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Abstract
Intermittently operating embedded computing platforms
powered by energy harvesting require software frameworks
to protect from errors caused by Write After Read (WAR)
dependencies. A powerful method of code protection for
systems with non-volatile main memory utilizes compiler
analysis to insert a checkpoint inside each WAR violation
in the code. However, such software frameworks are oblivi-
ous to the code structure—and therefore, ine"cient—when
many consecutive WAR violations exist. Our insight is that
by transforming the input code, i.e., moving individual write
operations from unique WARs close to each other, we can
signi#cantly reduce the number of checkpoints. This idea
is the foundation for WARio: a set of compiler transforma-
tions for e"cient code generation for intermittent computing.
WARio, on average, reduces checkpoint overhead by 58%,
and up to 88%, compared to the state of the art across various
benchmarks.

CCSConcepts: • Software and its engineering→Check-
point / restart; Compilers; General programming lan-
guages; • Computer systems organization → Embed-
ded systems.
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1 Introduction
We have a long way to go to make Internet of Things (IoT)
self-sustainable, self-recyclable, and carbon-neutral. Fortu-
nately, the #rst steps to remove polluting components from
IoT devices have already been taken, with batteries being
the principal focus [15, 61]. The resulting battery-free sys-
tems [20, 51] are embedded devices powered by ambient
energy (such as solar radiation or vibrations) where the
energy is stored in small (super-) capacitors. So far many
battery-free devices have been demonstrated, ranging from
experimental handheld gaming platforms [13], networks for
long-term, hard-to-reach infrastructure monitoring [1] to
commercial wireless IoT tags [58]. One should expect more
complex battery-free devices in the coming years.
Problem Statement. Capacitors hold orders of magni-

tude less energy than batteries, which means that their en-
ergy supply is intermittent as they must recharge. Therefore,
power failures are common, causing computational intermit-
tency [29]. Intermittent operation causes the computational
state to be lost unless explicitly saved in Non-Volatile Mem-
ory before a power failure and restored afterward.
The obvious solution to maintain forward progress is to

store the volatile computation state at prede#ned intervals
(by number of clock cycles or by number of instructions)
through checkpoints. However, copying all volatile memory
regions to NV memory is ine"cient (as unmodi#ed mem-
ory regions would also be re-saved). Another option is to
use a fully non-volatile processor architecture [30, 52], with
all components realized with non-volatile logic gates. Sadly,
fully non-volatile microcontroller architectures are disad-
vantageous compared to their volatile counterparts, as it is
di"cult to optimize cost, access speed, number of read/write
cycles, and density for these gates. Instead, processor archi-
tectures for intermittently-powered systems often rely on
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unoptimized codecode snippet
< ... >

Reg1 = a

a = Reg1 + 1
Reg2 = b

R

b = Reg2 + 1
{power off}
< ... >

R
W

W

< ... >
Reg1 = a
checkpoint()
a = Reg1 + 1
Reg2 = b
checkpoint()

R

b = Reg2 + 1
{power off}
< ... >

R
W

W

< ... >
Reg1 = a
Reg2 = b
checkpoint()

b = Reg2 + 1
{power off}
< ... >

a = Reg1 + 1

optimized code

R
R

W
W

WARio (this work)state of the art

initial state
Registers    Reg1 = ∅; Reg2 = ∅; 
NV variables a = 4; b = 2; 

Registers    Reg1 = 4; Reg2 = 2; 
NV variables a = 5; b = 3; 

aer restart
Registers    Reg1 = ∅; Reg2 = ∅; 
NV variables a = 5; b = 3; 

aer re-execution

restore location

incorrect increment aer restart

correct increment aer restart

power off location

error here, expected:  a = 5; b = 3; 

correct here:  a = 5; b = 3; 

Registers    Reg1 = 5; Reg2 = 3; 
NV variables a = 6; b = 4; 

power off

power on
capacitor voltageon

time

before power off

Figure 1. Three versions of the same code snippet demon-
strating Non-Volatile Memory corruption, its mitigation, and
our optimization. A checkpoint records only the registers
(Reg1 and Reg2). The variables (a and b) are in Non-Volatile
Memory (NVM) and not restored after a power failure. The
unprotected code (left) executes until the power failure, read-
ing from and writing to the Non-Volatile (NV) variables. A
restart does not undo any modi#cations to NVM, resulting
in incorrect re-execution caused by a Write After Read to
the NV variables. By placing a checkpoint of the registers
between the read (R) and write (W) of a WAR, state-of-the-
art systems such as Ratchet [57] (center #gure, unoptimized
code) avoid this memory corruption caused by re-execution.
WARio (our work) aims to reduce the number of required
checkpoints by clustering writes to NVM, reducing the num-
ber of required checkpoints (right #gure, optimized code).

mixed volatility memory [26, 32, 57]1. The processor houses
an on-board, byte-addressable Non-VolatileMemory, often in
the form of Ferroelectric RandomAccess Memory (FRAM) or
Magnetoresistive Random Access Memory (MRAM). These
mixed-memory architectures are still uncommon, but are
actively being developed [3, 55]. In these architectures, the
main memory is non-volatile, and only the CPU registers
and con#gurations (e.g., peripheral settings and operating
frequency) are volatile. This way, only the registers need
to be saved at a checkpoint to maintain forward progress
across power failures. Relying on NV memories signi#cantly
reduces the cost of a single checkpoint by saving only the
(live) registers. However, state-of-the-art static solutions us-
ing NV main memory require frequent checkpoints, often at
the basic block level. Moreover, selective (instruction-level)
checkpoint placement must account for the unique prob-
lem present in contemporary (and future) Microcontroller

1Cache architectures are limited in most embedded architectures compared
to their desktop counterparts and not considered [26, 32, 57]

Unit (MCU) architectures that use non-volatile main mem-
ory: Non-Volatile memory corruption in variable manipula-
tions with WAR dependencies caused by re-execution. This
problem, often referred to as a WAR violation [34, 57], was
#rst observed in [48] and is schematically presented in Fig-
ure 1. Suppose the power fails after a ‘Write‘ in a WAR oper-
ation. During re-execution, the ‘Read‘ of that same WAR op-
eration will read the newly written value instead of the orig-
inal value. This is because the checkpoint restoration only
restores the registers, not the memory. To prevent this mem-
ory corruption we must place a checkpoint before execut-
ing the ‘Write‘ of a WAR operation. This way, re-execution
starts after the ‘Read‘ operation has already been completed.
Throughout this paper, we use the term WAR violation (or
simplyWAR) to refer to these possible memory corruption lo-
cations which are caused by re-execution following a power
failure. When we refer to resolving a WAR, we refer to the
placement of a checkpoint between its ‘Read‘ and ‘Write‘ to
create two distinct idempotent regions.
A state-of-the-art approach is to detect idempotent re-

gions by looking for instruction sequences that perform a
WAR to the same memory address, and placing checkpoints
at the boundaries of these regions [57], Figure 1 (middle).
Nonetheless, strategic checkpoint placement of [57], which
performs this task automatically at compile time, does not
perform any transformations to reduce the number of in-
troduced checkpoints (which are often over-instrumented).
Our fundamental insight is that in a code region with many
consecutive WAR violations, moving the ‘Write‘ operations
belonging to theseWARs to a later stage in the code, i.e., clus-
tering them, will reduce the number of checkpoints needed,
thereby increasing the performance of intermittent comput-
ing. The more consecutive (unrelated) WAR operations—the
more bene#t from checkpoint reordering, which reduces the
execution time. This reduction is clearly seen in Figure 1
(right), halving the number of checkpoints inserted by [57]
(Figure 1 (middle)). To implement the transformations men-
tioned above, we use NOELLE [36], an LLVM [41] plugin that
uses alias analysis [4, 53] to compute a Program Dependence
Graph (PDG) (among other information).
Our Contributions. We present WARio, Write After

Read Intermittent-computing Optimizer, a set of compiler
transformations for intermittently-executed programs to re-
duce checkpoint overhead. WARio builds upon the tech-
niques introduced in Ratchet [57] and operates both in the
middle end and the back end of the compiler. In the middle
end, ! WARio introduces two novel algorithms that cluster
the ’Write’ operations of several WARs to reduce the required
number of checkpoints. In the back end, " WARio reduces
the number of checkpoints by introducing a hitting set al-
gorithm to select the checkpoint locations to resolve back-end
WARs (in addition to the existing hitting set in the middle
end [57]) and by # protecting stack pointer modi!cations in
a novel way that requires fewer checkpoints.
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The transformation steps !–# of WARio reduce check-
pointing overhead for continuous-checkpointing-based in-
termittent computation. Compared to Ratchet [57], a state
of the art system, WARio reduces the checkpoint overhead
by up to 88%, and on average by 58%, considering a broad
set of software benchmarks.

2 Battery-Free Intermittent Computing
Eliminating batteries from embedded computing platforms
brings many bene#ts, such as reducing the size of the over-
all system and lowering its environmental footprint. Many
systems that are normally powered by batteries have been
shown to operate battery-free. These include battery-free
handheld gaming platform [13], battery-free phone [54],
battery-free eye tracking [27] and various forms of battery-
free wireless sensors such as [1, 12, 24, 46, 56].
Battery-free operation using harvested ambient energy

might cause power supply intermittency to the device. To
protect the code operating on such device di$erent classes
of software systems were developed that support the cor-
rectness of intermittent operation. We describe them here.
Hardware Systems. In hardware-based checkpointing

systems, checkpoints that snapshot certain memory regions
of a battery-free device can be triggered either by a capac-
itor voltage monitor [8, 23, 25, 49] or by an external timer,
and not from within the code itself (as shown in Figure 1).
Another hardware system is based on monitoring store and
load addresses of a battery-free system through an exter-
nal hardware module to detect memory inconsistencies [21].
All these hardware systems, although performing their in-
tended task of computation consistency protection, are ei-
ther not widely available [21], copy large memory regions
(as they do not track which addresses were accessed), or are
imprecise [8, 23, 49] causing potential incorrect recovery
(see also [10, Section 2.2.2]). For this reason software-only
systems are still a preferred alternative to guarantee compu-
tation consistency protection.
Software SystemswithManualCodeAdaptation.Cer-

tain software systems for intermittent execution requireman-
ual transformation of the original code using a special API.
Therein, input code must be transformed to special sections,
i.e. tasks—atomic code blocks matched to a speci#c energy
budget—that when interrupted by power failure will restart
from the beginning of the task de#nition. Such frameworks
include [35, 50, 60]. Manual code transformation has its price
as it requires extra work from a programmer [26, Section 5.4].
Moreover, a programmer must learn a new Domain-Speci#c
Language (DSL). Also, a programmer needs to dimension
the idempotent code, i.e., tasks, to a speci#c energy budget—
requiring the programmer to rewrite the tasks when the
target energy harvesting environment changes (say, from
average available power on time from 2 s to 0.5 s).

Software Systems with Automatic Code Adaptation.
These software systems can be further divided into code-
oblivious [26] and code-aware [57]. In code-oblivious systems,
checkpoints copy volatile memory to a NV region with ex-
tra information. As a consequence, such checkpoints have a
signi#cant checkpoint and restore time. Checkpoint systems
that also include logging [26, 32] introduce large overhead
to track memory accesses dynamically. In contrast, in code-
aware systems, checkpoints are inserted statically at compile
time at speci#c regions of the code, i.e. at read locations of
every WAR operation (as in Figure 1 (center #gure)). This
makes checkpoint creation and restoration faster compared
to code-oblivious systems. Since the checkpoint saves and re-
stores only the information in use, i.e., the live registers and
nothing extra. Our conjecture regarding software development
for intermittently-powered devices is as follows. Preferred
software systems will be the ones that are (i) code-aware, (ii)
automatic, (iii) code-transforming, and (iv) compiler-based.
Simply, such software systems will require less extra data be-
ing copied, andwill not require specialized hardware support.
Such systems however are sill far from ideal.

3 WARio System Design
Addressing the problem presented in Section 1 we present
WARio. During compilation, WARio performs multiple opti-
mizations targeted at reducing the number ofWAR violations
in the C code. WARio possesses the following features. $

Support for General Purpose C Programs:WARio takes
a regular embedded C code and automatically transforms
it to a WAR-protected executable; % Oblivious to Energy
Conditions: No prior information on the battery-free sys-
tem’s energy use or input harvested energy is needed prior
(and during) compilation into a WAR-protected executable;
& Support for ShortDeviceActivity Times:WARio guar-
antees forward progress at short device activity times, i.e.
in the order of tens of milliseconds; ' No Programmer
Involvement: WARio does not expect to restructure the
program manually to help resolve any WAR dependency;
and ( Interrupt Support: During checkpoint placement
WARio makes sure that there can be no WAR violations
caused by interrupts pushing information to the stack.

3.1 WARio Architecture

WARio targets the following platform: (i) a single proces-
sor embedded system (MCU); (ii) direct physical memory
access, i.e., no virtual memory; (iii) no data cache, (iv) reg-
ister access/‘bare metal’, i.e., no operating system; and (v)
non-volatile byte-addressable main memory.

WARio’s architecture consists of a set of Intermediate Rep-
resentation (IR)-based compiler transformations executed in
a speci#c order, as presented in Figure 2. All of the compo-
nents of WARio are described in detail below.

779



PLDI ’22, June 13–17, 2022, San Diego, CA, USA Vito Kortbeek, Souradip Ghosh, Josiah Hester, Simone Campanoni, and Przemysław Pawełczak

Loop Write
Clusterer

Expander Write
Clusterer

Idempotent
Stack Pop 
Converter

Epilog
Optimizer

 

middle end back endfront end

 LLVM 
IR 

  C

optional optmization transformation existing transformation

Checkpoint
Inserter

PDG 
Checkpoint

Inserter

OR

Stack Spill  
Checkpoint Inserter

Hiing Set 
Stack Spill  

Checkpoint Inserter

OR  ELF 
binary

w w w

w w

w w

Figure 2.WARio architecture. Input plain C code is transformed, through a set of middle and back end compiler transformations
described in Section 3.1, to an output Executable and Linkable Format (ELF) binary #le that can be executed (guaranteeing
no NVM corruption caused by WARs) on an intermittently-powered system. The complete WARio system consists of all the
transformations marked with a W©; other combinations are used to evaluate performance of individual transformations in
Section 5.2.1. The transformations marked as existing where introduced in prior work [57]. The transformations marked as
optional are not needed to avoidWAR violations, but improve the performance by reducing the number of inserted checkpoints.

3.1.1 WARio Front End. WARio takes the C code of a
project aimed to be run on a intermittently-powered device
and converts it to LLVM IR, per each C source #le. Subse-
quently, WARio merges individual IR #les into a single (com-
bined) IR of the whole project. We note that both these steps
are standard front end compiler transformations (marked as
the gray area in Figure 2).

3.1.2 WARio Middle End. The core tasks performed by
WARio are executed in the middle end. Each of the steps
(listed within light blue area in Figure 2) is explained below.

Loop Write Clusterer. This transformation aims at re-
ducing the number of checkpoints in a loop that contains one
or more WAR violations. Algorithm 1 shows the pseudocode
of this transformation, and Figure 3 the resulting IR after
each step. Both #gures are used to explain the transformation
in detail and provide a visual example.

Let us take as an example the unmodi#ed loop code snip-
pet in Figure 3. Directly inserting checkpoints, represented
by the orange box, results in one checkpoint per iteration ! .
After applying the Loop Write Clusterer transformation,
the loop requires only !/" checkpoints when executing,
where " is the unroll factor used during the transforma-
tion, provided during compilation2. It does so by postpon-
ing write operations to NVM until the end of the unrolled
loop—essentially combining the checkpoints required for
" iterations of the loop into a single checkpoint. First, the
transformation analyzes the input code using a PDG ana-
lyzer, such as [36], to collect all the memory dependencies
in the program. The transformation then collects all loops in
the program (denoted as #all in Algorithm 1). For each input
loop # ∈ #all the Loop Write Clusterer checks whether
the loop is a candidate to be unrolled.
!Candidate Selection: Not all loops are candidates to have
their writes clustered. Most notably, to be a candidate (Line 3
in Algorithm 1), the loop must contain at least one WAR vio-
lation to cluster (Line 11). Otherwise, the loop will not have
any checkpoints to remove. Additionally, the write cluster

2The e$ect of ! on the unrolling e$ectiveness will be a part of WARio
evaluation presented in Section 5.2.4

insertion point (the destination of the to-be-moved WAR
store instructions, i.e., the loop latch) must post-dominate
all the relocated store instructions in order not to change
the semantics of the loop (Line 13). The #nal requirement is
that the loop does not contain any function calls, as those
implicitly cause checkpoints hindering our ability to cluster
the writes (Line 11).
! Loop Unrolling: If a loop is a candidate, LoopWrite Clus-
terer unrolls it " times (Line 4 in Algorithm 1). The IR result-
ing from the unroll step is shown in Figure 3—UnrollLoop
for an unroll factor of " = 3.
! Loop Analysis: Loop analysis is a necessary operation
of Loop Write Clusterer, as simply moving all the writes
to the loop latch is insu"cient to retain the loop semantics.
Let us therefore proceed with introducing the analysis steps
(Line 17 in Algorithm 1) that will be needed to perform
correct code transformation (Line 24 in Algorithm 1). The
#rst step is the obtainment of loop dependency graph (Line 18
in Algorithm 1), from which the WAR and Read After Write
(RAW) dependencies are obtained (Line 19 and Line 20 in
Algorithm 1, respectively).
!Clustering WAR Writes: Unrolled loops, denoted as #′,
are passed for analysis using the PDG information (Line 5
in Algorithm 1), which are later on transformed (Line 6 in
Algorithm 1) resulting in a set of WARs that are postponed,
resulting in moved WAR writes (store instructions) shown
in Figure 3—ClusterWarWrites.
! Early-exit Handing: When moving all writes to the in-
sertion point, i.e., the loop latch, WARio potentially skips
writing those values to NVM due to early exits, e.g., ex-
its introduced due to unrolling. The transformation must
guarantee that any early exit (ModifyExits in Algorithm 1)
that follows a postponed write contains a copy of that post-
poned write. Otherwise, exiting a loop early (by reaching
the desired number of iterations during execution before the
end of the unrolled loop) would not execute the postponed
write to NVM, invalidating the program execution. Figure 3—
ModifyEarlyExits shows the addition of these postponed
writes (store instructions) to the early exits.
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!Dependent Read Handling: When postponing all the
writes to the loop latch, WARio might attempt to move write
instructions past reads that depend on them, for example,
due to unrolled loop-carried dependencies. First, the transfor-
mation collects the read instructions that might depend on a
preceding write instruction, using RAW dependency infor-
mation collected earlier through the PDG. If any of the reads
depend on one or more of the postponed writes that are now
no longer dominating the read (i.e., they now happen after
the read), they would result in reading incorrect information.
Therefore, if the read may depend on a postponed write, a
runtime check is inserted that compares the source address
of the read (load) instruction and the destination address
of the postponed write (store) instruction (Line 37 in Algo-
rithm 1). If these are equal, the read is skipped (i.e., the value
is not retrieved from memory), and the register containing
the content of the postponed write is copied into the read
destination (Line 38 in Algorithm 1). On the other hand, if
the addresses are not equal, the original read is performed.
It might be the case that a read instruction may be depen-
dent on multiple writes. In this case, the transformation adds
checks for each of the writes, passing its output as input
to the next check as shown in the InstrumentReads proce-
dure in Algorithm 1. Figure 3—InstrumentReads, shows an
example where the load of variable $ may depend on the
store to variables % and &, which were postponed (worst
case). Adding a runtime check introduces overhead, but it
is minimal compared to the time it takes to perform a com-
plete checkpoint. However, there is a break-even point as
the number of checks added to each read instruction grows
depending on the number of aliasing writes before it.
!Checkpoint Placement: To illustrate the e$ect of the
Loop Write Clusterer, the last (dark blue) box in Figure 3,
shows the #nal loop IR with the addition of checkpoints.
When the loop is executing, the three iterations from the
original loop (now unrolled), containing the three WAR
violations, are resolved with only one checkpoint instead
of three.
!Correctness: When clustering—and therefore moving—
the WAR writes, we need to take appropriate steps to main-
tain correctness. First, when moving a write to a later un-
rolled loop iteration, we must ensure that the postponed
writes are written to NVM when the unrolled loop termi-
nates early. The Early-exit Handling step guarantees that
all writes are executed by adding writebacks to every loop
exit. Second, when moving a write, we have to resolve all
reads that may depend on it, i.e., attempt to read memory
from the same address. The Dependent Read Handling step
assures that no incorrect read will occur by canceling the
write rescheduling or adding runtime checks and handling
to aliasing reads. Together, these steps force the Loop Write

Clusterer transformation to be conservative and semanti-
cally correct.

Algorithm 1: Loop Write Clusterer

1 Algorithm LoopWriteCluster() :
2 for " ∈ "all do // Go through all program’s loops
3 if IsCandidate(") then // See Line 7
4 "′ ← UnrollLoop(", ! ) // See Section 3.1.2

5 #! , $! , %← Analyze("′) // See Line 17

6 Transform(#! , $! , %) // See Line 24

7 Procedure IsCandidate(") :
8 & ← FindDependencies (") // Use the PDG

9 # ← FindWARs (&) // Find initial WARs

10 ' ← FindFunctionCalls (") // Find any function calls

11 if# ≠ ∅ and' = ∅ then // If loop has WARs and no calls
12 for ( ∈# do // For each WAR violation
13 if "latch not post-dominates (write then
14 return false // Loop is not a candidate

15 return true // Loop is a candidate

16 return false // Loop is not a candidate

17 Procedure Analyze(") :
18 & ← FindDependencies (") // Use the PDG

19 # ← FindWARs (&) // Extract WAR violations

20 $← FindRAWs (&) // Extract RAW dependencies

21 $! ← ReadsToResolve (# , $) // Reads dependent on WAR writes

22 %← ExitsToModify (#! ) // Exit edges in the loop

23 return#! , $! , %

24 Procedure Transform(#! , $! , %) :
25 PostponeWARs (#! ) // Move the WAR writes to loop latch

26 ModifyExits (%,#! ) // Handle early exits (Line 28)

27 InstrumentReads ($! ) // Handle dependent reads (Line 32)

28 Procedure ModifyExits(%,#!) :
29 for ( ∈#! do // For each WAR violation

// Exit edges that follow the original write location

30 for ) ∈ ExitEdges (%, (write) do
31 copy (write → ) // Insert copy of write in exit

32 Procedure InstrumentReads($!) :
33 for * ∈ $! do // Go through all the dependent reads
34 *#nal ← * // Track the last instrumented read

35 for ( ∈ AliasingWrites (* ) do // Writes that alias read
36 if * depends on ( then

// Create new instructions to handle the read

37 cmpinst = NewCompareInstruction(*addr, (addr)

38 selinst = NewSelectInstruction(selinst, (src, *!nal)

39 *#nal = selinst // Track the last read select

40 for + ∈ usages * do
41 replace + with *#nal // Replace with final read select

Expander. A large number of checkpoints are caused
by function calls. Each function call must perform a check-
point if it can modify any data on the callee stack. However,
more signi#cantly, each function (regardless of the number
of arguments) needs at least one checkpoint when return-
ing from a function that uses stack memory. The reason
for this is that an interrupt might trigger at any time, and
the Interrupt Service Routine (ISR) will automatically push
(write) information on the stack causing a WAR violations
(Section 3.1.3—Paragraph Epilog Optmizer). Strategically
inlining functions more aggressively than usual results in
fewer checkpoints caused by function calls and returns. In
addition, it aids the succeeding transformation by not having
a forced checkpoint location due to the function call.
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checkpoint placementInstrumentReadsModifyEarlyExitsClusterWARWritesUnrollLoop

unmodified loop

loop:
  %0 = load a
  %x = add 1, %0
  if <cond>: br exit
  %1 = load b
  %y = add 1, %1
  if <cond>: br exit
  %2 = load c
  %z = add 1, %2
  store %x, a
  store %y, b
  store %z, c
  if <cond>: br exit
  else: br loop

loop:
  %0 = load a
  %x = add 1, %0
  if <cond>: br early_exit_a
  if &b == &a: %1 = %x
  else: %1 = load b
  %y = add 1, %1
  if <cond>: br early_exit_b
  if &c == &a: %2 = %x
  elif &c == &b: %2 = %y 
  else: %2 = load c
  %z = add 1, %2
  <checkpoint>
  store %x, a
  store %y, b
  store %z, c
  if <cond>: br exit
  else: br loop
 
early_exit_a:
  <checkpoint> 
  store %x, a
  br exit
 
early_exit_b:
  <checkpoint> 
  store %x, a
  store %y, b
  br exit

loop:
  %0 = load a
  %x = add 1, %0
  if <cond>: br early_exit_a
  %1 = load b
  %y = add 1, %1
  if <cond>: br early_exit_b
  %2 = load c
  %z = add 1, %2
  store %x, a
  store %y, b
  store %z, c
  if <cond>: br exit
  else: br loop
 
early_exit_a:
  store %x, a
  br exit
 
early_exit_b:
  store %x, a
  store %y, b
  br exit

loop:
  %0 = load a
  %x = add 1, %0
  if <cond>: br early_exit_a
  if &b == &a: %1 = %x
  else: %1 = load b
  %y = add 1, %1
  if <cond>: br early_exit_b
  if &c == &a: %2 = %x
  elif &c == &b: %2 = %y 
  else: %2 = load c
  %z = add 1, %2
  store %x, a
  store %y, b
  store %z, c
  if <cond>: br exit
  else: br loop
 
early_exit_a:
  store %x, a
  br exit
 
early_exit_b:
  store %x, a
  store %y, b
  br exit
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checkpoint placement
loop:
  %0 = load a
  %x = add 1, %0
  <checkpoint>
  store %x, a
  if <cond>: br exit
  else: br loop

loop:
  %0 = load a
  %x = add 1, %0
  store %x, a
  if <cond>: br exit
  %1 = load b
  %y = add 1, %1
  store %y, b
  if <cond>: br exit
  %2 = load c
  %z = add 1, %2
  store %z, c
  if <cond>: br exit
  else: br loop
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The loop is unrolled 3x The WAR writes are
moved to the end of the
loop

Early exit conditions are handled
by introducing additional stores
that are not executed in the
common case If the load from c may depend on

the clustered store to a and/or b a
runtime check is added for each
dependency

loop:
  %0 = load a
  %x = add 1, %0
  store %x, a
  if <cond>: br exit
  else: br loop

WA
R

One checkpoint for iter 1, iter 2 
and iter 3 in UnrollLoop 
(if there are no early exits)

start

WA
R

(state of the art)

1 2 3 4

Figure 3. Code blocks of a simpli#ed version of the IR of the loop, where variables starting with a ’%’ denote registers,
’<cond>’ is the condition that terminates the loop, ’br’ branches to a label. The ’exit’ label and IR (not important for the
transformation) are omitted. The unmodi#ed loop is directly instrumented with checkpoints (orange box) by Ratchet [57], i.e.
the state of the art system. In this example WARio applies the Loop Write Clusterer transformation (light blue) to reduce
the required checkpoints from one per iteration to one every three iterations, as shown in the last code block (dark blue).

Write Clusterer. The goal of the Write Clusterer, just
as the Loop Write Clusterer, is to reduce the number
of checkpoints inserted by clustering write operations be-
longing to WAR violations together. Doing so will cause
the Checkpoint Inserter to resolve more WAR violations
using a single checkpoint. Instead of the aggressively cluster-
ing used by the Loop Write Clusterer, the write cluster
does not insert any runtime checks. The Write Clusterer

analyses the individual basic blocks of the IR and looks for
instances such as in Figure 1 (left), where multiple WAR vio-
lations are not dependent on each other. If this is the case,
the Write Clusterer clusters the writes of the WAR viola-
tions as in Figure 1 (right). Doing so reduces the number of
required checkpoints by handling multiple WAR violations
with one checkpoint.

PDG Checkpoint Inserter. After transforming the IR
during the previously described transformations, the next
and #nal step is to insert checkpoints to break all the re-
maining WAR violations. The goal of a checkpoint is to save
the current volatile state of the system in a way that it can
continue operation after a power failure at that point. A
checkpoint saves all the volatile-state of the system in NVM.
For WARio, a checkpoint contains only the state of the regis-
ters, as the main memory is completely NV. Doing this is a
multi-step process similar to that of [57]. For each function in
the program, the transformation collects all the WAR depen-
dencies. Next, the transformation collects all the locations
of forced checkpoints, e.g., at function calls, and removes

WAR violations resolved by these forced checkpoints. The
remaining WAR violations are resolved by inserting check-
points between the read and the write of a WAR violation.
Where to place a checkpoint is a crucial decision, as a single
checkpoint can resolve multiple WAR violations if placed
correctly. The transformation converts each of the remain-
ing WAR violations to a set of locations that resolve that
WAR violation. Next, a cost is associated with all the poten-
tial checkpoint locations, primarily depending on the loop
depth. The resulting sets of potential locations are used in a
greedy minimal hitting set algorithm [11, Section 4.2.1] to
#nd a set of checkpoint locations that resolve all the WAR
violations. This technique was also used by Ratchet [57].
Both write postponing transformation discussed before are
e$ective because they reschedule the write instructions so
that the hitting set algorithm can resolve multiple WAR vio-
lations with a single checkpoint. Therefore, the hitting set
algorithm would result in fewer overall checkpoint locations
and is integral to the system’s performance.

3.1.3 WARio Back End. The #nal steps of the code trans-
formation are performed by the back end. All steps (listed
within the dark blue area in Figure 2) are explained below.

Hi!ing Set Stack SpillCheckpoint Inserter.Up to this
point, WARio targeted memory dependencies in the middle
end of the compiler. However, to safely support intermittent
execution, all WARs to NVM must be handled with a check-
point, including those that arise in the compiler’s back end.
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During the register allocation phase, the back end may run
out of empty registers and move (spill) some of these regis-
ters to a stack slot on the stack. The accesses to the NV stack
can introduce new WAR violations. These WAR violations
are resolved by #rst forcing the compiler not to reuse any
stack slot during the register allocations phase; after this,
only a loop can cause a write after a read to one of these slots.
Instead of placing a checkpoint before a write to a stack slot
that causes a WAR, as is the case in Ratchet [57]. WARio’s
Hitting Set Stack Spill Checkpoint Inserter han-
dles inserting checkpoints by applying the same algorithm
as the middle end. A minimum hitting set algorithm [11,
Section 4.2.1] selects the checkpoint locations, not using
memory information provided by the PDG, as this informa-
tion is not available during this compilation stage, but by us-
ing the known stack slot locations. Strategically placing the
checkpoints to handle more WAR violations per checkpoint
dramatically reduces the number of checkpoints introduced
in the back end, caused by the register pressure increases
following Write Clusterer and Loop Write Clusterer

transformations. It is, therefore, a vital component of WARio
that allows the checkpoint reduction achieved in the middle
end to propagate through the back end.

Idempotent StackPopConverter.The remainingWAR
violations caused in the back end are due to pop instructions.
When executing a pop instruction, the stack variables are
#rst loaded (read) into registers, and then the stack pointer is
adjusted. Assuming an interrupt happens, the processor will
automatically push some registers on the stack and jump to
the interrupt service routine. The act of pushing (writing)
data to the stack causes a WAR violation concerning the
stack. Resolving these WAR violations is done the same way
as in Ratchet [57], breaking all pop instructions into (i) #rst
loading the memory into registers, then (ii) performing a
checkpoint, and #nally (iii) adjusting the stack pointer.

Epilog Optimizer. Because of the aforementioned check-
points required to absolve all the pop instructions fromWAR
violations, the epilog of any functions contains at least one
checkpoint whenever it uses stack memory. However, often
the stack pointer is not adjusted in one go when a function
returns. Factors such as the use of a frame pointer and other
back end implementation-speci#c causes can induce more
stack pointer adjustments, leading to an equal number of
additional checkpoints. As a #nal transformation just before
the code generation phase, WARio analyzes the epilogs of all
the functions and will reduce the required number of check-
points during the epilog to just one, whenever possible. It
does so by temporarily postponing any incoming interrupts
until after the stack adjustment, eliminating the chance of
an interrupt allocating on the stack and therefore eliminat-
ing WAR violations. Doing this will result in a longer delay
between the interrupt arrival and handling. However, the

delay consists of only a small amount of instructions.3 This
epilog optimization results in only one inserted function epi-
log checkpoint before the last stack pointer adjustment to
avoid interrupt-related WAR violations, instead of up to
three in [57], reducing the penalty of function calls.

4 WARio Implementation
We now proceed with the implementation details of WARio’s
architecture presented in Section 3.

4.1 Target Architecture

We implemented WARio for the popular 32-bit ARM Cortex-
Mprocessor architecture [6], butwith on-chipmixed (volatile
and non-volatile) main memory, such as the recent Ambiq
Apollo4 Blue [3]. WARio’s main memory resides in the NVM,
including all global- and stack-allocated variables. Only the
processor con#guration, e.g., peripheral con#gurations, and
the registers, are volatile. Therefore, only the register’s state
is being stored during a checkpoint.4

4.2 Selected Compiler and PDG Analyzer

We chose LLVM version 9.0.1 [41] as the compiler on top of
which WARio is built. For the PDG analysis and loop trans-
formation abstractions WARio uses NOELLE [36] (commit
fc36051).

4.3 WARio Middle End Transformations

We proceed with the description of all IR transformations
performed by WARio.

Loop Write Clusterer.
Using abstractions provided by NOELLE this transforma-

tion iterates over all loops in the program. For each loop, it
performs the algorithm described in 3.1.2—Paragraph Loop

Write Clusterer. The unrolling factor " is a compile-
time %ag provided to WARio. The default unroll factor used
to assess WARio performance is " = 8, which we found
experimentally—refer to Section 5.2.4.

Expander.This transformation goes over all the functions
in the input program twice. Firstly, it creates a list of func-
tions containing pointers. These functions are candidates
to be inlined, as they might aid in the later transformations.
Secondly, the Expander goes through all the calls in every
function. If a function call is in a loopwithout any sub-loops—
and appears in the list of candidate functions—the Expander
inlines the function call into the caller.

Write Clusterer. This transformation uses the WAR vio-
lation results from the PDG to collect potential WAR clus-
tering candidates. The WAR writes (store instructions of

3As WARio targets intermittent computing, where the device might power
o$ at any time, this delay in interrupt handling is not a concern.
4We emphasize that peripherals are not addressed in this work. We refer to
Section 6 for further discussion.
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LLVM) of these WAR violations are then clustered as de-
scribed in Section 3.1.2—Paragraph Write Clusterer.

PDG Checkpoint Insterter. Finding the checkpoint lo-
cations happens as described in Section 3.1.2—Paragraph
PDG Checkpoint Inserter. The transformation uses PDG in-
formation provided by NOELLE to #nd the WAR violations
in the program. Next, the transformation inserts checkpoint
intrinsics, i.e., special placeholder instructions that signify
the back end to insert a checkpoint at that location, at all the
checkpoint locations selected by the hitting set algorithm.

4.4 WARio Back End Transformations

We need to stress that inserting checkpoints to avoid WAR
violations to physical NVM is a task ‘close’ to the actual
hardware, which can only be handled by the back end. Not
all WAR violations can be discovered and resolved in the
middle end of the compiler. Therefore, the #nal step is to
resolve all the WAR violations in the compiler’s back end.
The reason for not resolving all WARs directly in the back
end is that information on, e.g., detailed memory dependency
from the PDG, is accessible only in the middle end.

Hi!ing Set Stack Spill Checkpoint Inserter. The #rst
cause of WAR violations in the back end is handled by the
Hitting Set Stack Spill Checkpoint Inserter, which
occurs after the register allocation. During the LLVM regis-
ter allocation -no-stack-slot-sharing option is used to
disallow the reuse of stack slots. The remaining stack spills
can only cause a WAR violation if they occur in a loop,
caused by re-executing a basic block that re-uses the stack
slot. The transformation goes through all the stack slot ac-
cesses in the LLVM Machine IR and checks for non-handled
WAR violations, i.e., violations not already handled by check-
points inserted in the middle end. Instead of inserting check-
points before the stack slot writes of remaining WARs, as in
Ratchet [57, Section 4.1], WARio implements a minimum hit-
ting set algorithm similar to what is used in the middle end
(Section 4—Paragraph PDG Checkpoint Inserter) to reduce
the required checkpoints needed to eliminate all WARs.

Idempotent Stack Pop Converter. The other cause of
WAR violations in the back end occurs during the #nal frame
lowering step as discussed in Section 3.1.3—Paragraph Idem-
potent Stack Pop Converter. WARio implements this step for
the Thumb-2 [5] back end in LLVM, instead of the Thumb
back end used in Ratchet (as we found out in its source
code [22]), in order to support the Cortex-M [6].

Epilog Optimizer. The Thumb-2 back end in LLVM in-
serts up to three di$erent stack pointer modi#cations during
the epilog of a function to restore (i) callee saved registers,
(ii) the frame pointer, and (iii) other allocated stack mem-
ory. To handle all these potential WAR violations with a
single checkpoint instead of three, we exploit a trait of target
Cortex-M architecture. Namely, (i) temporarily disabling the
global interrupts before the stack-pointer adjustment, and (ii)

and re-enabling them afterwards. During the period where
the interrupts are disabled, which usually lasts a few instruc-
tions, interrupts are not lost but set as pending. After the
interrupts are re-enabled, any pending interrupt will trigger.

4.5 Checkpoints

All the previously discussed transformations do not actually
insert checkpoint calls directly. Instead, they insert check-
point intrinsics happens just before the code generation in
the compiler’s back end. The checkpoints themselves are as-
sembly routines. As the main memory is NV, the checkpoint
only includes the current state of the (live) registers. How-
ever, one can not simply copy the content of the registers to
a reserved location in NVM, as this would lead to a corrupt
checkpoint if the power fails during the creation of a said
checkpoint. Instead, in order to be incorruptible, the check-
point has to be double bu$ered in NVM, as in other software
support systems for intermittently-powered devices, e.g. [26,
Section 3], [60, Section 3.4].

4.6 Compilation Process

Creating the intermittently-executable code is as simple as
replacing LLVM’s clang [39] with our dedicated WARio
compilation script, denoted as iclang. iclang orchestrates
the di$erent compiler transformations without any user in-
tervention. Within iclang the programmer can also specify
a compilation path that can be selected from all possible
ones shown in Figure 2. iclang compiles the C program
without any transformations using gllvm version 1.3.0 [45].
This compilation stage creates the whole-program IR #le
from multiple C project #les which is then used as an in-
put to the WARio. Additionally, before the Loop Write

Clusterer, a basic inlining transformation (using LLVM-
speci#c opt -always-inline -inline command) is exe-
cuted. Also, before the Expander transformation the user-
speci#ed optimization level (e.g., -O2, -O3) is applied. After
all needed transformations theWARio generates the ELF pro-
gram binary, which can be then executed on a intermittenlty-
powered device.

5 WARio Evaluation
Wenow proceedwith the evaluation ofWARio vis-á-vis state-
of-the-art compiler-based software system for intermittently-
powered devices. WARio, together with all supporting code
to gather and process the evaluation results is available via
an open-source repository [38] and as an artifact [37].

5.1 Evaluation Setup

We begin with the outline. We will justify implementation
choices aimed at the correct assessment of WARio.

5.1.1 Target Processor Platform. WARio performance
wasmeasured using a custom-built emulator for ARMCortex-
M processors with on-chip byte addressable NVM. During
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WARio’s development, the only such processor announced
commercially was the Ambiq Apollo4 Blue [3], which was
not yet available at the time of writing this article due to the
ongoing chip shortage started in 2021 [9].

Why Processor Emulation is Needed. The reason for
using emulation is threefold. First, an emulator enables us
to collect detailed information about the processor status
without inserting additional code for data collection (such
as variable increments at a traced event). Such code inserts
would alter the evaluation results on actual hardware. Sim-
ply, these new variables manipulations would introduce ad-
ditional WAR dependencies to resolve, which were not part
of the input benchmark code and should therefore not be
counted. Second, emulation enables us to verify the absence
of WAR violations during execution by checking all memory
accesses in the emulator. Finally, it allows us to evaluate
WARio without requiring the delayed Ambiq Apollo4 Blue.
We emphasize that processor emulation is a common assess-
ment strategy in many works targeting software systems for
intermittently-powered devices. Examples are [57, Section
4.2], [21, Section 6], [34, Section 5.1], and [33, Section 6.1].

EmulatorArchitecture. The developed emulator is based
on the Unicorn [44] CPU emulator version 1.0.3, which itself
is based on the QEMU emulator [42]. Unicorn was selected
for reasons of (i) native support of the ARM Cortex-M fam-
ily [6], (ii) support of the Thumb-2 instruction set [5, Section
1.2.1] (which is needed for ARM Cortex-M) and (iii) ability
to extend the emulator with new features. Speci#cally, the
features we built on top of Unicorn are as follows.
! Performance Statistics Collection: The emulator en-
ables to collect information on (i) the number of executed
clock cycles, (ii) the number and cause of checkpoints, (iii)
the number of clock cycles between two consecutive check-
points, and (iv) where checkpoints occurred in the code. For
the pipeline re#ll-based instructions of ARM Cortex-M4 [2,
Section 3.3.1] we calculate the approximate number of ex-
ecuted clock cycles using our implementation of the three-
stage instruction pipeline used by Cortex-M processors.
!WARViolationAbsenceVeri!cation: Our emulator per-
forms the same veri#cation of the absence of WAR violations
as in [34, Section 5.2] with one main modi#cation. The work
of [34] checked only the middle end code, excluding the
processor speci#c back end. Our WAR violation veri#cation
is build into the emulator, which allows us to detect WAR
violations also in the back end and in any assembly code.

5.1.2 Software Benchmarks. The #rst software bench-
mark used in the evaluation is CoreMark [16], an industry-
grade benchmark for measuring CPU performance in em-
bedded systems. Additionally, we have used the following
programs from the MiBench [19] suite: CRC, SHA, and Dijk-
stra. We have also used picojpeg [17] and Tiny AES [43] to
represent two real-world libraries for embedded platforms.

As described in Section 4.6, all benchmarks use the same
compilation pipeline: from plain C to completeWARio.When
a certain transformation is disabled for a speci#c bench-
mark compilation (see Section 5.1.3), the IR passes through
this speci#c transformation without any modi#cations. All
benchmarks are compiled using the -O3 optimization level of
LLVM. Furthermore, the loop unroll factor in the Loop Write

Clusterer transformation is " = 8, which we empirically
found, as will be presented in Section 5.2.4.

5.1.3 Software Environments. We evaluate all bench-
marks, listed in Section 5.1.2, in the following software en-
vironments. Justi#cation for our selection of these environ-
ments is outlined in Section 7.

WARio and its Components. Benchmarks are evaluated
by a WARio and by WARio with Expander. We also evaluate
individual transformations of WARio, as listed in Figure 2, i.e.
Loop Write Clusterer, Expander, Write Clusterer and
Epilog Optimizer. Note that the Checkpoint Inserter,
the basic version of the Stack Spill Checkpoint Inserter,
and the Idempotent Stack Pop Converter transforma-
tions are always required to create a program that can exe-
cute intermittently and are included in all the other WARio
transformations. In addition, the Hitting Set Stack Spill

Checkpoint Inserter includes optimized checkpoint place-
ment algorithm that uses a minimum hitting set to aid the
write clustering transformations (Section 3.1.3—Paragraph
Stack Spill Checkpoint Inserter). This advanced ver-
sion is enabled during all WARio benchmarks, except for the
Epilog Optimization (not to impact its results).

Ratchet. Ratchet [57] is the only completely compiler-
based software environment for intermittently-powered de-
vices, i.e. operating fully in the middle and back end of the
compiler, without runtime memory logging as e.g. [26, 32],
or source instrumentation, as e.g. [26, 31, 60]. Ratchet also ad-
dresses all features ($–() listed at the beginning of Section 3.
During the evaluation we use an unaltered version of the
Ratchet middle end available via [22], and re-implemented
the back end to support the Thumb-2 instruction set [5, Sec-
tion 1.2.1] needed for ARM Cortex-M family [6], as we re-
marked already in Section 5.1.1.

R-PDG. Additionally, we designed and implemented a
version of Ratchet [57], denoted as R-PDG, that uses the
PDG information provided in NOELLE [36] for checkpoint
insertion, instead of the built-in aliasing information avail-
able in LLVM. This adaptation to Ratchet is made to evaluate
only the e$ect of WARio transformations while excluding
the added bene#t of using PDG information.

Non-instrumented Plain C Code. Finally, plain C (non-
instrumented version) of all benchmarks are executed. They
will be treated as the ultimate reference to all benchmarks
run in all software environments listed above.
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5.1.4 Energy Traces. We evaluateWARio considering the
following power supply cases.
!Continuous Power: This case is required to measure ex-
ecution time overhead from checkpoint insertions and code
transformations for all software environments.
! Intermi"ent Power with Prede!ned Pa"ern: For a sin-
gle scenario a #xed power on period is repeated until a given
benchmark completes its execution.
! Intermi"ent Power with Measured Traces: We have
run our emulator following two example empirical voltage
traces measured at the output of an actual energy harvester
of a battery-free embedded device. The preexisting traces
used in our evaluation, available via [47], were initially used
in the evaluation of Mementos [49]: one of the #rst software
frameworks for battery-free intermittently-powered devices.

5.2 Evaluation Results

With the evaluation setup introduced, we are ready to present
the evaluation results of WARio.

5.2.1 ExecutionTime. First, wemeasured execution time
for all benchmarks (listed in Section 5.1.2) executed by all
software environments (listed in Section 5.1.3). All results
were normalized to the execution time of non-instrumented
plain C code versions of each benchmark.5 The results are
presented in Figure 4.
The core message of this evaluation is that the average

execution time for all benchmarks with WARio (blue dashed
line in Figure 4) is reduced by 45.6% compared to average
execution time for Ratchet (gray dotted line in Figure 4) and
27.7% compared to R-PDG (gray dashed line in Figure 4). Av-
erage per-benchmark overhead reduction by using WARio
was also signi#cant. WARio with Expander reduced the over-
head of Ratchet and R-PDG by 58.1% and 44.3%, respectively.
The above numbers demonstrate that WARio reduces check-
pointing overhead on intermittently powered devices.

5.2.2 Checkpoint Cause. Figure 4 shows also how ben-
e#cial each compiler transformation is (see Section 5.1.3).
We see that each benchmark bene#ts di$erently from each
transformation. To shed more light into this observation we
gathered more statistics. For the same setup as in Figure 4,
we recorded the number of inserted checkpoints that were
executed and what caused them. The result is presented in
Figure 5. Speci#cally, we gathered how many checkpoints
were caused by the (i) back endWAR dependency, (ii) middle
end WAR dependency, (iii) function entry, and (iv) function
exit. Ratchet is not present in Figure 5 because the number of
checkpoints compared to other software environments listed
in Section 5.1.3 is disproportionately high. In other words
it is far worse than its improved version R-PDG. Therefore

5Note, however, that C-only code is incapable of maintaining forward
progress on intermittently-powered device with volatile/non-volatile mem-
ory architecture.

we have used R-PDG as a reference point for the evalua-
tion. In Figure 5, R-PDG represents the starting point for
each benchmark, i.e., it represents 100% of the checkpoints.
Each WARio transformation aims to reduce the number of
executed checkpoints relative to R-PDG, represented by the
total height of each stacked bar.

Inspecting individual benchmarks,Dijkstra execution time
is almost non-visible in Figure 4. This is because of fewWAR
violations occur in Dijkstra. This is shown by the data gath-
ered for Dijkstra seen in Figure 5, where the numver of re-
duced checkpoints (except for function exit) at each WARio
transformation is not decreasing. For CRC, on the other
hand, there are no middle end checkpoints to optimize—this
is the reason for smallest improvement from WARio with
Expander compared to other benchmarks. Benchmarks that
bene#t most fromWARio’s write clustering are SHA and Tiny
AES, because both benchmarks contain many loop opera-
tions. Speci#cally, for SHA and Tiny AES reduction of middle
end WAR checkpoints after the Loop Write Clusterer is
≈60% and ≈70%, respectively.
Inspecting individual compiler transformation, the gain

from the use of Expander is not signi#cant, or is even slightly
detrimental, as in the case for Tiny AES. The reason is as
follows. Expander attempts to guess what functions are
good to inline and sometimes this guess is inaccurate (see
Section 3.1.2—Expander). To really bene#t from Expander,
WARio would need a code pro#ling information. The Epilog
Optimizer reduces checkpoints for benchmarks with many
exits; CRC bene#ts from this signi#cantly.
The middle end is the main focus of WARio transforma-

tions. These, however, can lead to an increase in register
spills due to the increased register pressure. However, as we
observe, the reduction in the number of middle-end check-
points heavily outweighs the increased number of check-
points in the back end. This is seen in Figure 5 for CoreMark,
SHA and Tiny AES, comparing the number of back end check-
points with and without the transformations.

5.2.3 Code Size. Next, wemeasured the overhead in terms
of extra .text size in the ELF of (i) Ratchet, (ii) WARio, and
(iii) WARio with the Expander transformation compared
to the non-instrumented (original C) versions. These mea-
surements, presented in Table 2, show the code-size penalty
associated with WARio’s speedup demonstrated in Figure 4.

The average code-size increase of Ratchet and WARio are
nearly identical. Per-benchmark overhead mainly depends
on the number of checkpoints inserted in the code and they
are rather consistent between Ratchet andWARio (except for
AES—advantageous for WARio and for AES—advantageous
for Ratchet). This suggests that not only WARio performs
better than Ratchet, and attains this without any extra code
footprint penalty. The code size is not signi#cantly a$ected,
even though WARio removes many checkpoints (as demon-
strated in Figure 5) because a checkpoint is a simple jump
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Figure 4. Execution time for all benchmarks for Ratchet [22], R-PDG (i.e. improved PDG-based version of Ratchet, see
Section 5.1.3) and various components of WARio (per isolated WARio compiler transformation, complete WARio and WARio
with Expander [see Section 3.1.2]). All results are normalized to the uninstrumented C version of each benchmark, i.e. the
lower bound of execution time of each benchmark.
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Figure 5. Analysis of the checkpoint cause for the corresponding benchmarks presented in Figure 4. Each stacked bar, per
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excluded from the #gure due to the scale di$erence, the reduction in the number of executed checkpoints compared to Ratchet
is shown separately in Table 1. Each bar consists of four segments, indicated by the di$erent hashing applied. The di$erent
segments depict the checkpoint causes: function exit, function entry, back end, or middle end.

instruction to the checkpoint routine. Hence, removing a
checkpoint only removes a single instruction from the ex-
ecutable. Additionally, WARio sometimes adds additional
instructions while executing the write clustering trans-
formations. On the other hand, adding the Expander trans-
formation to WARio does increase in the average code size.
Note that Expander does not always translate to an increase
in performance, as seen in Figure 4. The reason for Expander
increases the code is because of inlining functions duplicates.
Next, we investigate how large the loop unroll factor "

should be. The result are presented in Figure 6. For this ex-
periment we chose a subset of benchmarks that bene#ted
most from Loop Write Clusterer, i.e. SHA and Tiny AES,
see again Figure 5. We measured the total number of check-
points (top part of the #gure) and execution time overhead
reduction (bottom part of the #gure) compared to benchmark
with " = 1, i.e. no unrolling, as a function of " .

5.2.4 Loop Unroll Factor. The #rst observation is that
as " reaches a certain point, the percentage of checkpoint
reduction stalls. Simply, there need to be checkpoints for
intermittent system to work correctly. However, unrolling a
selected loop for loop write clustering. On average, steady
state (for both number of checkpoints as well as overhead)
is reached when the number of checkpoints in the middle
end is reduced from ≈80% to ≈40%. These factors also cause
the overhead to %uctuate when the unroll factor " becomes

Table 1. The di$erence in total number of executed check-
points by WARio compared to Ratchet.

WARio WARio + Expander

CoreMark -36.6% -56.0%
SHA -88.6% -87.8%
CRC -33.5% -33.5%
Tiny AES -74.5% -71.5%
Dijkstra -18.7% -18.7%
picojpeg -33.6% -33.7%

average -47.6% -50.2%

Table 2. Per-benchmark code-size increase compared to the
original C version (without intermittent computing support).

Ratchet WARio WARio + Expander

CoreMark +39.6% +38.7% +67.9%
SHA +33.2% +33.4% +62.3%
CRC +8.4% +7.8% +7.8%
Tiny AES +16.2% +12.1% +37.7%
Dijkstra +7.9% +8.2% +8.2%
picojpeg +5.2% +11.9% +13.4%

average +18.4% +18.7% +32.9%

large, as these added checks and checkpoints in the back end
will outweigh the reduction of checkpoints in the middle end.
The ideal unroll factor for these speci#c benchmarks appears
to be ≈ " = 8. Therefore, " = 8 has been selected for all the
other experiments, as we remarked already in Section 5.1.2.
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three example benchmarks. " = 2 already gives a substantial
improvement, while approximately " = 8 provides the most
bene#t.

5.2.5 Impact of Power Intermittency. Wemeasured the
size of the idempotent sections, i.e., the number of CPU clock
cycles between two checkpoints during execution. Figure 7
shows the results for Ratchet, R-PDG, andWARio (complete).
Themedian (white line) does not increase signi#cantly. As ex-
pected, the 75th percentile (top of the box) and mean (white
triangle) increase for most benchmarks. Most importantly,
we see that (on average) the maximum idempotent region
size is not signi#cantly a$ected by the removal of over half
of the checkpoints. In some cases, e.g., SHA, the maximum
idempotent section size did increase dramatically. However,
evenwith this increase, the required power on time is approx-
imately 5.6ms or 0.9ms with a processor speed of 8MHz or
50MHz, respectively. WARio removes checkpoints at loca-
tions where idempotent sections are generally small, e.g., in a
loop body or during the epilogue of a function, often leaving
the large idempotent sections unmodi#ed. Therefore, WARio
does not signi#cantly increase a device’s required minimum
power-on time to maintain forward progress as compared
with Ratchet [57]. We note that additional research is needed
to automatically reduce large regions to sustain forward
progress for systems requiring even lower minimum power
on time. However, the WARs remain protected, preventing
inconsistencies due to power failures even in this case.
Furthermore, we executed the same benchmarks using

di$erent power on/power o$ patterns, as speci#ed in Sec-
tion 5.1.4, until completion. The overhead the intermittent
execution introduces is composed of three factors: (i) the
processor boot procedure execution, (ii) the last successful
checkpoint restoration, and (iii) re-execution of the code
between the last checkpoint and the location of the power
failure. The #rst two factors are constant, but the third fac-
tor depends on where the power failure happened in the
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Figure 7. Idempotent region size for all considered bench-
marks and software environments. Data is presented as a
box plot, where maximum values are given at the top of each
benchmark’s result.

idempotent region. Table 3 shows this overhead as a percent-
age of the total execution time. For all the benchmarks, this
overhead is minimal. Even with very short power on times
of 2ms (at a processor clock speed of 50MHz), the average
overhead is less than 1% compared to continuous power.

6 Discussion
Location-speci"c Checkpoints. WARio does not place
checkpoints that are user- or application-speci#c, e.g. to
guarantee that inter-checkpoint (idempotent region) time is
not larger than certain number of cycles. On the other hand,
the number of checkpoints placed by WARio is great enough
that extra checkpoints might not be necessary, see Figure 7.

Sensing Applications and Use of Peripherals.WARio
does not target sensing-based applications, that require inter-
action with the peripherals. This is a problem which needs to
be solved separately, for example using special libraries [25,
Section 3.4], which can be used in combination with WARio.

Code Pro"ling. WARio would bene#t from a code pro-
#ler. Speci#cally, code pro#ling would improve both check-
point placement and the e$ectiveness of the Expander. We
leave the design of code pro#ling for the future.
Just In Time Checkpoints. Instead of inserting check-

points to resolve WAR violations, the Just In Time strategy
inserts them based on the developer-speci#ed storage capac-
itor voltage threshold. This strategy brings some downsides.
The incoming energy can be highly unpredictable [49, Figure
1], which means that the con#gured voltage level does not
directly correlate to the amount of execution time left.6 In

6The time between reaching the con#gured voltage level of the comparator,
and when the system experiences a power failure, can highly %uctuate, even
for a predictable energy harvesting source [25, Section 6.4].
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Table 3. Code re-execution overhead in percentage for WARio with Expander compared to the continuously-powered
version, O, and number of observed power failures during benchmark execution, P, per di$erent power on cycles.

power on duration CoreMark SHA CRC Tiny AES Dijkstra picojpeg

clock cycles time at {8MHz, 50MHz} O P O P O P O P O P O P

50 000 {6.2ms, 1ms} 0.24% 127 2.87% 380 7.25% 1 0.23% 7 1.70% 1135 0.18% 2624

100 000 {12.5ms, 2ms} 0.14% 63 2.87% 190 0.00% 0 0.09% 3 0.86% 563 0.09% 1310

1 000 000 {125ms, 20ms} 0.01% 6 2.78% 19 0.00% 0 0.00% 0 0.07% 55 0.01% 130

5 000 000 {625ms, 100ms} 0.00% 1 0.00% 3 0.00% 0 0.00% 0 0.02% 11 0.00% 26

trace ! 0.00% 3 0.04% 8 0.00% 0 0.00% 0 0.04% 27 0.00% 66

trace " 0.00% 1 0.00% 2 0.00% 0 0.00% 0 0.01% 5 0.00% 13

) Time (for a given processor frequency) is provided as a reference for two example processor clock speeds—8MHz (i.e. speed at which internal
FRAM of TI MSP430 [55] runs on a maximum speed) and 50MHz.

Table 4. WARio compared against state-of-the-art intermittent execution support systems.

system
non-volatile

main memory

register-only

checkpoint

no runtime

memory log
incorruptible

C language

support
compiler-

based

code-

aware

code-

transf.

ARM

support

Mementos [49] * no * no + yes + yes + yes * no * no * no + yes
MPatch [13] * no * no * no + yes + yes * no * no * no + yes

Chinchilla [32] + yes + yes * no + yes ∼ partially† + yes * no ∼ partially * no
TICS [26] + yes * no‡ * no + yes + yes + yes♠ * no * no * no
InK [60] ∼ partially + yes ∼ partially + yes * no, * no * no * no * no

Rachet [57] + yes + yes + yes + yes + yes + yes + yes * no + yes-

WARio + yes + yes + yes + yes + yes + yes + yes + yes + yes

† Does not support any form of recursion [26]. ‡ The active stack segment is included in the checkpoint. ♠ Source code instrumentation combined with a
segmented stack implementation in the TI MSP430 [55] GCC [40] back end [26]. , A C-style domain speci#c language for energy-task programming [26,
Section 5.4]. - Only Thumb instruction subset, no Thumb-2 support [22].

such a system, the con#gured voltage threshold must set to
the worst case, as even one missed checkpoint can cause a
WAR violation, corrupting the system’s memory.

7 Related Work
The main (and only) system we can compare WARio to was
Ratchet [57]. Nonetheless, this is not the only system avail-
able, as presented in Section 2. Themost concrete comparison
is given in Table 4. We also refer to [7, Table 1], [60, Table
1], [13, Table 2], for similar comparisons.

Loop Transformations. Early works considering the
macro-level idea of instruction relocation and loop unrolling,
however with speci#cs di$erent from WARio, include [14]
(in the context of an automatic coarsening the granularity of
locks [by making one lock for multiple objects that can be
accessed together] for the data manipulated by a program
in a parallel computing system) and [28] (in the context
of increasing instruction-level parallelism for processor in-
struction scheduling). Some volatile memory-based systems,
e.g., [59], have introduced counters into loops to check when
to create a checkpoint. Sadly, this does not work when the
main memory is NV. Some form of loop-result bu$ering for
task-based AI systems programmed using a special DSL was
introduced in [18]. However, this approach does not work
for general-purpose C-based applications.
Extensions ofWARio.Other works can enhanceWARio

by tackling other optimizations. For instance, WARio can

’cache’ some data in volatile memory if that data is both
generated and used in one idempotent section, as in [33].

8 Conclusions
We have presented WARio: a set of compiler transforma-
tions that generate a binary which can be safely executed
on intermittently-powered platforms. WARio injects check-
points to resolve Write After Read violations but does it
only after transforming the input code, moving ‘Write‘ op-
erations from individual WAR operations closer together,
e$ectively reducing the number of required checkpoints—in
turn, reducing checkpoint overhead.
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