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ABSTRACT

Predicting tropical cyclone (TC), rapid intensification (RI) is an important yet challenging task in current weather forecast due to our
incomplete understanding of TC nonlinear processes. This study examines the variability of RI onset, including the probability of RI
occurrence and the timing of RI onset, using a low-order stochastic model for TC development. Defining RI onset as the first hitting time for
a given subset in the TC-scale state space, we quantify the probability of the occurrence of RI onset and the distribution of the timing of RI
onset for a range of initial conditions and model parameters. Based on asymptotic analysis for stochastic differential equations, our results
show that RI onset occurs later, along with a larger variance of RI onset timing, for weaker vortex initial condition and stronger noise ampli-
tude. In the small noise limit, RI onset probability approaches one and the RI onset timing has less uncertainty (i.e., a smaller variance), con-
sistent with observation of TC development under idealized environment. Our theoretical results are also verified against Monte Carlo
simulations and compared with explicit results for a general one-dimensional system, thus providing new insights into the variability of RI
onset and helping better quantify the uncertainties of RI variability for practical applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062119

I. INTRODUCTION

Rapid intensification (RI) is an inherent feature of hurricanes
(also known as tropical cyclone or TC) by which a TC intensifies
quickly in a very short period of time.1 Predicting RI onset is therefore
of great importance in operational TC forecast such that proper and
timely risk management and preparation can be initiated.2–5

While RI is guaranteed to occur under idealized environment,
the probability or the exact moment that RI onset takes place in real-
time forecast highly fluctuates as a result of varying environmental
conditions.6,7 Despite progress in improving TC intensity forecast skill,
RI prediction has been challenging to date. As shown in, for example,
Refs. 8–12, current operational models still have a high false alarm rate
and a moderate probability of detection for RI prediction, even at a
short 24–36h lead time. The RI forecast skill is significantly deterio-
rated as the forecast lead time is extended longer, making it hard to
reliably predict RI in real-time applications. With various uncertainties
in TC intensity fluctuation related to vortex initial conditions, model
errors, boundary conditions, and potential existence of TC intensity
chaotic dynamics and random variability,6,7,13,14 it is necessary to

examine to what extent RI onset can be best predicted for future oper-
ational applications and model improvement.

From the practical perspective, TC development always con-
tains an intrinsically random process that can never be fully con-
trolled due to the stochastic nature of the atmosphere. Naturally,
one then expects RI onset to be impacted by such random variabil-
ity from the atmosphere, especially during the early stage of TC
development that possesses high uncertainties in both the structure
and strength. Figure 1 shows an example of TC intensity evolution
obtained from the Coupled Ocean Atmospheric Prediction System
(COAMPS-TC) model,15,16 using an ensemble of simulations with
small random noises centered on a given initial condition.17 One
notices that the RI onset timing in this ensemble, defined to be the
first moment in the model simulation that the maximum surface
wind (Vmax) increases by 14.5 m s�1 (30 kt) per 24 h, is not a deter-
ministic variable but varies significantly, regardless of how perfect
environmental conditions are.

The above random variation of RI onset timing as illustrated by
the COAMPS-TC model is in fact just one among many other possible
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sources of uncertainties related to, for example, boundary and sur-
face layer parameterization, model physics, vortex initial conditions
and locations, or potential existence of TC chaotic dynamics.14,18–21

The combination of all these uncertainties apparently suggests that
RI onset should not be treated as a deterministic but more as a sto-
chastic process. How to quantify the probability of RI onset as well
as its timing is, nevertheless, an open question in the current TC
research.

In this paper, based on the asymptotic hitting analysis for
stochastic differential equations (SDE), we study the probability of
RI onset as well as the variability of RI onset timing. Our objective
is to examine RI onset under idealized conditions such that intrin-
sic random characteristics of RI onset in the absence of all environ-
mental asymmetries can be investigated. For this purpose, the
first-hitting time (also known as the first passage time) technique for
stochastic processes appears to be appropriate and beneficial due to
its connection with stochastic analysis. Defined as the moment
when a stochastic process first visits a given subset in the state
space, the first-hitting time can be directly linked to RI onset time
from which the first-hitting time techniques can be applied to study
the variability of RI onset as expected. To the best of our knowl-
edge, this approach and its applications to TC development have
not been previously explored. As such, we wish to present in this
study a theoretical framework that could allow one to rigorously
quantify the probability of RI onset as well as the variability of RI
onset timing as a function of the ambient environment and TC
initial conditions.

The rest of this study is organized as follows. In Sec. II, a stochas-
tic model for TC development is presented, followed by a formal defi-
nition of RI onset within the first-hitting time framework. Section III
presents theoretical results for the probability of RI occurrence and the
distribution of RI onset time. Monte Carlo simulations to verify our
theoretical results will be provided in Sec. IV, along with additional
insights on the dependence of RI onset on model parameters.
Concluding remarks are given in the final section.

II. FORMULATION
A. Stochastic model for TC intensification

With an axisymmetric assumption for TC development, Kieu
and Wang22 presented a simple low-order model that is based on a
few fundamental scales of TCs. Unlike common TC balance models,
this TC-scale dynamics, which is a modified version of a TC model
originally proposed by Kieu23 and is hereinafter referred to as the
modified scale dynamics (MSD) model, is time-dependent and explic-
itly contains the maximum potential intensity limit as one of its critical
points. In the non-dimensional form, the MSD system in Ref. 22 can
be summarized as follows:

du
dt
¼ pv2 � ðpþ 1Þb� ujvj;

dv
dt
¼ �uv � vjvj;

db
dt
¼ buþ suþ jvj � rb;

8>>>>>><
>>>>>>:

(1)

where (u, v, b) denote non-dimensional variables that represent the
maximum radial wind, the maximum tangential wind, and the warm
core anomaly in the TC inner-core region. The parameter p is propor-
tional to the squared ratio of the depth of the troposphere over the
depth of the boundary layer, s is an effective tropospheric static stabil-
ity parameter, and r represents the Newtonian cooling. Detailed deri-
vation of this TC-scale system under the assumption of wind induced
surface heat exchange (WISHE) feedback can be found in Ref. 22.

Because of the dependence of frictional forcing and the WISHE
feedback on the wind amplitude, the terms containing the absolute
sign in Eq. (1), that is, jvj, result in two possibilities for TC develop-
ment corresponding to cyclonic and anticyclonic flows. To ease our
subsequent analyses, we will focus only on the regime in the state space
where v> 0, which corresponds to cyclonic TCs in the Northern
Hemisphere. This cyclonic system will be hereinafter explicitly referred
to as an MSDþ system [see Eqs. (69)–(71) in Ref. 22], which is
described by the following equations:

du
dt
¼ pv2 � ðpþ 1Þb� uv;

dv
dt
¼ �uv � v2;

db
dt
¼ buþ suþ v � rb:

8>>>>>><
>>>>>>:

(2)

To simplify our notation, we write this MSDþ system in the form

dxðtÞ
dt
¼ lðxðtÞÞ; t � 0; (3)

where xðtÞ � ½uðtÞ; vðtÞ; bðtÞ�, and the vector field l ¼ ðl1;l2;l3Þ :
R3 ! R3 is the forcing function of (2), that is,

l1ðu; v; bÞ ¼ pv2 � ðpþ 1Þb� uv;

l2ðu; v; bÞ ¼ �uv � v2;

l3ðu; v; bÞ ¼ buþ suþ v � rb:

8><
>: (4)

While the low-order MSD system is admittedly simple as com-
pared to real TCs, the fact that main TC dynamics can be formulated
in such a mathematically closed form is noteworthy here. This is

FIG. 1. Time series of the maximum 10 m wind (VMAX) ensemble during the
course of idealized simulations using the COAMPS-TC model, under a perfect
model scenario. The ensemble is perturbed by small random perturbations at the
initial condition as presented in Ref. 17. The gray box denotes the interval at which
RI onset time varies among different ensemble members. Here, the RI onset
moment is defined as the time into simulation that the VMAX change in the next
24 h is � 14:5 ms�1.
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because this MSD system allows one to obtain different insights into
the underlying mechanisms of TC development beyond numerical
simulations by full-physics models that one cannot fully control.

Given the above deterministic model (2) for TC development, we
next extend it to a stochastic system. Following Ref. 7, stochastic forc-
ing is introduced to the MSD system as an additive Wiener process.
Specifically, we consider the stochastic processXt :¼ ðUt ;Vt ;BtÞ solv-
ing the time-homogeneous Itô stochastic differential equation as
follows:

dXt ¼ lðXtÞ dt þ e dWt ; t � 0; (5)

where e > 0 is a constant (the diffusion coefficient) that parametrizes
the magnitude of the fluctuation of the random forcing, and W is a
standard 3-dimensional Wiener processes. Explicitly

dUt ¼ ðpV2
t � ðpþ 1ÞBt � UtVtÞ dt þ e dWðuÞ

t ;

dVt ¼ ð�UtVt � V2
t Þ dt þ e dWðvÞ

t ;

dBt ¼ ðBtUt þ sUt þ Vt � rBtÞ dt þ e dWðbÞ
t ;

8>>><
>>>:

(6)

where fWðuÞ; WðvÞ;WðbÞg are independent Wiener processes. The
use of these independent Wiener processes to represent the random
forcing for the MSD system significantly simplifies the problem both
theoretically and numerically. For example, a numerical solution to
Eq. (6) with a sufficiently small discretization time step Dt can be
obtained by using the simple Euler–Maruyama scheme in which a
Gaussian random variable with variance ðDtÞe2 is added to each state
variable in every iteration.7,24 Figure 2 shows an illustration of numeri-
cal simulations of the MSD system (6) for 30 different realizations,
using the same method and parameters as in Ref. 7. One notices
apparently from this result that the MSD system displays RI for many
realizations, while a few realizations quickly decay. For those that dis-
play RI, notice also that the RI onset timing varies as well (see the
crosses in Fig. 2). How the probability of RI occurrence and its related

variability depend on model parameters or vortex initial conditions is
the main question we wish to tackle herein.

It should be mentioned that the closed form of the MSD system
as given by (6) is important in this study, as one can employ rigorous
mathematical tools such as stochastic calculus and asymptotic analysis
to study RI onset. One could of course use full-physics models such as
the COAMPS-TC to examine the stochastic nature of RI onset as
shown in Fig. 1. Note however that the larger computational and stor-
age requirement of the full-physics models generally prevent one from
carrying out a large number of simulations to obtain significant statis-
tics, let alone analyzing the various nonlinear contribution of different
large-scale factors. In this regard, the Itô SDE (6) is useful for our theo-
retical analyses herein. The meaning and the well-posedness of these
SDEs can be found in standard textbooks such as Ref. 25 and will not
be discussed further here.

B. RI onset definition

To assess the occurrence (and failure) of RI onset and to quantify
the distribution of RI onset timing, it is necessary to introduce a formal
definition of RI onset such that rigorous analyses can be obtained.
Given the previous studies on the first-hitting time for stochastic sys-
tems, we herein define RI onset time as the first moment that the V
component reaches a given level ‘ 2 ð0;1Þ; afterward, RI is guaran-
teed to occur. Analyses of the MSD system showed indeed that such
an RI onset level always exist,23 because the MSD system contains a
single stable point at the maximum potential intensity limit (cf. Figs. 1
or 2 and Ref. 7). As such, when V reaches the level ‘, TC intensifica-
tion is ensured to rapidly approach the potential intensity state, thus
justifying our definition of RI onset here.

Given the above definition of RI onset time, we now investigate
the following two specific questions:

(1) Probability of RI onset occurrence: whether or not tangential
wind (i.e., v) will reach the level ‘ such that RI onset can occur;
and

(2) Variability of RI onset timing: if RI occurs, what is the statisti-
cal distribution of RI onset time?

To be more specific, we introduce the following hitting times for
the stochastic MSD system (6):

sþ :¼ infft � 0 : Vt ¼ ‘g; the first timewhenV reaches ‘; (7)

s0 :¼ infft � 0 : Vt ¼ 0g; the first timewhenV hits zero
ði:e:; an initial vortex diesoutÞ: (8)

The RI onset time for the SDE (6) is defined to be sþ. Furthermore, we
say that RI onset occurred if sþ < s0. That is, when the trajectory of v
hits ‘ without dying out before that. The condition sþ < s0 is needed
here, because any tropical disturbance hitting the level v¼ 0 will be
considered as being dissipated and so there is no RI for this vortex
development in reality.

Due to the stochastic nature of the TC stochastic dynamics, it is
apparent that sþ is a random variable. As such, our aim is to obtain
the probability Px0ðsþ < s0Þ as a function of the initial condition
x0 ¼ ðu0; v0; b0Þ and the model parameters. Since the initial point can
be any point in the state space, we define the function

pðxÞ :¼ Pxðsþ < s0Þ; (9)

FIG. 2. Time series of the v component of the MSD system (6), which is obtained
from a 30-member Monte Carlo simulation, using the same set of parameters (p, r, s)
as in Ref. 7 and initial condition of ðu ¼ 0; v ¼ 0:01; b ¼ 0Þ. The crosses denote
the RI onset moment, which is defined as the first time into the simulation that the v
component starts to rapidly amplify, similar to the RI onset defined in Fig. 1.
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with x ¼ ðu; v; bÞ a generic point in the state space.
For comparison between the stochastic and deterministic MSD

systems, one needs also a deterministic RI onset time T for the ordi-
nary differential equation (ODE) (2), which is defined as follows:

T :¼ infft � 0 ; vðtÞ ¼ ‘g: (10)

By definition, T the first time the trajectory ½vðtÞ�t�0 of (2) hits level ‘
in the absence of all stochastic forcings. It should be noted that one
cannot choose a too large value for ‘, as the MSD system possesses a
unique stable point v�.

22,23 Thus, v will be always attracted to its equi-
librium v� and may never reach ‘ if ‘ is set too large. Hence, it is natu-
ral to make the following mild assumption throughout the paper.

Assumption 1. 0 < ‘ < v�, where v� is the v-component of the
stable critical point in the phase space (u, v, b) of the ODE (2).

Under this assumption, T is finite (i.e., the v-component of
the ODE must hit level ‘) if the initial condition v0 > 0. That is, the
v-trajectory for the ODE never hits zero so long as the initial value v0
is positive as proven in Ref. 22.

III. THEORETICAL RESULTS

In this section, we present rigorous analyses of the RI onset prob-
ability pðxÞ ¼ Pxðsþ < s0Þ for the stochastic MSD model (6), along
with the conditional probability distribution of sþ. We recall from our
definition (7) of RI onset time that sþ is the first time for v to reach
level ‘. Thus, we will apply the asymptotic techniques for SDE to esti-
mate the hitting time in the MSDmodel (6).

We note first that Eq. (6) has a unique strong solution
X ¼ ðXtÞt�0, where Xt ¼ ðUt ;Vt ;BtÞ is a three-dimensional vector
for each time t � 0. Furthermore, X is a continuous-time strong
Markov process with infinitesimal generatorl defined by the follow-
ing differential operator:

lf ðxÞ ¼ l1
@f
@u
þ l2

@f
@v
þ l3

@f
@b
þ e2

2
@2f
@u2
þ @

2f
@v2
þ @

2f
@b2

� �
; (11)

where x ¼ ðu; v; bÞ is a generic point in the state space of the SDE. Let
pðx; tÞ be the probability density for Xt ; that is, PðXt 2 dxÞ
¼ pðx; tÞdx where dx is the Lebesgue measure in R3. Then, pðx; tÞ
satisfies the Fokker–Planck equation @pðx;tÞ

@t ¼l
�pðx; tÞ, where l� is

the adjoint of l in the Hilbert space L2ðdxÞ. These facts follow from
standard techniques in stochastic calculus as can be seen, for instance,
in Ref. 25, Chap. 5.

In principle, (11) enables one to obtain all desired statistics of RI
onset time. However, due to nonlinearity of the SDE there is no explicit
formula for the density pðx; tÞ. In Subsections III B and IIIC, we shall
therefore derive formal results for the probability of RI onset and the
distribution of sþ in the asymptotic limit of small stochastic forcing.
These formal connections between SDE and partial differential equation
(PDE) are the starting point of more in-depth analysis of the statistics of
RI onset time that we can later verify byMonte Carlo simulations.

Remark 1 (Implicit dependence parameters). We note that the
process X ¼ ðU ;V;BÞ, the generator l, the onset time sþ, and the
extinction time s0 all depend on the noise parameter e and the MSD
model parameters (p, r, s). This dependence is important to under-
stand how the probability of RI onset would depend on large-scale
environmental factors, but it will be made implicit here to simplify our
notation.

A. Probability of RI onset

In the case when the initial value of V is positive (i.e., V0 > 0), it
is possible to obtain a simplification for the MSDþ system based on
the fact that RI onset would not occur if V hits zero level or becomes
negative (i.e., an anticyclonic vortex). We therefore begin with the fol-
lowing lemma that expresses the probability of RI onset occurrence.
That is, the probability that V reaches a prescribed level ‘ > 0 without
dying out. Practically, this probability indicates the development of a
cyclonic vortex (v> 0) instead of anticyclonic vortex (v< 0), given
that the initial state of the vortex is cyclonic in the Northern hemi-
sphere (or an anticyclonic vortex from an initial anticyclonic state in
the Southern Hemisphere).

Lemma III.1 (Probability of RI onset). Let pðxÞ ¼ Pxðsþ < s0Þ
be the probability of the RI onset occurrence when an initial state of the
SDE (6) is x ¼ ðu; v; bÞ. Then, p satisfies the following boundary value
problem:

lpðxÞ ¼ 0 if 0 < v < ‘;

pðxÞ ¼ 1 if v ¼ ‘;
pðxÞ ¼ 0 if v ¼ 0;

8><
>: (12)

wherel is the operator (11).
Proof 1. The proof is standard and we give a sketch to illustrate the

key idea. We recall (7) and (8) and define s :¼ minfsþ; s0g to be the
first time for the v component to exit the interval ð0; ‘Þ. Then, the event
fsþ < s0g is the same as the event fVs ¼ ‘g when the starting point
x ¼ ðu; v; bÞ satisfies v 2 ½0; ‘�. Hence, pðxÞ ¼ PxðXs ¼ ‘Þ. The ran-
dom times sþ, s0, and s are stopping times with respect to the filtration
generated by process X. Hence, by the Dynkin’s formula (see Ref. 26,
Chap. 2)

Exf ðXsÞ ¼ f ðxÞ þEx

ðs

0
lf ðXsÞ ds

� �
; (13)

for all bounded functions f in the domain of l. From this and the fact
that (12) has unique solution, we can check that p is the solution to
(12). �

It should be noted that if the starting point x0 ¼ ðu0; v0; b0Þ is
fixed (i.e., does not depend on e) and that v0 > 0, then the probability
of RI onset will tend to 1 as e! 0. This is because the ODE starting
with v0 > 0, which corresponds to the case e¼ 0 (i.e., no random fluc-
tuation), always hit level ‘ under the assumption 0 < ‘ < v� (i.e.,
Assumption 1. See also Ref. 22). By Ref. 27 (Lemma 5) and
Assumption 1

lim
e!0

pðx0Þ ¼ 1 for all x0 ¼ ðu0; v0; b0Þ 2 R� ð0; ‘� �R: (14)

Physically, this asymptotic behavior of pðx0Þ implies that the probabil-
ity of RI onset will approach 1 when the random noise effect goes to
zero (i.e., e! 0) for any initial vortex strength x0. The validity of this
result will be later verified by our Monte Carlo simulation in Sec. IV
(cf. Fig. 6).

B. Distribution of RI onset time

We assume that RI onset occurs, the next question one wishes to
examine is how the RI onset time sþ depends on the model initial con-
ditions or parameters. Answering this question will help forecasters to
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estimate the uncertainty of their RI onset prediction as TCs evolve
with time.

For this, we start with the Cumulative Distribution Functions
(CDF) of sþ, conditioned on the occurrence of RI onset. Precisely, let
Fonðt; xÞ :¼ Pxðsþ � t j sþ < s0Þ be the CDF of sþ, under the condi-
tion that RI onset occurs and the SDE (6) starts from an initial value x.
Let pðxÞ ¼ Pxðsþ < s0Þ be the probability of RI onset as in Lemma
III.1, then

Fonðt; xÞ ¼
Pxðsþ � t ; sþ < s0Þ

pðxÞ : (15)

In Lemma III.2 below, we obtain the numerator of (15) and therefore
Fon.

Lemma III.2 (Distribution of RI onset time). Let Gðt; xÞ :¼
pðxÞ Fonðt; xÞ ¼ Pxðsþ � t ; sþ < s0Þ. Then, G satisfies the boundary
value problem

@Gðt; xÞ
@t

¼lG; t 2 ð0;1Þ; x 2 ðu; v; bÞ : 0 < v < ‘
� �

; (16)

Gð0; xÞ ¼ 0; x 2 fðu; v; bÞ : 0 < v < ‘g; (17)

Gðt; xÞ ¼ 0; t 2 ð0;1Þ; x 2 fðu; 0; bÞ; ðu; ‘; bÞg; (18)

wherel is the operator (11).
Proof 2. The initial condition (17) and the boundary condition

(18) are clearly satisfied. Let Hðt; xÞ :¼ Pxðsþ > t ; sþ < s0Þ ¼ pðxÞ
�Fonðt; xÞ.

Let Xab be the absorbed diffusion28 obtained when X, the solution
to SDE (6), is absorbed upon hitting the boundary of the domain
D ¼ fðu; v; bÞ : 0 < v < ‘g. By the strong Markov property of Xab

Hðt; xÞ ¼ PxðXab
t 2 D; sþ < s0Þ

¼
ð
D

Pyðsþ < s0ÞPxðXab
t 2 dyÞ

¼
ð
D
pðyÞ pabðt; x; yÞ dy;

where pabðt; x; yÞ is the transition density of Xab. By the backward
Kolmogorov’s inequality (Ref. 25, Chap. 5), we have @Hðt;xÞ

@t ¼lHðt; xÞ
and hence (16). �

Unlike Theorem III.1 that focuses on whether or not an RI
onset would occur, Lemma III.2 informs us the probability of hav-
ing an RI onset time no later than a given time t if the initial condi-
tion is x ¼ ðu; v; bÞ. We note that one can always numerically solve
(16)–(18) to obtain Fonðt; xÞ. We can then verify Lemma III.2 by
comparing the corresponding probability density function (i.e., its
time-derivative @Fon

@t ) with the histograms of RI onset statistics
obtained from the Monte Carlo simulation of the MSD system (3)
(cf. Fig. 6).

To obtain more quantitative insight about sþ, we establish in
Theorem III.3 below the limiting distribution of the onset time proba-
bility density distribution for sþ as e! 0. Let ½uðtÞ; vðtÞ; bðtÞ�t�0 be
the solution of the ODE (3) starting at x0 ¼ ðu0; v0; b0Þ and
T ¼ infft � 0 ; vðtÞ ¼ ‘g, we then have

Theorem III.3 (Asymptotic distribution of RI onset time). We
suppose the initial state of the SDE (6) is the same as that of the ODE
(3); that is, X0 ¼ x0 ¼ ðu0; v0; b0Þ. We suppose v0 2 ð0; ‘Þ and that
the onset level ‘ satisfies Assumption 1. Then, as e! 0, the random

variable e�1ðsþ � TÞ converges in distribution to the centered
Gaussian random variable with variance

R22ðTÞ
‘2 uðTÞ þ ‘½ �2

; (19)

where RðtÞ ¼ ½RijðtÞ� is the 3� 3 matrix

RðtÞ ¼ e
Ð t

0
AðrÞdr 	

ðt
0
e�
Ð s

0
AðrÞdre�

Ð s
0
A>ðrÞdr ds

 !
	 e
Ð t

0
A>ðrÞdr

; (20)

and AðtÞ ¼ Ax0ðtÞ is the Jacobian matrixrlðxðtÞÞ, that is,

AðtÞ ¼
�vðtÞ 2p vðtÞ � uðtÞ �ðpþ 1Þ
�vðtÞ �uðtÞ � 2vðtÞ 0

bðtÞ þ s 1 uðtÞ � r

0
BB@

1
CCA: (21)

An immediate consequence of Theorem III.3 is an asymptotic
formula for the variance of sþ, conditioned on RI onset occurrence
(sþ is infinity by convention if RI does not occur, so we should con-
sider the conditional variance rather than the variance of sþ).

Corollary 1 (Variance of RI onset time). As e! 0, the distribu-
tion of the RI onset time sþ is well approximated by a Gaussian variable
with mean T and conditional variance

Varðsþ j sþ < s0Þ 
 e2
R22ðTÞ

‘2 uðTÞ þ ‘½ �2
: (22)

Corollary 1 is noteworthy because it captures the behavior of the
conditional variance of the RI onset timing sþ in terms of the initial
condition x0 as well as the model parameters p, r, s as e! 0, which is
proportional to the variance of the additive noise e2. For practical
applications, this explicit dependence of the variability of RI onset tim-
ing on model parameters or initial condition allows one to quantify
how the uncertainty of RI onset forecast changes when a TC evolves
or ambient environment varies. As will later be verified in our numeri-
cal simulations, examination of its dependence on the model parame-
ters (p, r, s) shows that the probability distribution for sþ is close to a
Gaussian distribution centered at T when e! 0 as proven in
Corollary 1.

Proof 3 (Proof of Theorem III.3). Our proof is based on Theorem
1 in Ref. 27 which gives an asymptotic result for a small noise stochastic
diffusion equation

dXeðtÞ ¼ lðXeðtÞÞ þ ea1WeðXeðtÞÞ½ �dt þ erðXeðtÞÞdWt ; (23)

Xeð0Þ ¼ x0 þ ea2ne: (24)

We need to check the conditions of that theorem before we can
apply it. By taking ne � 0; We � 0; a1 ¼ 1, and rð	Þ ¼ I3�3 the unit
matrix in (23) and (24), we obtain (5), with the unperturbed initial con-
dition X0 ¼ x0. We let M be the hyperplane M ¼ fðu; v; bÞ 2 R3 :

v ¼ ‘g in R3. Then, the hitting time se in Theorem 1 of Ref. 27 is
exactly the RI onset time sþ defined in (7).

Step 1: Joint convergence. We recall that the deterministic time
T defined by (10) is the first time the trajectory v of the ODE (2) hits
level ‘. We denote by z :¼ ðz1; z2; z3Þ ¼ ½uðTÞ; ‘; bðTÞ� the point
where the trajectory of the MSD system (3) hits M. In Ref. 29, it is
assumed that the deterministic vector field l is smooth, and the
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deterministic time defined by (10) must satisfy 0 < T <1. Moreover,
it is assumed that lðzÞ does not belong to the tangent space TzM of M at
the point z (or in other words the orbit of the system (3) intersects M
and the crossing is transversal). These assumptions are satisfied by our
MSD system (3) under Assumption 1. Therefore, we can indeed apply
Theorem 1 of Ref. 27.

Let pl be the projection onto span½lðzÞ� along TzM and pM the
projection onto TzM along span½lðzÞ�; see Fig. 3. Then for any vector
g 2 R3; plg 2 R and pMg 2 TzM satisfy

g ¼ plg 	 lðzÞ þ pMg:

Note that in our case, the tangent space TzM is exactly M itself
since it is a plane. Theorem 1 of Ref. 27 asserts the following convergence
in distribution as e! 0:

e�1 sþ � T; XeðsþÞ � zð Þ!d �pl/0ðTÞ; pM/0ðTÞ
� 	

; (25)

where

/0ðtÞ ¼ Ux0ðtÞ
ðt
0
Ux0ðsÞ

�1 dWðsÞ (26)

is a random vector in R3. The matrix-valued function Ux0ðtÞ
¼ e
Ð t

0
Ax0 ðrÞdr solves the equation

d
dt

Ux0ðtÞ ¼ Ax0ðtÞUx0ðtÞ;
Ux0ð0Þ ¼ I3�3;

where Ax0ðtÞ is given by (21).
Step 2: Projection and variance computation. The above

3-dimensional random vector (26) is Gaussian distributed with mean
zero and co-variance matrix RðtÞ given by (20). That is, /0ðtÞ
�n½0;RðtÞ�. Let /0ðTÞ ¼ ½/0;1ðTÞ;/0;2ðTÞ;/0;3ðTÞ�. Clearly,
/0;2ðTÞ �n½0;R22ðTÞ�.

By definition of the projections, we have

/0ðTÞ ¼ pl/0ðTÞlðzÞ þ pM/0ðTÞ;

where pl/0ðTÞ 2 R and pM/0ðTÞ 2 TzM. See Fig. 3 with g
¼ /0ðTÞ for an illustration. Since TzM is parallel to the (u, b)-plane, the
second coordinate (i.e., the v-coordinate) of /0ðTÞ is the same as that of
pl/0ðTÞlðzÞ. That is,

/0;2ðTÞ ¼ pl/0ðTÞ 	 l2ðzÞ:

This implies that

pl/0ðTÞ ¼
/0;2ðTÞ
l2ðzÞ

; (27)

and so pl/0ðTÞ is a centered Gaussian vector with variance R22ðTÞ
l2ðzÞ2

.

Step 3: Conclusion. In conclusion, from (25), for e close to zero
we get that in distribution

ðsþ;XeðsþÞÞ 
 ðT; zÞ þ eð�pl/0ðTÞ; pM/0ðTÞÞ: (28)

From (28) and (14), the conditional expectation

Ex0 sþ j sþ < s0½ � ! T as e! 0; (29)

because /0ðTÞ is a centered Gaussian vector. For the conditional
variance

Varðsþ j sþ < s0Þ 
 e2
R22ðTÞ
l2ðzÞ2

¼ e2
R22ðTÞ

z22ðz1 þ z2Þ2
:

�

C. Hitting analysis for one-dimensional reduction

The typical behavior of TC dynamics shown in Fig. 1 captures an
important characteristic of TC development. Specifically, the pre-RI
period before TC intensity rapidly amplifies is characterized by very
slow evolution, much like a constant-forcing dynamical system. One
can therefore exploit this property to further study RI onset by reduc-
ing the MSD system to a general one-dimensional SDE model for the
v component, which can provide additional insights into the variability
of RI onset time. That is, we wish to examine herein a particular case
in which the noise e is fixed while v0 is small (v0 ! 0). This case differs
from (14) and Theorem III.3, which focus on the probability of RI
onset and the distribution of the onset time for a limit of the small
noise e! 0 with a fixed initial condition v0. As such, the behaviors of
RI onset for a fixed noise e but small v0 are unclear from Theorem
III.3 that we wish to examine in this subsection.

For this purpose, we observe from our Monte Carlo simulations
of the MSD system to be presented in Sec. IV that (see the lower left
panels in Fig. 6)

o1: the probability of RI onset gets smaller as v0 ! 0.
o2: the conditional distribution of the RI onset time sþ (given that
an RI onset occurred) is skewed to the left and has a smaller aver-
aged value than the deterministic onset time T.

This regime (i.e., v0 is very small compared with e) is challenging to
analyze, because a standard Gaussian approximation is no longer
valid. However, it is possible to offer some insight into the aforemen-
tioned observations through the following general 1-dimensional SDE:

dZt ¼ FðZtÞ dt þ edWt ; (30)

where W is the Wiener process in R, and F : R! Rþ is an arbi-
trary given smooth function such that

Fð0Þ ¼ 0 and FðxÞ > 0 for x > 0: (31)

Our aim here is to compare the qualitative behavior of the V-component
of (6) and the process Z solving (30), when the initial value v0 is “small.”

FIG. 3. Illustration of the projections plg 2 R and pMg 2 TzM. Given vectors
g; lðzÞ 2 R3 and the tangent plane TzM, we have g ¼ plg 	 lðzÞ þ pMg.
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How “small” the initial value is depends on the fixed noise level e, as
quantified in Theorem III.5 below.

Remark 2. It is natural to question why one wishes to further
examine a 1-dimensional SDE, given that the condition of TC initial
intensity v0 less than the noise amplitude e is not realized in reality.
We should emphasize here, however, that it is not our intention to
applying (30) to real TC development. Instead, the aim of this 1D sys-
tem is to qualitatively capture the behaviors of TC dynamics during
the initial development up to the RI onset moment for which the MSD
forcing can be approximated as a constant. The advantage of this 1D
analysis lies in the fact that the forcing function F can now be quite
general; that is, we do not require any specific functional form for F.
Thus, our analysis for the 1D system (30) works for a larger class of
forcing functions F.

We consider the hitting times at the endpoints 0 and ‘. That is,

si :¼ infft � 0 : Zt ¼ ig for i ¼ 0; ‘:

Analogous to the probability of RI onset is Pxðs‘ < s0Þ, the probabil-
ity of hitting ‘ before 0 provided that (30) starts at Z0 ¼ x. Lemma
III.4 below gives an exact formula for this, which is not available in
higher dimensions in general.

Lemma III.4. The probability of hitting ‘ before 0 for Z in (30)
starting at x 2 ½0; ‘� is

Pxðs‘ < s0Þ ¼

ðx
0
keðyÞ dyð‘

0
keðyÞ dy

;

where ke is the function

keðyÞ ¼ exp
�2
e2

ðy
0
FðtÞdt


 �
: (32)

The following result quantifies a dichotomy for the probability
Peaðs‘ < s0Þ of hitting ‘ before 0, starting at ea. Namely, this proba-
bility is close to 0 if the starting point is small (a large), and close to 1
when the starting point is large (a small).

Theorem III.5 (Asymptotic hitting probability). We suppose F is
a smooth function satisfying (31) and F0ð0Þ > 0. For all c> 0, the prob-
ability of hitting ‘ before 0 for Z in (30) starting at c ea satisfies

lim
e!0

Pceaðs‘ < s0Þ

¼
1 if a2 ð0;1Þ; i:e:; startingpoint isnot small;

erf ðc
ffiffiffiffiffiffiffiffiffiffi
F0ð0Þ

p
Þ if a¼ 1;

0 if a> 1; i:e: ; startingpoint isvery small;

8><
>:

where erf ðxÞ :¼ 2ffiffi
p
p
Ð x
0 e
�z2 dz is the error function.

Remark 3. Analogous to the RI onset indicator (44) is the inverse
h�1e ð0; 8Þ where heðzÞ ¼ Pzðs‘ < s0Þ. From the critical case a¼ 1, for
e 
 0, we have heðzÞ ¼ erf ðze

ffiffiffiffiffiffiffiffiffiffi
F0ð0Þ

p
Þ. Then

h�1e ð0:8Þ 

effiffiffiffiffiffiffiffiffiffi
F0ð0Þ

p erf �1ð0:8Þ

is linear in e when e 
 0. This is consistent with the approximately lin-
ear curve in Fig. 5.

Now we condition on the event fs‘ < s0g and consider the con-
ditional distribution of the hitting time s‘. We shall compute condi-
tional expected time. This is analogous to conditioning on RI onset
occurrence and consider the conditional distribution of the RI onset
time. Precisely, we shall compute the conditional expected time

Ex s‘ j s‘ < s0½ �: (33)

For the rest of this section, we obtain an explicit formula for this
conditional expected time in Lemma III.6 and study its asymptotic
behavior in Theorem III.7 below.

Lemma III.6. For x 2 ð0; ‘�,

Ex s j s‘ < s0½ � ¼ 2
e2

1Ð x
0 keðzÞdz

ð‘
x

ðx
0
keðzÞkeðuÞ

ðz
u

pðyÞ
keðyÞ

dy du dz

( )
;

(34)

where pðxÞ ¼ Pxðs‘ < s0Þ is the probability in Lemma III.4.
Theorem III.7 below asserts that as the starting point x ! 0

Ex s‘ j s‘ < s0½ � 
 WðeÞ � x2

3e2
; (35)

for some positive number WðeÞ.
Theorem III.7 (Asymptotic conditional hitting time). We sup-

pose F is a continuous function. For each fixed noise level e > 0

lim
x!0

Ex s‘ j s‘ < s0½ � ¼ WðeÞ; (36)

where

WðeÞ ¼ 2
e2

ð‘
0
keðuÞ

ðu
0

pðyÞ
keðyÞ

dy du 2 ð0;1Þ: (37)

Furthermore, we suppose F satisfies (31) and F0ð0Þ > 0. Then,

lim
x!0

WðeÞ �Ex s‘ j s‘ < s0½ �
x2

¼ 1
3e2

: (38)

Theorem III.7 implies that, fixing a noise level e > 0, the condi-
tional expected hitting time Ex½s‘ j s‘ < s0� stays bounded as x ! 0.
This is in contrast to the deterministic analogue [which tends to infin-
ity in the order of Oð�log xÞ as x ! 0 when F0ð0Þ > 0]. Since

WðeÞ � x2

3e2
� Oð�log xÞ as x ! 0: (39)

Theorem III.7 provides a possible explanation to the observation that
the conditional expected hitting time is shorter than the deterministic
hitting time, mentioned in observation o2 at the beginning of this
section.

IV. NUMERICAL RESULTS
A. Algorithm

From the practical standpoint, Lemma III.1, Lemma III.2, and
Theorem III.3 presented in Sec. III are useful for RI forecast applica-
tions, because they directly indicate the probability of RI onset occur-
rence as well as the variability of RI onset time. In this section, we will
present numerical investigation to validate a number of theoretical
results presented in Sec. III, from which further examination of RI
onset on various model parameters and initial conditions can be

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 096603 (2021); doi: 10.1063/5.0062119 33, 096603-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


obtained. In particular, we wish to verify the variance formula (20) in
Corollary 1 for RI onset time because of its importance in real-time
forecast. While this formal variance expression is mathematically sig-
nificant, we note that its direct calculation is challenging because of the
matrix exponent and integration that are sensitive to matrix opera-
tions. As such, we present in this section a numerical algorithm to
compute the matrix RðtÞ efficiently.

For the numerical purposes, we observe that the variance matrix
RðtÞ, defined in (20), solves the following differential equation:

dRðtÞ
dt
¼ I3�3 þ Ax0ðtÞRðtÞ þ RðtÞAx0ðtÞ

>; (40)

where the matrix Ax0ðtÞ is defined in (21). The above Eq. (40) can be
indeed derived by rewriting

RðtÞ ¼ Ux0ðtÞ 	 NðtÞ 	 ðUx0ðtÞÞ
>; (41)

where NðtÞ ¼ ð
Ð t
0 Ux0ðsÞ

�1ðUx0ðsÞ
�1Þ> dsÞ, and Ux0ðtÞ is the solution

of the following differential equation:27

d
dt

Ux0ðtÞ ¼ Ax0ðtÞUx0ðtÞ;
Ux0ð0Þ ¼ I3�3:

After taking derivatives in (41) and applying the product rule, we get

d
dt

RðtÞ ¼ d
dt

Ux0ðtÞ 	 NðtÞ 	 ðUx0ðtÞÞ
> þ Ux0ðtÞ 	

d
dt

NðtÞ 	 ðUx0ðtÞÞ
>

þ Ux0ðtÞ 	 NðtÞ 	
d
dt
ðUx0ðtÞÞ

>: (42)

By Sec. IVA and the fact that d
dt NðtÞ ¼ Ux0ðtÞ

�1ðUx0ðtÞ
�1Þ>, we thus

have

d
dt

R ¼ Ax0Ux0 N U>x0 þ Ux0U
�1
x0 ðU

�1
x0 Þ
> U>x0 þ Ux0 N U>x0A

>
x0 : (43)

Using (41) again and rearranging the right-hand side of Eq. (43), we
thus obtain Eq. (40) for the variance matrix RðtÞ.

The particular benefit of this differential equation approach for
RðtÞ instead of the formula (20) in Corollary 1 is that it allows for inte-
grating the matrix equation (40) forwards in time from any initial con-
dition up to any given time t without the need of explicitly computing
the exponent of matrix integration in Eq. (20). We note, however, that
this algorithm requires computing the coefficient matrix A(t) along
the trajectory, which is the Jacobian matrix of the model state as seen
in Eq. (21). As a result, we have to integrate the deterministic model
(1) first and store the entire trajectory ½uðtÞ; vðtÞ; bðtÞ� before the inte-
gration of (40) can be carried out.

Along with the above numerical algorithm to obtain the variance
formula in Corollary 1, Monte Carlo simulations of the MSD model
(6) will be also carried out to verify Corollary 1. For these Monte Carlo
simulations, the MSD system (6) is integrated by using the
Runge–Kutta fourth-order scheme with time step dt¼ 0.001. As men-
tioned in Ref. 7, the stochastic forcing in the MSD system (6) is addi-
tive with no state dependence. Thus, the Runge–Kutta scheme can be
applied to the deterministic part of Eq. (6), with the stochastic forcing
added at each time step. This method retains the fourth-order accu-
racy for the deterministic part, while the stochastic accuracy order first
orders as for the Euler–Maruyama scheme.30

Because of the random nature of stochastic forcing, all Monte
Carlo simulations in this study are carried out with 1000 realizations

for each choice of initial conditions and random forcing amplitude e.
A fixed set of parameters for the MSD model with ðp; r; sÞ
¼ ð200; 0:25; 0:1Þ similar to those used in Ref. 7 is also employed in
all simulations. These parameters are typical for TCs in real atmo-
spheric conditions as shown in Refs. 23 and 7. By comparing the
results from the numerical integration of Eq. (40) and the Monte
Carlo simulations of the MSD system, the validity of the theoretical
results in Sec. III can be assessed.

B. RI onset probability

We investigate first in this subsection the probability of RI onset
occurrence as presented in Lemma III.1, using the Monte Carlo simu-
lations of the MSD system. These Monte Carlo simulations will serve
as a reference from which one can validate the theoretical results
obtained in Sec. III.

Figure 4(a) shows the probability on RI onset pðu0; v0; b0Þ as a
function of the initial condition v0. Consistent with observations,31

one notices that the RI occurrence probability quickly increases with
v0, regardless of the random forcing amplitude e. For e < 10�2, the RI
occurrence probability reaches the value of �1 for all v0 > 0:05. This
means RI will be almost guaranteed to occur, because a sufficiently
strong initial vortex would practically mean that a TC is well organized
and so it will most likely undergo RI.

As the random fluctuation increases (e > 0:03), one notices how-
ever that the probability for RI occurrence increases slower and
approaches 1 only when v0 is sufficiently large (>0.1). This threshold
justifies the hereinafter use of ‘ ¼ 0:1 for RI onset time in the MSD
system (this level 0.1 for v0 in the non-dimensional unit corresponds
to�10 ms�1 in full physical dimension. See, e.g., Refs. 17 and 32).

Given the strong dependence of TC development on ambient
environment, it is thus expected that the RI onset probability should
be governed by not only initial conditions but also environmental fac-
tors. Among the three model parameters (p, r, s), we note that s is
most sensitive to ambient environment because it represents the strati-
fication of the troposphere.22,23 Thus, Fig. 4(b) shows the dependence
of RI probability as a function of s with fixed values for e ¼ 0:01; v0
¼ 0:02 and all other parameters. Consistent with the previous studies
on weaker intensity for more stable troposphere,33–39 one notices in
Fig. 4(b) that RI onset probability decreases quickly as s is larger (i.e.,
the troposphere becomes more stable). Given the same initial vortex
strength, an increase in s from 0.1 to 0.2 could reduce the RI onset
probability from 80% to 60%, which is substantial in operational fore-
cast. For smaller values of v0, this drop in RI onset probability is even
much faster, suggesting that the environmental static stability is a key
parameter not only for the TC maximum intensity but also for RI
onset prediction.

A different way to examine the sensitivity of RI onset probability
in operational practice is to determine what value of the initial TC
strength v0 would allow for at least, for example, 80% RI probability as
a function of the random magnitude e. This 80% threshold is generally
sufficient for most practical purposes to ensure that RI onset will be
very likely to occur, from which timely risk management can be pre-
pared. In this regard, Fig. 5 shows the minimum initial TC strength Ie0
to meet the 80% RI onset probability threshold as a function of e.
Here, we define Ie0, which can be considered as an RI onset indicator,
as the unique number within ð0; ‘Þ such that
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pðu0; Ie0; b0Þ ¼ 0:8: (44)

Consistent with our theoretical results, Ie0 increases linearly with e
when e is small. It also appears that Ie0 levels off for e > 0:07. The limit
of a small e is of interest, as it reveals that the MSD system behaves simi-
larly to a one-dimensional stochastic system with autonomous forcing
as presented in Sec. IIIC. As explained in Remark 3, Theorem III.5
shows that the linear dependence of Ie0 on e is always valid for a very
general one-dimensional system, so long as the forcing does not vary
much prior to RI onset. This is applied well to the MSD system as seen,
for example, in Fig. 1, which shows that TCs evolve very slowly during
the pre-RI onset period. Physically, this result thus confirms that larger
random noise would require stronger initial intensity so that RI onset
can be more likely to occur. Note that when the initial intensity is suffi-
ciently large, random noise will have less of an impact because RI onset
will almost guarantee to occur (at a 80% level) for those initially strong
intensity states. Despite its simplification, it is apparent that the MSD
system could capture well several key properties of RI onset probability
as shown in Fig. 4. This indicates that the TC-scale framework is useful
for studying TC development, and can be used to further examine the
variability of RI onset timing in Sec. IVC.

C. RI onset timing variability

Given the probability of RI onset occurrence as presented in Sec.
IVB, we wish to verify next the distribution of RI onset time as given
by Theorem III.3 and related Corollary 1. Because RI onset is almost

guaranteed to occur when v0 is sufficiently large as shown in Fig. 5, we
will consider here a specific case in which the hitting level ‘ for RI
onset (i.e., v component) is ‘ ¼ 0:1.

Similar to Sec. IVB, our main focus herein will be again on how
the distribution of sþ changes with the initial condition for the v com-
ponent (i.e., v0), while keeping the other two components (u0, b0) fixed
at the same values of u0 ¼ �10�2; b0 ¼ 10�4. This is because v0 prac-
tically represents the initial intensity of a TC vortex during its early
stage of development. During this tropical disturbance stage, there is
no strong dynamical constraint among the TC scales and one can
therefore assign relatively independent values for u0; v0; b0. As a tropi-
cal disturbance grows, its dynamics will be, however, governed by the
TC-scale dynamics and they can no longer evolve independently.

To have a broad picture of the variability of RI onset time, Fig. 6
shows the histograms of sþ for a range of v0 and e. Here, these histo-
grams are constructed from 1000 Monte Carlo simulations, using the
default values for the parameters and initial conditions as mentioned
in Sec. IVA. One notices in Fig. 6 an expected behavior of the sþ vari-
ability, with a narrower distribution of sþ for smaller e when
v0 � 0:01. That is, a smaller random forcing would result in less vari-
ability in RI onset timing, which is consistent with real TC
development.

Of further interest from Fig. 6 is that for each fixed initial condi-
tion v0 (i.e., for each row), the conditional distribution of sþ gets closer
to a probability density function centered around the deterministic
onset time T defined in (10) as e! 0. This indicates that the

FIG. 4. (a) Probability of RI onset as a
function of the initial wind component v0,
with different values of e and s¼ 0.1; and
(b) probability of RI onset as a function of
s, where v0 ¼ 0:02 and e ¼ 0:01. In both
figures, other parameters are ðp; rÞ
¼ ð200; 0:25Þ and ðu0; b0Þ ¼ ð�0:01;
0:0001Þ. All error bars with a 95% confi-
dence interval are obtained by bootstrap-
ping the sample.

FIG. 5. Dependence of the smallest value
of v0 at which the probability of RI onset
reaches a 0.8 level, denoted as Ie0 defined
in (44), on different ranges of the noise
level e including (a) e 2 ½0� 0:1�, and (b)
a zoom in for e 2 ½0:001� 0:01�. Other
parameter settings include ðp; r ; sÞ
¼ ð200; 0:25; 0:1Þ and u0 ¼ �0:01;
b0 ¼ 0:0001.
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deterministic RI onset forecast will be more reliable for either smaller
stochastic noises or stronger initial intensity.

For very small values of v0 (i.e., weaker initial intensity), the cen-
ter of the sþ distribution is shifted farther away from the deterministic
time T as e increases (see the lower left panels in Fig. 6). This is because
random fluctuation, which is proportional to e, is now much larger
than the initial condition that TC development is no longer deter-
mined by v0. Instead, the variability of RI onset time sþ is more a
result of the random noise amplitude e alone, so long as v0 � e� 1,
the TC initial condition becomes irrelevant to RI onset. This character-
istic of RI onset timing uncertainty is also consistent with the probabil-
ity of RI onset occurrence shown in Fig. 6 (see the RI onset probability
P in the upper right boxes).

From the mathematical perspective, the behavior of RI onset
time for the limit of small v0 can be also understood by using the gen-
eral one-dimensional SDE model presented in Sec. IIIC. As long as
TC dynamics evolves slowly prior to RI onset, one can in fact obtain
an exact dependence of the center of the sþ histogram on e in terms
of the stochastic conditioned diffusion process (see Lemma 2). That is,
the random noise in the MSD system induces a modified drift along
the gradient of probability density, which results in a faster approach
to the ‘ level as shown in Fig. 6. Thus, a smaller value of v0 (i.e., weaker
initial vortex) indicates less likely for RI onset to occur. For e that is
sufficiently larger than v0, the probability P for RI onset occurrence is
quickly reduced below 50%, regardless of value of v0 (see lower left
panels in Fig. 6).

FIG. 6. Histograms of RI onset time sþ defined in (7) for various values of initial conditions v0 and the noise amplitude e, conditioned on the event fsþ < s0g. We note that
for each 1000-realization set of the stochastic system (6), only a fraction P of them hit fv ¼ 0:1g before hitting fv ¼ 0g and so only these trajectories are counted (these
probability values P are given in the upper right boxes). The red vertical line shows the time T, defined in (10), obtained from the deterministic MSD system as v(t) hits level
v¼ 0.1. In all histograms, the parameters are p ¼ 200; r ¼ 0:25; s ¼ 0:1, and the initial values are u0 ¼ �0:01; b0 ¼ 0:0001 used.
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To facilitate our comparison of the above results obtained from
the Monte Carlo simulations with Theorem III.3, the dependence of
the variance of RI onset time on v0 for each value of e is summarized
in Fig. 7. Consistent with that shown in Fig. 6, the variance of sþ
decreases with v0 for all range of e as expected. We note that the condi-
tional variance of sþ (conditioned on occurrence of RI onset) also
increases as e increases, suggesting larger variability of RI onset time
when the amplitude of random forcing increases.

Comparing to the conditional variance of sþ obtained from
Corollary 1 using the numerical integration of Eq. (43) (see the black
curves in Fig. 7), it is evident that Corollary 1 could capture consistent
characteristics of the conditional variance of sþ as a function of e. This
is especially true when e is much smaller than v0 [Figs. 7(a) and 7(b)],
which shows a good match between Corollary 1 and the Monte Carlo
simulations. For e � 0:01, Corollary 1 starts to diverge from the
Monte Carlo simulations [Fig. 7(c)], as it tends to underestimate
the conditional variance of sþ when v0 increases. In this regard, the
Monte Carlo simulations not only confirm the validity of Corollary 1
for a small limit of e � 10�3, but also give us the range of random
noise that our theoretical estimation could provide the most reliable
dependence of Varðsþ j sþ < s0Þ on v0.

From the application standpoint, the fact that the variability of RI
onset timing decreases rapidly for initially stronger intensity (i.e., a
larger value of v0) would suggest that our ability to predict RI onset
will be improved as TCs become stronger. This accords with previous
observational and modeling studies,31,40 which showed indeed an
overall improved RI forecast as TCs become more organized.
Therefore, Theorem III.3 is anticipated and will be useful for further
examination of the dependence of sþ as well as its variance on differ-
ent model parameters without the requirement of intensive Monte
Carlo simulations.

D. Model parameter dependence

Given the validity domain of Corollary 1 as established in Sec.
III B, one can now use the explicit expression for the conditional vari-
ance of sþ in Corollary 1 to study how the uncertainties of RI onset
time vary with different model parameters and/or initial conditions.
This knowledge is important for practical applications, because it helps
forecasters estimate the uncertainties of their RI onset prediction for
different environmental conditions or ocean basins in real-time
forecast.

We recall that the dependence of ð22Þ on different parameters is
most useful if an estimation of the deterministic RI onset time T,
say from a numerical or a statistical model, is given. As a result, Fig. 8

shows the deterministic onset time T for different initial condition v0
and model parameters (p, r, s). Here, the same hitting level ‘ ¼ 0:1 at
which the RI onset is considered to occur is used.

As shown in Fig. 8(a), T is inversely proportional to v0 as
expected, which implies that RI onset will occur earlier for stronger
initial intensity. When fixing TC initial condition, we note, however,
that T increases roughly linearly when the model parameter s or r
increases. This linear relationship indicates that a more stable tropo-
sphere or stronger radiative cooling will delay RI onset as seen in Figs.
8(b) and 8(c). In contrast, RI onset tends to occur earlier for larger
parameter p [Fig. 8(d)], suggesting that a bigger storm size would
require less time for RI to take place. These behaviors can be used to
validate our results, using observational data or modeling output that
we will present in our future study.

Given the deterministic RI onset time T, one can now look into
how the uncertainty of RI onset time changes with different model
parameters. Among all the model parameters, it is of interest to note
that the conditional variance of sþ, which is summarized by the func-

tion HðTÞ � R22ðTÞ
‘2 ½uðTÞþ‘�2, appears to be the least sensitive to changes in

the model parameter p (Fig. 9). On the other hand, the variance of sþ

FIG. 7. (a) A diagram shows the variance
of the RI onset time sþ conditioned on RI
onset occurrence as a function of v0 for
noise e ¼ 10�4, which is obtained from
Corollary 1 (black) and from Monte Carlo
simulation (red). (b) and (c) Similar to (a)
but for e ¼ 10�3, and e ¼ 10�2. Upper
right corner panels show the zoom in of
these Varðsþjsþ < s0Þ values for
v0 2 ½0:03� 0:05�.

FIG. 8. Dependence of the deterministic RI onset time T on (a) the initial condition
v0, (b) the atmospheric static stability parameter s, (c) the radiative cooling parame-
ter r, and (d) the aspect ratio of the tropospheric depth over the radius of maximum
wind p. We note that for each parameter curve, all other parameters are fixed at
the values of p¼ 200, s ¼ 0:1; r ¼ 0:25; u0 ¼ �0:01; v0 ¼ 0:01; b0 ¼ 0:0001.
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tends to be sensitive to both the radiative cooling (r) and the tropo-
spheric stratification (s) parameter [Figs. 9(c) and 9(d)]. This sensitiv-
ity of H(T) to these specific model parameters r and s reveals how the
large-scale environmental factors can affect RI onset variability, for
which TC models must take into account to properly capture RI onset
variability in the future implementation.

V. CONCLUSION

In this paper, the rapid intensification (RI) process of tropical
cyclone (TC) development was examined, using the first hitting time
and asymptotic analysis for stochastic systems. By extending the TC-
scale dynamical model (MSD) for TC development proposed by
Kieu,23 RI can be considered as a random process whose onset time
possesses a specific probability distribution dictated by TC dynamics.
The reduced dynamics of the MSD model in the phase space of TC
scales (u, v, b) makes it especially attractive for studying RI, because
one can obtain analytical results that could not be obtained otherwise
with full-physics models.

Specifically, by defining RI onset time as the first moment that
TC intensity hits a given level ‘, a formal procedure to derive the RI
onset probability pðxÞ was obtained in Lemma III.1 through a bound-
ary value problem. While the explicit expression for pðxÞ has to be
relied on numerical integration, its asymptotic limit e! 0 could indi-
cate that the probability of RI onset will be ensured for all initial condi-
tions with v0 > 0, consistent with previous modeling studies of TC
development.

Conditioned on the RI onset occurrence, we showed that the tim-
ing of RI onset (sþ) would be on average longer for weaker vortex ini-
tial condition v0. Also, RI onset timing will have larger uncertainty
when the random noise amplitude e increases, with an asymptotic var-
iance expression given by Corollary 1 in the small noise limit. In this
small noise regime, we also demonstrated that larger random noise e
tends to cause smaller probability for RI onset and a smaller condi-
tional expectation for RI onset time. The latter observation is impor-
tant, because it helps alert forecasters a possible earlier RI onset in the
presence of larger random fluctuation.

Our main mathematical result regarding the variability of the RI
onset time sþ is provided by Corollary 1, which presents an asymp-
totic formula for the conditional variance of sþ in the small noise
regime. Detailed examination of this variance formula using an effi-
cient algorithm to numerically compute it from any given initial state
showed that the variability of RI onset timing depends critically on TC
initial intensity as well as model parameters. For a fixed set of model
parameters, the variance of RI onset time decreases with initial inten-
sity v0. That is, an initially stronger vortex would experience not only
earlier RI onset time but also less uncertainty in the prediction of the
timing of RI onset. Similarly, the uncertainties in RI onset time will be
smaller when the model parameters such as atmospheric stability (s)
or the aspect ratio (p) decreases, suggesting a strong dependence of the
RI onset forecast on the atmospheric large-scale condition.

To determine the domain of validity of our theoretical results,
Monte Carlo simulations of the MSD system were also conducted, using
the same set of parameters and initial conditions as those obtained from
the theoretical analyses. Our examination of these Monte Carlo simula-
tions for different asymptotic limits of random noise amplitude e con-
firmed the validity of the theoretical results for the limit of e! 0.
These simulations helped verify several hypotheses that were assumed
in our lemmas and theorems, thus providing a range of limits that our
theoretical results can be applied in real TC systems.

From the mathematical perspective, we note an intriguing fact
that several results on the RI onset probability and timing derived
from the MSD system can be understood by using a one-dimensional
(1D) stochastic system. Our analyses of a general 1D stochastic equa-
tion could indeed capture well key properties of the probability distri-
bution of RI onset as well as the timing of RI onset as in the MSD
system. In this regard, these analyses suggest that the method and
results in this study can be applied to more generic stochastic systems
that possess the first hitting time characteristic, so long as the evolution
of the systems prior to a rapid change in the system can be considered
as a slow process. Further exploration of the first hitting time for such
general 1D stochastic systems will be presented in our future work.
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APPENDIX: PROOFS FOR GENERAL
1-DIMENSIONAL DIFFUSIONS

In this section, we provide the proofs of our results in Sec.
III C. The following asymptotic properties for the error function
will be useful in several places in our proofs: for all c 2 ð0;1Þ, as
e! 0, we have

erf ðc ea�1Þ �

1 if a 2 ð0; 1Þ;
erf ðc Þ if a ¼ 1;
2cffiffiffi
p
p ea�1 if a 2 ð1;1Þ:

8>>><
>>>:

(A1)

FIG. 9. Similar to Fig. 8 but for the function H(T) in the variance formula of
Corollary 1.
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Here, A � B means lime!0 A=B ¼ 1.
Proof 4 (Proof of Lemma III.4). Let hðxÞ ¼ Pxðs‘ < s0Þ. Then

as in the proof of Lemma III.1, the function h satisfies the following
boundary value problem:

e2

2
h00ðxÞ þ FðxÞh0ðxÞ ¼ 0 if 0 < x < ‘;

hð‘Þ ¼ 1 and hð0Þ ¼ 0:

Upon solving this equation for h using the integrating factor ke given
by (32), we obtain the desired formula. �

Proof 5 (Proof of Theorem III.5). This result and the proof are
similar to that of Ref. 41 (Lemma 6), which is a variation of the
Laplace method. For all t 2 ð0;1Þ, there exists nt 2 ð0; tÞ such that

FðtÞ ¼ F0ð0Þt þ F00ðntÞ
2

t2: (A2)

To simplify notation, we introduce

f1ðyÞ :¼
ðy
0
FðtÞ dt; (A3)

f2ðyÞ :¼
ðy
0
F0ð0Þt dt ¼ F0ð0Þ y

2

2
;

IðxÞ :¼
ðx
0
exp

�2
e2

f1ðyÞ
� �

dy;

~IðxÞ :¼
ðx
0
exp

�2
e2

f2ðyÞ
� �

dy: (A4)

By Lemma III.4

Pceaðs‘ < s0Þ ¼
Iðc eaÞ
Ið‘Þ : (A5)

For all y> 0, we have jf1ðyÞ � f2ðyÞj ¼ j
Ð y
0 FðtÞ dt �

Ð y
0 F
0ð0Þt dtj

� jF
00ðntÞj
6 y3. Hence for y < cea

jf1ðyÞ � f2ðyÞj �
jF00ðntÞj

6
c3e3a: (A6)

Since F is smooth, M :¼ supy2½0;cea� jF00ðyÞj <1. Therefore,

jIðc eaÞ � ~Iðc eaÞj ¼
ðcea

0
exp

�2
e2

f1ðyÞ
� �

� exp
�2
e2

f2ðyÞ
� �

dy












¼
ðcea

0

ð
f1ðyÞ;f2ðyÞ½ �

�2
e2

e
�2
e2
x dx dy














� 2
e2

ðcea
0

sup
f1ðyÞ;f2ðyÞ½ �

e
�2
e2
x 	 jf1ðyÞ � f2ðyÞj dy

� c4

3
Me2ð2a�1Þ;

where in the last step we used (A6). From this, we have

Iðc eaÞ � ~Iðc eaÞ
Ið‘Þ










 � c4

3
M

e4a�3

e�1Ið‘Þ : (A7)

For the integral Ið‘Þ in the denominator, we note that gðyÞ
:¼ �2f1ðyÞ is decreasing in ½0; ‘�, and thus, it has maximum at c¼ 0
the gð0Þ ¼ 0. We also note that g 0ð0Þ ¼ �2Fð0Þ ¼ 0. By Laplace
method, as e! 0

Ið‘Þ ¼
ð‘
0
exp

�2
e2

f1ðyÞ
� �

dy �
ffiffiffiffiffiffiffiffiffiffi

p
F0ð0Þ

r
e
2
: (A8)

From this and (A7), we see that for a > 3
4

lim
e!0

Iðc eaÞ
Ið‘Þ ¼ lim

e!0

~Iðc eaÞ
Ið‘Þ : (A9)

By the change of variable u ¼
ffiffiffiffiffiffiffiffiffiffi
F0ð0Þ

p y
e

~Iðc eaÞ ¼
ðcea
0

exp
�F0ð0Þ

e2
y2

� �
dy

¼ effiffiffiffiffiffiffiffiffiffi
F0ð0Þ

p ðc ffiffiffiffiffiffiffiffi
F0ð0Þ
p

ea�1

0
e�u

2
du

¼ e
2

ffiffiffiffiffiffiffiffiffiffi
p

F0ð0Þ

r
erf ðc

ffiffiffiffiffiffiffiffiffiffi
F0ð0Þ

p
ea�1Þ:

So for a > 3
4, as e! 0, by (A9) we have

Iðc eaÞ
Ið‘Þ �

~Iðc eaÞ
Ið‘Þ ¼

e
2

ffiffiffiffiffiffiffiffi
p

F0ð0Þ

q
Ið‘Þ erf ðc

ffiffiffiffiffiffiffiffiffiffi
F0ð0Þ

p
ea�1Þ � erf ðc

ffiffiffiffiffiffiffiffiffiffi
F0ð0Þ

p
ea�1Þ;

(A10)

where in the last step, we used (A8). From (A1), (A5), and (A10), we
obtain the desired equality for a > 3=4.

The remaining case a 2 ð0; 3=4� is covered, because Pxðs‘ <
s0Þ is monotonically increasing in x and ea1 < ea2 if a1 > a2 > 0.
The proof is complete. �

Proof 6 (Proof of Lemma III.6). Let s ¼ minfs‘; s0g
¼ infft � 0 : Zt ¼ 0 or ‘g be the time to exit the interval ð0; ‘Þ. We
shall show that for any starting point x 2 ½0; ‘�

Ex s1fs‘<s0g½ � ¼
2
e2

1Ð ‘
0 keðzÞdz

ð‘
x

ðx
0
keðzÞkeðuÞ

ðz
u

pðyÞ
keðyÞ

dy du dz

( )
:

(A11)

We recall that pðxÞ ¼ Pxðs‘ < s0Þ and that by Lemma III.4,

pðxÞ ¼
Ð x
0
keðyÞ dyÐ ‘

0
keðyÞ dy

. The function H defined by HðxÞ ¼ Ex½s 1fs‘<s0g�

solves the boundary value problem

pðxÞ þ e2

2
H00ðxÞ þ FðxÞH0ðxÞ ¼ 0 if 0 < x < ‘; (A12)

Hð0Þ ¼ Hð‘Þ ¼ 0: (A13)

We now solve (A12) and (A13) to obtain (A11). Note that (A12) is a
first-order equation in H0ðxÞ, given by

H00ðxÞ þ 2
e2
FðxÞH0ðxÞ ¼ �2

e2
pðxÞ: (A14)

We multiply both sides by the integrating factor k�1e ðxÞ
¼ exp f

Ð x
0

2
e2 FðtÞ dtg
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H0ðxÞk�1e ðxÞ
� �0¼ �2

e2
k�1e ðxÞpðxÞ;

H0ðxÞ ¼ �2
e2

keðxÞKðxÞ þ CkeðxÞ;

where we let KðxÞ ¼
Ð x
0 k
�1
e ðyÞpðyÞ dy for simplicity.

Integrating again and using the fact Hð0Þ ¼ 0, we have

HðxÞ � 0 ¼ � 2
e2

ðx
0
keðzÞKðzÞ dz þ C

ðx
0
keðzÞ dz:

To compute C, we use the fact that Hð‘Þ ¼ 0. We find that

C ¼

2
e2

ð‘
0
keðzÞKðzÞ dzð‘
0
keðzÞdz

:

From the last two displayed equations

HðxÞ ¼ � 2
e2

ðx
0
keðzÞKðzÞ dz þ

2
e2

ð‘
0
keðzÞKðzÞ dzÐ ‘
0 keðzÞdz

	
ðx
0
keðzÞ dz

¼ 2
e2

ð‘
0
keðzÞKðzÞ dz 	

ðx
0
keðzÞ dzð‘

0
keðzÞdz

�
ðx
0
keðzÞKðzÞ dz

8>>><
>>>:

9>>>=
>>>;

¼ 2
e2

ð‘
0
keðzÞKðzÞ dz 	 pðxÞ �

ðx
0
keðzÞKðzÞ dz

( )
: (A15)

We now rewrite (A15) in a way that reflects why the compli-
cated expression on the right is non-negative

HðxÞ ¼ 2
e2

ð‘
0
keðzÞKðzÞ dz 	

Ð x
0 keðzÞ dzÐ ‘
0 keðzÞdz

�
ðx
0
keðzÞKðzÞ dz

( )

¼ 2
e2

1Ð ‘
0 keðzÞdz

ð‘
0
keðzÞKðzÞ dz

ðx
0
keðzÞ dz

(

�
ð‘
0
keðzÞdz

ðx
0
keðzÞKðzÞ dz

�

¼ 2
e2

1Ð ‘
0 keðzÞdz

ð‘
x

ðx
0
keðzÞkeðuÞðKðzÞ � KðuÞÞ du dz

( )
;

where in the last equality, we have used the fact (by symmetry) thatÐ x
0

Ð x
0 keðzÞkeðuÞðKðzÞ � KðuÞÞ du dz ¼ 0. In conclusion, we proved

(A11). The lemma then follows from (A11). �

Proof 7 (Proof of Theorem III.7). We recall the formula (34) in
Lemma III.6. Fix e > 0 and let x ! 0, the denominator in (34) is of
order x in the sense that

lim
x!0

ðx
0
keðzÞdz

x
¼ keð0Þ ¼ 1: (A16)

The numerator of (34) is also of order x in the sense that

lim
x!0

1
x

ð‘
x

ðx
0
keðzÞkeðuÞ

ðz
u

pðyÞ
keðyÞ

dy du dz ¼
ð‘
0
keðuÞ

ðu
0

pðyÞ
keðyÞ

dy du:

(A17)

Equation (A17) follows from the L’Hospital rule and the Leibniz inte-
gral rule as follows. We define

LðxÞ :¼
ð‘
x

ðx
0
keðzÞkeðuÞ

ðz
u

pðyÞ
keðyÞ

dy du dz;

F1ðx; zÞ :¼
ðx
0
keðzÞkeðuÞ

ðz
u

pðyÞ
keðyÞ

dy du;

G1ðz; uÞ :¼ keðzÞkeðuÞ
ðz
u

pðyÞ
keðyÞ

dy:

Then, LðxÞ ¼
Ð ‘
x F1ðx; zÞ dz and F1ðx; zÞ ¼

Ð x
0 G1ðz; uÞ du. By

Leibniz integral rule

L0ðxÞ ¼ �F1ðx; xÞ þ
ð‘
x

@

@x
F1ðx; zÞ dz

¼ �keðxÞ
ðx
0
keðuÞ

ðx
u

pðyÞ
keðyÞ

dy duþ
ð‘
x
G1ðz; xÞ dz

¼ keðxÞ
ðx
0
keðuÞ

ðu
x

pðyÞ
keðyÞ

dy duþ keðxÞ
ð‘
x
keðuÞ

ðu
x

pðyÞ
keðyÞ

dy du

¼ keðxÞ
ð‘
0
keðuÞ

ðu
x

pðyÞ
keðyÞ

dy du

( )
:

Letting x ! 0 and applying L’Hospital rule, we obtain (A17). By
(A16) and (A17), the proof of (36) is complete. The second and the
third derivatives of L(x) are

L00ðxÞ ¼ k0eðxÞ
ð‘
0
keðuÞ

ðu
x

pðyÞ
keðyÞ

dy du� pðxÞ
ð‘
0
keðuÞ du;

Lð3ÞðxÞ ¼ k0eðxÞ
ð‘
0
keðuÞ

ðu
x

pðyÞ
keðyÞ

dydu� k0eðxÞpðxÞ
keðxÞ

ð‘
0
keðuÞdu

�p0ðxÞ
ð‘
0
keðuÞdu:

We note that k0eðxÞ ¼ �2e2 FðxÞ keðxÞ, so Fð0Þ ¼ 0 implies
k0eð0Þ ¼ 0. Furthermore, k0 0eð0Þ ¼ �2e2 F

0ð0Þ < 0 since F0ð0Þ > 0.
These give L00ð0Þ ¼ 0 and

Lð3Þð0Þ ¼ �2F
0ð0Þ

e2
C � 1 < 0;

whereC ¼
ð‘
0
keðuÞ

ðu
0

pðyÞ
keðyÞ

dy du ¼ L0ð0Þ:

We note that

Ex s‘ j s‘ < s0½ � �WðeÞ ¼ 2
e2

LðxÞðx
0
keðzÞdz

� L0ð0Þ
0
B@

1
CA:

Hence,
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lim
x!0

Ex s‘ j s‘ < s0½ � �WðeÞ
x2

¼ 2
e2
lim
x!0

LðxÞ � L0ð0Þ
Ð x
0 keðzÞdz

x2
Ð x
0 keðzÞdz

¼ 2
e2
lim
x!0

L0ðxÞ � L0ð0Þ keðxÞ

x2keðxÞ þ 2x
ðx
0
keðzÞdz

¼ 2
e2
lim
x!0

L00ðxÞ � L0ð0Þ k0eðxÞ

x2k0eðxÞ þ 4xkeðxÞ þ 2
ðx
0
keðzÞdz

¼ 2
e2
lim
x!0

Lð3ÞðxÞ � L0ð0Þ k00eðxÞ
x2k00e ðxÞ þ 6xk0eðxÞ þ 6keðxÞ

¼ 2
e2
Lð3Þð0Þ � L0ð0Þ k00eð0Þ

6

¼ 1
3e2

�2F0ð0Þ
e2

C � 1

� �
þ C

2F0ð0Þ
e2

¼ �1
3e2

:

�
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