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ABSTRACT

Predicting tropical cyclone (TC), rapid intensification (RI) is an important yet challenging task in current weather forecast due to our
incomplete understanding of TC nonlinear processes. This study examines the variability of RI onset, including the probability of RI
occurrence and the timing of RI onset, using a low-order stochastic model for TC development. Defining RI onset as the first hitting time for
a given subset in the TC-scale state space, we quantify the probability of the occurrence of RI onset and the distribution of the timing of RI
onset for a range of initial conditions and model parameters. Based on asymptotic analysis for stochastic differential equations, our results
show that RI onset occurs later, along with a larger variance of RI onset timing, for weaker vortex initial condition and stronger noise ampli-
tude. In the small noise limit, RI onset probability approaches one and the RI onset timing has less uncertainty (i.e., a smaller variance), con-
sistent with observation of TC development under idealized environment. Our theoretical results are also verified against Monte Carlo
simulations and compared with explicit results for a general one-dimensional system, thus providing new insights into the variability of RI

onset and helping better quantify the uncertainties of RI variability for practical applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062119

I. INTRODUCTION

Rapid intensification (RI) is an inherent feature of hurricanes
(also known as tropical cyclone or TC) by which a TC intensifies
quickly in a very short period of time." Predicting RI onset is therefore
of great importance in operational TC forecast such that proper and
timely risk management and preparation can be initiated.”

While RI is guaranteed to occur under idealized environment,
the probability or the exact moment that RI onset takes place in real-
time forecast highly fluctuates as a result of varying environmental
conditions.”” Despite progress in improving TC intensity forecast skill,
RI prediction has been challenging to date. As shown in, for example,
Refs. 8-12, current operational models still have a high false alarm rate
and a moderate probability of detection for RI prediction, even at a
short 24-36h lead time. The RI forecast skill is significantly deterio-
rated as the forecast lead time is extended longer, making it hard to
reliably predict RI in real-time applications. With various uncertainties
in TC intensity fluctuation related to vortex initial conditions, model
errors, boundary conditions, and potential existence of TC intensity
chaotic dynamics and random variability,””'*'* it is necessary to

examine to what extent RI onset can be best predicted for future oper-
ational applications and model improvement.

From the practical perspective, TC development always con-
tains an intrinsically random process that can never be fully con-
trolled due to the stochastic nature of the atmosphere. Naturally,
one then expects RI onset to be impacted by such random variabil-
ity from the atmosphere, especially during the early stage of TC
development that possesses high uncertainties in both the structure
and strength. Figure 1 shows an example of TC intensity evolution
obtained from the Coupled Ocean Atmospheric Prediction System
(COAMPS-TC) model,"”"® using an ensemble of simulations with
small random noises centered on a given initial condition.'” One
notices that the RI onset timing in this ensemble, defined to be the
first moment in the model simulation that the maximum surface
wind (Vmax) increases by 14.5 ms™! (30 kt) per 24 h, is not a deter-
ministic variable but varies significantly, regardless of how perfect
environmental conditions are.

The above random variation of RI onset timing as illustrated by
the COAMPS-TC model is in fact just one among many other possible
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FIG. 1. Time series of the maximum 10 m wind (VMAX) ensemble during the
course of idealized simulations using the COAMPS-TC model, under a perfect
model scenario. The ensemble is perturbed by small random perturbations at the
initial condition as presented in Ref. 17. The gray box denotes the interval at which
Rl onset time varies among different ensemble members. Here, the Rl onset
moment is defined as the time into simulation that the VMAX change in the next
24his > 145 ms™".

sources of uncertainties related to, for example, boundary and sur-
face layer parameterization, model physics, vortex initial conditions
and locations, or potential existence of TC chaotic dynamics.”‘m’21
The combination of all these uncertainties apparently suggests that
RI onset should not be treated as a deterministic but more as a sto-
chastic process. How to quantify the probability of RI onset as well
as its timing is, nevertheless, an open question in the current TC
research.

In this paper, based on the asymptotic hitting analysis for
stochastic differential equations (SDE), we study the probability of
RI onset as well as the variability of RI onset timing. Our objective
is to examine RI onset under idealized conditions such that intrin-
sic random characteristics of RI onset in the absence of all environ-
mental asymmetries can be investigated. For this purpose, the
first-hitting time (also known as the first passage time) technique for
stochastic processes appears to be appropriate and beneficial due to
its connection with stochastic analysis. Defined as the moment
when a stochastic process first visits a given subset in the state
space, the first-hitting time can be directly linked to RI onset time
from which the first-hitting time techniques can be applied to study
the variability of RI onset as expected. To the best of our knowl-
edge, this approach and its applications to TC development have
not been previously explored. As such, we wish to present in this
study a theoretical framework that could allow one to rigorously
quantify the probability of RI onset as well as the variability of RI
onset timing as a function of the ambient environment and TC
initial conditions.

The rest of this study is organized as follows. In Sec. II, a stochas-
tic model for TC development is presented, followed by a formal defi-
nition of RI onset within the first-hitting time framework. Section IIT
presents theoretical results for the probability of RI occurrence and the
distribution of RI onset time. Monte Carlo simulations to verify our
theoretical results will be provided in Sec. IV, along with additional
insights on the dependence of RI onset on model parameters.
Concluding remarks are given in the final section.

ARTICLE scitation.org/journal/phf

Il. FORMULATION
A. Stochastic model for TC intensification

With an axisymmetric assumption for TC development, Kieu
and Wang™” presented a simple low-order model that is based on a
few fundamental scales of TCs. Unlike common TC balance models,
this TC-scale dynamics, which is a modified version of a TC model
originally proposed by Kieu”’ and is hereinafter referred to as the
modified scale dynamics (MSD) model, is time-dependent and explic-
itly contains the maximum potential intensity limit as one of its critical
points. In the non-dimensional form, the MSD system in Ref. 22 can
be summarized as follows:

du

5 =P = e+ D)b—ulvl,

d

d_lt/: —uv — vy, 6]
db

E:bu+su+|v| — b,

where (u, v, b) denote non-dimensional variables that represent the
maximum radial wind, the maximum tangential wind, and the warm
core anomaly in the TC inner-core region. The parameter p is propor-
tional to the squared ratio of the depth of the troposphere over the
depth of the boundary layer, s is an effective tropospheric static stabil-
ity parameter, and r represents the Newtonian cooling. Detailed deri-
vation of this TC-scale system under the assumption of wind induced
surface heat exchange (WISHE) feedback can be found in Ref. 22.

Because of the dependence of frictional forcing and the WISHE
feedback on the wind amplitude, the terms containing the absolute
sign in Eq. (1), that is, |v|, result in two possibilities for TC develop-
ment corresponding to cyclonic and anticyclonic flows. To ease our
subsequent analyses, we will focus only on the regime in the state space
where v> 0, which corresponds to cyclonic TCs in the Northern
Hemisphere. This cyclonic system will be hereinafter explicitly referred
to as an MSD, system [see Egs. (69)—(71) in Ref. 22], which is
described by the following equations:

du

E:pvz—(p-i—l)b—uv7
d
dit/ = —uv —1°, (2)
%:bququrvfrb,
To simplify our notation, we write this MSD, system in the form
dx(t
O _ ), t20, )

where x(t) = [u(¢), v(t), b(t)], and the vector field p = (u;, 15, pt3) :
R? = R’ isthe forcing function of (2), that is,

(1, v,6) = pv? = (p+ )b — v,
1 (u, v, b) = —uv — 12, (4)
us(u,v,b) = bu+su+v—rb.

While the low-order MSD system is admittedly simple as com-

pared to real TCs, the fact that main TC dynamics can be formulated
in such a mathematically closed form is noteworthy here. This is
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because this MSD system allows one to obtain different insights into
the underlying mechanisms of TC development beyond numerical
simulations by full-physics models that one cannot fully control.

Given the above deterministic model (2) for TC development, we
next extend it to a stochastic system. Following Ref. 7, stochastic forc-
ing is introduced to the MSD system as an additive Wiener process.
Specifically, we consider the stochastic process X; := (U;, V4, B;) solv-
ing the time-homogeneous It stochastic differential equation as
follows:

dX; = u(X,)dt + edW;, t>0, (5)

where ¢ > 0 is a constant (the diffusion coefficient) that parametrizes
the magnitude of the fluctuation of the random forcing, and W is a
standard 3-dimensional Wiener processes. Explicitly

dU, = (pV? — (p+ 1)B, — U,V,) dt + edW,",
AV, = (—~U,V; — V2) dt + cdW.”, (6)
dB, = (B,U, + sU, + V, — rB,) dt + £dW",

where {W® W W®} are independent Wiener processes. The
use of these independent Wiener processes to represent the random
forcing for the MSD system significantly simplifies the problem both
theoretically and numerically. For example, a numerical solution to
Eq. (6) with a sufficiently small discretization time step At can be
obtained by using the simple Euler-Maruyama scheme in which a
Gaussian random variable with variance (At)e? is added to each state
variable in every iteration.”** Figure 2 shows an illustration of numeri-
cal simulations of the MSD system (6) for 30 different realizations,
using the same method and parameters as in Ref. 7. One notices
apparently from this result that the MSD system displays RI for many
realizations, while a few realizations quickly decay. For those that dis-
play RI, notice also that the RI onset timing varies as well (see the
crosses in Fig. 2). How the probability of R occurrence and its related

Tangential wind (v) time series

Nondimentional maximum tangential wind v

4] 5 10 15 20 25 30
Nondimentional time

FIG. 2. Time series of the v component of the MSD system (6), which is obtained
from a 30-member Monte Carlo simulation, using the same set of parameters (p, r, S)
as in Ref. 7 and initial condition of (u=0,v = 0.01,b = 0). The crosses denote
the RI onset moment, which is defined as the first time into the simulation that the v
component starts to rapidly amplify, similar to the Rl onset defined in Fig. 1.
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variability depend on model parameters or vortex initial conditions is
the main question we wish to tackle herein.

It should be mentioned that the closed form of the MSD system
as given by (6) is important in this study, as one can employ rigorous
mathematical tools such as stochastic calculus and asymptotic analysis
to study RI onset. One could of course use full-physics models such as
the COAMPS-TC to examine the stochastic nature of RI onset as
shown in Fig. 1. Note however that the larger computational and stor-
age requirement of the full-physics models generally prevent one from
carrying out a large number of simulations to obtain significant statis-
tics, let alone analyzing the various nonlinear contribution of different
large-scale factors. In this regard, the It6 SDE (6) is useful for our theo-
retical analyses herein. The meaning and the well-posedness of these
SDE:s can be found in standard textbooks such as Ref. 25 and will not
be discussed further here.

B. Rl onset definition

To assess the occurrence (and failure) of RI onset and to quantify
the distribution of RI onset timing, it is necessary to introduce a formal
definition of RI onset such that rigorous analyses can be obtained.
Given the previous studies on the first-hitting time for stochastic sys-
tems, we herein define RI onset time as the first moment that the V'
component reaches a given level £ € (0, c0); afterward, RI is guaran-
teed to occur. Analyses of the MSD system showed indeed that such
an RI onset level always exist,” because the MSD system contains a
single stable point at the maximum potential intensity limit (cf. Figs. 1
or 2 and Ref. 7). As such, when V reaches the level ¢, TC intensifica-
tion is ensured to rapidly approach the potential intensity state, thus
justifying our definition of RI onset here.

Given the above definition of RI onset time, we now investigate
the following two specific questions:

(1) Probability of RI onset occurrence: whether or not tangential
wind (i.e., v) will reach the level ¢ such that RI onset can occur;
and

(2) Variability of RI onset timing: if RI occurs, what is the statisti-
cal distribution of RI onset time?

To be more specific, we introduce the following hitting times for
the stochastic MSD system (6):

T4 = inf{t > 0: V; = ¢}, thefirsttime when V reaches¢, (7)

7o := inf{t > 0: V; = 0}, thefirst time when V hits zero ®)
(i.e., an initial vortex diesout).

The RI onset time for the SDE (6) is defined to be 7, . Furthermore, we
say that RI onset occurred if T, < 7. That is, when the trajectory of v
hits ¢ without dying out before that. The condition 7, < 7 is needed
here, because any tropical disturbance hitting the level v=10 will be
considered as being dissipated and so there is no RI for this vortex
development in reality.

Due to the stochastic nature of the TC stochastic dynamics, it is
apparent that 7, is a random variable. As such, our aim is to obtain
the probability Py (1 < 19) as a function of the initial condition
xo = (o, Vo, bo) and the model parameters. Since the initial point can
be any point in the state space, we define the function

p(x) = Py(t4 < 19), 9)

Phys. Fluids 33, 096603 (2021); doi: 10.1063/5.0062119
Published under an exclusive license by AIP Publishing

33, 096603-3


https://scitation.org/journal/phf

Physics of Fluids ARTICLE

with x = (u, v, b) a generic point in the state space.

For comparison between the stochastic and deterministic MSD
systems, one needs also a deterministic RI onset time T for the ordi-
nary differential equation (ODE) (2), which is defined as follows:

=inf{t > 0;v(t) = ¢}. (10)

By definition, T the first time the trajectory [v(t)],-, of (2) hits level ¢
in the absence of all stochastic forcings. It should be noted that one
cannot choose a too large value for ¢, as the MSD system possesses a
unique stable point v..””*’ Thus, v will be always attracted to its equi-
librium v, and may never reach £ if £ is set too large. Hence, it is natu-
ral to make the following mild assumption throughout the paper.

Assumption 1. 0 < ¢ < v,, where v, is the v-component of the
stable critical point in the phase space (u, v, b) of the ODE (2).

Under this assumption, T is finite (i.e., the v-component of
the ODE must hit level /) if the initial condition vy > 0. That is, the
v-trajectory for the ODE never hits zero so long as the initial value v,
is positive as proven in Ref. 22.

I1l. THEORETICAL RESULTS

In this section, we present rigorous analyses of the RI onset prob-
ability p(x) = Px(t4 < 19) for the stochastic MSD model (6), along
with the conditional probability distribution of ... We recall from our
definition (7) of RI onset time that 7, is the first time for v to reach
level ¢. Thus, we will apply the asymptotic techniques for SDE to esti-
mate the hitting time in the MSD model (6).

We note first that Eq. (6) has a unique strong solution
X = (X¢),50> Where X; = (U, V;, By) is a three-dimensional vector
for each time ¢ > 0. Furthermore, X is a continuous-time strong
Markov process with infinitesimal generator .# defined by the follow-
ing differential operator:

0 o  Of O
ﬂ1af+ﬂza{/+ﬂsaj;+ (aT{;JFaT}JZCJFaT){) (11)
where x = (u, v, b) is a generic point in the state space of the SDE. Let
p(x,t) be the probability density for X;; that is, P(X; € dx)
= p(x, t)dx where dx is the Lebesgue measure in R>. Then, p(x, t)
satisfies the Fokker-Planck equation ()p &) — #*p(x,t), where £* is
the adjoint of . in the Hilbert space L2 (dx). These facts follow from
standard techniques in stochastic calculus as can be seen, for instance,
in Ref. 25, Chap. 5.

In principle, (11) enables one to obtain all desired statistics of RI
onset time. However, due to nonlinearity of the SDE there is no explicit
formula for the density p(x, t). In Subsections 111 B and III C, we shall
therefore derive formal results for the probability of RI onset and the
distribution of 7 in the asymptotic limit of small stochastic forcing.
These formal connections between SDE and partial differential equation
(PDE) are the starting point of more in-depth analysis of the statistics of
RI onset time that we can later verify by Monte Carlo simulations.

Remark 1 (Implicit dependence parameters). We note that the
process X = (U, V, B), the generator %, the onset time 7, and the
extinction time 7, all depend on the noise parameter ¢ and the MSD
model parameters (p, 1, s). This dependence is important to under-
stand how the probability of RI onset would depend on large-scale
environmental factors, but it will be made implicit here to simplify our
notation.

Zf(x) =

scitation.org/journal/phf

A. Probability of Rl onset

In the case when the initial value of V' is positive (i.e., Vo > 0), it
is possible to obtain a simplification for the MSD, system based on
the fact that RI onset would not occur if V hits zero level or becomes
negative (ie., an anticyclonic vortex). We therefore begin with the fol-
lowing lemma that expresses the probability of RI onset occurrence.
That is, the probability that V reaches a prescribed level £ > 0 without
dying out. Practically, this probability indicates the development of a
cyclonic vortex (v>0) instead of anticyclonic vortex (v<0), given
that the initial state of the vortex is cyclonic in the Northern hemi-
sphere (or an anticyclonic vortex from an initial anticyclonic state in
the Southern Hemisphere).

Lemma IIL.1 (Probability of RI onset). Let p(x) = Py (7, < 10)
be the probability of the RI onset occurrence when an initial state of the
SDE (6) is x = (u, v, b). Then, p satisfies the following boundary value
problem:

Zp(x)=0 if0<v<{,
p(x)=1 if v=1¢, (12)
p(x)=0 if v=0,

where & is the operator (11).

Proof 1. The proof is standard and we give a sketch to illustrate the
key idea. We recall (7) and (8) and define © := min{t, 1o} to be the
first time for the v component to exit the interval (0, £). Then, the event
{t4 < 70} is the same as the event {V, = (} when the starting point
x = (u, v, b) satisfies v € [0, ¢]. Hence, p(x) = Px(X; = £). The ran-
dom times T, Tq, and T are stopping times with respect to the filtration
generated by process X. Hence, by the Dynkin’s formula (see Ref. 26,
Chap. 2)

Faf (X:) = f(3) + Ea “ 2f(X,) ds} | (13)

for all bounded functions f in the domain of . From this and the fact
that (12) has unique solution, we can check that p is the solution to
(12). O

It should be noted that if the starting point xo = (ug, vo, bo) is
fixed (i.e., does not depend on ¢) and that vy > 0, then the probability
of RI onset will tend to 1 as ¢ — 0. This is because the ODE starting
with vy > 0, which corresponds to the case ¢ =0 (i.e., no random fluc-
tuation), always hit level ¢ under the assumption 0 < ¢ < v, (ie,
Assumption 1. See also Ref. 22). By Ref. 27 (Lemma 5) and
Assumption 1

lingp(xo) =1 forallxg = (up,vo,bp) € R x (0,] x R. (14)
Physically, this asymptotic behavior of p(x,) implies that the probabil-
ity of RI onset will approach 1 when the random noise effect goes to
zero (i.e., ¢ — 0) for any initial vortex strength x,. The validity of this
result will be later verified by our Monte Carlo simulation in Sec. IV

(cf. Fig. 6).

B. Distribution of Rl onset time

We assume that RI onset occurs, the next question one wishes to
examine is how the RI onset time 7. depends on the model initial con-
ditions or parameters. Answering this question will help forecasters to
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estimate the uncertainty of their RI onset prediction as TCs evolve
with time.

For this, we start with the Cumulative Distribution Functions
(CDF) of 1., conditioned on the occurrence of RI onset. Precisely, let
Fon(t,x) := Px(t < t| 14 < 10) be the CDF of 7., under the condi-
tion that RI onset occurs and the SDE (6) starts from an initial value x.
Let p(x) = Px(t4+ < 79) be the probability of RI onset as in Lemma
1IL1, then

Pi(ry <t 14 < 70)
p(x) '

In Lemma II1.2 below, we obtain the numerator of (15) and therefore
F,,.

Fou(t,x) = (15)

Lemma IIL.2 (Distribution of RI onset time). Let G(t,x) :=
Pp(x) Fon(t,x) = Pyx(t4 <'t, 14 < 19). Then, G satisfies the boundary
value problem

ath’x):fG, t€(0,00), x € {(u,v,b) : 0 <v <L}, (16)
G(0,x) =0, xe{(u,v,b): 0<v <L}, (17)
G(t,x) =0, te€(0,00),x€ {(u,0,b), (u,¢,b)}, (18)

where & is the operator (11).

Proof 2. The initial condition (17) and the boundary condition
(18) are clearly satisfied. Let H(t,x) := Py(ty > t, 1. < 19) = p(x)
_Fon (t7 X)'

Let X% be the absorbed diﬁ‘usionzs obtained when X, the solution
to SDE (6), is absorbed upon hitting the boundary of the domain
D = {(u,v,b) : 0 < v < {}. By the strong Markov property of X

H(t,x) = Py(X? € D, 1, < 10)

= J Py(ts < 10) Px(X € dy)
D

- ijm Pt x,y) dy,

where p™(t,x,y) is the transition density of X°. By the backward
Kolmogorov’s inequality (Ref. 25, Chap. 5), we have % = ZH(t,x)
and hence (16). O

Unlike Theorem IIL.1 that focuses on whether or not an RI
onset would occur, Lemma III.2 informs us the probability of hav-
ing an RI onset time no later than a given time ¢ if the initial condi-
tion is x = (u, v, b). We note that one can always numerically solve
(16)-(18) to obtain Fuy(f,x). We can then verify Lemma II1.2 by
comparing the corresponding probability density function (i.e., its
time-derivative ’9;);“) with the histograms of RI onset statistics
obtained from the Monte Carlo simulation of the MSD system (3)
(cf. Fig. 6).

To obtain more quantitative insight about 7., we establish in
Theorem II1.3 below the limiting distribution of the onset time proba-
bility density distribution for 7 as ¢ — 0. Let [u(t), v(t), b(t)],~, be
the solution of the ODE (3) starting at X, = (ug, Vo, bp) and
T = inf{t > 0;v(t) = £}, we then have

Theorem IIL.3 (Asymptotic distribution of RI onset time). We
suppose the initial state of the SDE (6) is the same as that of the ODE
(3); that is, Xo = X0 = (uo, Vo, bo). We suppose vy € (0,¢) and that
the onset level ( satisfies Assumption 1. Then, as ¢ — 0, the random

scitation.org/journal/phf

variable ¢ '(t, — T) converges in distribution to the centered
Gaussian random variable with variance

2(T)
Clu(T) + 0%
where X(t) = [Z;(t)] is the 3 x 3 matrix

19)

: t s ;- _
Z(t) _ eJ; A(r)dr . <J e L A(r)dref L A (r)dr dS) . eJ; A (r)dr7 (20)
and A(t) = Ay, (t) is the Jacobian matrix V u(x(t)), that is,

—v(t)  2pv(t) —u(t) —(p+1)
—v(t)  —u(t) —2v(t)

b(t) +s 1

Alt) = (21)

0
u(t)y—r

An immediate consequence of Theorem IIL.3 is an asymptotic
formula for the variance of 7, conditioned on RI onset occurrence
(7 is infinity by convention if RI does not occur, so we should con-
sider the conditional variance rather than the variance of 7, ).

Corollary 1 (Variance of RI onset time). As ¢ — 0, the distribu-
tion of the RI onset time .. is well approximated by a Gaussian variable
with mean T and conditional variance

2 Z(T)

P+

Var(ty |14 < 19) = ¢
Corollary 1 is noteworthy because it captures the behavior of the
conditional variance of the RI onset timing 7, in terms of the initial
condition x, as well as the model parameters p, r, s as ¢ — 0, which is
proportional to the variance of the additive noise ¢. For practical
applications, this explicit dependence of the variability of RI onset tim-
ing on model parameters or initial condition allows one to quantify
how the uncertainty of RI onset forecast changes when a TC evolves
or ambient environment varies. As will later be verified in our numeri-
cal simulations, examination of its dependence on the model parame-
ters (p, 1, s) shows that the probability distribution for 7. is close to a
Gaussian distribution centered at T when & — 0 as proven in
Corollary 1.
Proof 3 (Proof of Theorem IIL.3). Our proof is based on Theorem
1 in Ref. 27 which gives an asymptotic result for a small noise stochastic
diffusion equation

dxs(t) = [M(Xs(t)) +&" \Ps(Xs(t))]dt + ga(Xs(t))dWh (23)
X,(0) = xo + £,. (24)

We need to check the conditions of that theorem before we can
apply it. By taking £, =0, W, =0, oy = 1, and o(-) = L3 the unit
matrix in (23) and (24), we obtain (5), with the unperturbed initial con-
dition Xo = xo. We let M be the hyperplane M = {(u,v,b) € R* :
v =1L} in R>. Then, the hitting time t, in Theorem 1 of Ref. 27 is
exactly the RI onset time .. defined in (7).

Step 1: Joint convergence. We recall that the deterministic time
T defined by (10) is the first time the trajectory v of the ODE (2) hits
level ¢. We denote by z:= (z1,22,23) = [u(T),¢,b(T)] the point
where the trajectory of the MSD system (3) hits M. In Ref. 29, it is
assumed that the deterministic vector field p is smooth, and the
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deterministic time defined by (10) must satisfy 0 < T < co. Moreover,
it is assumed that (z) does not belong to the tangent space T, of M at
the point z (or in other words the orbit of the system (3) intersects M
and the crossing is transversal). These assumptions are satisfied by our
MSD system (3) under Assumption 1. Therefore, we can indeed apply
Theorem 1 of Ref. 27.

Let m,, be the projection onto span{u(z)] along T.r and 1y the
projection onto T,y along span(u(z)); see Fig. 3. Then for any vector
ne€ R, mm € Randmyn € T,M satisfy

0= m - 1(z) + T

Note that in our case, the tangent space T,y is exactly M itself
since it is a plane. Theorem 1 of Ref. 27 asserts the following convergence
in distribution as ¢ — 0:

e 0y = T, Xo(14) — 2) 2 (—mug (T), b (T)),  (25)

where

%m:%mﬁ%@%M® 26)

is a_random vector in R®. The matrix-valued function @, (t)
— eh A0 oles the equation

i q)xo (t) = AXD (t)(DXD (t)’

dt
(DX() (O) - 13><37

where Ay, (t) is given by (21).

Step 2: Projection and variance computation. The above
3-dimensional random vector (26) is Gaussian distributed with mean
zero and co-variance matrix X(t) given by (20). That is, ¢,(t)
~ A0, Z(0)]. Let  ¢o(T) = [do1(T), Po2(T), po3(T)].  Clearly,
G0 (T) ~ N[0, Zs(T)]

By definition of the projections, we have

$o(T) = muho(T) u(2) + maro(T),

where m,¢o(T) € R and myy(T) € T,M. See Fig. 3 with n
= ¢o(T) for an illustration. Since T,y is parallel to the (u, b)-plane, the
second coordinate (i.e., the v-coordinate) of ¢ (T) is the same as that of
Tuo(T)u(2). That is,

G0 (T) = mupo(T) - (2.

T.M

FIG. 3. llustration of the projections 7,7 € R and myn € T,M. Given vectors
n, 1(z) € R® and the tangent plane Ty, we have = T - 1(2) + .
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This implies that
b0, (T)
Ty (T) = — , (27)
e 1 (2)
and so 7, ¢, (T) is a centered Gaussian vector with variance i”(gz)
2

Step 3: Conclusion. In conclusion, from (25), for ¢ close to zero
we get that in distribution

(14, Xe(14)) = (T,2) + e(—muPpo(T), mn o (T)).  (28)
From (28) and (14), the conditional expectation

Exlt4 |14 < 10] — Tase — 0, (29)
because ¢o(T) is a centered Gaussian vector. For the conditional

variance

> 22 222 ( T)

Bz +2)"

T
Var(ty |14 < 10) = ¢ ( )*82

C. Hitting analysis for one-dimensional reduction

The typical behavior of TC dynamics shown in Fig. 1 captures an
important characteristic of TC development. Specifically, the pre-RI
period before TC intensity rapidly amplifies is characterized by very
slow evolution, much like a constant-forcing dynamical system. One
can therefore exploit this property to further study RI onset by reduc-
ing the MSD system to a general one-dimensional SDE model for the
v component, which can provide additional insights into the variability
of RI onset time. That is, we wish to examine herein a particular case
in which the noise ¢ is fixed while v, is small (vo — 0). This case differs
from (14) and Theorem III.3, which focus on the probability of RI
onset and the distribution of the onset time for a limit of the small
noise ¢ — 0 with a fixed initial condition v,. As such, the behaviors of
RI onset for a fixed noise ¢ but small v, are unclear from Theorem
I11.3 that we wish to examine in this subsection.

For this purpose, we observe from our Monte Carlo simulations
of the MSD system to be presented in Sec. IV that (see the lower left
panels in Fig. 6)

(1: the probability of RI onset gets smaller as vy — 0.

(2: the conditional distribution of the RI onset time 7. (given that
an RI onset occurred) is skewed to the left and has a smaller aver-
aged value than the deterministic onset time T.

This regime (i.e., v is very small compared with ¢) is challenging to
analyze, because a standard Gaussian approximation is no longer
valid. However, it is possible to offer some insight into the aforemen-
tioned observations through the following general 1-dimensional SDE:

Az, = F(Z,) dt + edW, (30)

where W is the Wiener process in R, and F: R — IR is an arbi-

trary given smooth function such that
F(0) =0 and F(x)> O0forx > 0. (31)

Our aim here is to compare the qualitative behavior of the V-component
of (6) and the process Z solving (30), when the initial value v, is “small.”
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How “small” the initial value is depends on the fixed noise level ¢, as
quantified in Theorem III.5 below.

Remark 2. It is natural to question why one wishes to further
examine a 1-dimensional SDE, given that the condition of TC initial
intensity v, less than the noise amplitude ¢ is not realized in reality.
We should emphasize here, however, that it is not our intention to
applying (30) to real TC development. Instead, the aim of this 1D sys-
tem is to qualitatively capture the behaviors of TC dynamics during
the initial development up to the RI onset moment for which the MSD
forcing can be approximated as a constant. The advantage of this 1D
analysis lies in the fact that the forcing function F can now be quite
general; that is, we do not require any specific functional form for F.
Thus, our analysis for the 1D system (30) works for a larger class of
forcing functions F.

We consider the hitting times at the endpoints 0 and ¢. That is,

ti:=inf{t >0: Z, =i} fori=0,¢.

Analogous to the probability of RI onset is Py(t, < 7¢), the probabil-
ity of hitting ¢ before 0 provided that (30) starts at Zy = x. Lemma
1.4 below gives an exact formula for this, which is not available in
higher dimensions in general.

Lemma IIL.4. The probability of hitting £ before 0 for Z in (30)
starting at x € [0, (] is

0

rhww

0

[ koa

Py(te < 19) =

)

where k; is the function

k.(y) = exp {:—22J: F(t)dt}. (32)

The following result quantifies a dichotomy for the probability
P (t¢ < 10) of hitting £ before 0, starting at &*. Namely, this proba-
bility is close to 0 if the starting point is small (« large), and close to 1
when the starting point is large (o small).

Theorem IIL.5 (Asymptotic hitting probability). We suppose F is
a smooth function satisfying (31) and F'(0) > 0. For all ¢ > 0, the prob-
ability of hitting { before 0 for Z in (30) starting at c &* satisfies

ling ch (‘C(g < ‘L'())
&—

1 ifa€(0,1), i.e., startingpointisnotsmall,
= erf(c\/F(0)) ifa=1,
0 ifa>1, ie.,startingpointisverysmall,
where erf (x) := 2= N ¢ dz is the error function.

Remark 3. Analogous to the RI onset indicator (44) is the inverse
h;1(0,8) where h,(z) = P,(ty < o). From the critical case & = 1, for

&~ 0, we have h;(z) = erf(21/F/(0)). Then

*_ erf1(0.8)

VF()

is linear in € when & = 0. This is consistent with the approximately lin-
ear curve in Fig. 5.

h'(0.8) ~

&
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Now we condition on the event {7, < 7o} and consider the con-
ditional distribution of the hitting time 7,. We shall compute condi-
tional expected time. This is analogous to conditioning on RI onset
occurrence and consider the conditional distribution of the RI onset
time. Precisely, we shall compute the conditional expected time

E[te]te < 1o (33)

For the rest of this section, we obtain an explicit formula for this
conditional expected time in Lemma IIL.6 and study its asymptotic
behavior in Theorem II1.7 below.

Lemma IIL.6. For x € (0, /],

) B 2 1 l px ZP()/)
Eifr]te < 10 = EW {Jx Jo ke(z)k: () L k() dy du d2}7

(34)
where p(x) = Px(t¢ < 1¢) is the probability in Lemma 111.4.
Theorem II1.7 below asserts that as the starting point x — 0
2
Ex[fi | T < TO} ~ LIJ(f') - E? (35)

for some positive number W¥(¢).
Theorem III.7 (Asymptotic conditional hitting time). We sup-
pose F is a continuous function. For each fixed noise level ¢ > 0

)l(iir(l) Eylte |t < t0] = P(¢), (36)
where
2 (f u
Y(e) = ;ZL k. (u) JO Z(();)) dydu € (0,00). (37)

Furthermore, we suppose F satisfies (31) and F'(0) > 0. Then,

lim W(e) — Elre |t <7o] _ 1
x—0 x2 382

(38)

Theorem IIL7 implies that, fixing a noise level ¢ > 0, the condi-
tional expected hitting time [E, [t/ | 7, < 70] stays bounded as x — 0.
This is in contrast to the deterministic analogue [which tends to infin-
ity in the order of O(—log x) as x — 0 when F’(0) > 0]. Since

x2

Y(e) — P

< O(—logx) asx— 0. (39)
Theorem III.7 provides a possible explanation to the observation that
the conditional expected hitting time is shorter than the deterministic
hitting time, mentioned in observation (V2 at the beginning of this

section.

IV. NUMERICAL RESULTS
A. Algorithm

From the practical standpoint, Lemma IIL1, Lemma IIL.2, and
Theorem II1.3 presented in Sec. III are useful for RI forecast applica-
tions, because they directly indicate the probability of RI onset occur-
rence as well as the variability of RI onset time. In this section, we will
present numerical investigation to validate a number of theoretical
results presented in Sec. I1I, from which further examination of RI
onset on various model parameters and initial conditions can be
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obtained. In particular, we wish to verify the variance formula (20) in
Corollary 1 for RI onset time because of its importance in real-time
forecast. While this formal variance expression is mathematically sig-
nificant, we note that its direct calculation is challenging because of the
matrix exponent and integration that are sensitive to matrix opera-
tions. As such, we present in this section a numerical algorithm to
compute the matrix X(¢) efficiently.

For the numerical purposes, we observe that the variance matrix
X(t), defined in (20), solves the following differential equation:

dx(t)

CE = s+ A, (0Z0 + T4, @0)

where the matrix Ay, (¢) is defined in (21). The above Eq. (40) can be
indeed derived by rewriting

(1) = By, (1) - N(1) - (O (1)) (41)

where N(t) = (fot Dy, (s) " (Dy, (s) )" ds), and Dy, (¢) is the solution
of the following differential equation:”’

D (1) = Ay ()0 (1),

dt
(DXD (0) == I3><3.

After taking derivatives in (41) and applying the product rule, we get

d d . d .
(1) = 204 (1) N(D) - (0, (1) + D (1) - L N(0) - (0 (1)

O, (0N - (@, (0) (@2)

By Sec. IV A and the fact that £ N(£) = @y, (t) ' (D, () )", we thus
have

%2 = Ay, Ox, N + Oy, @1 (D))" D] + Dy NOAL . (43)
Using (41) again and rearranging the right-hand side of Eq. (43), we
thus obtain Eq. (40) for the variance matrix X(t).

The particular benefit of this differential equation approach for
X(t) instead of the formula (20) in Corollary 1 is that it allows for inte-
grating the matrix equation (40) forwards in time from any initial con-
dition up to any given time ¢ without the need of explicitly computing
the exponent of matrix integration in Eq. (20). We note, however, that
this algorithm requires computing the coefficient matrix A(f) along
the trajectory, which is the Jacobian matrix of the model state as seen
in Eq. (21). As a result, we have to integrate the deterministic model
(1) first and store the entire trajectory [u(t), v(t), b(t)] before the inte-
gration of (40) can be carried out.

Along with the above numerical algorithm to obtain the variance
formula in Corollary 1, Monte Carlo simulations of the MSD model
(6) will be also carried out to verify Corollary 1. For these Monte Carlo
simulations, the MSD system (6) is integrated by using the
Runge-Kutta fourth-order scheme with time step dt = 0.001. As men-
tioned in Ref. 7, the stochastic forcing in the MSD system (6) is addi-
tive with no state dependence. Thus, the Runge-Kutta scheme can be
applied to the deterministic part of Eq. (6), with the stochastic forcing
added at each time step. This method retains the fourth-order accu-
racy for the deterministic part, while the stochastic accuracy order first
orders as for the Euler-Maruyama scheme.”’

Because of the random nature of stochastic forcing, all Monte
Carlo simulations in this study are carried out with 1000 realizations

scitation.org/journal/phf

for each choice of initial conditions and random forcing amplitude &.
A fixed set of parameters for the MSD model with (p,r,s)
= (200,0.25,0.1) similar to those used in Ref. 7 is also employed in
all simulations. These parameters are typical for TCs in real atmo-
spheric conditions as shown in Refs. 23 and 7. By comparing the
results from the numerical integration of Eq. (40) and the Monte
Carlo simulations of the MSD system, the validity of the theoretical
results in Sec. 11T can be assessed.

B. Rl onset probability

We investigate first in this subsection the probability of RI onset
occurrence as presented in Lemma IIL1, using the Monte Carlo simu-
lations of the MSD system. These Monte Carlo simulations will serve
as a reference from which one can validate the theoretical results
obtained in Sec. I1I.

Figure 4(a) shows the probability on RI onset p(ug, vo, bo) as a
function of the initial condition v,. Consistent with observations,”’
one notices that the RI occurrence probability quickly increases with
vo, regardless of the random forcing amplitude ¢. For ¢ < 1072, the RI
occurrence probability reaches the value of ~1 for all vy > 0.05. This
means RI will be almost guaranteed to occur, because a sufficiently
strong initial vortex would practically mean that a TC is well organized
and so it will most likely undergo RIL

As the random fluctuation increases (¢ > 0.03), one notices how-
ever that the probability for RI occurrence increases slower and
approaches 1 only when v, is sufficiently large (>0.1). This threshold
justifies the hereinafter use of ¢ = 0.1 for RI onset time in the MSD
system (this level 0.1 for v, in the non-dimensional unit corresponds
to ~10 ms~ ! in full physical dimension. See, e.g., Refs. 17 and 32).

Given the strong dependence of TC development on ambient
environment, it is thus expected that the RI onset probability should
be governed by not only initial conditions but also environmental fac-
tors. Among the three model parameters (p, 1, s), we note that s is
most sensitive to ambient environment because it represents the strati-
fication of the troposphere.”””” Thus, Fig. 4(b) shows the dependence
of RI probability as a function of s with fixed values for ¢ = 0.01, v,
= 0.02 and all other parameters. Consistent with the previous studies
on weaker intensity for more stable troposphere,” *” one notices in
Fig. 4(b) that RI onset probability decreases quickly as s is larger (i.e.,
the troposphere becomes more stable). Given the same initial vortex
strength, an increase in s from 0.1 to 0.2 could reduce the RI onset
probability from 80% to 60%, which is substantial in operational fore-
cast. For smaller values of vy, this drop in RI onset probability is even
much faster, suggesting that the environmental static stability is a key
parameter not only for the TC maximum intensity but also for RI
onset prediction.

A different way to examine the sensitivity of RI onset probability
in operational practice is to determine what value of the initial TC
strength v, would allow for at least, for example, 80% RI probability as
a function of the random magnitude ¢. This 80% threshold is generally
sufficient for most practical purposes to ensure that RI onset will be
very likely to occur, from which timely risk management can be pre-
pared. In this regard, Fig. 5 shows the minimum initial TC strength I
to meet the 80% RI onset probability threshold as a function of e.
Here, we define Ijj, which can be considered as an RI onset indicator,
as the unique number within (0, £) such that

Phys. Fluids 33, 096603 (2021); doi: 10.1063/5.0062119
Published under an exclusive license by AIP Publishing

33, 096603-8


https://scitation.org/journal/phf

Physics of Fluids

ARTICLE scitation.org/journal/phf

1 0.9 }
” A wosst H { )
20.8 4/0”’ i b } FIG. 4. (a) Probability of RI onset as a
= kr/ } S 08 +H * function of the initial wind component vg,
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5 pH o { HM s, where vp — 0.02 and & = 0.01. In both
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©0.2 i _._‘:0' 03 o 1 dence interval are obtained by bootstrap-
o . :0:05 & 06} { ping the sample.

0 " " +€=0.1 5 " " M

0 0.02 0.04 0.06 0.08 0.096 0.05 0.1 0.15 0.2
initial condition v, (a) model parameter s (b)

p(uo, 187 bo) =0.8. (44)

Consistent with our theoretical results, I§ increases linearly with ¢
when ¢ is small. It also appears that I§ levels off for ¢ > 0.07. The limit
of a small ¢ is of interest, as it reveals that the MSD system behaves simi-
larly to a one-dimensional stochastic system with autonomous forcing
as presented in Sec. IIIC. As explained in Remark 3, Theorem IIL5
shows that the linear dependence of I§ on ¢ is always valid for a very
general one-dimensional system, so long as the forcing does not vary
much prior to RI onset. This is applied well to the MSD system as seen,
for example, in Fig. 1, which shows that TCs evolve very slowly during
the pre-RI onset period. Physically, this result thus confirms that larger
random noise would require stronger initial intensity so that RI onset
can be more likely to occur. Note that when the initial intensity is suffi-
ciently large, random noise will have less of an impact because RI onset
will almost guarantee to occur (at a 80% level) for those initially strong
intensity states. Despite its simplification, it is apparent that the MSD
system could capture well several key properties of RI onset probability
as shown in Fig. 4. This indicates that the TC-scale framework is useful
for studying TC development, and can be used to further examine the
variability of RI onset timing in Sec. IV C.

C. Rl onset timing variability

Given the probability of RI onset occurrence as presented in Sec.
[V B, we wish to verify next the distribution of RI onset time as given
by Theorem IIL3 and related Corollary 1. Because RI onset is almost

guaranteed to occur when v is sufficiently large as shown in Fig. 5, we
will consider here a specific case in which the hitting level ¢ for RI
onset (i.e., v component) is £ = 0.1.

Similar to Sec. IV B, our main focus herein will be again on how
the distribution of 7, changes with the initial condition for the v com-
ponent (i.e., v), while keeping the other two components (i, bp) fixed
at the same values of uy = —1072, by = 10~*. This is because v, prac-
tically represents the initial intensity of a TC vortex during its early
stage of development. During this tropical disturbance stage, there is
no strong dynamical constraint among the TC scales and one can
therefore assign relatively independent values for u, vo, by. As a tropi-
cal disturbance grows, its dynamics will be, however, governed by the
TC-scale dynamics and they can no longer evolve independently.

To have a broad picture of the variability of RI onset time, Fig. 6
shows the histograms of 7, for a range of v, and &. Here, these histo-
grams are constructed from 1000 Monte Carlo simulations, using the
default values for the parameters and initial conditions as mentioned
in Sec. I'V A. One notices in Fig. 6 an expected behavior of the .. vari-
ability, with a narrower distribution of 7, for smaller ¢ when
vo > 0.01. That is, a smaller random forcing would result in less vari-
ability in RI onset timing, which is consistent with real TC
development.

Of further interest from Fig. 6 is that for each fixed initial condi-
tion v, (i.e., for each row), the conditional distribution of 7. gets closer
to a probability density function centered around the deterministic
onset time T defined in (10) as ¢ — 0. This indicates that the

&.0.08r - - &.0.018

o =) L

o 0.07 . ote FIG. 5. Dependence of the smallest value

2 0.06 Y 0014t of vy at which the probability of RI onset

=] S reaches a 0.8 level, denoted as /; defined

€ 0.05 ‘g’ 0.012} in (44), on different ranges of the noise

g S level ¢ including (a) & € [0 — 0.1], and (b)

é 0.04 s 0.01f a zoom in for & € [0.001 — 0.01]). Other
S | parameter settings include (p,r,s)

g 003 g 08 — (200,0.25,0.1) and uo = —0.01,

2 > by = 0.0001

5 002 T 0.006| o = 0.0001.

£ o.o1k s : : £ 0.004 : - :

0.01 0.03 0.05 0.07 0.09 0.001 0.003 0.005 0.007 0.009
Noise amplitude (e) (a) Noise amplitude (e) (b)
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FIG. 6. Histograms of Rl onset time 7., defined in (7) for various values of initial conditions v, and the noise amplitude ¢, conditioned on the event {z, < 7o}. We note that
for each 1000-realization set of the stochastic system (6), only a fraction P of them hit {v = 0.1} before hitting {v = 0} and so only these trajectories are counted (these
probability values P are given in the upper right boxes). The red vertical line shows the time T, defined in (10), obtained from the deterministic MSD system as v(t) hits level
v=20.1. In all histograms, the parameters are p = 200, r = 0.25, s = 0.1, and the initial values are uy = —0.01, by = 0.0001 used.

deterministic RI onset forecast will be more reliable for either smaller
stochastic noises or stronger initial intensity.

For very small values of v, (i.e., weaker initial intensity), the cen-
ter of the 7, distribution is shifted farther away from the deterministic
time T as ¢ increases (see the lower left panels in Fig. 6). This is because
random fluctuation, which is proportional to ¢, is now much larger
than the initial condition that TC development is no longer deter-
mined by v,. Instead, the variability of RI onset time 7 is more a
result of the random noise amplitude ¢ alone, so long as vy < ¢ < 1,
the TC initial condition becomes irrelevant to RI onset. This character-
istic of RI onset timing uncertainty is also consistent with the probabil-
ity of RI onset occurrence shown in Fig. 6 (see the RI onset probability
P in the upper right boxes).

From the mathematical perspective, the behavior of RI onset
time for the limit of small v, can be also understood by using the gen-
eral one-dimensional SDE model presented in Sec. III C. As long as
TC dynamics evolves slowly prior to RI onset, one can in fact obtain
an exact dependence of the center of the 7. histogram on ¢ in terms
of the stochastic conditioned diffusion process (see Lemma 2). That is,
the random noise in the MSD system induces a modified drift along
the gradient of probability density, which results in a faster approach
to the ¢ level as shown in Fig. 6. Thus, a smaller value of v, (i.e., weaker
initial vortex) indicates less likely for RI onset to occur. For ¢ that is
sufficiently larger than v,, the probability P for RI onset occurrence is
quickly reduced below 50%, regardless of value of v, (see lower left
panels in Fig. 6).
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g <107 0.02 3 FIG. 7. (a) A diagram shows the variance
T i 3 2 of the Rl onset time 7. conditioned on RI
o 2 o — 1 &° \/ g 1 & onset occurrence as a function of v for
o . . - G noise & = 10—, which is obtained from
g 3 5’ oroonioos] & 4 0.03 004 005 € 0.03 0.04 0.03 Corollary 1 (black) and from Monte Carlo
© ' ' © S, simulation (red). (b) and (c) Similar to (a)
© 5 2 @ but for & =10~°, and & = 102. Upper
0 > 2 right corner panels show the zoom in of
0 0 these Var(t, |ty < t9) values for

0 0.02 0.04 005 0 0.02 0.04 0.05 0 0.02 0.04 0.05 Vo € [0.03 — 0.05].

initial v-wind (v)  (a) initial v-wind (vo)  (b) initial v-wind (vo)  (c)

To facilitate our comparison of the above results obtained from
the Monte Carlo simulations with Theorem II1.3, the dependence of
the variance of RI onset time on v, for each value of ¢ is summarized
in Fig. 7. Consistent with that shown in Fig. 6, the variance of 7,
decreases with v, for all range of ¢ as expected. We note that the condi-
tional variance of 7, (conditioned on occurrence of RI onset) also
increases as ¢ increases, suggesting larger variability of RI onset time
when the amplitude of random forcing increases.

Comparing to the conditional variance of 7, obtained from
Corollary 1 using the numerical integration of Eq. (43) (see the black
curves in Fig. 7), it is evident that Corollary 1 could capture consistent
characteristics of the conditional variance of 7. as a function of ¢. This
is especially true when ¢ is much smaller than v, [Figs. 7(a) and 7(b)],
which shows a good match between Corollary 1 and the Monte Carlo
simulations. For & > 0.01, Corollary 1 starts to diverge from the
Monte Carlo simulations [Fig. 7(c)], as it tends to underestimate
the conditional variance of 7, when v, increases. In this regard, the
Monte Carlo simulations not only confirm the validity of Corollary 1
for a small limit of ¢ < 1073, but also give us the range of random
noise that our theoretical estimation could provide the most reliable
dependence of Var(ty |14 < 79) on .

From the application standpoint, the fact that the variability of RI
onset timing decreases rapidly for initially stronger intensity (ie., a
larger value of vo) would suggest that our ability to predict RI onset
will be improved as TCs become stronger. This accords with previous
observational and modeling studies,”"’ which showed indeed an
overall improved RI forecast as TCs become more organized.
Therefore, Theorem II1.3 is anticipated and will be useful for further
examination of the dependence of 7, as well as its variance on differ-
ent model parameters without the requirement of intensive Monte
Carlo simulations.

D. Model parameter dependence

Given the validity domain of Corollary 1 as established in Sec.
111 B, one can now use the explicit expression for the conditional vari-
ance of 7, in Corollary 1 to study how the uncertainties of RI onset
time vary with different model parameters and/or initial conditions.
This knowledge is important for practical applications, because it helps
forecasters estimate the uncertainties of their RI onset prediction for
different environmental conditions or ocean basins in real-time
forecast.

We recall that the dependence of (22) on different parameters is
most useful if an estimation of the deterministic RI onset time T,
say from a numerical or a statistical model, is given. As a result, Fig. 8

shows the deterministic onset time T for different initial condition v,
and model parameters (p, r, s). Here, the same hitting level ¢ = 0.1 at
which the RI onset is considered to occur is used.

As shown in Fig. 8(a), T is inversely proportional to v, as
expected, which implies that RI onset will occur earlier for stronger
initial intensity. When fixing TC initial condition, we note, however,
that T increases roughly linearly when the model parameter s or r
increases. This linear relationship indicates that a more stable tropo-
sphere or stronger radiative cooling will delay RI onset as seen in Figs.
8(b) and 8(c). In contrast, RI onset tends to occur earlier for larger
parameter p [Fig. 8(d)], suggesting that a bigger storm size would
require less time for RI to take place. These behaviors can be used to
validate our results, using observational data or modeling output that
we will present in our future study.

Given the deterministic RI onset time T, one can now look into
how the uncertainty of RI onset time changes with different model
parameters. Among all the model parameters, it is of interest to note
that the conditional variance of 7., which is summarized by the func-

: — 222
tion H(T) = ﬁ,

the model parameter p (Fig. 9). On the other hand, the variance of 7.

appears to be the least sensitive to changes in
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FIG. 8. Dependence of the deterministic Rl onset time T on (a) the initial condition
Vo, (b) the atmospheric static stability parameter s, (c) the radiative cooling parame-
ter r, and (d) the aspect ratio of the tropospheric depth over the radius of maximum
wind p. We note that for each parameter curve, all other parameters are fixed at
the values of p=200, s = 0.1,r = 0.25, uy = —0.01, vy = 0.01, by = 0.0001.
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FIG. 9. Similar to Fig. 8 but for the function H(T) in the variance formula of
Corollary 1.

tends to be sensitive to both the radiative cooling (r) and the tropo-
spheric stratification (s) parameter [Figs. 9(c) and 9(d)]. This sensitiv-
ity of H(T) to these specific model parameters r and s reveals how the
large-scale environmental factors can affect RI onset variability, for
which TC models must take into account to properly capture RI onset
variability in the future implementation.

V. CONCLUSION

In this paper, the rapid intensification (RI) process of tropical
cyclone (TC) development was examined, using the first hitting time
and asymptotic analysis for stochastic systems. By extending the TC-
scale dynamical model (MSD) for TC development proposed by
Kieu,”” RI can be considered as a random process whose onset time
possesses a specific probability distribution dictated by TC dynamics.
The reduced dynamics of the MSD model in the phase space of TC
scales (u, v, b) makes it especially attractive for studying RI, because
one can obtain analytical results that could not be obtained otherwise
with full-physics models.

Specifically, by defining RI onset time as the first moment that
TC intensity hits a given level ¢, a formal procedure to derive the RI
onset probability p(x) was obtained in Lemma IIL.1 through a bound-
ary value problem. While the explicit expression for p(x) has to be
relied on numerical integration, its asymptotic limit ¢ — 0 could indi-
cate that the probability of RI onset will be ensured for all initial condi-
tions with vy > 0, consistent with previous modeling studies of TC
development.

Conditioned on the RI onset occurrence, we showed that the tim-
ing of RI onset (7.) would be on average longer for weaker vortex ini-
tial condition v,. Also, RI onset timing will have larger uncertainty
when the random noise amplitude ¢ increases, with an asymptotic var-
iance expression given by Corollary 1 in the small noise limit. In this
small noise regime, we also demonstrated that larger random noise ¢
tends to cause smaller probability for RI onset and a smaller condi-
tional expectation for RI onset time. The latter observation is impor-
tant, because it helps alert forecasters a possible earlier RI onset in the
presence of larger random fluctuation.
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Our main mathematical result regarding the variability of the RI
onset time 7 is provided by Corollary 1, which presents an asymp-
totic formula for the conditional variance of 7, in the small noise
regime. Detailed examination of this variance formula using an effi-
cient algorithm to numerically compute it from any given initial state
showed that the variability of RI onset timing depends critically on TC
initial intensity as well as model parameters. For a fixed set of model
parameters, the variance of RI onset time decreases with initial inten-
sity vo. That is, an initially stronger vortex would experience not only
earlier RI onset time but also less uncertainty in the prediction of the
timing of RI onset. Similarly, the uncertainties in RI onset time will be
smaller when the model parameters such as atmospheric stability (s)
or the aspect ratio (p) decreases, suggesting a strong dependence of the
RI onset forecast on the atmospheric large-scale condition.

To determine the domain of validity of our theoretical results,
Monte Carlo simulations of the MSD system were also conducted, using
the same set of parameters and initial conditions as those obtained from
the theoretical analyses. Our examination of these Monte Carlo simula-
tions for different asymptotic limits of random noise amplitude ¢ con-
firmed the validity of the theoretical results for the limit of ¢ — 0.
These simulations helped verify several hypotheses that were assumed
in our lemmas and theorems, thus providing a range of limits that our
theoretical results can be applied in real TC systems.

From the mathematical perspective, we note an intriguing fact
that several results on the RI onset probability and timing derived
from the MSD system can be understood by using a one-dimensional
(1D) stochastic system. Our analyses of a general 1D stochastic equa-
tion could indeed capture well key properties of the probability distri-
bution of RI onset as well as the timing of RI onset as in the MSD
system. In this regard, these analyses suggest that the method and
results in this study can be applied to more generic stochastic systems
that possess the first hitting time characteristic, so long as the evolution
of the systems prior to a rapid change in the system can be considered
as a slow process. Further exploration of the first hitting time for such
general 1D stochastic systems will be presented in our future work.
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APPENDIX: PROOFS FOR GENERAL
1-DIMENSIONAL DIFFUSIONS

In this section, we provide the proofs of our results in Sec.
1IC. The following asymptotic properties for the error function
will be useful in several places in our proofs: for all ¢ € (0,00), as
¢ — 0, we have

1 if o € (0, 1),
erf(ce” 1) ~ ezr{(c) ffa=1, (A1)
i if o € (1,00).

N
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Here, A ~ B means lim,_gA/B = 1.

Proof 4 (Proof of Lemma I11.4). Let h(x) = P (1, < 19). Then
as in the proof of Lemma III.1, the function h satisfies the following
boundary value problem:

2
%h”(x) FF@H(x) =0 if 0<x<

h(¢) =1 and h(0)=0

Upon solving this equation for h using the integrating factor k, given
by (32), we obtain the desired formula. O
Proof 5 (Proof of Theorem IIL.5). This result and the proof are
similar to that of Ref. 41 (Lemma 6), which is a variation of the
Laplace method. For all t € (0, c0), there exists &, € (0,t) such that

F(t) = F(0)t + F”(; D (A2)
To simplify notation, we introduce
y
f0) = L F(r) dt, (A3)
y 2
hly) = J F(0)tdt = F(0)%,
0
* )
100 = [ e (000 )y
I(x) = J exp (_—szz(y)>dy (A4)
0 &
By Lemma 111.4
P (0 < 10) = - gc(z) ) (a5)
For ally>0 we have |fi(y) — o(y)| = | ] F(t)dt — [} F'(0)tdt|
< Gl (C’) Eetlly3 Hence for y < ce*
1) -l < o (40

Since F is smooth, M := sup,( . |[F" ()| < 0o. Therefore,

L exp (;—221‘1 @)) — exp (;—221‘2 @))dy'

2
e dx dy

) LB dy

JM sup e* .
0 kL)

scitation.org/journal/phf

For the integral 1({) in the denominator, we note that g(y)
:= —2f1(y) is decreasing in [0, £], and thus, it has maximum at ¢ =0
the g(0) = 0. We also note that g’'(0) = —2F(0) = 0. By Laplace
method, as ¢ — 0

1(0) = r 2r0))d re (A8)
— ) PV E) 2
From this and (A7), we see that for o. > i
C I(cer) . I(ce”)
I~ (A9)
By the change of variable u = /F'(0)%
I(ce”) :J ‘ exp (%Z(O)yz) dy
0
¢ cy/Fr(0)e*!
= J e du
€ o—
-z 1/ e JFTI).
So for o> 3, as & — 0, by (A9) we have
Ice) I(ce®) 2\/F e T
(A10)

where in the last step, we used (A8). From (A1), (A5), and (A10), we
obtain the desired equality for o > 3 /4.

The remaining case o € (0,3/4] is covered, because Py(t; <
T9) is monotonically increasing in x and &' < ™ if oy > oy > 0.
The proof is complete. O

Proof 6 (Proof of Lemma IIL6). Let ©= min{t, 70}
=inf{t > 0: Z;, = 0or{} be the time to exit the interval (0,). We
shall show that for any starting point x € [0, /]

{ rx Z
Bleltvean] = 3 o {j [ k@m o | 225 dy dz}.

(A11)
Py(t < 19) and that by Lemma 1114,

We recall that p(x) =

plx) = { k((j The function H defined by H(x) = Ei[t 1{z,<c]
solves the boundary value problem
2
p(x) + %H”(x) FFxH(x)=0 if 0<x<f  (Al2)
H(0) = H({) = 0. (A13)

We now solve (A12) and (A13) to obtain (A11). Note that (A12) is a
first-order equation in H'(x), given by

H (%) + 8%F(X)H'(x) - %22 (). (A14)

We multiply both sides integrating factor k;'(x)

= exp { [y 3 F(t) dt}

by the
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[k, ()] =k (),
H@y;gh@K@+cmm

where we let K(x

= [0 “Y(y)p(y) dy for simplicity.
Integmtzng again and using the fact H(0) = 0, we have

fgrh@K@k+Cer&

H(x) —0=—
& Jo 0

To compute C, we use the fact that H({) = 0. We find that

c:?°£
I k.(z)dz
From the last two displayed equations
- %rmgm@& §
i) = = | kK de e e -Lh@&
5 | Jx k(z)dz
=2 [ kK@ fJMAM@M
0 Jh@k 0
2 L X
8—2{ Ok,,(z) K(z)dz - p(x) —L k:(z) K(z) dz}. (A15)

We now rewrite (A15) in a way that reflects why the compli-
cated expression on the right is non-negative

H(x) :;{Jz k(2)K(2) ff) - JO k() K(2) dz}
/ X
Sizj[kl {L k:(2)K( )dzJ0 k.(z) dz

2

1 s
SZM{J J ke(2)k.(u)(K(z) — K(u)) dudz},

where in the last equality, we have used the fact (by symmetry) that
Jo J5 ke(2)ko(u)(K(z) — K(u)) dudz = 0. In conclusion, we proved
(A11). The lemma then follows from (All). O

Proof 7 (Proof of Theorem II1.7). We recall the formula (34) in
Lemma II1.6. Fix ¢ > 0 and let x — 0, the denominator in (34) is of
order x in the sense that

lim =2 (A16)

x—0 X

The numerator of (34) is also of order x in the sense that

scitation.org/journal/phf

Eg%ijiJ:kxz)k{u)Jzigg)dydudz-J k(u)J f%?)dydu
o (A17)

Equation (A17) follows from the L’Hospital rule and the Leibniz inte-
gral rule as follows. We define

L(x) := J.Z Jx k. (2)k.(u) r PV dydudz,

xJO ub(y)
F@@:ﬁh@ﬂ)[&%@@
Gien) = k(o) [ 290 oy

Then, L(x)= Lf Fi(x,z)dz and F\(x,z) = [; Gi(z,u)du. By
Leibniz integral rule

(
0
_Fl(xvx)+J a

= —ky(x) K ke (u) J: ]i(();,)) dy du + Ji

:uﬂﬁmwﬁﬁg

kgm{ﬁ&wﬂjgawyw}.

Letting x — 0 and applying L’Hospital rule, we obtain (Al17). By
(A16) and (A17), the proof of (36) is complete. The second and the
third derivatives of L(x) are

L'(x) = Fi(x,z)dz

G (z,x) dz

“p(y)
o | k0)

{

dy du + k;(x) J dy du

X

{ U
V) =K | ko) [ 22y —pio) [

0 x k«‘()/) 0
ey — i [ ‘) k(x)p(x) [*
L®)(x) = K (x) L ke (u) L 0 dydu — k() Jo ky(u)du

We note that k(x) ==2F(x)k,(x), so F(0) =0 implies
k/(0) = 0. Furthermore, k',(0)==F(0) <0 since F'(0)> 0.
These give L"(0) = 0 and

—2F'(0)

L®(0) =
&

c-1<0,

L u
where C = L ke, (u) L ]i(();)) dydu = L'(0).

We note that

Exlte |t < o) —

Hence,
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Eylte| e < 1] — ¥(e)

lim 5
x—0 X

2. L(x) = L(0) 5 ki(z)dz
=—lim W

2 x—0 x? [} ko(2)dz

/ g

_ 2y L) =L O

¢ X2k (x) + ZxJ k.(z)dz

0
" g /

2y, - LOKE

e X2k (x) + 4xk,(x) + ZJ k.(z)dz
2. 190 - LKW
T2 x-0 X2k (x) + 6xk, (x) + 6k, (x)
_ 2LB(0) — L'(0) K'}(0)
g2 6
1 (—2F(0) ) 2F'(0)
_§<—82 C-1)+c=3=
_!

3¢2"

O
DATA AVAILABILITY

The data that support the findings of this study are available
within the article.

REFERENCES

TPractically, RI is defined as a change of the maximum 10 m wind of 30 kt
(15 ms ' in 24 h).

2], Kaplan and M. DeMaria, “Large-scale characteristics of rapidly intensifying
tropical cyclones in the North Atlantic basin,” Weather Forecast. 18,
1093-1108 (2003).

3C. R. Sampson, J. Kaplan, J. A. Knaff, M. DeMaria, and C. A. Sisko, “A deter-
ministic rapid intensification aid,” Weather Forecast. 26, 579-585 (2011).

“E. N. Rappaport, J.-G. Jiing, C. W. Landsea, S. T. Murillo, and J. L.
Franklin, “The joint hurricane test bed: Its first decade of tropical cyclone
research-to-operations activities reviewed,” Bull. Am. Meteorol. Soc. 93,
371-380 (2012).

SM. S. Fischer, B. H. Tang, and K. L. Corbosiero, “A climatological analysis of
tropical cyclone rapid intensification in environments of upper-tropospheric
troughs,” Mon. Weather Rev. 147, 3693-3719 (2019).

R. Kowch and K. Emanuel, “Are special processes at work in the rapid intensi-
fication of tropical cyclones?,” Mon. Weather Rev. 143, 878-882 (2015).

7p. Nguyen, C. Kieu, and W.-T. L. Fan, “Stochastic variability of tropical cyclone
intensity at the maximum potential intensity equilibrium,” J. Atmos. Sci. 77,
3105-3118 (2020).

8], Kaplan, C. M. Rozoff, M. DeMaria, C. R. Sampson, J. P. Kossin, C. S. Velden,
J. J. Cione, J. P. Dunion, J. A. Knaff, J. A. Zhang, J. F. Dostalek, J. D. Hawkins,
T. F. Lee, and J. E. Solbrig, “Evaluating environmental impacts on tropical
cyclone rapid intensification predictability utilizing statistical models,”
Weather Forecast. 30, 1374-1396 (2015).

V. Tallapragada, C. Kieu, S. Trahan, Q. Liu, W. Wang, Z. Zhang, M. Tong, B.
Zhang, L. Zhu, and B. Strahl, “Forecasting tropical cyclones in the Western
North Pacific basin using the NCEP operational HWRF model: Model
upgrades and evaluation of real-time performance in 2013,” Weather Forecast.
31, 877-894 (2016).

V. Tallapragada, C. Kieu, Y. Kwon, S. Trahan, Q. Liu, Z. Zhang, and I-H.

Kwon, “Evaluation of storm structure from the operational HWRF during 2012
implementation,” Mon. Weather Rev. 142, 4308-4325 (2014).

ARTICLE scitation.org/journal/phf

TC. M. Rozoff, C. S. Velden, J. Kaplan, J. P. Kossin, and A. J. Wimmers,
“Improvements in the probabilistic prediction of tropical cyclone rapid intensi-
fication with passive microwave observations,” Weather Forecast. 30,
1016-1038 (2015).

T2R. Yang, “A systematic classification investigation of rapid intensification of
Atlantic tropical cyclones with the SHIPS database,” Weather Forecast. 31,
495-513 (2016).

3A. J. Majda, 1. Timofeyev, and E. V. Eijnden, “Models for stochastic climate pre-
diction,” Proc. Natl. Acad. Sci. U. S. A. 96, 14687-14691 (1999).

¥C. Q. Kieu and Z. Moon, “Hurricane intensity predictability,” Bull. Am.
Meteorol. Soc. 97, 1847-1857 (2016).

5D, James, D. S. Chen, Y. Jin, J. R. Moskaitis, S. Wang, E. A. Hendricks, H. Jin,
and T. A. Smith, “Tropical cyclone prediction using COAMPS-TC,”
Oceanography 27, 104-115 (2015).

184 Jin, M. S. Peng, Y. Jin, and J. D. Doyle, “An evaluation of the impact of hori-
zontal resolution on tropical cyclone predictions using COAMPS-TC,”
Weather Forecast. 29, 252-270 (2014).

17C. Kieu, C. Evans, Y. Jin, J. D. Doyle, H. Jin, and J. Moskaitis, “Track depen-
dence of tropical cyclone intensity forecast errors in the COAMPS-TC model,”
Weather Forecast. 36, 469-485 (2021).

18E. L. Navarro and G. J. Hakim, “Idealized numerical modeling of the diurnal
cycle of tropical cyclones,” ]. Atmos. Sci. 73, 4189-4201 (2016).

196, Rasp, T. Selz, and G. C. Craig, “Variability and clustering of midlatitude sum-
mertime convection: Testing the Craig and Cohen theory in a convection-
permitting ensemble with stochastic boundary layer perturbations,” J. Atmos.
Sci. 75, 691-706 (2018).

20G. H. Bryan, N. A. Dahl, D. . Nolan, and R. Rotunno, “An eddy injection
method for large-eddy simulations of tornado-like vortices,” Mon. Weather
Rev. 145, 1937-1961 (2017).

21C. Kieu, K. Keshavamurthy, V. Tallapragada, S. Gopalakrishnan, and S.
Trahan, “On the growth of intensity forecast errors in the operational hurricane
weather research and forecasting (HWRF) model,” Q. J. R. Meteorol. Soc. 144,
1803-1819 (2018).

22C. Q. Kieu and Q. Wang, “Stability of tropical cyclone equilibrium,” J. Atmos.
Sci. 74, 3591-3608 (2017).

23C. Q. Kieu, “Hurricane maximum potential intensity equilibrium,” Q. J. R.
Meteorol. Soc. 141, 2471-2480 (2015).

244, Budhiraja and W.-T. L. Fan, “Uniform in time interacting particle approxi-
mations for nonlinear equations of Patlak-Keller-Segel type,” Electron. J.
Probab. 22, 1-37 (2017).

231, Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd ed.,
Graduate Texts in Mathematics Vol. 113 (Springer-Verlag, NY, 1991),
pp. xxiv-+470.

265, N. Ethier and T. G. Kurtz, Markov Processes: Characterization and
Convergence, Wiley Series in Probability and Mathematical Statistics:
Probability and Mathematical Statistics (John Wiley & Sons, Inc., NY, 1986),
pp. x+534.

7. A. A. Monter and Y. Bakhtin, “Scaling limit for the diffusion exit problem in
the Levinson case,” arXiv:1006.2766 (2010).

28R, F. Bass, Probabilistic Techniques in Analysis (Springer Science & Business
Media, 1994).

29y, Bakhtin and Z. Pajor-Gyulai, “Scaling limit for escapes from unstable equi-
libria in the vanishing noise limit: Nontrivial Jordan block case,”
arXiv:1708.00558 (2017).

30p, Kloeden and E. Platen, Numerical Solution of Stochastic Differential
Equations (Springer, Berlin, 1992), p. 518.

3IM. S. Fischer, B. H. Tang, K. L. Corbosiero, and C. M. Rozoff, “Normalized
convective characteristics of tropical cyclone rapid intensification events in the
North Atlantic and Eastern North Pacific,” Mon. Weather Rev. 146, 1133-1155
(2018).

32C. Q. Kieu, V. Tallapragada, and W. A. Hogsett, “On the onset of the tropical
cyclone rapid intensification in the HWRF model,” Geophys. Res. Lett. 41,
3298-3306, https://doi.org/10.1002/2014GL059584 (2014).

33W. Shen, R. E. Tuleya, and . Ginis, “A sensitivity study of the thermodynamic
environment on GDFL model hurricane intensity: Implications for global
warming,” J. Clim. 13, 109-121 (2000).

Phys. Fluids 33, 096603 (2021); doi: 10.1063/5.0062119
Published under an exclusive license by AIP Publishing

33, 096603-15


https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
https://doi.org/10.1175/WAF-D-10-05010.1
https://doi.org/10.1175/BAMS-D-11-00037.1
https://doi.org/10.1175/MWR-D-19-0013.1
https://doi.org/10.1175/MWR-D-14-00360.1
https://doi.org/10.1175/JAS-D-20-0070.1
https://doi.org/10.1175/WAF-D-15-0032.1
https://doi.org/10.1175/MWR-D-13-00010.1
https://doi.org/10.1175/WAF-D-14-00109.1
https://doi.org/10.1175/WAF-D-15-0029.1
https://doi.org/10.1073/pnas.96.26.14687
https://doi.org/10.1175/BAMS-D-15-00168.1
https://doi.org/10.1175/BAMS-D-15-00168.1
https://doi.org/10.1175/WAF-D-13-00054.1
https://doi.org/10.1175/WAF-D-20-0085.1
https://doi.org/10.1175/JAS-D-15-0349.1
https://doi.org/10.1175/JAS-D-17-0258.1
https://doi.org/10.1175/JAS-D-17-0258.1
https://doi.org/10.1175/MWR-D-16-0339.1
https://doi.org/10.1175/MWR-D-16-0339.1
https://doi.org/10.1002/qj.3344
https://doi.org/10.1175/JAS-D-17-0028.1
https://doi.org/10.1175/JAS-D-17-0028.1
https://doi.org/10.1002/qj.2556
https://doi.org/10.1002/qj.2556
https://doi.org/10.1214/17-EJP25
https://doi.org/10.1214/17-EJP25
http://arxiv.org/abs/1006.2766
http://arxiv.org/abs/1708.00558
https://doi.org/10.1175/MWR-D-17-0239.1
https://doi.org/10.1002/2014GL059584
https://doi.org/10.1175/1520-0442(2000)013<0109:ASSOTT>2.0.CO;2
https://scitation.org/journal/phf

Physics of Fluids

3*K. A. Hill and G. M. Lackmann, “The impact of future climate change on TC inten-
sity and structure: A downscaling approach,” J. Clim. 24, 4644-4661 (2011).

35R.E. Tuleya, M. Bender, T. R. Knutson, J. J. Sirutis, B. Thomas, and I. Ginis,
“Impact of upper-tropospheric temperature anomalies and vertical wind shear
on tropical cyclone evolution using an idealized version of the operational
GDFL hurricane model,” J. Atmos. Sci. 73, 3803-3820 (2016).

367. Moon and C. Kieu, “Impacts of the lower stratosphere on the development
of intense tropical cyclones,” Atmosphere 8, 128 (2017).

37M. Ferrara, F. Groff, Z. Moon, K. Keshavamurthy, S. M. Robeson, and C. Kieu,
“Large-scale control of the lower stratosphere on variability of tropical cyclone
intensity,” Geophys. Res. Lett. 44, 4313, https://doi.org/10.1002/2017GL073327
(2017).

ARTICLE scitation.org/journal/phf

38C. Kieu and D.-L. Zhang, “The control of environmental stratification on the
hurricane maximum potential intensity,” Geophys. Res. Lett. 45, 6272-6280,
https://doi.org/10.1029/2018GL078070 (2018).

39A. Downs and C. Kieu, “A look at the relationship between the large-scale tro-
pospheric static stability and the tropical cyclone maximum intensity,” J. Clim.
33, 959-975 (2020).

“0C. Tao and H. Jiang, “Distributions of shallow to very deep precipitation—
convection in rapidly intensifying tropical cyclones,” J. Clim. 28, 8791-8824
(2015).

“IB. McLoone, W.-T. L. Fan, A. Pham, R. Smead, and L. Loewe, “Stochasticity,
selection, and the evolution of cooperation in a two-level Moran model of the
snowdrift game,” Complexity 2018, 9836150.

Phys. Fluids 33, 096603 (2021); doi: 10.1063/5.0062119
Published under an exclusive license by AIP Publishing

33, 096603-16


https://doi.org/10.1175/2011JCLI3761.1
https://doi.org/10.1175/JAS-D-16-0045.1
https://doi.org/10.3390/atmos8070128
https://doi.org/10.1002/2017GL073327
https://doi.org/10.1029/2018GL078070
https://doi.org/10.1175/JCLI-D-19-0307.1
https://doi.org/10.1175/JCLI-D-14-00448.1
https://doi.org/10.1155/2018/9836150
https://scitation.org/journal/phf

	s1
	s2
	s2A
	d1
	d2
	d3
	d4
	f1
	d5
	d6
	s2B
	d7
	d8
	d9
	f2
	d10
	s3
	d11
	s3A
	d12
	d13
	d14
	s3B
	d15
	d16
	d17
	d18
	s3B
	d19
	d20
	d21
	d22
	d23
	d24
	d25
	d26
	d27
	d28
	d29
	s3B
	s3C
	d30
	d31
	f3
	d32
	s3C
	d33
	d34
	d35
	d36
	d37
	d38
	d39
	s4
	s4A
	d40
	d41
	s4A
	d42
	d43
	s4B
	d44
	s4C
	f4
	f5
	f6
	s4D
	f7
	f8
	s5
	app1
	dA1
	f9
	dA2
	dA3
	dA4
	dA5
	dA6
	dA7
	dA8
	dA9
	dA10
	dA11
	dA12
	dA13
	dA14
	app1
	dA15
	dA16
	dA17
	app1
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41

