite a wealth of phylogenetic study and robust higher-level evolutionary framework, the
86 timing and processes that underlie diversity at and below the species-level have been
87 infrequently investigated [39-42]. Slow rates of speciation have been inferred or assumed
88 across lineages of lichen fungi based on long-held assumptions of broad geographic
89 distributions, slow growth rates, and unlimited dispersal ability [e.g., 43]. These assumptions are
90 contradicted by recent studies (see below) and based on limited availability of fine-grain
91 phenotypic, demographic and genetic data across broad evolutionary and spatial scales.
92 Integration of lichens into the general theoretical framework of speciation processes, validated
93 by empirical genome-wide data, is urgently needed.

94

95 **3. The Individual**

96 Much like vascular plants, spatially discrete lichens have been assumed to be homogeneous
97 throughout: consisting of a single haploid fungal genotype and a single genotype of a
98 photosynthesizing partner [44-46]. This reflects a legacy of botanical study wherein lichens were
99 initially considered to be plants rather than fungi, the latter of which are widely recognized to
100 form genetically heterogeneous colonies in nature [47]. Even direct comparative anatomical
101 evidence to the contrary failed to shift this lichen-plant paradigm for nearly a century until DNA
102 sequencing firmly integrated lichens to the fungal phylogeny [25]. Recent studies have

103 demonstrated what appears to be a single, discrete, lichen individual can be composed of
104 multiple distinct fungal genotypes [45, 48] growing seamlessly together. The assumption that
105 the absence of sexual reproductive structures implies complete fungal cellular haploidy has also
106 been challenged [49] as has the absence of hybridization as an evolutionary process [50]. There
107 is also substantial evidence that each lichen hosts a diverse community of photosynthesizing
108 partners in varying levels of abundance [51-53] and degrees of **symbiont specificity** [21,54].
109 The above suggests that there is an urgent need to reconceptualize general theory about
110 lichens which has been based on incorrect assumptions about the homogenous composition of
111 the individual (Figure 1). This has direct implications for population genetics and speciation,
112 especially in organisms that can have enormous population sizes (Figure 2).

113

114 **4. Microbial Microcosm**

115 Until recently the internal portions of a lichen were thought to consist mostly of tissue from a
116 single fungus and one, or rarely two, photosynthesizing partners [16, 44]. There is now
117 extensive evidence that lichens host diverse and abundant bacterial communities throughout
118 their bodies, and that these communities can be collectively dispersed as part of routine
119 reproduction [55]. Lichens have also been shown to host diverse communities of non-lichen
120 fungi whose functional roles vary across the entire symbiotic spectrum from **commensalism**
121 and **mutualism** to parasites and pathogens [18, 19, 56-58]. Microbial communities are also
122 known to be spatially structured and environmentally determined, with different lichen species
123 sharing microbes and the same species having a varied microbiome across the range of
124 habitats and locations where it occurs [59, 60]. These advances follow the trend across biology
125 of increased recognition of the essential role of microbial communities in the evolution, function
126 and health of macroscopic organisms [61, 62]. Functional characterization of the lichen
127 microbiome is needed to link a decade of robust descriptive work with the patterns and
128 processes that have contributed to the remarkable success of lichens, as well as their
129 characteristic sensitivity to disturbance.

130

131 **5. Metabolite Economy**

132 Diverse scientific fields recognize lichens as quintessential mutualistic symbioses wherein the
133 role and function of each symbiotic partner is clearly delimited. The photosynthesizing partner
134 provides sugars to the heterotrophic fungus and in return the fungal partner provides an
135 environment where the other partner is shielded from harsh extremes [63, 64]. The symbiosis
136 expands the **ecological amplitude** of the partners involved [34, 43]. Polysaccharides and

137 disaccharides are key symbiont signaling molecules [27, 43], in addition to providing food and
138 structures [4]. There is ample evidence that lichens host miniature ecosystems that include
139 many organisms (e.g., microinvertebrates, parasitic fungi including yeasts, endolichenic fungi,
140 bacteria and archaea; [66]). Without a holistic, integrated perspective of nutrient cycling and
141 metabolic processes that incorporates the full range of **biotic interactions** within the entire
142 intra-lichen community, it is not possible to completely characterize the functional roles of these
143 diverse organisms. Shifting the conceptualization of lichens from a binary fungal-
144 photosynthesizing partner interaction to a trophic network model could transform ecosystem
145 ecology through development of tractable, small-scale, natural model systems.

146

147 **6. Secondary Metabolite Biosynthesis**

148 In addition to **primary metabolites**, many hundreds of unique secondary compounds are
149 produced by lichen fungi and their associated microbiomes [26, 67]. These compounds have
150 been implicated in numerous functions essential to the lichen, mediating interactions with abiotic
151 and biotic stressors both internally and externally. Although important to lichens, the
152 evolutionary and ecological processes leading to the production of these compounds are similar
153 to those in other fungi and plants [68]. Hence, from a systems perspective, lichen **biosynthetic**
154 **pathways** are neither enigmatic nor functionally novel. Lichen **secondary metabolites** have
155 been intensively characterized primarily for use in taxonomy and systematics [69, 70]. However,
156 the genetic underpinnings of these compounds and their biosynthesis remains both poorly
157 characterized and little integrated with biosynthesis in other secondary metabolite-rich
158 organisms. Detailed characterization of lichen biosynthesis, including heterologous expression
159 of biosynthetic gene clusters in filamentous fungal systems, will prove indispensable in the
160 search for novel compounds with application in medicine, industry and environment.

161

162 **7. Reproductive Biology**

163 Lichens are characterized by unique and complex reproductive biology that contrasts strongly
164 with that of other organisms, especially vertebrates and plants (54, 71). The absence of sexual
165 selection coupled with functionally indefinite life spans due to **poikilohydry**, vegetative
166 reproduction and rampant clonality results in organisms that completely defy classification using
167 existing life history frameworks (e.g., [72]). Lichen reproductive biology is not morphologically
168 driven and gamete synthesis is not phenologically timed, however existing understanding is
169 shaped by theory from organisms that have highly structured and discrete life histories.
170 Accounting for the unique aspects of reproduction across each lichen symbiont, as well as

171 collectively for the holobiont, has profound implications for the calculation of key metrics such as
172 generation length, population size, fecundity, migration and gene flow, among others.
173 Transcending these constraints will vastly expand the horizon of evolutionary theory and
174 computational biology by requiring a new conceptual framework and novel analytical tools. A
175 lichen-derived framework and associated tools will provide a unique opportunity to elucidate an
176 understanding of reproductive biology that is inclusive of all organisms.

177

178 **8. Facilitation and Community Establishment**

179 Lichens are widely applied as bioindicators due to their nuanced responses to environmental
180 change, disturbance and pollutants [73, 74]. Anthropogenic impacts reduce lichen species
181 richness and community complexity [75, 76]. Recovery from these impacts occurs over
182 protracted timescales beyond observational frameworks of the modern scientific era [77-79]. To
183 date, complete recovery to pre-impact conditions has yet to be documented [80]. Instead
184 recovery results in novel communities missing sensitive species and skewed towards stress
185 tolerant taxa [81, 82]. Microbiome data have shown lichen symbiont pools to be highly
186 structured at small scales and shared among locally occurring species [60, 83]. Dispersal and
187 migration limitations usually restrict successful establishment to small, local scales while
188 establishment at long-distances is rare or absent [37]. The challenges imposed by long-distance
189 single-symbiont dispersal and migration are overcome by symbiont flexibility, wherein the
190 fungus may associate with an evolutionarily constrained variety of photosynthetic partners (e.g.,
191 a specific species, genus or family) [84]. Symbiont flexibility is the general rule in lichens, and
192 the few lineages that exhibit strict symbiont specificity are comparatively less resilient to
193 disturbance, fragmentation and other forms of change [83, 85]. These phenomena suggest that
194 healthy and diverse lichen communities require extensive ecological and symbiotic facilitation
195 coupled with temporal habitat continuity. Full characterization of these processes, uniting
196 perspectives from physiology, population genetics, microclimate ecology and microbial
197 interactions would unlock the fundamental basis of community assembly and specialization.
198 Concurrently it would allow for the development of broadly applicable effective data driven
199 conservation methods for sensitive symbiotic organisms.

200

201 **9. Everything is Not Everywhere**

202 Fungal biology has been dominated by a narrative that organisms are not dispersal limited and
203 their distributions are entirely shaped by ecological requirements [86, 87]. Despite decades of
204 evidence to the contrary [88-90], this implicit bias is present in lichenology, pervasive in

205 interdisciplinary environments, and has limited perspectives on lichen diversity across
206 evolutionary and spatial scales. Molecular studies spanning an evolutionary gradient from
207 populations to species have accelerated a paradigm shift away from “everything is everywhere”
208 [37, 82, 91, 92], but the legacy continues to influence hypothesis development and data
209 interpretation. A shift from this historical perspective to greater objectivity has the potential to
210 uncover previously overlooked diversity and organizational complexity connected to
211 fundamental biological concepts with broad relevance to all organisms with small propagules.

212

213 **10. Integrate Lichens Into Biodiversity Science**

214 Lichens are integral to ecosystems, the environment and human society at large [7]. Yet in the
215 midst of the current planetary crisis and collapse of natural systems, comprehensive
216 understanding of these essential organisms continues to be sabotaged by synergy of multiple
217 factors. There is a widespread, erroneous perception of lichens as having minor importance on
218 the global stage of biodiversity. At the same time they are considered fundamentally
219 unknowable, intractable study systems. Finally a legacy of academic discrimination, stemming
220 from centuries old taxonomic misclassifications, continues to result in study of lichen symbionts
221 by-and-large in isolation from their closest evolutionary relatives. Reinterpretation and
222 reconceptualization of lichen biology is key to accurately integrating these remarkable
223 symbioses into global biodiversity.

224

225 **Concluding Remarks**

226 Fungal symbioses are diverse, dynamic interactions at the nexus between macroscopic and
227 microscopic realms. These complex relationships weave throughout the evolutionary history of
228 life on Earth, connecting diverse kingdoms and global ecosystems across space and time.
229 Historical perspectives of symbioses were dominated by assumptions of strong symbiont
230 specificity and binary species-species interactions. Ample evidence has now demonstrated that
231 for mutualistic symbioses success lies in flexible trans-kingdom partnerships. We propose that
232 lichens are iconic mutualisms poised to be the next model system that synthesizes and
233 accelerates theory and practice in symbiotic ecology and evolution (see Outstanding questions).

234

235 **Acknowledgements**

236

237 This work was supported by National Science Foundation (NSF) Division of Environmental
238 Biology (DEB) awards 2115190 (to PI-Lendemer) and 2115190 (to PI-Allen).

239

240 **Literature Cited**

241

242 1. Selosse MA *et al.* (2006) Mycorrhizal networks: des liaisons dangereuses? *Trends Ecol Evol.* 21, 621-628.

244 2. Watkinson, S.C. (2016) Mutualistic symbiosis between fungi and autotrophs. *The Fungi (Third Edition)*, (Watkinson, S.C., *et al.*, eds.), pp. 205-243, Academic Press.

246 3. Martin, F.M. *et al.* (2017) Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. *Science* 356(6340), eaad4501.

248 4. Khokhani, D. *et al.* (2021) Deciphering the chitin code in plant symbiosis, defense, and microbial networks. *Annu. Rev. Microbiol.* 75, 583-607.

250 5. Elliott, T.F. *et al.* (2019). A global review of the ecological significance of symbiotic associations between birds and fungi. *Fungal Divers.* 98(1), 161-194.

252 6. Rimington, W.R. *et al.* (2020) The distribution and evolution of fungal symbioses in ancient lineages of land plants. *Mycorrhiza* 30, 23-49.

254 7. Asplund, J. and Wardle, D.A. (2016) How lichens impact on terrestrial community and ecosystem properties. *Biol. Rev. Camb. Philos. Soc.* 92, 1720-1738.

256 8. Powell J.R. and Rillig, M.C. (2018) Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. *New Phytol.* 220, 1059-1075.

258 9. Naranjo-Ortiz, M.A. and Gabaldón, T. (2019) Fungal evolution: major ecological adaptations and evolutionary transitions. *Biol. Rev. Camb. Philos. Soc.* 94, 1443-1476.

260 10. Genre, A. *et al.* (2020) Unique and common traits in mycorrhizal symbioses. *Nat. Rev. Microbiol.* 18(11), 649-660.

262 11. Suggett, D.J. *et al.* (2017) Symbiotic dinoflagellate functional diversity mediates coral survival under ecological crisis. *Trends Ecol. Evol.* 32, 735-745.

264 12. Sanders, W.B. and Masumoto, H. (2021) Lichen algae: The photosynthetic partners in lichen symbioses. *Lichenologist* 53, 347-93.

266 13. van der Kooi, C.J. *et al.* (2021) Mutualisms and (a)symmetry in plant-pollinator interactions. *Curr. Biol.* 31, R91-R99.

268 14. Ward E.B. *et al.* (2021). Ericoid mycorrhizal shrubs alter the relationship between tree mycorrhizal dominance and soil carbon and nitrogen. *J. Ecol.* 109, 3524-3540.

270 15. Athukorala, S.N. *et al.* (2014) Identification and comparison of the 3 early stages of resynthesis for the lichen *Cladonia rangiferina*. *Can. J. Microbiol.* 60, 41-52.

272 16. Brodo, I.M *et al.* (2001) *Lichens of North America*. Yale University Press.

273 17. Trembley M.L. *et al.* (2002) Morphological and molecular analysis of early stages in the
274 resynthesis of the lichen *Baeomyces rufus*. *Mycol. Res.* 106, 768-76.

275 18. Stribille, T. *et al.* (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens.
276 *Science* 353, 488-492.

277 19. Tuovinen, V. *et al.* (2019) Two basidiomycete fungi in the cortex of Wolf Lichens. *Curr. Biol.*
278 29, 476-483.

279 20. Hawksworth, D.L. and Grube, M. (2020) Lichens redefined as complex ecosystems. *New*
280 *Phytol.* 227, 1281-1283.

281 21. Dal Forno, M. *et al.* (2021) Extensive photobiont sharing in a rapidly radiating cyanolichen
282 clade. *Mol. Ecol.* 30, 1755-1776.

283 22. Pardo-De la Hoz, C.J. *et al.* (2022) Phylogenetic structure of specialization: A new approach
284 that integrates partner availability and phylogenetic diversity to quantify biotic specialization
285 in ecological networks. *Ecol. Evol.* 12, e8649.

286 23. Grimm, M. *et al.* (2021) The lichens' microbiota, still a mystery? *Front. Microbiol.* 12, 714.

287 24. Mitchell, M.E. (2007) Signposts to symbiosis: a review of early attempts to establish the
288 constitution of lichens. *Huntia* 13, 101-120.

289 25. Honegger, R. (2000) Simon Schwendener (1829-1919) and the dual hypothesis of lichens.
290 *Bryologist* 103, 307-313.

291 26. Calcott, M.J. *et al.* (2018) Secondary metabolism in the lichen symbiosis. *Chem. Soc. Rev.*
292 47, 1730-1760.

293 27. Nazem-Bokaee, H. *et al.* (2021) Towards a systems biology approach to understanding the
294 lichen symbiosis: Opportunities and challenges of implementing network modelling. *Front.*
295 *Microbiol.* 12, 667864.

296 28. Lücking, R. *et al.* (2016) The 2016 classification of lichenized fungi in the Ascomycota and
297 Basidiomycota – Approaching one thousand genera. *Bryologist* 119, 361-416.

298 29. Ametrano, C.G. *et al.* (2022) Should we hail the Red King? Evolutionary consequences of a
299 mutualistic lifestyle in genomes of lichenized ascomycetes. *Ecol. Evol.* 12(1), e8471.

300 30. Nelsen, M.P. *et al.* 2020. No support for the emergence of lichens prior to the evolution of
301 vascular plants. *Geobiology* 18, 3-13.

302 31. Schoch, C. *et al.* (2009) The Ascomycota tree of life: a phylum-wide phylogeny clarifies the
303 origin and evolution of fundamental reproductive and ecological traits. *Syst. Biol.* 58, 224-
304 239.

305 32. Wedin, M. *et al.* (2004) Saprotnrophy and lichenization as options for the same fungal
306 species on different substrata: environmental plasticity and fungal lifestyles in the *Stictis-*
307 *Conotrema* complex. *New Phytol.* 164, 459-465.

308 33. Armaleo, D. *et al.* (2019) The lichen symbiosis re-reviewed through the genomes of *Cladonia*
309 *grayi* and its algal partner *Astrochloris glomerata*. *BMC Genom.* 20(1),1-33.

310 34. Nelsen, M.P. *et al.* (2021) Macroecological diversification and convergence in a clade of
311 keystone symbionts. *FEMS Microbiol. Ecol.* 97, fiab072.

312 35. Leavitt, S.D. *et al.* (2012) Miocene divergence, phenotypically cryptic lineages, and
313 contrasting distribution patterns in common lichen-forming fungi (Ascomycota:
314 *Parmeliaceae*). *Biol. J. Linn. Soc.* 107, 920-937.

315 36. Kaasalainen, U. *et al.* (2017) A Caribbean epiphyte community preserved in Miocene
316 Dominican amber. *Earth Environ. Sci. Trans. R. Soc. Edinb.* 107, 321-331.

317 37. Allen, J.L *et al.* (2018) First genome-wide analysis of the endangered, endemic lichen
318 *Cetradonia linearis* reveals isolation by distance and strong population structure. *Am. J. Bot.*
319 105, 1556-1567.

320 38. Simon, A. *et al.* (2018) High diversity, high insular endemism and recent origin in the lichen
321 genus *Sticta* (lichenized Ascomycota, Peltigerales) in Madagascar and the Mascarenes.
322 *Mol. Phylogenet. Evol.* 122, 15-28.

323 39. Itten, B. and Honegger, R. (2010) Population genetics in the homothallic lichen-forming
324 ascomycete *Xanthoria parietina*. *Lichenologist* 42, 751-761.

325 40. Allen, J.L *et al.* (2021) Population genetics and biogeography of the Lungwort lichen in North
326 America support distinct eastern and western gene pools. *Am. J. Bot.* 108, 2416-2424.

327 41. Muggia, L. *et al.* (2020) Formally described species woefully underrepresent phylogenetic
328 diversity in the common lichen photobiont genus *Trebouxia* (Trebouxiophyceae,
329 Chlorophyta): An impetus for developing an integrated taxonomy. *Mol. Phylogenet. Evol.*
330 149, 106821.

331 42. Alonso-García, M. *et al.* (2021) population genomics of a reindeer lichen species from North
332 American lichen woodlands. *Am. J. Bot.* 108, 159-171.

333 43. Nelsen, M.P. *et al.* (2020). The macroevolutionary dynamics of symbiotic and phenotypic
334 diversification in lichens. *Proc. Nat. Acad. Sci. U.S.A.* 117, 21495-21503.

335 44. Ahmadjian, V. (1967) *The Lichen Symbiosis*. Blaisdell Publishing Co.

336 45. Nadyeina, O. *et al.* (2017) Polymorphic fungus-specific microsatellite markers of
337 *Bactrospora dryina* reveal multiple colonizations of trees. *Lichenologist* 49, 561-577.

338 46. Tripp, E.A. *et al.* (2017) A review of existing whole genome data suggests lichen mycelia
339 may be haploid or diploid. *Bryologist* 120, 302-310.

340 47. Smith, A.L. (1922) *Lichens. Cambridge Botanical Handbooks* (Seward, A.C. and Tansley,
341 A.G., eds.). University Press.

342 48. Mansournia, M.R. *et al.* (2012) Genotypic analysis of the foliose lichen *Parmotrema*
343 *tinctorum* using microsatellite markers: association of mycobiont and photobiont, and their
344 reproductive modes. *Lichenologist* 44, 419-440.

345 49. McKenzie, S.K. *et al.* (2020) Complete, high-quality genomes from long-read metagenomic
346 sequencing of two wolf lichen thalli reveals enigmatic genome architecture. *Genomics* 112
347 3150-3156.

348 50. Keuler, R. *et al.* (2020) Genome-scale data reveal the role of hybridization in lichen-forming
349 fungi. *Sci. Rep.* 10: 1497.

350 51. Muggia, L. *et al.* (2014) Photobiont selectivity leads to ecological tolerance and evolutionary
351 divergence in a polymorphic complex of lichenized fungi. *Ann. Bot.* 114, 463-475.

352 52. Molins, A. *et al.* (2021) Thallus growth stage and geographic origin shape microalgal
353 diversity in *Ramalina farinacea* lichen holobionts. *J. Phycol.* 57, 975-987.

354 53. Blázquez, M. *et al.* (2022) The Role of Photobionts as Drivers of diversification in an island
355 radiation of lichen-forming fungi. *Front. Microbiol.* 12: 784182.

356 54. Steinová, J. *et al.* (2019) Reproductive and dispersal strategies shape the diversity of
357 mycobiont-photobiont association in *Cladonia* lichens. *Mol. Phylogenet. Evol.* 134, 226-237.

358 55. Aschenbrenner, I.A. *et al.* (2014) Microbial cargo: Do bacteria on symbiotic propagules
359 reinforce the microbiome of lichens? *Environ. Microbiol.* 16, 3743-3752.

360 56. Petrini, O. *et al.* (1990) An analysis of fungal communities isolated from fruticose lichens.
361 *Mycologia* 82, 444-451.

362 57. Arnold, A. E. *et al.* (2009). A phylogenetic estimation of trophic transition networks for
363 ascomycetous fungi: are lichens cradles of symbiotic fungal diversification? *Syst. Biol.*
364 58, 283–297.

365 58. Diederich, P. *et al.* (2018). The 2018 classification and checklist of lichenicolous fungi, with
366 2000 non-lichenized, obligately lichenicolous taxa. *Bryologist* 121(3), 340-425.

367 59. Aschenbrenner, I.A. *et al.* (2017) Differential sharing and distinct co-occurrence networks
368 among spatially close bacterial microbiota of bark, mosses and lichens. *Mol. Ecol.* 26, 2826-
369 2838.

370 60. Fernández-Mendoza, F. *et al.* (2017) ITS1 metabarcoding highlights low specificity of lichen
371 mycobiomes at a local scale. *Mol. Ecol.* 26, 4811-4830.

372 61. Integrative HMP (iHMP) Research Network Consortium. (2019) The Integrative Human
373 Microbiome Project. *Nature* 569, 641–648.

374 62. Trivedi, P. *et al.* (2020) Plant-microbiome interactions: from community assembly to plant
375 health. *Nat. Rev. Microbiol.* 18, 607–621.

376 63. Honegger, R. (1992) Lichens: Mycobiont-photobiont relationships. In: *Algae and Symbioses:*
377 *Plants, Animals, Fungi, Viruses, Interactions Explored* (Reisser, W., ed), pp. 255-275,
378 Biopress Limited.

379 64. Palmqvist, K. (2000). Carbon economy in lichens. *New Phytol.* 148, 11–36.

380 65. Piercy-Normore, M.D. and Athukorala S.N. (2017) Interface between fungi and green algae
381 in lichen associations. *Botany* 95, 1005-1014.

382 66. Hawksworth, D.L. and Grube, M. (2020) Lichens redefined as complex ecosystems. *New
383 Phytol.* 227, 1281-1283.

384 67. Parrot, D., *et al.* (2016) Lichen-associated bacteria as a hot spot of chemodiversity: Focus
385 on uncialamycin, a promising compound for future medicinal applications. *Planta Med.* 82,
386 1143-1152.

387 68. Culberson, C.F. (1969a) *Chemical and Botanical Guide to Lichen Products*. University of
388 North Carolina Press.

389 69. Culberson, W.L. (1969b) The use of chemistry in the systematics of the lichens. *Taxon* 18,
390 152-166.

391 70. Culberson, C.F. and Elix, J.A. (1989) Lichen substances. In: *Methods in Plant Biochemistry
392 Volume 1. Plant Phenolics* (Harborne, J.B., ed.), pp. 509-535, Academic Press.

393 71. Tripp, E.A. and Lendemer, J.C. (2017) Twenty-seven modes of reproduction in the obligate
394 lichen symbiosis. *Brittonia* 70, 1-14.

395 72. Will-Wolf, S. and Jovan, S. (2019) Lichen species as element bioindicators for air pollution in
396 the eastern United States of America. *Plant Fungal Syst.* 64, 137-147.

397 73. Smith, R.J. *et al.* (2020) Climatic niche limits and community-level vulnerability of obligate
398 symbioses. *J. Biogeogr.* 47, 382-395.

399 74. Ellis, C.J. *et al.* (2018) Quantifying the anthropocene loss of bioindicators for an early
400 industrial region: an equitable baseline for biodiversity restoration. *Biodivers. Conserv.* 27,
401 2363-2377.

402 75. Tripp E.A. *et al.* (2019) Habitat quality and disturbance drive lichen species richness in a
403 temperate biodiversity hotspot. *Oecologia* 190, 445–457.

404 76. Ellis, C.J. (2017) When is translocation required for the population recovery of old-growth
405 epiphytes in a reforested landscape? *Restor. Ecol.* 25(6), 922-932.

406 77. Price, K. *et al.* (2017) Long-term recovery of epiphytic communities in the Great Bear
407 Rainforest of coastal British Columbia. *For. Ecol. Manag.* 391, 296-308.

408 78. Goward, T. and Arsenault, A. (2018) Calicioid diversity in humid inland British Columbia may
409 increase into the 5th century after stand initiation. *Lichenologist* 50, 555-569.

410 79. McMullin, R.T. and Wiersma, Y.F. (2019) Out with old growth, in with ecological
411 continNEWity: new perspectives on forest conservation. *Front. Ecol. Environ.* 17, 176-181.

412 80. Rose, C.I. and Hawksworth, D.L. (1981) Lichen recolonization in London's cleaner air.
413 *Nature* 289, 289-292.

414 81. Hawksworth, D.L. and McManus, P.M. (1989) Lichen recolonization in London under
415 conditions of rapidly falling sulphur dioxide levels, and the concept of zone skipping. *Bot. J. Linn. Soc.* 100, 99-109.

416 82. Dal Grande, F. *et al.* (2017) Adaptive differentiation coincides with local bioclimatic
417 conditions along an elevational cline in populations of a lichen-forming fungus. *BMC Evol. Biol.* 17(1): 93.

418 83. Vančurová, L. *et al.* (2018) The complexity of symbiotic interactions influences the
419 ecological amplitude of the host: A case study in *Stereocaulon* (lichenized Ascomycota).
420 *Mol. Ecol.* 27, 3016-3033.

421 84. Leavitt, S.D. *et al.* (2015). Fungal specificity and selectivity for algae play a major role in
422 determining lichen partnerships across diverse ecogeographic regions in the lichen-forming
423 family Parmeliaceae (Ascomycota). *Molec. Ecol.* 24, 3779-3797

424 85. Nelsen, M.P. *et al.* (2022) Contrasting patterns of climatic niche divergence in *Trebouxia*—A
425 clade of lichen-forming algae. *Front. Microbiol.* 13, 791546.

426 86. Baas-Becking, L.G.M. (1934). *Geobiologie of inleiding tot de milieukunde*. W.P. Van
427 Stockum & Zoon.

428 87. Bisby, G.R. (1943) Geographical distribution of fungi. *Bot. Rev.* 9: 466–482.

429 88. Tedersoo, L. *et al.* (2014). Global diversity and geography of soil fungi. *Science* 346, 1078.

430 89. Peay K.G. *et al.* (2010) Not every fungus is everywhere: scaling to the biogeography of
431 fungal-plant interactions across roots, shoots and ecosystems. *New Phytol.* 185, 878-882.

432 90. Větrovský, T. *et al.* (2019) A meta-analysis of global fungal distribution reveals climate-
433 driven patterns. *Nat. Commun.* 10(1):5142.

434 91. Branco, S. *et al.* (2017) Continental-level population differentiation and environmental
435 adaptation in the mushroom *Suillus brevipes*. *Mol. Ecol.* 26, 2063-2076.

438 92. Magain, N. et al. (2018) Species delimitation at a global scale reveals high species richness
439 with complex biogeography and patterns of symbiont association in *Peltigera* section
440 *Peltigera* (lichenized Ascomycota: Lecanoromycetes). *Taxon* 67, 836-870.
441
442
443

444 **Glossary**

445

446 **Biosynthetic pathway** - A series of chemical reactions in living organisms that are catalyzed by

447 enzymes.

448

449 **Biotic interactions** - Interactions between two or more living organisms.

450

451 **Commensalism** - A symbiotic relationship in which one partner benefits while the other/s is/are

452 neither harmed nor benefited.

453

454 **Convergent evolution** - A character that arises independently in evolutionary unrelated

455 organisms.

456

457 **Ecological amplitude** - The total breadth of multidimensional ecological conditions in which a

458 species can survive.

459

460 **Lichen(s)** - Extraordinarily complex communities of microbial symbionts from a minimum of

461 three evolutionarily distantly related phyla representing at least two kingdoms and that

462 repeatedly form a phenotypically consistent, recognizable, mutually beneficial symbiosis.

463 Taxonomically classified by the primary fungus and defined by a quintessential mutualistic

464 relationship between that fungus and one or more photosynthesizing partners.

465

466 **Mutualism** - A symbiotic relationship in which all partners benefit.

467

468 **Mycorrhizae** - Soil-dwelling fungi that form mutualistic symbiotic relationships with plants

469 wherein hyphae connect directly to the roots.

470

471 **Poikilohydry** - When an organism remains at equilibrium with the moisture content of the

472 surrounding environment.

473

474 **Primary metabolite** - Substances that are generated through the processes that maintain the

475 basic functions in cells and organisms.

476

477 **Secondary metabolite** - Substances produced by organisms that are not required for primary
478 metabolism, vary between species, and with concentrations that can vary across tissues or
479 growth stages.

480

481 **Symbiont flexibility** - The ability of one symbiont to associate with a diversity of other symbiont
482 species or genotypes.

483

484 **Symbiont specificity** - The degree of taxonomic breadth and genetic diversity among partners
485 in a symbiosis (e.g., one-to-one versus one-to-many).

486

487 **Symbiosis** - Intimate, sustained biotic interactions with variable degrees of benefits for the
488 partners involved.

489

490 **Trophic** (strategy) - The means by which an organism acquires essential nutrients.

491

492

493 **Figure Captions**

494

495 **Figure 1.** Lichen thallus deconstructed. Each individual lichen is comprised of a multitude of
496 organisms that together constitute a miniature ecosystem. One primary mutualistic fungal
497 symbiont contributes the majority of the biomass and structure to the thallus, and one or more
498 photosynthesizing symbionts constitute the most important photosynthetic partners. Other
499 species of fungi and microalgae, along with bacteria and micro-invertebrates, grow as
500 commensalists in and among the scaffold of the dominant symbionts. Some species of fungi
501 grow as pathogens and parasites. Secondary chemistry produced by the main fungal symbiont
502 drives the functional interactions among organisms in the thallus and with the environment.

503

504 **Figure 2.** Recent research has shown lichen individuals, populations and communities can be
505 much more diverse and dynamic than previously believed. Based on molecular sequence data
506 and advanced microscopy techniques, it is increasingly clear that what is perceived as a visually
507 discrete individual lichen (middle) is often home to multiple genotypes of the primary mutualistic
508 fungal symbiont, multiple genotypes and/or species of mutualistic photosynthesizing symbionts,
509 and a microbiome containing species with a range of symbiotic lifestyles. New methods and
510 theory are required to account for ecological and evolutionary patterns and processes related to
511 the complexities the result when this previously unrecognized diversity is extrapolated outwards
512 within populations of a single species (top) and communities of multiple species (bottom).

513