CARAT CAKE: Replacing Paging via Compiler/Kernel

Brian Suchy
Northwestern University
Evanston, IL, USA
brian@briansuchy.com

Siyuan Chai
Northwestern University
Evanston, IL, USA

Michael Cuevas
Northwestern University
Evanston, IL, USA

Nikos Hardavellas
Northwestern University
Evanston, IL, USA

Cooperation

Souradip Ghosh

Northwestern University
Evanston, IL, USA

Zhen Huang
Northwestern University
Evanston, IL, USA

Alex Bernat
Northwestern University
Evanston, IL, USA

Simone Campanoni
Northwestern University
Evanston, IL, USA

Drew Kersnar
Northwestern University
Evanston, IL, USA

Aaron Nelson
Northwestern University
Evanston, IL, USA

Gaurav Chaudhary
Northwestern University
Evanston, IL, USA

Peter Dinda
Northwestern University
Evanston, IL, USA

nikos@northwestern.edu

ABSTRACT

Virtual memory, specifically paging, is undergoing significant in-
novation due to being challenged by new demands from modern
workloads. Recent work has demonstrated an alternative software-
only design that can result in simplified hardware requirements,
even supporting purely physical addressing. While we have made
the case for this Compiler- And Runtime-based Address Transla-
tion (CARAT) concept, its evaluation was based on a user-level
prototype. We now report on incorporating CARAT into a kernel,
forming Compiler- And Runtime-based Address Translation for
CollAborative Kernel Environments (CARAT CAKE). In our im-
plementation, a Linux-compatible x64 process abstraction can be
based either on CARAT CAKE, or on a sophisticated paging imple-
mentation. Implementing CARAT CAKE involves kernel changes
and compiler optimizations/transformations that must work on all
code in the system, including kernel code. We evaluate CARAT
CAKE in comparison with paging and find that CARAT CAKE is
able to achieve the functionality of paging (protection, mapping,
and movement properties) with minimal overhead. In turn, CARAT
CAKE allows significant new benefits for systems including en-
ergy savings, larger L1 caches, and arbitrary granularity memory
management.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS °22, February 28 — March 4, 2022, Lausanne, Switzerland

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9205-1/22/02...$15.00
https://doi.org/10.1145/3503222.3507771

simonec@eecs.northwestern.edu

98

pdinda@northwestern.edu

CCS CONCEPTS

« Software and its engineering — Operating systems, com-
pilers; Runtime environments; « Blended systems;

KEYWORDS
virtual memory, memory management, kernel, runtime

ACM Reference Format:

Brian Suchy, Souradip Ghosh, Drew Kersnar, Siyuan Chai, Zhen Huang,
Aaron Nelson, Michael Cuevas, Alex Bernat, Gaurav Chaudhary, Nikos
Hardavellas, Simone Campanoni, and Peter Dinda. 2022. CARAT CAKE:
Replacing Paging via Compiler/Kernel Cooperation. In Proceedings of the
27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’22), February 28 — March 4,
2022, Lausanne, Switzerland. ACM, New York, NY, USA, 17 pages. https:
//doi.org/10.1145/3503222.3507771

1 INTRODUCTION

Virtual memory, specifically address translation implemented with
paging, is deeply embedded in today’s systems at all levels, but par-
ticularly within the hardware and the kernel. As we have known
since the 1960s [50], virtual memory solves numerous problems.
This includes providing a simplifying memory abstraction for pro-
grammers, protecting the kernel from processes and processes from
each other, and extending physical address space via swapping
to/from storage. Its most popular form, paging, also provides a
natural unit for memory management.

Unfortunately, paging! is not without cost. Paging requires hard-
ware/software codesign spanning the hardware directly on the
access path to main memory and the deepest levels of the kernel.
The hardware structures supporting the traditional address trans-
lation model (per-core DTLBs, ITLBs, STLBs, separate structures
for different page sizes, nested TLBs, quad pagewalkers, walker

! And its kissing cousin, segmentation.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3503222.3507771
https://doi.org/10.1145/3503222.3507771
https://doi.org/10.1145/3503222.3507771

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

caches) together require almost as much area as L1 caches [12]. A
TLB consumes a significant energy [25, 48, 71, 92], and is a thermal
hot spot [73]. Early studies find TLB power consumption is as high
as 15-17% of the chip’s power [45, 46]. Industry reports that TLBs
consume up to 13% of a core’s power [30, 80], with later studies
estimating that TLBs are responsible for 20-38% of L1 cache energy
consumption [10, 29]. Distributed TLBs are no panacea either, with
significant overheads to keep them coherent [4, 7, 12, 70, 87, 93].

As workloads have changed and become larger, we see more
strain on hardware. The increasingly complex design of TLBs, page-
walk caches, pagewalkers, etc, face increasing concern [10, 12, 47,
48, 73, 92]. This has sparked considerable innovation attempting
to extend the paging model. Also note that paging hardware is
increasingly becoming coupled to other aspects of the memory
system. Modern L1 caches are virtually indexed, allowing a cache
lookup to start in parallel with a TLB lookup. This coupling limits
the number of sets in the L1 cache, guarding against synonyms
(i.e., different virtual addresses mapped to the same physical loca-
tion), since the cache is indexed by the LSBs common to physical
and virtual address [10, 11, 94]. Removing this limitation, which
CARAT implementations do, might allow L1 caches to provide
higher performance without needing to increase associativity.

Modern processors employ these hardware structures despite
their overheads because performance depends on fast address trans-
lation. But, what if we can get by without this hardware? It is
tantalizing to consider machines which do not need hardware such
as TLBs, pagewalk caches, or pagewalkers, or at least can power
it down when the kernel desires.? Compiler technology has been
advancing [20, 44, 49, 54, 82, 84, 85, 95] and becoming more readily
available through vehicles such as LLVM [53].

Historically, another approach to solving the problems that pag-
ing solves, namely protection and mapping (address binding), has
been through purely software-based memory management. This
approach has been limited to managed languages, where it serves
a different purpose than paging in a general-purpose OS which can
run any arbitrary code in a user process. However, we have recently
made a case for Compiler- And Runtime-based Address Translation
(CARAT), an approach to general-purpose software-based memory
management based on a compiler/kernel codesign [81].

CARAT can operate without hardware support, instead using
compiler transformations along with a runtime system to maintain
a precise view of a running program’s memory at the granularity
of program objects. CARAT allows programs to run with physical
addressing. Because the transformations operate at the level of the
compiler intermediate representation (the LLVM IR in our proto-
type), CARAT is applicable to many unmanaged languages with
few restrictions. Performance and memory overheads for CARAT’s
memory object and pointer tracking, memory access protection
checks, and memory object migration were shown to be very low for
workloads selected from the Mantevo, NAS, PARSEC, and SPEC2017
benchmark suites. We claim that CARAT is feasible and workable
now due to advances in compiler technology.

A weakness of the case is that the CARAT prototype was imple-
mented/evaluated at user level, basically operating on top of paging

2Note that every current x86 processor includes the ability to deactivate paging when
running in 32 bit mode.

99

Suchy, Ghosh, Kersnar, Chai, Huang, Nelson, Cuevas, Bernat, Chaudhary, Hardavellas, Campanoni, Dinda

within a Linux process. It did not address challenges posed by a
kernel-level implementation of CARAT, like building abstractions
such as processes on top of CARAT. In this paper, we address this
limitation of our previous work.

We develop Compiler- And Runtime-based Address Translation
for CollAborative Kernel Environments (CARAT CAKE), a new,
kernel-based implementation of the CARAT concept. More specif-
ically, we extend an existing single address space OS, Nautilus,
with a Linux-compatible process abstraction, underpinned by both
CARAT CAKE and paging. Compiler transformations (implemented
in LLVM) are applied both to the kernel itself, and to each user
program. User programs are then linked in a specialized way, and
signed to attest that our compiler toolchain produced them. Nau-
tilus can then load signed user programs directly into the physical
address space where they coexist with the kernel, running in kernel
mode. Protection of the kernel and other processes is achieved by
the compiler toolchain introducing protection checks that work
cooperatively with the kernel. Memory object migration is possible
for both kernel and process objects because the compiler toolchain
introduces allocation and pointer escape tracking throughout all
codebases. The kernel can always compact/defragment memory, as
is needed given the single physical address space.

We describe the design and implementation of the CARAT CAKE
prototype, drawing observations about key challenges. Two of these
are creating necessary compiler transformations that will work on
a kernel-level codebase, and achieving separate compilation of
the kernel and user-level codebases despite their extremely tight
coupling at runtime.

We evaluate our prototype along two dimensions. First, we report
on the overall effort involved in implementing the system, starting
from a known compiler analysis and optimization framework and
a kernel without any deeply embedded assumptions of paging.
Second, we report on the performance overheads of the CARAT
CAKE system, in comparison with a high performance paging-
based implementation in Nautilus and Linux. We find that CARAT
CAKE is a viable alternative to paging.

We make the following contributions:

e We show how to (and do) extend the previously published
CARAT concept into CARAT CAKE, a full-blown alternative
to paging within a kernel.

e We describe the design and implementation of the CARAT
CAKE prototype, drawing observations about the challenges
of this form of memory management within the kernel.

e We create a Linux-compatible process abstraction on top of
CARAT CAKE, drawing observations about the challenges of
separate compilation and kernel support. We also implement
the process abstraction using a paging codebase that lever-
ages modern x64 hardware support features for improving
paging performance.

o We evaluate CARAT CAKE'’s overheads in comparison with
paging (and with paging on Linux), as well as the software en-
gineering effort involved. Our evaluation shows that CARAT
CAKE is a viable alternative to paging.

o We describe new benefits made possible with CARAT CAKE
centered around microarchitecture and software benefits.

CARAT CAKE: Replacing Paging via Compiler/Kernel Cooperation

2 SOFTWARE, TESTBED, AND BENCHMARKS

Our prototype is built on LLVM, WLLVM, GLLVM, NOELLE, and
the Nautilus kernel. We compare paging and CARAT CAKE within
Nautilus (and with Linux) using NAS and PARSEC benchmarks.

2.1 Software

2.1.1 LLVM. LLVM [53] is a widely-used compilation framework
in academia and industry that enables sophisticated code analy-
ses and transformations. In this work, we use the framework to
implement CARAT CAKE at the level of the LLVM intermediate rep-
resentation (LLVM-IR, static single assignment (SSA) form), within
the “middle-end” of LLVM. The middle-end provides the API to
develop custom program-wide code analyses and transformations.
We leverage, for example, scalar evolution analysis and alias analy-
sis. While Clang, which targets C and C++ (including OpenMP), is
our front-end, by working in the middle-end, CARAT CAKE can be
used with the numerous other language front-ends to LLVM. We
use Clang/LLVM 9.0.0 for all code, both kernel and user.

2.1.2 WLLVM/GLLVM. Whole-Program LLVM [76] extends LLVM
compilation to aggregate all the LLVM bitcode in a project that
uses separate compilation. This aggregation gives us two key capa-
bilities. Firstly, the CARAT CAKE compiler transformations must
target entire applications and the entire kernel, and this interacts
badly with specialized build models. Nautilus, in particular, builds
itself using an incremental linker, where transformations are more
difficult to apply, rebuild, and link together. WLLVM allows the
CARAT CAKE transformations to run on the entire kernel at once
without having to consider more complex rebuilding and linking
steps. Secondly, a whole-kernel bitcode source allows the CARAT
CAKE transformations to consider the entire kernel as one mod-
ule, enabling a whole-kernel transformation and optimization. The
same technique is used for user-space compilation. An alternative
tool, GLLVM [42], can be used as a replacement for WLLVM. Each
is version 1.3.0.%

2.1.3 NOELLE. CARAT CAKE is heavily based on compiler analy-
sis and transformation. In our work, we build on a powerful new
analysis framework, NOELLE [61], which provides numerous high-
level abstractions on top of LLVM that allow for aggressive analy-
ses and transformations. Of the many abstractions that NOELLE
provides, CARAT CAKE extensively utilizes NOELLE'’s data flow
engine, NOELLE’s invariants and induction variables, and finally
NOELLE’s dependence analysis to generate the Program Depen-
dence Graph (PDG) of the program being compiled. Because the
overhead of CARAT CAKE is inversely related to the accuracy of
the PDG, we configured NOELLE to generate the most accurate
PDG. NOELLE does so by combining many alias analyses, including
those provided by SCAF [5] and SVF [83]. All code in the kernel
and at user level is analyzed using NOELLE. As compiler analysis
improves, so does the argument for CARAT.

2.1.4 Nautilus Kernel Framework. Nautilus [37] is a publicly avail-
able open-source kernel codebase that currently runs directly on x64

3Note that separate compilation can extend to libraries—each library can include the
bitcode along with the object code. In fact, in modern MacOS, applications and libraries
are already supplied in bitcode form so they can be customized for the particular target
machine at install time.

100

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

NUMA hardware, including Xeon Phi. It comprises over 331K lines
of code as measured by sloccount. Nautilus was designed with the
goal of supporting hybrid run-times (HRTs). An HRT is a mashup
of an extremely lightweight OS kernel framework, such as Nautilus,
and a parallel run-time system [35, 36]. Nautilus can help a parallel
run-time ported to an HRT achieve very high performance by pro-
viding streamlined kernel primitives such as synchronization and
threading facilities. It provides the minimal set of features needed to
support a tailored parallel run-time environment, avoiding general
purpose features that inhibit scalability.

Nautilus has a range of features that help make the execution of
an HRT faster and more predictable. Identity-mapped paging with
the largest possible page size is used. All addresses are mapped at
boot, and there is no swapping or page movement of any kind. As
a consequence, TLB misses are extremely rare, and, indeed, if the
TLB entries can cover the physical address space of the machine, do
not occur at all after startup. There are no page faults. All memory
management, including for NUMA, is explicit and allocations are
done with buddy system allocators [51] that are selected based
on the target zone. For threads that are bound to specific CPUs,
essential thread (e.g., context, stack) and scheduler state is guaran-
teed to always be in the most desirable zone. The core set of I/O
drivers developed for Nautilus have interrupt handler logic with de-
terministic path lengths. Finally, interrupts are fully steerable, and
thus can largely be avoided on most hardware threads. Application
benchmark speedups from 20-40% over user-level execution on
Linux have been demonstrated, while benchmarks show that prim-
itives such as thread management and event signaling are orders
of magnitude faster [37, 38, 58, 75]. In essence, Nautilus provides a
barebones memory management substrate that we build upon.

In order to support this work, we added an address space, or
ASpace, abstraction to Nautilus. By default, threads and interrupts
execute within the “base” ASpace, the original identity-mapped
model established at boot, which effectively is the physical ad-
dress space of the machine. A thread with a different associated
ASpace has that ASpace switched in/out on a context switch. An
ASpace is conceptually a memory map of regions, similar to a Linux
mm_struct, but designed without the assumption of paging. This
allows radically different implementations to be plugged in, such as
paging and CARAT CAKE, as we describe later. Allocators can also
be plugged in above the system-level buddy allocators. All memory
in the system is managed in a unified way.

2.2 Testbed and Benchmarks

Testing and performance measurements for this paper are done on
a Colfax Ninja Xeon Phi server, which is based on a Supermicro
K1SPE motherboard that includes a 1.3 GHz Intel Xeon Phi 7210 (64
cores, 256 hardware threads) mated to 16 GB of MCDRAM and 96
GB of DRAM. Both Nautilus and Linux are booted directly on this
platform. The Linux kernel involved is version 5.8.0. To evaluate
our work, we use class B benchmarks from the NAS 3.0 Application
Benchmark Suite [8, 43] as ported to C+OpenMP [69]. We also
include two benchmarks, Streamcluster and Blackscholes, from the
Parsec 3.0 [16] benchmark suite.

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Table 1: Terminology for CARAT.

Term Meaning

Allocation Any memory allocation that a program makes.
This includes heap allocations (mallocs), global
variables, the stack, etc.

Free A deallocation of an Allocation

Escape Any reference to an Allocation stored outside

of the initial Allocation pointer.

An Escape that that is stored within an
Allocation. This represents a subset of the
Escapes within a program.

Contained Escape

Guard A protection check before a memory access
that ensures proper access permissions.

Memory Region A contiguous block of memory addresses.

Allocation Tracking | Injected code that will keep track of every
Allocation (and Free) of a program.

Escape Tracking Injected code that will keep track of every

Escape of a program.
Injected instruction that performs a Guard
against a memory reference within the program.

Guard Injection

3 CARAT CONCEPTS AND PRIOR RESULTS

Suchy et al. [81] argue that a modern OS running programs written
in unmanaged languages can achieve performant memory manage-
ment and protection without hardware support. A naive approach
to purely software-based memory management and protection is,
of course, destined to be horrifically slow. A major claim is that
compiler analysis technology has advanced to the point where
high performance in an approach like CARAT is possible. This is
supported by extensive measurements in the CARAT paper that
capture run-time overheads both for normal operation and when
objects are moved.

3.1 Concepts

Goal and Security Model: The goal of CARAT is to provide the
same capabilities as the traditional paging model. In terms of pro-
tection this means that a user process may only access physical
addresses chosen by the kernel, and then only read/write/execute
data at those addresses as the kernel sees fit. Execution can only
enter the kernel via well-defined entry points associated with ex-
ceptions, interrupts, and system calls. When executing within the
kernel, any address can be accessed (monolithic kernel model). The
kernel may move data from one physical address to another at any
time, analogously to how a paging-based kernel can change a page
table at any time, albeit now at an arbitrary granularity.

Trusted Computing Base (TCB): The CARAT approach is
based on a trust relationship between the kernel and the com-
piler toolchain that builds the kernel and the user programs. This
appears to increase the size of the software TCB, but, of course,
the compiler toolchain is already trusted to build the kernel. We
assert that the true expansion is in the analysis and transformations
added to the compiler toolchain specifically to support CARAT, and
that this is offset by a decrease in the size and complexity of the
hardware TCB.

Terminology: Table 1 summarizes the terminology used in
CARAT. These and the following explanation apply equally to
CARAT and the work described in this paper. CARAT combines
compiler-injected and optimized code with a runtime system to

101

Suchy, Ghosh, Kersnar, Chai, Huang, Nelson, Cuevas, Bernat, Chaudhary, Hardavellas, Campanoni, Dinda

implement memory management and protection. More specifically,
the compiler transforms the intermediate representation (IR) of all
code, injecting runtime calls that match the memory management
features provided by paging.

Similar to a garbage collector in a managed language, Allocations
and Escapes are tracked. Unlike such a garbage collector, CARAT
tracking also includes statics, stacks, etc.—all allocations produced
from the unmanaged language and visible at the IR level are tracked.
The compiler injects code that works at the granularity of these
Allocations (instead of page granularity) by adding calls to the
runtime at the site of each Allocation, Free, and Escape.

The compiler also introduces software protection checks, Guards,
that replace hardware-level checks against page table entries. Con-
ceptually, each memory access at the IR level has a Guard introduced
before it, which calls into the runtime to determine if the memory
address being accessed by the program is allowed. Protection of
the stack from control-flow-based reads and writes is achieved by
introducing Guards before calls. The runtime compares the address
and the access mode with the protections of the memory region
to which the address belongs. With appropriate CARAT-specific
compiler optimizations, it is possible to safely avoid most of these
direct protection checks. This is central to good performance.’

When needing to move Allocations, for example to compact or
defragment physical memory, CARAT uses tracking information
maintained by the runtime to patch all relevant Escapes. Concep-
tually, this works like a stop-and-copy or generational garbage
collector, but again is happening in the context of an unmanaged
language, and garbage is not freed.

3.2 User-Level Prototype and Limitations

The original CARAT paper [81] developed a prototype of this sys-
tem within the context of LLVM. Our runtime system is a user-level
library in C++. To measure the overheads of tracking and data move-
ment the CARAT prototype uses signals: linking a transformed
Linux user program with the library allows it to respond to an
external signal that prompts it to move an Allocation or change the
protections of a Region. A special mode aggregates Allocation-level
movements to emulate page-sized data movements for comparison
with Linux.

For guarding each memory access (load, store and call instruc-
tion at the LLVM IR level), which seems an infeasible task, the
compiler toolchain includes specially-developed custom data flow
analysis, loop invariant analysis, and induction variable analysis
to elide redundant guard injections, which dramatically reduce the
number of dynamically-encountered guards while still maintaining
protection. These custom analyses statically guarantee a memory
access is safe (removing the guard completely), relocate the guard to
reduce redundant checking of a memory address, or conservatively
place the guard before the access when there is no other option.

The CARAT prototype considers several guard runtime options.
The simplest is an inlined single region bounds check. A variant of
this assumes hardware-accelerated bounds checking (Intel MPX).

4 Assembly code must be transformed by hand and attested to. Undefined behavior in
the source code has been resolved at this point—LLVM IR has no undefined behavior.
SProtection for instruction fetches is based on static control-flow integrity checking,
position independence, specialized linking, and load-time checks. Self-modifying code
is not supported.

CARAT CAKE: Replacing Paging via Compiler/Kernel Cooperation

The paper also provides the overheads for several data structures
supporting an arbitrary number of regions.

Performance of User-level Prototype: Measurements of the
prototype showed that tracking introduces a 2% performance over-
head, while the protection overhead was 5.9% when leveraging
MPX, and 35.8% using software methods. The total CARAT over-
head (slowdown of applications) was ~9% (using MPX). Note this
slowdown would be matched with a hardware speedup on a system
with no paging. Unfortunately, paging cannot be deactivated on
x64. When data is being moved, the overhead is, of course, higher.
However, even at double the maximum rate of any kind of page-
level operation measured when running the benchmarks on Linux,
the total CARAT overhead was only 171%. Even though the paging
semantics were being emulated, the user-level CARAT prototype’s
overheads were quite small.

Limitations of User-level Prototype: The most obvious limi-
tation is that the previous CARAT prototype operates entirely at
user level on Linux, which suffices to make the case for the CARAT
concept, but lacks in true implementations of protection and mem-
ory management as needed to facilitate kernel-level abstractions
such as processes. Other limitations include limited or no support
for heap expansion, defragmentation, shared memory, swapping,
device mapping, demand paging, and copy-on-write. However, the
paths to achieving these were presented, though not tested. We
determined it is necessary to design and implement a full CARAT
system in order to take the evaluation of the CARAT concept to
the next level.

3.3 Benefits of CARAT-Based Systems

CARAT-based systems provide many immediately visible benefits
when employed. The following benefits are obtained:

No Dependence on Address Translation Hardware: The
largest change for a CARAT-based system is the newfound freedom
from the TLB, and paging hardware in general. This lack of a virtual
memory system causes the following effects:

e No more TLB misses (as there is no longer a TLB)

e ~15% energy savings on chip [10, 25, 29, 30, 45, 46, 48, 71,
80, 92].

e Area savings, assuming you remove the paging hardware,
that are on par with the size of an L1 cache [12].

e Removal of synonyms/homonyms from cache design. This
would allow larger L1 caches. We estimate that on x86/64, L1
caches could increase from 64KB to 256KB while maintaining
the same energy and timing requirements.

Software Benefits: Employing a CARAT-based system leads to
various software benefits as well. The first benefit is that memory
can now be managed at an arbitrary granularity. For any given
program, its execution can have its memory managed by allocations,
pages, mmap regions, arenas, or any granularity the user would
want to specify. The second benefit is that improvements to the
CARAT software, particularly, the compiler, runtime, or kernel,
would increase the performance of existing programs on existing
hardware. A third benefit to hardware testing, verification, and
bug fixing. Using a CARAT-based system, the hardware of address
translation would ideally no longer exist; therefore, the testing
and verification of this hardware could be avoided. Additionally,

102

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

(Drmmrmrm
Psrgg:iz WLLVM Program | Instrument | Instrumented
(§2.1.2) IR IR
Code
Create Object File
(§2.1.1)
)
Program | Static Link Linked [Trusted Hooks| CARATized
Object (§5.1) Object (§5.3) Object
—
Embed In
Kernel
7 1
f ASpace Linux CAR AT\
(§4.3.1 - §4.3.4) Compatibility & Program
Signals 9
Defragmenter (§5.4) =
Xec
(§4.3.5) '
(—] Linux
Allocator Process-In-Kernel (PIK) | ot
(8443) (§5.2) PIK

CARAT CAKE KERNEL (§4.2.2)

Figure 1: CARAT CAKE System Diagram.

bugs in protection/management (e.g., Spectre) could potentially be
fixed by software updates instead of microcode patching or major
abstraction changes (KAISER/KPTI). Finally, it is important to note
that LLVM is an open-source project with a much larger set of
eyes on it than closed-source processor teams have. This perhaps
increases the likelihood of detecting and patching bugs in these
vital TCB components.

4 DESIGN AND IMPLEMENTATION: BAKING
A CARAT CAKE

The CARAT user-level prototype (§3) is limited because it emulates
what software-based memory management would look like. Addi-
tionally, it is built on top of the Linux process abstraction, paging,
and the MMU rather than driving memory management within
the kernel. In contrast, CARAT CAKE lets us put the CARAT con-
cept into the driver’s seat and explore the compiler-runtime-kernel
design space without constraints. In contrast, CARAT CAKE lets
us put the CARAT concept into the driver’s seat and explore the
compiler-runtime-kernel design space without constraints. CARAT
CAKE also forces us to consider how kernel abstractions such as
processes are to be implemented on top of CARAT CAKE’s mecha-
nisms instead of paging.

4.1 System and Design Choices

Figure 1 shows the structure of CARAT CAKE, with the top half
comprising the compilation process (for user programs) and the
bottom half comprising the kernel elements. The relevant sections
of our presentation are noted.

CARAT CAKE is centered around two major components of any
virtual memory abstraction: mapping and protection. The kernel
and compiler work in tandem to provide protection and mapping
functionality for execution of user programs. The compiler per-
forms analysis and transformation to propel Allocation and Escape

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Tracking within the kernel and user programs in order to sup-
port memory mapping and movement. The compiler also performs
Guard Injections to propel kernel protection checks to support pro-
tection of the kernel and user processes. The kernel manages a
single physical address space in which all code and data coexist.

The compiler, runtime, and kernel are coupled via a set of basic
abstractions that allow the kernel to manage the physical address
space. The kernel allocates Memory Regions and groups them into
ASpaces, which the kernel can delegate, expand, or assign to entities
requiring memory. In CARAT CAKE, these entities include the
kernel itself and processes—building the well-known user-space
and kernel-space layers. The compiler’s instrumentation of the
kernel and user programs, combined with the runtime, provides
memory tracking and protections per ASpace. Memory tracking is
also applied to the kernel itself. Memory is managed at the level of
Memory Regions. Unlike a paging system, these can be of arbitrary
size and thus external fragmentation is a concern. Protections are
also managed at the granularity of Memory Regions.

Because the compiler performs protections and tracking via
static analysis and transformation of application code, user-level
developers can seamlessly develop apps for CARAT CAKE ignorant
to the CARAT-based system underneath. The kernel builds stacks,
user heap(s), etc, for a process by chunking physical memory di-
rectly without address translation. The kernel-level developer can
largely ignore CARAT CAKE, unless they are working on memory
management itself.

4.2 Compiler

The CARAT CAKE compiler instruments both user and kernel
code to track Allocations and Escapes and to guard memory refer-
ences in user code. In contrast to the compiler described in §3, our
compiler intertwines tracking and protections with kernel-level per-
missions. We extend Allocation and Escape tracking transforms and
apply the Address Checking for Data Custody (AC/DC) data-flow
analysis from the prior work, loop invariant analysis, and scalar
evolution analysis to elide redundant Guard Injections. Addition-
ally, we generalize the compiler so it can understand how to manage
or optimize a program’s memory management via static analysis
and instrumentation at the IR level. This is especially important
when optimizing for both user and kernel code, where underlying
assumptions about the semantics or safety of memory accesses can
differ. We also exploit invariants that we can derive by analyzing
the trusted computing base (TCB) for the kernel and integrating
them into the CARAT CAKE compiler.

CARAT CAKE’s compiler is also now responsible for actually
enforcing protections for the computing environment; whereas,
the CARAT paper simply required emulating the overhead and
protection encountered. Because of this, the transformations the
compiler enacts are more complex than single bounds checks of
the previous work.

One significant change to the compilation flow is how it lever-
ages knowledge of Memory Region semantics in the kernel. If the
compiler can guarantee that an instruction in the IR that references
memory is safe given the confines of the process, the compiler can
optimize away its guard. More specifically, the compiler can elide
guards for the following categories of references: 1) explicit stack

103

Suchy, Ghosh, Kersnar, Chai, Huang, Nelson, Cuevas, Bernat, Chaudhary, Hardavellas, Campanoni, Dinda

— e

noelle-enable

Figure 2: Example build procedure of a codebase into a
CARATized program using NOELLE.

locations in the IR, 2) global variables, and 3) memory received
from a library allocator (e.g. mallocs). (1) represents references
within the bounds of the stack the kernel itself sets up and hands
to the program, while (2) represents a section of the executable
that the kernel will load and verify for the program (e.g., .data).
For (3), the memory ultimately derives from a region (heap/mmap)
that the kernel allocates and controls who it gives access to. To ac-
complish this efficiently, the compiler passes that inject the guards
leverage NOELLE'’s Program Dependence Graph (PDG) extensively,
particularly by enabling dependence analysis, and loop analysis
information across the entire program (31 forms of alias analysis at
this time).

NOELLE also enables induction variable-based optimizations in
place of scalar evolution optimizations. In a loop, or nested loops,
NOELLE finds the induction variable(s) and CARAT CAKE can
use them to compute the bounds that an IR memory instruction
uses, allowing CARAT CAKE to enforce protection using these
bounds. When the induction variable analysis provided by NOELLE
is not sufficient, we revert to using scalar evolution-based protection
mechanisms. NOELLE’s induction variable optimization enables the
protection optimization to be even faster than the scalar evolution
optimization; however, the applicability of induction variable-based
optimization is a subset of what is provided by scalar evolution.

4.2.1 User Program Compilation. User programs are compiled and
linked separately for execution within the kernel. We apply whole-
program compilation and optimization to all targets—the entire
user program and all its dependencies are transformed (Figure 2).
First, we perform whole program compilation of the application
code and fetch the bitcode of the application, which is passed into
a set of NOELLE normalization passes, followed by NOELLE'’s en-
abler passes, which normalize the code for instrumentation until a
fixed-point is reached. Next, we apply the protections pass and the
tracking pass. The final bitcode generated at the end of this flow is
prepared to be compiled into object code and linked specially for
the kernel. These last stages of compilation and user program inter-
action with the kernel via LCP and the kernel process abstraction
is described in §5.

4.2.2 Kernel Compilation. To compile the kernel itself, we use most
of the compilation flow used for the user program. In particular, we
apply whole program compilation, and NOELLE’s normalization
and enabler passes to the entire kernel. However, we apply only
the tracking pass, which enables the kernel to manage its own
memory using CARAT CAKE. The kernel code has no guards in-
jected by default and hence behaves much like a monolithic kernel

CARAT CAKE: Replacing Paging via Compiler/Kernel Cooperation

with paging. Additionally, because the kernel is a part of the TCB,
CARAT CAKE can allow the kernel to disable tracking for certain
parts of the kernel. This feature gives TCB members more control,
when the kernel specifies that a section of kernel code need not be
tracked, it can safely take responsibility for that section’s memory
management.

4.3 Kernel

The Nautilus kernel has been augmented in the following ways.
Details of processes, which are not native Nautilus entities, are
given in §5. Here, a process can be thought of as an address space
combined with a thread group.

4.3.1 Specialized ASpace. A CARAT CAKE ASpace comprises a set
of Memory Regions, which incorporate permissions and represent
constructs of the user program such as the stack, heap, . text sec-
tion of the executable, etc. A CARAT CAKE ASpace also contains
a set of threads that are currently assigned to it. This is necessary
because the context of these threads (stack, and registers) need to
be patched on a memory move. The kernel exists as a Memory
Region mapped into each ASpace but is only accessible from the
user process during a valid “front door” or “back door” entry (§5).

4.3.2 Tracking. To implement the runtime side of tracking, the
compiler’s tracking callbacks drive edits to the AllocationTable, a
data structure containing a mapping between initialization pointers
and Allocations. Each CARAT CAKE ASpace contains a local Al-
locationTable that tracks allocations within the ASpace’s Memory
Regions. In addition to storing metadata about the Allocation, the
runtime must also track Escapes to those Allocations and store
them as metadata within the corresponding ASpace. Each compiler-
instrumented Escape invokes the runtime to track it and map it to
its corresponding Allocation, establish the reverse mapping in the
Allocation’s Escape Set.

Runtime tracking of all Allocations and Escapes allows CARAT
CAKE to manage memory at the Allocation granularity, where
memory movement, defragmentation, remapping Memory Regions,
etc. can occur at this granularity. When the kernel CARAT CAKE
runtime manages this memory across all existing ASpaces, it effec-
tively manages the entire physical address space of the machine.

4.3.3 Protection. Conceptually, a protection check of an address,
invoked by a Guard Injection, or Guard, determines if said address
is a member of the set of Memory Regions within the ASpace. More
specifically, it requires the CARAT CAKE runtime to perform a
lookup in the ASpace using the memory addresses being accessed
as keys. Additionally, a Guard Injection compares the requested
operation involving address against the permissions of the region
that it belongs to.

In conjunction with each Guard’s complexity, Guard Injections
also dominate both the proportion of instrumentation at compile-
time and invocations of the runtime. The real execution time of a
region lookup can worsen as the number of regions increases, a
real possibility for processes dynamically allocating a large amount
of memory, for example. Consequently, each individual Guard must
also be optimized for performance at run time.

We apply an optimization to boost this performance. In particu-
lar, addresses are vetted in a simple hierarchical manner within a

104

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

Guard, where each level of computation within the Guard is more
expansive. In CARAT CAKE, the runtime can check if an address
belongs to commonly referenced Memory Regions of the ASpace
such as the stack or sections of the executable. This heuristic ex-
ploits the understanding that a large portion of memory accesses
and references interact with the stack or global state of a program.
Second, if further processing needs to occur to find the Memory Re-
gion for an address, the CARAT CAKE runtime performs a lookup
across the entire set of Memory Regions of the ASpace.

4.3.4 Movement. Any memory management scheme (paging,
CARAT, or other systems) must support memory movement to
improve inefficiencies that accumulate over time. A paging scheme
solves physical memory movement by heavily relying on the ability
to manipulate the virtual to physical address mappings. CARAT
CAKE must do so by actually moving memory during each update.
Fundamentally, this can be accomplished because the CARAT CAKE
system has a omnipotent view of all the Allocations that are within
a given slice of memory that is being moved, as well as all Escapes
from these Allocations.

Because CARAT CAKE can move memory at an Allocation gran-
ularity, this enables the system to perform a hierarchy of different
kinds of moves, with each layer relying on the last. At the finest
granularity, unlike paging, CARAT CAKE can move individual Allo-
cations. One layer up, CARAT CAKE can move regions, by moving
all the Allocations within a region. One more layer up, CARAT
CAKE can move processes, by moving all the regions within a pro-
cess. The CARAT CAKE runtime can even move the entire kernel
if necessary because all kernel code is tracked.

At a first glance, one may argue that an important benefit of
paging is that memory can be moved “lazily,” by invalidating pages,
faulting on an invalid virtual address, and walking the page tables
to fetch the correct pages to use. However, implicit in this “lazy”
mechanism is extensive, mandatory address translation for each
access, which CARAT CAKE completely avoids. Without mappings,
moving an Allocation in CARAT CAKE generates a new destination
address for said Allocation and triggers a patch of all objects or
instructions in the program referencing the Allocation (i.e. pointers).
In CARAT CAKE, these references arise from pointers to Allocations
that are stored to memory, the Escapes. Essentially, CARAT CAKE
performs this change in mapping “eagerly””

This flavor of memory movement is enabled by tracking Alloca-
tions and each of their Escapes, as described previously. Patching
following a movement simplifies to the runtime simply pointing
each Escape to the Allocation’s new address. Unfortunately, there
are caveats to this approach; because of register allocation by the
compiler back-end, an Allocation may escape to a register or to
a spilled location on the stack. Consequently, the CARAT CAKE
runtime scans the program stack and register state to patch such es-
capes, similar to a register and stack scan in a conservative garbage
collector.

4.3.5 Defragmentation. Because no virtual to physical address
mapping exists in CARAT CAKE, it is necessary to address frag-
mentation through data movement. As shown in Figure 3, defrag-
mentation exploits the hierarchy of movements described above. To
defragment a Region, we rearrange the Allocations within it. To de-
fragment a process/ASpace, we rearrange the Regions within it. To

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

Region with Allocations Defragmented Region
oo
NEORE ale] ¢
R ittt
ASpace Regions Defr d ASpace
2 | Rl w
| I
e .|
Global Processes Defragmented Global Memory
Global
Defrag

Figure 3: CARAT CAKE defragments hierarchically.

defragment all memory, we rearrange all processes/ASpaces. Note
that the entire process shown does not need to take place; instead,
each step can be independently run, or the step-by-step processing
can terminate early. Executing all of the steps in order accomplishes
a global defragmentation of memory at fine granularity.

Defragmenting a single Region packs the Allocations within the
region to the beginning of the Region. For instance, if this step is
invoked by the kernel memory allocator, the pointer to the end of
the last Allocation (Allocation C in the figure) now points to the
largest possible free block available within the Region. In the case
of global defragmentation, the Region can be packed in this way
before moving on to packing processes/ASpaces.

A notable feature highlighted in Figure 3 is the ability to move
a Region into an overlapping free memory chunk, marked by an
*next to R1 in the figure. Unlike paging, these chunks can be of
any granularity. More generally, movement can occur at arbitrary
granularity.

4.4 Other Implementation Aspects

Several other elements are necessary background for understanding
our evaluation and its limitations.

4.4.1 Granularity and Alignment. Paging enforces protection and

allows movement of memory at page granularity. In contrast, CARAT
CAKE can in principle operate down to byte granularity. In prac-
tice, CARAT CAKE operates at different granularities depending

on the context. Protections are enforced on the relevant Region’s

granularity. Region protections operate in a similar fashion to page

protections, with the key difference being that the Region is arbi-
trary in size. Tracking Allocations happens at the granularity of

individual Allocation sizes. Moving memory happens at all levels

of granularity including Allocations, Regions, and ASpaces.

4.4.2 Address Space Abstraction Data Structures. In CARAT CAKE,
Regions can be allocated and delegated for processes to use by
adding them to a process’s ASpace. The ASpace abstraction cap-
tures a memory map in a manner that is independent of whether
CARAT CAKE or paging is being used. The memory map con-
sists of a set of Regions, each of which includes the virtual and
physical start addresses, and length, as well as protection bits

105

Suchy, Ghosh, Kersnar, Chai, Huang, Nelson, Cuevas, Bernat, Chaudhary, Hardavellas, Campanoni, Dinda

(read/write/exec/kernel/etc). Because the speed of finding the rele-
vant Region for a virtual address is critical for all ASpace implemen-
tations, the data structure is pluggable. Currently, red-black trees
(similar to Linux), splay trees [79], and linked lists are available.
The prototype uses a red-black tree to implement many of its inter-
nal data structures. Within the ASpace, red-black trees are used to
keep track of memory regions, Allocations (Allocation Table), and
Escapes (Escape Set).

4.4.3 Library Allocators. In a general CARAT system, library allo-
cators would be designed around the assumptions of a CARATized
process, a CARAT address space, and a region-based design. How-
ever, to prototype CARAT CAKE and generate comparable results
against paging in Nautilus and Linux, we cannot compare existing
library allocators (namely libc malloc) against a custom allocator
for CARAT CAKE. Instead, we allow all CARATized user programs
to use malloc, and we conform to the assumptions that libc malloc
makes—most notably a virtual address space, where the heap exists
as a logically contiguous chunk of memory, and memory manage-
ment system calls such as brk, sbrk, and mmap. In order to adhere
to these assumptions, CARAT CAKE allocates and expands each
heap’s memory as a contiguous Region of physical memory, which
mimics the invariants assumed by malloc. Memory management
system calls are handled by the Linux compatibility layer in Nautilus
(§5). If the internal state of the library allocator was visible/mutable
to CARAT CAKE, this limitation would cease to exist.

4.4.4 Tracking Stack Allocations. The CARAT CAKE prototype
does not individually track each stack variable; the entire stack
itself is treated as a singular Allocation. This does restrict the stack
in CARAT CAKE to being a single contiguous chunk of memory,
but it can be expanded (moving it if necessary) by the CARAT CAKE
runtime.

4.4.5 Resolving the Race between Guards and Protection Changes.
A protection change and the execution of a Guard might race. This
problem is exacerbated when the compiler has optimized the Guard,
because such optimizations assume that the permissions are invari-
ant for the duration of the guarded code block. To account for
this, the system allows for limited permission-changing function-
ality via a “no turning back” permissions model. When a Guard is
invoked and the permission check succeeds, we store the permis-
sions that have been allowed for the affected region. A subsequent
protection change may only downgrade permissions (e.g., going
from read/write to read-only is allowed). This is not an intrinsic
limitation—the compiler could introduce the code to “release” the
region.

4.5 Paging Alternative

While we do compare performance with Linux, there are of course
many confounding factors given that it is an entirely different,
and much larger codebase. To control for the difference, we have
built a substantial and performant implementation of the ASpace
abstraction within Nautilus using x64 paging.

Each address space has its own distinct page table hierarchy
that is based on the 4-level x64 paging model. Page table mappings
can be constructed eagerly or lazily on demand. In addition to the
basic 4 KB pages, we also support large (2 MB) and huge (1 GB)

CARAT CAKE: Replacing Paging via Compiler/Kernel Cooperation

pages. Recall from §2 that Nautilus uses buddy system allocation. A
side-effect of this is that allocations of physical memory are aligned
to their own size. As a consequence, our paging implementation has
many more opportunities to use larger pages, and it aggressively
uses them. Thus we maximize the reach of existing TLBs. We also
minimize the cost of TLB flushes by implementing Intel’s Process
Context Identifier (PCID) feature. Using PCID, it is not necessary to
flush TLB content on a context switch. IPIs are used to implement
remote TLB shootdowns when needed.

5 LINUX COMPATIBLE PROCESS (LCP)

The Linux compatible process (LCP) implementation allows for
separate compilation and linking of the application and kernel,
much like the Linux user-level model. However, the separately
compiled application executable is dynamically loaded and run as
part of the kernel. Unlike a kernel module, however, it is not linked
to the kernel, but rather runs within a specialized kernel-mode
process abstraction that emulates the Linux system call and signal
interfaces. More details about our process abstraction and LCP can
be found in an earlier paper [58]. The “PIK” approach described in
that paper for executing OpenMP parallel programs as components
of the Nautilus kernel provides neither CARAT- nor paging-based
protections or memory management.

5.1 Code Generation and Linking

As we described in §4, the CARAT CAKE compilation process adds
tracking and protection to the user program at the LLVM IR level.
When we build the program for paging, these steps are simply not
done. The ordinary Linux user-level build process and the LCP
build process are virtually identical. Whether we target CARAT
CAKE or paging, we must handle back-end code generation and
linking slightly differently. These details are hidden in wrappers
for cc and 1d.

Code generation uses position-independence (-fPIE) to allow
the resulting executable to be loadable into any physical address,
and to be movable during execution, if necessary. A custom linker
script is used to integrate all components via static linking.® The
linker script preserves the position-independence of the entire
linked executable (creating a “static PIE” executable). The compiler,
C, and C++ runtime startup code (e.g., crt0) is integrated care-
fully, and with an assumption that the kernel will be providing
a “pre-start” environment for it. A special multiboot2-like header
is to simplify the ELF load process. This header also contains the
attestation signature for CARAT CAKE.

5.2 Process-in-Kernel Abstraction

Nautilus has been extended with a process abstraction that com-
bines a kernel thread group, an ASpace (either CARAT CAKE or
paging), and (optionally) a custom allocator. A special loader brings
the executable image into physical memory at any convenient loca-
tion, and initializes BSS/TBSS/etc, as well as an initial stack+heap,
all allocated in physical memory. A process launch begins in an
initial thread that runs a wrapper function (the “pre-start” code)

6 All code ultimately linked into the executable must have been transformed by the
CARAT CAKE compilation process, or must have separate attestation of that protection
and tracking has been manually added.

106

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

that completes the setup of the process before invoking the user’s
thread function. Child threads start similarly, and then join their
parent’s ASpace.

5.3 CARAT CAKE and the Trusted Back Door

Code introduced via CARAT CAKE compilation, for example pro-
tection checks, tracking, and (optionally) allocation, invokes the
kernel-level CARAT CAKE run-time via a function and data ta-
ble that is advertised to the process somewhat like a Linux vDSO.
However, the compilation process assures that only the injected
code has access to this trusted backdoor into the kernel. Because no
system calls or other boundary crossings are involved in using the
trusted backdoor, the run-time operation of CARAT CAKE is a uni-
fied whole across all processes and the kernel. The CARAT CAKE
runtime uses this feature to quickly invoke the kernel without a
system call.

5.4 Linux Compatibility and the Untrusted
Front Door

To allow Linux programs to run, the process abstraction must pro-
vide compatibility with Linux system calls and signals, as well as
some of the expected userspace environment. We implemented a
subset of this functionality for CARAT CAKE. Our system call in-
terface uses the syscall instruction (or int ©0x80), not the vDSO.
Unlike in Linux, a system call in Nautilus happens in the same
address space, at the same privilege level (which complicates the
return from system call slightly), and using the same stack as the
calling thread (red zone is avoided for both mechanisms).

The most important system calls (i.e. those used by the C runtime
and by library allocators - e.g. malloc) are largely implemented
while other, more sparingly used Linux syscalls are stubbed so that
we can see all activity, and respond, by default, with an error. A
Linux-compatible signal installation (e.g. sigaction()), signal as-
sertion requests (e.g. kill()), and signal delivery mechanisms were
added to Nautilus. The latter required substantial modifications to
low-level thread context-switch processing. Again, the focus in this
prototype was on signals required to execute our benchmarks.

6 EVALUATION

We now evaluate the CARAT CAKE prototype in terms of perfor-
mance and in terms of the engineering effort necessary.

Steady-state Overhead is Similar to Linux: By far the most
common situation for a workload is steady-state operation, in which
the kernel is making few changes to the virtual to physical mapping
(for paging), physical location of allocations (for CARAT CAKE),
or protections. Steady-state operation is where we would expect to
see maximum performance and energy gains in future hardware
that would eliminate hardware support for paging or allow it to be
disabled.

Figure 4 compares the measured performance of our benchmarks
on our target platform (both described in §2.2) using Linux as a base-
line for normalization. As can be seen, CARAT CAKE and paging

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

1
NAS bt 0.
0.92
NAS B 54%
O,
0 1— 0.92
NAS e 0.99
P 115
1
NAS mg 0.96
1.02
NAS Q 9%
sp 0:33
1
Blackscholes 1.03
" mmm Paging(Linux) 1
Streamcluster {: ™= Paging(Nautilus) oty
¥ mmm CARAT CAKE 0.96
0.0 0.2 0.4 0.6 0.8 1.0 1.2

Overhead (Normalized to Paging(Linux))

Figure 4: CARAT CAKE has comparable run time overheads.

in Nautilus are comparable to Linux.” This is the main takeaway—
the tracking and protection overheads from the compiler-injected
CARAT CAKE code in the kernel and the user program prove to be
quite small in practice.

It is important to understand that CARAT CAKE is still using pag-
ing here because of the inability to deactivate it on x64. While the
identity-mapped page tables used are at 1 GB granularity and thus
TLB misses are rare in steady state, CARAT CAKE is still paying the
cost of having a TLB in the first place, namely on control path length
in the logic of the processor and in virtual addressing-imposed
restrictions on the L1 cache design. Despite this, its overhead is
comparable to that of the two different paging implementations.

Memory Movement Costs are Reasonable: Unlike paging,
the fact that CARAT CAKE uses physical addressing means that
the need to be able to migrate allocations is inevitable. For example,
a failing allocation will need to be followed by a defragmentation,
similar to a garbage collection pass in a managed language.

To measure the effect on performance of such migrations, we
developed a tool that competitively “peppers” normal execution of a
benchmark with migrations. More specifically, pepper(rate, nodes)
is a separate thread that maintains a linked list of nodes elements.
It wakes every ﬁ seconds and migrates the linked list, element
by element, to a new memory region. The benchmark sees a pause
while this is accomplished. This is then measured as a slowdown
compared to the “unpeppered” benchmark.

Note that this processing involves finding and patching nodes
pointer escapes, moving the actual data, and the synchronization
overhead (a world stop/start across 64 cores). The slowdown that
the system (the benchmark in these measurements) experiences is
dominated by synchronization at high rates (the measured maxi-
mum possible rate is ~26 KHz). At lower rates, the pointer escape
finding/patching and memory movement, particularly the former,
dominate—this is the regime the system will mostly operate in. In
our pepper data collection, we sample the space of rate and nodes.

"Indeed, both Nautilus paging and CARAT CAKE exhibit similar and slightly better
performance than Linux paging. Our point here is not to “beat” Linux, but rather to
evaluate whether CARAT CAKE is a viable alternative to paging.

107

Suchy, Ghosh, Kersnar, Chai, Huang, Nelson, Cuevas, Bernat, Chaudhary, Hardavellas, Campanoni, Dinda

100000.0000000 T T T T
§ Sample Points A
10000.0000000 2.0 slowdown ———
1000.0000000 F ,\4 1.50 slowdown
- 1.25 slowdown
—_ 100.0000000 f 1.10 slowdown
T 1.05 slowdown
" 10.0000000 ¢ 1.01 slowdown ———
;Cfu' 1.0000000 F 1.00 slowdown
Q@ 0.1000000 f
Q
2 0.0100000
©
§ 0.0010000 f
v 0.0001000 f
0.0000100 f
0.0000010 f
0.0000001 L L L L L L L

1000 10000 100000 1x10°® 1x107 1x108 1x10°

Nodes/Operation

Figure 5: Possible rate and nodes (size) combinations given

various constraints on application slowdown (NAS IS).

Table 2: Many programs display high pointer sparsity (O).

Benchmark Num. Max Pointer
Allocations | Escapes | Sparsity (U)
pepper (linked list) nodes nodes 8 B/ptr
Nautilus Kernel 944 34K 105 B/ptr
Streamcluster 8.9K 66 2 MB/ptr
Blackscholes 36 25 26 MB/ptr
SP 149 1 83 MB/ptr
MG 247K 494K 921 B/ptr
FT 70 27 16 MB/ptr
EP 82 1 2 MB/ptr
CG 67 1 62 MB/ptr

Compactly presenting the pepper results is challenging because
of their inherently 3D nature and because slowdown might be better
thought of as a constraint. To do so, we fitted a physically-inspired
model, specifically

slowdown(rate, nodes) = 1 + (a + § X nodes) X rate

which includes the costs described above, using regression. The
resulting fit for & and B exhibits R? = 0.9924. The model then allows
us to create characteristic curves in which we constrain slowdown
and then sweep nodes to project the maximum possible rate that
can be achieved. Figure 5 shows these characteristics for the IS
benchmark. To interpret the figure, choose a desired slowdown.
The corresponding curve divides the space of rates and nodes into
two: the combinations below the curve are possible. The key point,
however, is that with a reasonable constraint on overhead, 10% for
example, to match the gains seen in Figure 4, quite high migration
levels can be sustained. Also quite large migrations can be sustained
at lower rates. For the range of measured page migration rates
described in §3, the performance impact is trivial.

Ideally, the duration of migration (and thus performance impacts
on applications) would be limited only by the memcpy() perfor-
mance. How close we can get to this limit is determined by the
pointer sparsity, U, which we define as the ratio of the amount
of data moved to the number of pointers that are updated. As U
increases, we approach the memcpy () limit.

In the pepper results (Figure 5), we deliberately consider a low
sparsity move (U = 8 for a 64-bit pointer linked list being moved.)
Table 2 puts pepper in context by showing U for the other code we

CARAT CAKE: Replacing Paging via Compiler/Kernel Cooperation

Table 3: Breakdown of implementation sizes.

Lines of code (Engineering Effort)
Component Paging CARAT CAKE
Compiler
Tracking 2,066
Protection 1,563
Build changes 50
Compiler total 3,679
Kernel
Paging 3,250
Allocator changes 300
Tracking runtime 2,662
Migration support 949
Heap/stack expansion 100 100
Defragmentation 100
Kernel total 3,350 4,111
Compiler (Reusable)
Building (Average) (Heavy)
Optimizing (Average) (Heavy)
Architecture
Memory management (Heavy) (Minimal/None)
Other (Average) (Average)
Total 3,350 7,790

consider, including the kernel itself. As can be seen, many bench-
marks display very high U. If we were to move one of these instead
of a linked list, the curves shown in Figure 5 would shift upward.

Engineering Effort is Likely Comparable to Paging: Con-
verting a kernel that already extensively and intrinsically uses
paging to use CARAT CAKE may be quite challenging. We cannot
provide direct input on that challenge because we started with a
kernel that effectively uses physical addressing (identity-mapped
paging). However, we can compare and contrast the effort involved
in adding CARAT CAKE and paging to that kernel. Table 3 breaks
down the code sizes involved for both approaches. The shared code
(ASpace, LCP, etc) is not included. As can be seen, the implementa-
tion costs are similar (within a factor of two in LoC), but the cost
is shifted to the kernel for paging and to the compiler for CARAT
CAKE.

The figure also compares qualitative aspects that cannot be easily
captured in LoC, such as the reliance of each approach on the
compilation frameworks and underlying architectures, and the
effort involved in these.

CARAT CAKE requires the expansion of the software TCB, par-
ticularly in additions to the the compiler, as well as compilation
libraries used for optimization, such as NOELLE. These efforts may
introduce new attack vectors via bugs in the compilation framework
being used. With paging, if there is a compiler bug, the consequence
is a kernel with a likely random bug. With CARAT CAKE, because
we rely on the compiler for protection, a compiler bug may be
more easily used to subvert protection. Because of this, CARAT
CAKE demands larger engineering investment into the compiler’s
development and verification.

On the flip side, because CARAT CAKE avoids memory man-
agement hardware, this also removes attack vectors that might be
present in the hardware TCB. Note further that bugs/attack vectors
found in hardware require much more effort to patch than soft-
ware bugs due to the physical nature of the hardware. Indeed in
some cases the bugs may not be patchable at all, such as we have
experienced with the Spectre and Meltdown vulnerabilities [52, 57].
Because of this, in a future hardware system that used CARAT

108

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

CAKE the architectural engineering effort and verification would
be significantly decreased compared to paging.

This proposed shift of engineering effort from hardware to soft-
ware also fits well into the current and developing landscape. Mi-
croarchitecture development efforts, save for a few up and comers
like OpenPiton, are closed development efforts under the control
of industry. At the same time, they are cornerstones to the TCB,
something made clear by recent vulnerabilities. In contrast, com-
piler development efforts are often open projects (LLVM being the
popular example) that have significantly more participants. Ar-
guably the number of participants is also increasing at a much
faster rate than with microarchitecture. That the engineering effort
of CARAT CAKE is clearly tractable, and can leverage this milieu
is compelling.

7 GENERALITY AND FUTURE WORK

CARAT CAKE is the first prototype full system implementation of
the CARAT concept. We claim that CARAT is a feasible, general
purpose alternative to paging that could enable a range of benefits.
We now discuss unimplemented and untested aspects of CARAT
CAKE with regard to this general purpose goal, some of which we
are currently working on.

Other Benchmarks and Workloads: Although CARAT CAKE
is not evaluated on an extremely diverse set of workloads, there
is no particular reason why a CARAT system could not feasibly
and efficiently run them. This is in part supported by the results
from our prior paper [81], which shows a much wider range of
benchmarks from NAS, PARSEC, and Mantevo. We also note that
for overlapping benchmarks, the overheads presented in the orig-
inal paper have actually gone down in this paper due to efforts
in compiler optimization. This supports a claim the original paper
makes, that compiler optimization enhancement will continue to
lower the overheads of CARAT-like systems.

One important workload not explored by either paper is a server
application such as a web server or database engine. We have not
done so because extending LCP to support such applications would
be significant engineering effort. However, we would expect CARAT
to perform quite effectively, if not synergistically, with these types
of applications, particularly a database server. A high performance
database engine typically attempts to allocate/mmap a single large
chunk of memory from the kernel and use it as a scratchpad during
execution.

The concept of incorporating a kernel-mode database is already
being explored [34]. In essence, it is already trying to eschew the
kernel and other actors when it comes to memory management.
CARAT CAKE is positioned to easily allow a database engine to
have this bypass. Tracking overhead would likely be negligible,
especially if the memory involved was a single or small number of
regions. Similarly, protection overheads would be low given most
operations would simply touch this scratchpad. Should the compiler
understand this, guarding the database engine would be heavily
optimized for these accesses, allowing the database free reign over
its data, while maintaining protection.

Just-in-time Compilation (JITs): CARAT CAKE currently re-
lies on LLVM compiler transformations applied statically to imple-
ment instrumentation for tracking and protection. However, the

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

fundamental ideas of CARAT are arguably compatible with more
dynamic compilation approaches, such as JITs. Instrumenting pro-
tection and tracking could be implemented dynamically rather than
statically. There may even be a convergence underway that will
simplify this through the dynamic use of LLVM. For example, the
JavaScript JIT WebKit[24] has historically used LLVM optimiza-
tion in its JIT compilation infrastructure, which strongly suggests
CARAT’s tracking and protection could be implemented within it.

Garbage Collection: CARAT is conceptually similar to a garbage
collector, and its model of tracking all allocations and references to
them (escapes) has direct analogs to garbage collector primitives.
We don’t garbage collect because our goal is to provide an alter-
native to paging for as wide a range of programs as possible, in
particular those written in unmanaged languages. A future line
of work in CARAT is to integrate a CARAT system with existing
garbage collectors, leveraging the information garbage collectors
provide and vice versa. We anticipate a CARAT CAKE defragmenter
could be integrated with language-specific garbage collectors, as
we only need GC movements to be visible to CARAT CAKE. This
would allow the first step in defragmentation to be a call to the
process’s garbage collector, if one exists.

Virtualized Environments: While virtualization is not a fo-
cus of this work, CARAT CAKE is certainly compatible with it.
Indeed, a CARAT CAKE-based guest could present a special op-
portunity since the GPA—HPA mapping could then simply be an
unchanging identity map. Note that you could view the resulting
GVA—GPA—HPA mapping either as nested paging without any
“inner” page tables, or the best possible case of shadow paging.

In a system without any hardware paging support, including
for virtualization, if a trust relationship (e.g., via attestation) could
be established for the compiler toolchain used to build the guest
applications and the toolchain used to build the guest kernel, and
we could a determine that protections had been added to both the
guest kernel and its applications, the host kernel/VMM could treat
them essentially as processes.

CARAT-based systems would be largely orthogonal to namespace-
based containers, since in the end all that would be needed is a
slightly fancier process abstraction.

Swapping, Remote Memory, and Handles: We often want
to have a notion of a memory object not being currently present
in memory. This is used traditionally in swapping, to support ma-
chines with insufficient physical memory, and currently in lazy
evaluation (e.g., demand paging), in PGAS parallel computing mod-
els/languages, and increasingly to support remote memory in cloud
environments.

For x64 systems, our previous paper [81] proposed the use of
non-canonical physical addresses to signify an absent object. When
accessing a non-canonical address, an x64 system will generate a
general protection fault (not a page fault). Furthermore, when the
object is not present, the pointers to it can be patched to not just
be non-canonical, but also to have unused address bits overloaded
as a mapping key to the object’s current location. Note that for a
scenario in which swapping is common, the overhead is likely to
be dominated by the swapping costs, not CARAT-based costs.

Even if hardware support similar to x64 non-canonical address
checks or Intel MPX checks is unavailable, a CARAT-like system
could potentially employ handle-based memory management to

109

Suchy, Ghosh, Kersnar, Chai, Huang, Nelson, Cuevas, Bernat, Chaudhary, Hardavellas, Campanoni, Dinda

have the same effect. In essence, our compiler analysis for protection
checks already optimizes for where handle acquires should go. The
analysis could also introduce handle releases for both correctness
and to optimize the duration between the acquire and release. Then,
a handle acquire call to the runtime could detect an absent object
and fetch it. We are currently working on just such a system for
remote memory.

Pointer Obfuscation: One of the limiting factors for the CARAT
concept revolves around the complexity of pointers. More specifi-
cally, programs that are still compilable but are invalid with respect
to its language standard. One key idea of CARAT is the ability to
keep track of Escapes to Allocations. In the common case, this is
a simple task that keeps track of locations in which the potential
escapes may exist. When an Allocation is moved, these potential
escapes must be “patched”, and the CARAT runtime determines at
this point if the escape truly does alias the Allocation, and modifies
it accordingly.

What if the escape is encoded? In this case, the pointer would not
be detected as aliasing its respective allocation unless the escape
is decoded before the aliasing check is performed. An example of
unintended pointer obfuscation is an XOR linked list®. In order to
accommodate such obfuscations, the CARAT runtime would need
to either be able to avoid/disable pointer encoding or be able to
decode the pointer at runtime.

For simple LLVM IR arithmetic/bitwise encoding (like an XOR
linked list), the compiler can track the pointer arithmetic in the IR
via the use-def chain or by querying the dependence analysis. This
could, in many cases, allow the compiler to handle decoding the
pointer (reducing the amount of times an already rare situation like
this would require special attention).

For more complex obfuscation (such as encoding via indirect
function calls), programmer transparency may need to be broken.
The programmer would need to provide a trusted decoding function
to the CARAT runtime to be used when determining the aliasing
of an escape and Allocation. Failure to provide this function would
result in a CARAT system being required to conservatively “pin”
Allocations affiliated with the encoded escape. Pinning would main-
tain the correctness of the program (and of protection checks), but
would limit the ability to move the affiliated Allocations.

8 RELATED WORK

There is a long chain of work on improving and extending the exist-
ing paging model, each of which attempts to address some measured
deficiency [3, 9, 13-15, 25, 32, 39, 48, 71, 78, 92]. In contrast, there
is much less work on software-based memory management as an
alternative.

Software-based memory management has a significant historical
market impact [6, 72], and remains in use today in many forms.
One form, automatic handle-based memory management with pro-
tection, dates back to the Burroughs B5000 [19, 56], which restricts
programmers to specific high-level languages. A more recent incar-
nation is the IBM 801 [74], which combined physical addressing, a
heavily restricted high-level language (PL.8), and a trusted compiler
as the basis for protection ([74, pp. 240]).

8 An infamous bane of garbage collectors worldwide.

CARAT CAKE: Replacing Paging via Compiler/Kernel Cooperation

The use of the compiler to implement software protections is
not a new concept. EffectiveSan [28] uses software checking to
to sanitize object types and bounds for C/C++ with low overhead.
This work relates to CARAT’s guards, but not tracking. CARAT can
also be thought of as extending Software Fault Isolation (SFI) [21,
33, 77, 88] to all user programs regardless of trust. Many of the
innovations in SFI are orthogonal to the concepts of CARAT, and
some of the optimizations in CARAT could potentially be deployed
in SFL. Another alternative to achieving protection is proof-carrying-
code (PCC) [65-67] which has been demonstrated to allow safe
kernel extensibility. If code can carry a verifiable proof with it that
it is safe with respect to some security policy, then it is possible to
eliminate all guards. The optimizations that CARAT is performing
for guard amortization is somewhat akin to a compiler trying to
generate proofs about the safety of the code.

Sandboxing, more specifically eBPF [1], is also a related area of
work. The idea of this work is to set up an environment to run code
where it is isolated from other processes and can be observed. eBPF
does this via a compilation/loading process similar to the CARAT
process. One difference is that eBPF does not run on arbitrary
code, but runs on pseudo-C code that is aware of eBPF. CARAT-
like systems might be able to complement/enable sandboxing by
allowing native low-level code to execute with CARAT guards
enforcing the protection/sandboxing.

Another related work we are aware of is the Software Isolated
Process (SIP) [40] of the Singularity OS [41]. A SIP is an opaque, self-
contained process that communicates through monitored channels
and is written in a modified version of C#, called Sing#. The protec-
tion and mapping of a SIP rely on guarantees rooted in this managed
language, and implemented via its compiler and runtime environ-
ment. In contrast, our focus is on unmanaged languages. CARAT
CAKE does leverage the idea of sealing a process through controlled
channels, but the controlled channel is implemented via the com-
piler and kernel. The SIP concept was in part motivated by a study
of address translation performance that showed software-based
isolation could have a much lower overhead than hardware-based
isolation [2], which we believe remains true. Zagieboylo et al [96]
have more recently revisited the costs of software-based memory
management compared to paging.

Another line of work to note is the CHERI capability model [22,

23,27,31,60, 62,63, 68,89-91]. CHERI’s research thrust in MIPS/RISCV

implements a fine-grained protection system for general purpose
computing. This line of work differs from the CARAT line of work in
its goals and execution. CHERI’s goal is to enable the enforcement
of language memory models and fault isolation through hardware
and does so through the modification of MMU (paging) hardware,
ISA, and making minor additions to the microarchitecture. CARAT-
based systems seek to completely remove the MMU hardware and
enforce the goals of CHERI, as well as other problems CHERI is
not concerned with, through software. The CARAT line of work is
not necessarily at odds with this line of work, but are potentially
orthogonal lines of research working in a related area.

LibOSes [86], and unikernels [59] in general, are also related to
CARAT CAKE. Nautilus’s original goal was to support individual
parallel applications and their runtimes as kernels, which can be
thought of as an extreme incarnation of a LibOS. Nautilus has been

110

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

gradually extended to add functionality without losing sight of that
model. CARAT CAKE is in line with this model as well.

Also closely related are embedded operating systems such as
Tock [55], Theseus [18], and RedLeaf [64], which also leverage the
properties of specific languages (Rust) to build protection without
hardware support. Tock does provide some support for memory
protection for general languages (C), but this relies on simplified
memory protection hardware. In contrast to such work, CARAT
CAKE’s goal is to support arbitrary languages and code through
the IR and concomitant transforms of a modern compiler. A viable
future line of work exists concerning the utilization of the base con-
cepts of Rust and other memory-safe languages. In fact, languages
like Rust could be leveraged by CARAT CAKE when they are used
as an application or kernel implementation language.

Virtual Ghost [26] and Twizzler [17] also approach memory
management through software. Virtual Ghost protects an appli-
cation from a hostile kernel (the inverse of CARAT CAKE’s pro-
tection goal) via compiler analysis and Intel MPX, but paging is
required, and MPX limits the number of regions that can be pro-
tected. Twizzler manages non-volatile memory (NVM) at almost
arbitrary granularity for applications through automated pointer
swizzling. Applications must be ported to Twizzler. In contrast,
CARAT CAKE avoids porting and focuses on providing an alter-
native to paging, particularly for kernel-level abstractions such as
processes.

9 CONCLUSION

We have described CARAT CAKE, an alternative to paging that
is based on compiler analysis and transformation and does not
required hardware support to achieve protection and memory man-
agement. The machine is physically addressed, obviating the need
for TLBs, pagewalkers, and similar increasingly expensive, prob-
lematic, and vulnerable hardware structures. Paging is becoming a
problem. We argue it can be replaced instead of patched.

Our prototype implementation of CARAT CAKE extends a ker-
nel to provide a Linux-compatible process abstraction that is able
to achieve comparable performance to tuned paging implementa-
tions in that kernel, and in the mainstream Linux. The engineering
costs of implementing the concept are manageable and arguably
comparable to those of building a paging implementation.

Software-based memory management is common in managed
languages. Advances in compiler technology make it feasible for
unmanaged languages and as a replacement for paging. Importantly,
an approach like CARAT CAKE can leverage future advances, and
also provides the new opportunity for kernel-level management
and protection of memory at granularities related to the code it-
self. For example, if we were to apply the CARAT CAKE guard
pass to a monolithic kernel, it might be enable us to create inter-
nal boundaries, blurring the distinction between monolithic and
microkernels.

ACKNOWLEDGEMENTS

This project was supported by the United States National Science
Foundation via grants 1763743. 1908488, 2028851, 2119069.

ASPLOS °22, February 28 - March 4, 2022, Lausanne, Switzerland

A ARTIFACT APPENDIX
A.1 Abstract

Nautilus is an example of an Aerokernel, a very thin kernel-layer
exposed (much like Unikernel) directly to a runtime system and/or
application. An Aerokernel does not, by default, have a user-mode!
There are several reasons for this, simplicity and performance
among the most important. Furthermore, there are no heavy-weight
processes—only threads, all of which share an address space. There-
fore, Nautilus is also an example of a single address-space OS
(SASOS). The runtime can implement user-mode features or address
space isolation if this is required for its execution model.

This available-only artifact of Nautilus has been modified to
accommodate running with a CARAT address space abstraction
(CARAT CAKE). CARAT CAKE is an extension of work found in
PLDI "20 with the paper describing this work appearing in ASPLOS
22,

The concept of CARAT CAKE is to replace paging with a system
that can operate using only physical addresses. Doing this enables
the underlying system to have significant energy savings as well
as allow new performance minded optimizations in both the micro-
architecture and in software.

Nautilus w/ CARAT CAKE requires one of the following hard-
ware:

e x86_64 machines (AMD and Intel)
o Intel Xeon Phi, either Knight’s Corner or Knight’s Landing
e A Hybrid Virtual Machine (HVM) in the Palacios VMM

Nautilus can also run as a virtual machine under QEMU, BOCHS,
KVM, and in a simulated environment using Gem5
Nautilus w/ CARAT CAKE also requires the following software:

clang/llvm 9.0+ (https://releases.llvm.org/download.html)
grub version = 2.02+

xorriso (for creating ISO images)

qemu (for testing and debugging)

NOELLE (https://github.com/scampanoni/noelle)

wllvm or gclang (https://github.com/travitch/whole-program-
llvm) (https://github.com/SRI-CSL/gllvm)

A.2 Artifact Check-List (Meta-Information)

Program: NAS and Parsec 3.0. These are included in “./src/test”
Compilation: For compilation, the evaluator needs to have
wllvm, clang/llvm 9+, and NOELLE. These are linked to in
the abstract as publically available repositories or releases.
Transformations: wllvm, CARAT CAKE compiler pass. wl-
lvm provides llvm bitcode files of all objects compiled as a
single bitcode file. The CARAT CAKE compiler pass instru-
ments LLVM bitcode with calls/hooks into the runtime and
kernel. wllvm is linked in the abstract. The compiler pass is
available in “/src/llvm/carat”.

itory of CARAT CAKE compiled and any of the required hard-
ware to run the CARATized kernel.

Hardware: See abstract

Experiments: Run “kernel_build_with_llvm_and_noelle.sh”
How much disk space required (approximately)?: 1 GB

Software requirements installation takes 30 minutes. Kernel
compilation on the scale of 10s of seconds.

Run-time environment: Nautilus Kernel. Evaluator needs repos-

How much time is needed to prepare workflow (approximately)?:

111

Suchy, Ghosh, Kersnar, Chai, Huang, Nelson, Cuevas, Bernat, Chaudhary, Hardavellas, Campanoni, Dinda

How much time is needed to complete experiments (approxi-
mately)?: This is only an available artifact so the time needed
is not applicable. However, in practice, the time needed is
benchmark dependent and (in general) takes roughly the same
time as standard compilation and execution of benchmarks.
Publicly available?:

Yes, “10.5281/zenodo.5747303”

or “https://github.com/SuchyB/CaratCakeArtifact”

o Code licenses (if publicly available)?: MIT Opensource

o Workflow framework used?:

Compile Benchmark with wllvm,

strip bitcode,

compile with llvm and CARAT CAKE pass,

link program with “nld-cxx-noelle-ubuntu”,
mount onto ramdisk.img,

compile CARATized-Nautilus,

run kernel with a VM or on actual hardware,
from kernel shell type “exec /program.exe”
Archived (provide DOI)?: 10.5281/zenodo.5747303

A.3 Description

A.3.1 How To Access. The codebase of CARAT CAKE (built on
the Nautilus codebase) is publically available at the following git
repository:

https://github.com/SuchyB/CaratCakeArtifact

Additionally, this has been archived via Zenodo and is available
at:

10.5281/zenodo.5747303

A.3.2 Hardware Dependencies. Nautilus w/ CARAT CAKE requires
one of the following hardware:

e x86_64 machines (AMD and Intel)
e Intel Xeon Phi, either KNC or KNL
e A Hybrid Virtual Machine (HVM) in the Palacios VMM

Nautilus can also run as a virtual machine under QEMU, BOCHS,
KVM, and in a simulated environment using Gem5

A.3.3 Software Dependencies. Nautilus w/ CARAT CAKE also re-
quires the following software:

clang/llvm 9.0+ (https://releases.llvm.org/download.html)
grub version >= 2.02

xorriso (for creating ISO images)

gemu or bochs (for testing and debugging)

NOELLE (https://github.com/scampanoni/noelle)

wllvm or gclang (https://github.com/travitch/whole-program-
llvm) (https://github.com/SRI-CSL/gllvm)

A.4 Installation

To install Nautilus (and the software dependencies), there is a script
located in the root directory of the CARAT CAKE repository named
“kernel_build with_llvm_and noelle.sh“ that can be run to auto-
matically install prerequisites, set up, and compile a CARAT CAKE
instrumented Nautilus kernel.

A.5 Experiment Workflow

From the root directory, LCP processes can be installed within the
“Juser/test” or “./src/test/* directory. This directory will be used in

CARAT CAKE: Replacing Paging via Compiler/Kernel Cooperation

tandem with the contents of the "./user/framework" directory to
produce LCP-CARATi zed processes.

A.6 Evaluation and Expected Results

To evaluate the artifact being available, perform the following steps:

o Clone the repository via git at:
https://github.com/SuchyB/CaratCakeArtifact.git OR down-
load the artifact from Zenodo at: 10.5281/zenodo.5747303

e Go into the root directory of the repository to be in the main
code base.

o To access prerequisites for compiling, please run in the root
directory: “./kernel_build_with_llvm_and_noelle.sh”

e Some of the scripts used to produce the CARATized LCP
Benchmarks can be found in “/parsec_and_nas_build_scripts/

A.7 Notes

More information about the repository can be found within the
README.md file in the repository. This can be viewed in a text
editor OR on the github repository page.

A.8 Methodology

Submission, reviewing and badging methodology:

. https://WWW.acm.org/publications/policies/artifact—review—badging[

e http://cTuning.org/ae/submission-20201122.html
o http://cTuning.org/ae/reviewing-20201122.html

REFERENCES

(1]
(2]

(3]

(4]

w
=

[9

=

[10

(1]

[n.d.]. What is eBPF? an introduction and deep dive into the EBPF technology.
https://ebpf.io/what-is-ebpf

Mark Aiken, Manuel Fihndrich, Chris Hawblitzel, Galen Hunt, and James Larus.
2006. Deconstructing Process Isolation. In Proceedings of the 2006 Workshop on
Memory System Performance and Correctness (MSPC). 1-10.

Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav Etsion. 2017. Do-It-Yourself
Virtual Memory Translation. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA 2017).

Nadav Amit. 2017. Optimizing the TLB Shootdown Algorithm with Page Access
Tracking. In 2017 USENIX Annual Technical Conference (USENIX ATC 17). USENIX
Association, Santa Clara, CA, 27-39. https://www.usenix.org/conference/atc17/
technical-sessions/presentation/amit

Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Greg Chan, Simone Campanoni, and
David I. August. 2020. SCAF: a speculation-aware collaborative dependence anal-
ysis framework. In Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2020, London, UK,
June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 638-654.
https://doi.org/10.1145/3385412.3386028

Apple Corporation. 1985. Inside Macintosh. Addison-Wesley.

A. Awad, A. Basu, S. Blagodurov, Y. Solihin, and G. H. Loh. 2017. Avoiding TLB
Shootdowns Through Self-Invalidating TLB Entries. In 2017 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT). 273-287.
https://doi.org/10.1109/PACT.2017.38

D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S.
Fineberg, P. Frederickson, T. Lasinksi, R. Schreiber, H. Simon, V. Venkatakrishnan,
and S. Weeratunga. 1994. The NAS Parallel Benchmarks (NAS 1). Technical Report
RNR-94-007. NASA.

Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and Michael M.
Swift. 2013. Efficient Virtual Memory for Big Memory Servers. In Proceedings of
the 40th Annual International Symposium on Computer Architecture (ISCA 2013).
Arkaprava Basu, Mark D. Hill, and Michael M. Swift. 2012. Reducing Memory
Reference Energy with Opportunistic Virtual Caching. In Proceedings of the 39th
Annual International Symposium on Computer Architecture (Portland, OR) (ISCA
’12). 297-308.

Arkaprava Basu, Mark D. Hill, and Michael M. Swift. 2012. Reducing Memory
Reference Energy with Opportunistic Virtual Caching. SIGARCH Comput. Archit.
News 40, 3 (June 2012), 297-308. https://doi.org/10.1145/2366231.2337194

112

(12]

[13]

[14

[16

[17

(18]

[19

[20

21]

[22]

~
&

[24]

[25

[28

[29

&
=2

[31

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

A. Bhattacharjee. 2017. Preserving Virtual Memory by Mitigating the Address
Translation Wall. IEEE Micro 37, 5 (Sep. 2017), 6-10. https://doi.org/10.1109/
MM.2017.3711640

A. Bhattacharjee. 2018. Breaking the Address Translation Wall by Accelerating
Memory Replays. IEEE Micro 38, 3 (May 2018), 69-78. https://doi.org/10.1109/
MM.2018.032271063

A. Bhattacharjee, D. Lustig, and M. Martonosi. 2011. Shared last-level TLBs
for chip multiprocessors. In 2011 IEEE 17th International Symposium on High
Performance Computer Architecture. 62—-63. https://doi.org/10.1109/HPCA.2011.
5749717

A. Bhattacharjee and M. Martonosi. 2009. Characterizing the TLB Behavior
of Emerging Parallel Workloads on Chip Multiprocessors. In 18th International
Conference on Parallel Architectures and Compilation Techniques (PACT’09). 29-40.
https://doi.org/10.1109/PACT.2009.26

Christian Bienia. 2011. Benchmarking Modern Multiprocessors. Ph.D. Dissertation.
Princeton University.

Daniel Bittman, Peter Alvaro, Pankaj Mehra, Darrell D. E. Long, and Ethan L.
Miller. 2020. Twizzler: a Data-Centric OS for Non-Volatile Memory. In 2020
USENIX Annual Technical Conference (USENIX ATC 20). USENIX Association,
65-80. https://www.usenix.org/conference/atc20/presentation/bittman
Kevin Boos, Namitha Liyanage, Ramla Ijaz, and Lin Zhong. 2020. Theseus:
an Experiment in Operating System Structure and State Management. In 14th
USENIX Symposium on Operating Systems Design and Implementation (OSDI).
1-19.

Burroughs Corporation. 1961. The Descriptor-A definition of the B5000 Informa-
tion Processing System. Technical Report BULLETIN 5000-20002-P. Burroughs
Corporation, Detroit, MI. USA.

Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones, Gu-Yeon
Wei, and David Brooks. 2014. HELIX-RC: An Architecture-compiler Co-design for
Automatic Parallelization of Irregular Programs. In Proceedings of the 41st Annual
International Symposium on Computer Architecuture (Minneapolis, Minnesota,
USA) (ISCA ’14). IEEE Press, Piscataway, NJ, USA, 217-228. http://dlL.acm.org/
citation.cfm?id=2665671.2665705

Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado, Periklis
Akritidis, Austin Donnelly, Paul Barham, and Richard Black. 2009. Fast byte-
granularity software fault isolation. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles. 45-58.

David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre Joannou,
Jonathan Woodruff, A Theodore Markettos,] Edward Maste, Robert Norton,
Stacey Son, et al. 2017. CHERI JNI: Sinking the Java security model into the C.
ACM SIGARCH Computer Architecture News 45, 1 (2017), 569-583.

David Chisnall, Colin Rothwell, Robert N.M. Watson, Jonathan Woodruff, Munraj
Vadera, Simon W. Moore, Michael Roe, Brooks Davis, and Peter G. Neumann.
2015. Beyond the PDP-11: Architectural Support for a Memory-Safe C Abstract
Machine. In Proceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems (Istanbul, Turkey) (AS-
PLOS ’15). Association for Computing Machinery, New York, NY, USA, 117-130.
https://doi.org/10.1145/2694344.2694367

KDE Open Source Community. 1998. The WebKit Open Source Project. https:
//webkit.org/

Guilherme Cox and Abhishek Bhattacharjee. 2017. Efficient Address Translation
for Architectures with Multiple Page Sizes. In International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS).
John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. Virtual Ghost:
Protecting Applications from Hostile Operating Systems. SIGARCH Comput.
Archit. News 42, 1 (Feb. 2014), 81-96. https://doi.org/10.1145/2654822.2541986
Brooks Davis, Robert NM Watson, Alexander Richardson, Peter G Neumann,
Simon W Moore, John Baldwin, David Chisnall, James Clarke, Nathaniel Wesley
Filardo, Khilan Gudka, et al. 2019. CheriABI: Enforcing valid pointer provenance
and minimizing pointer privilege in the POSIX C run-time environment. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. 379-393.

Gregory J. Duck and Roland H. C. Yap. 2018. EffectiveSan: Type and Memory
Error Detection Using Dynamically Typed C/C++. In Proceedings of the 39th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
2018).

Magnus Ekman, Per Stenstrom, and Fredrik Dahlgren. 2002. TLB and Snoop
Energy-reduction Using Virtual Caches in Low-power Chip-multiprocessors. In
Proceedings of the 2002 International Symposium on Low Power Electronics and
Design (Monterey, CA) (ISLPED '02). 243-246.

Dongrui Fan, Zhimin Tang, Hailin Huang, and Guang R. Gao. 2005. An En-
ergy Efficient TLB Design Methodology. In Proceedings of the 2005 International
Symposium on Low Power Electronics and Design (San Diego, CA) (ISLPED °05).
351-356.

Nathaniel Wesley Filardo, Brett F Gutstein, Jonathan Woodruff, Sam Ainsworth,
Lucian Paul-Trifu, Brooks Davis, Hongyan Xia, Edward Tomasz Napierala,
Alexander Richardson, John Baldwin, et al. 2020. Cornucopia: Temporal safety for
cheri heaps. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 608-625.

https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://ebpf.io/what-is-ebpf
https://www.usenix.org/conference/atc17/technical-sessions/presentation/amit
https://www.usenix.org/conference/atc17/technical-sessions/presentation/amit
https://doi.org/10.1145/3385412.3386028
https://doi.org/10.1109/PACT.2017.38
https://doi.org/10.1145/2366231.2337194
https://doi.org/10.1109/MM.2017.3711640
https://doi.org/10.1109/MM.2017.3711640
https://doi.org/10.1109/MM.2018.032271063
https://doi.org/10.1109/MM.2018.032271063
https://doi.org/10.1109/HPCA.2011.5749717
https://doi.org/10.1109/HPCA.2011.5749717
https://doi.org/10.1109/PACT.2009.26
https://www.usenix.org/conference/atc20/presentation/bittman
http://dl.acm.org/citation.cfm?id=2665671.2665705
http://dl.acm.org/citation.cfm?id=2665671.2665705
https://doi.org/10.1145/2694344.2694367
https://webkit.org/
https://webkit.org/
https://doi.org/10.1145/2654822.2541986

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

[32]

[33

[34]

[35

[36]

[37

[38

[39]

[40]

[41

[42
[43]

[44

N
&

[46]

[47

[48

[49

[50

(51

[52]

[53]

[54]

J. Gandhi, V. Karakostas, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley, M. Ne-
mirovsky, M. M. Swift, and O. S. Unsal. 2016. Range Translations for Fast Virtual
Memory. IEEE Micro 36, 3 (May 2016), 118-126. https://doi.org/10.1109/MM.
2016.10

GoogleNativeClient [n.d.]. Native Client. https://developer.chrome.com/native-
client.

Andrei Gorine and Alexander Krivolapov. [n.d.]. A Kernel Mode Database System
for High Performance Applications. Technical Report.

Kyle Hale. 2016. Hybrid Runtime Systems. Ph.D. Dissertation. Northwestern
University. Available as Technical Report NWU-EECS-16-12, Department of
Electrical Engineering and Computer Science, Northwestern University.

Kyle Hale and Peter Dinda. 2015. A Case for Transforming Parallel Runtimes
into Operating System Kernels. In Proceedings of the 24th ACM Symposium on
High-performance Parallel and Distributed Computing (HPDC 2015).

Kyle Hale and Peter Dinda. 2016. Enabling Hybrid Parallel Runtimes Through Ker-
nel and Virtualization Support. In Proceedings of the 12th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments (VEE 2016).

Kyle Hale and Peter Dinda. 2018. An Evaluation of Asynchronous Software Events
on Modern Hardware. In Proceedings of the 26th IEEE International Symposium
on the Modeling, Analysis, and Simulaton of Computer and Telecommunication
Systems (MASCOTS 2018).

Swapnil Haria, Mark D. Hill, and Michael M. Swift. 2018. Devirtualizing Mem-
ory in Heterogeneous Systems. In Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems (Williamsburg, VA, USA) (ASPLOS ’18). ACM, New York, NY, USA,
637-650. https://doi.org/10.1145/3173162.3173194

Galen Hunt, Mark Aiken, Manuel Fihndrich, Chris Hawblitzel, Orion Hodson,
James Larus, Steven Levi, Bjarne Steensgaard, David Tarditi, and Ted Wobber.
2007. Sealing OS Processes to Improve Dependability and Safety. In Proceedings
of the 2nd ACM European Conference on Computer Systems (EuroSys) (Lisbon,
Portugal). 341-354.

Galen C. Hunt and James R. Larus. 2007. Singularity: Rethinking the Software
Stack. SIGOPS Operating Systems Review 41, 2 (April 2007), 37-49.

SRI International Ian A. Mason. 2018. https://github.com/SRI-CSL/gllvm.

H. Jin, M. Frumkin, and J. Yan. 1999. The Open MP Implementation of NAS Parallel
Benchmarks and Its Performance (NAS 3). Technical Report NAS-99-011. NASA.
Nick P. Johnson, Jordan Fix, Stephen R. Beard, Taewook Oh, Thomas B. Jablin,
and David I. August. 2017. A Collaborative Dependence Analysis Framework.
In Proceedings of the 2017 International Symposium on Code Generation and Op-
timization (Austin, USA) (CGO ’17). IEEE Press, Piscataway, NJ, USA, 148-159.
http://dl.acm.org/citation.cfm?id=3049832.3049849

Toni Juan, Tomas Lang, and Juan J. Navarro. 1997. Reducing TLB Power Re-
quirements. In Proceedings of the 1997 International Symposium on Low Power
Electronics and Design (Monterey, CA) (ISLPED ’97). 196-201.

1. Kadayif, A. Sivasubramaniam, M. Kandemir, G. Kandiraju, and G. Chen. 2002.
Generating physical addresses directly for saving instruction TLB energy. In
Proceedings of the 35th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 185-196.

I. Kadayif, A. Sivasubramaniam, M. Kandemir, G. Kandiraju, and G. Chen. 2002.
Generating Physical Addresses Directly for Saving Instruction TLB Energy. In
Proceedings of the 35th Annual ACM/IEEE International Symposium on Microarchi-
tecture (Istanbul, Turkey) (MICRO 35). 185-196.

Vasileios Karakostas, Jayneel Gandhi, Adrian Cristal, Mark Hill, Kathryn McKin-
ley, Mario Nemirovsky, Michael Swift, and Osman Unsal. 2016. Energy-efficient
address translation. In IEEE International Symposium on High Performance Com-
puter Architecture (HPCA). 631-643.

George Kastrinis, George Balatsouras, Kostas Ferles, Nefeli Prokopaki-
Kostopoulou, and Yannis Smaragdakis. 2018. An efficient data structure for
must-alias analysis. In Proceedings of the 27th International Conference on Com-
piler Construction. ACM, 48-58.

T. Kilburn, D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner. 1962. One-Level
Storage System. (April 1962).

Kenneth C. Knowlton. 1965. A Fast Storage Allocator. Commun. ACM 8, 10 (Oct.
1965), 623-624. https://doi.org/10.1145/365628.365655

Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-
tion. In 40th IEEE Symposium on Security and Privacy (S&P’19).

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04). Palo Alto,
California.

David Leopoldseder, Lukas Stadler, Thomas Wiirthinger, Josef Eisl, Doug Simon,
and Hanspeter Mossenbock. 2018. Dominance-based duplication simulation
(DBDS): code duplication to enable compiler optimizations. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization. ACM,
126-137.

113

(61

(62

[63

=
=

[65

[66]

[67]

[68]

[69]

[70]

Suchy, Ghosh, Kersnar, Chai, Huang, Nelson, Cuevas, Bernat, Chaudhary, Hardavellas, Campanoni, Dinda

Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto,
Prabal Dutta, and Philip Levis. 2017. Multiprogramming a 64kB Computer
Safely and Efficiently. In Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP). 234-251.

Hank Levy. 1984. Capability-Based Computer Systems. Digital Press.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In 27th USENIX Security Symposium (USENIX Security 18).

Jiacheng Ma, Wenyi Wang, Aaron Nelson, Michael Cuevas, Brian Homerding,
Conghao Liu, Zhen Huang, Simone Campanoni, Kyle Hale, and Peter Dinda. 2021.
Paths to OpenMP in the Kernel. In Proceedings of the ACM/IEEE International
Conference on High Performance Computing, Networking, Storage and Analysis
(SC) (Supercomputing).

Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj
Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. 2013.
Unikernels: Library Operating Systems for the Cloud. In Proceedings of the 18t
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS 2013). 461-472.

A Theodore Markettos, John Baldwin, Ruslan Bukin, Peter G Neumann, Simon W
Moore, and Robert NM Watson. 2020. Position Paper: Defending Direct Memory
Access with CHERI Capabilities. (2020).

Angelo Matni, Enrico Armenio Deiana, Yian Su, Lukas Gross, Souradip Ghosh,
Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Ishita Chaturvedi, David I. August,
and Simone Campanoni. 2022. NOELLE Offers Empowering LLVM Extensions.
In International Symposium on Code Generation and Optimization, 2022. CGO
2022.

Alfredo Mazzinghi, Ripduman Sohan, and Robert NM Watson. 2018. Pointer
provenance in a capability architecture. In 10th { USENIX} Workshop on the Theory
and Practice of Provenance (TaPP 2018).

Kayvan Memarian, Victor BF Gomes, Brooks Davis, Stephen Kell, Alexander
Richardson, Robert NM Watson, and Peter Sewell. 2019. Exploring C semantics
and pointer provenance. Proceedings of the ACM on Programming Languages 3,
POPL (2019), 1-32.

Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel, Zhaofeng Li,
Gerd Zellweger, and Anton Burtsev. 2020. RedLeaf: Isolation and Communication
in a Safe Operating System. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). 21-39.

George Necula. 1997. Proof-carrying Code. In Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of Programming Languages (POPL
1997).

George Necula and Peter Lee. 1996. Proof-Carrying Code. Technical Report
CMU-CS-96-165. School of Computer Science, Carnegie Mellon University.
George Necula and Peter Lee. 1996. Safe Kernel Extensions Without Run-time
Checking. In Proceedings of the 2nd USENIX Symposium on Operating Systems
Design and Implementation (OSDI 1996).

Peter G Neumann. 2018. Fundamental trustworthiness principles. New Solutions
for Cybersecurity (2018).

Omni OpenMP Compiler Group, University of Versailles Saint Quentin en Yvlines.
2014. NAS Parallel Benchmarks 3.0—Unofficial OpenMP C Version. https://github.
com/benchmark-subsetting/NPB3.0-omp-C.

Mark Oskin and Gabriel H. Loh. 2015. A Software-Managed Approach to Die-
Stacked DRAM. In Proceedings of the 2015 International Conference on Parallel
Architecture and Compilation (PACT) (PACT ’15). 188-200. https://doi.org/10.
1109/PACT.2015.30

Mayank Parasar, Abhishek Bhattacharjee, and Tushar Krishna. 2018. SEESAW: Us-
ing Superpages to Improve VIPT Caches. In ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). 193-206.

Charles Petzold. 1988. Programming Windows. Microsoft Press.

Kiran Puttaswamy and Gabriel H. Loh. 2006. Thermal Analysis of a 3D Die-
stacked High-performance Microprocessor. In Proceedings of the 16th ACM Great
Lakes Symposium on VLSI (Philadelphia, PA) (GLSVLSI ’06). 19-24.

George Radin. 1983. The 801 Minicomputer. IBM Journal of Research and De-
velopment 27, 3 (May 1983), 237-246. Originally published at ASPLOS I and
republished in ACM SIGARCH Computer Architecture News, Volume 10, Number
2, March 1982.

Michael Rainey, Ryan Newton, Kyle Hale, Ryan Newton, Nikos Hardavellas,
Simone Campanoni, Peter Dinda, and Umut Acar. 2021. Task Paralell Assembly
Language for Uncompromising Parallelism. In Proceedings of the 42nd ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
to appear.

Tristan Ravitch. 2016. https://github.com/travitch/whole-program-1lvm.

David Sehr, Robert Muth, Cliff L Biffle, Victor Khimenko, Egor Pasko, Bennet
Yee, Karl Schimpf, and Brad Chen. 2010. Adapting software fault isolation to
contemporary CPU architectures. (2010).

Seunghee Shin, Guilherme Cox, Mark Oskin, Gabriel H. Loh, Yan Solihin, Ab-
hishek Bhattacharjee, and Arkaprava Basu. 2018. Scheduling Page Table Walks for

https://doi.org/10.1109/MM.2016.10
https://doi.org/10.1109/MM.2016.10
https://developer.chrome.com/native-client
https://developer.chrome.com/native-client
https://doi.org/10.1145/3173162.3173194
https://github.com/SRI-CSL/gllvm
http://dl.acm.org/citation.cfm?id=3049832.3049849
https://doi.org/10.1145/365628.365655
https://github.com/benchmark-subsetting/NPB3.0-omp-C
https://github.com/benchmark-subsetting/NPB3.0-omp-C
https://doi.org/10.1109/PACT.2015.30
https://doi.org/10.1109/PACT.2015.30
https://github.com/travitch/whole-program-llvm

CARAT CAKE: Replacing Paging via Compiler/Kernel Cooperation

[79

[80

(81

[83

(84

[85

[86

[87

[88

]

]

]

]

Irregular GPU Applications. In Proceedings of the 45th Annual International Sym-
posium on Computer Architecture (Los Angeles, California) (ISCA ’18). 180-192.
https://doi.org/10.1109/ISCA.2018.00025

Daniel Dominic Sleator and Robert Endre Tarjan. 1985. Self-Adjusting Binary
Search Trees. 7. ACM 32, 3 (July 1985), 652-686.

Avinash Sodani. 2011. Race to Exascale: Opportunities and Challenges. In Keynote
at the 44th Annual IEEE/ACM International Symposium on Microarchitecture (Porto
Alegre, Brazil) (MICRO 44).

Brian Suchy, Simone Campanoni, Nikos Hardavellas, and Peter Dinda. 2020.
CARAT: A Case for Virtual Memory through Compiler- and Runtime-Based
Address Translation. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). 329-345.

Yulei Sui and Jingling Xue. 2016. SVF: Interprocedural Static Value-flow Anal-
ysis in LLVM. In Proceedings of the 25th International Conference on Compiler
Construction (Barcelona, Spain) (CC 2016). ACM, New York, NY, USA, 265-266.
https://doi.org/10.1145/2892208.2892235

Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in
LLVM. In Proceedings of the 25th international conference on compiler construction.
ACM, 265-266.

Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N Nguyen.
2012. Build code analysis with symbolic evaluation. In Proceedings of the 34th
International Conference on Software Engineering. IEEE Press, 650-660.

Tian Tan, Yue Li, and Jingling Xue. 2016. Making k-object-sensitive pointer anal-
ysis more precise with still k-limiting. In International Static Analysis Symposium.
Springer, 489-510.

Hajime Tazaki. [n.d.]. An introduction of library operating system for Linux
(LibOS).

C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez, A. Mendelson,
N. Navarro, A. Cristal, and O. S. Unsal. 2011. DiDi: Mitigating the Performance
Impact of TLB Shootdowns Using a Shared TLB Directory. In 2011 International
Conference on Parallel Architectures and Compilation Techniques. 340-349. https:
//doi.org/10.1109/PACT.2011.65

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.
Efficient Software-Based Fault Isolation. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles (SOSP 1993).

114

(89

[90

[91

[92

[93

[94

[96

]

ASPLOS 22, February 28 — March 4, 2022, Lausanne, Switzerland

Robert NM Watson, Robert M Norton, Jonathan Woodruff, Simon W Moore,
Peter G Neumann, Jonathan Anderson, David Chisnall, Brooks Davis, Ben Laurie,
Michael Roe, et al. 2016. Fast protection-domain crossing in the CHERI capability-
system architecture. IEEE Micro 36, 5 (2016), 38—-49.

Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W. Moore,
Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert Norton,
and Michael Roe. 2014. The CHERI capability model: Revisiting RISC in an age
of risk. In 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA). 457-468. https://doi.org/10.1109/ISCA.2014.6853201

Hongyan Xia, Jonathan Woodruff, Sam Ainsworth, Nathaniel W Filardo, Michael
Roe, Alexander Richardson, Peter Rugg, Peter G Neumann, Simon W Moore,
Robert NM Watson, et al. 2019. Cherivoke: Characterising pointer revocation
using cheri capabilities for temporal memory safety. In Proceedings of the 52nd
Annual IEEE/ACM International Symposium on Microarchitecture. 545-557.

Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Transla-
tion Ranger: Operating System Support for Contiguity-aware TLBs. In Proceedings
of the ACM/IEEE 46th International Symposium on Computer Architecture (Phoenix,
Arizona) (ISCA °19). 698-710. https://doi.org/10.1145/3307650.3322223

Zi Yan, Jan Vesely, Guilherme Cox, and Abhishek Bhattacharjee. 2017. Hardware
Translation Coherence for Virtualized Systems. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (Toronto, ON, Canada) (ISCA
’17). 430-443. https://doi.org/10.1145/3079856.3080211

Hongil Yoon and Gurindar S. Sohi. 2016. Revisiting virtual L1 caches: A practi-
cal design using dynamic synonym remapping. In Proceedings of the 2016 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
212-224. https://doi.org/10.1109/HPCA.2016.7446066

Hongtao Yu, Jingling Xue, Wei Huo, Xiaobing Feng, and Zhaoging Zhang. 2010.
Level by Level: Making Flow- and Context-sensitive Pointer Analysis Scalable for
Millions of Lines of Code. In Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (Toronto, Ontario, Canada)
(CGO ’10). ACM, New York, NY, USA, 218-229. https://doi.org/10.1145/1772954.
1772985

Drew Zagieboylo, G. Edward Suh, and Andrew C. Myers. 2020. The Cost
of Software-Based Memory Management Without Virtual Memory. CoRR
abs/2009.06789 (2020). arXiv:2009.06789 https://arxiv.org/abs/2009.06789

https://doi.org/10.1109/ISCA.2018.00025
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1109/PACT.2011.65
https://doi.org/10.1109/PACT.2011.65
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.1145/3307650.3322223
https://doi.org/10.1145/3079856.3080211
https://doi.org/10.1109/HPCA.2016.7446066
https://doi.org/10.1145/1772954.1772985
https://doi.org/10.1145/1772954.1772985
https://arxiv.org/abs/2009.06789
https://arxiv.org/abs/2009.06789

	Abstract
	1 Introduction
	2 Software, Testbed, and Benchmarks
	2.1 Software
	2.2 Testbed and Benchmarks

	3 CARAT concepts and prior results
	3.1 Concepts
	3.2 User-Level Prototype and Limitations
	3.3 Benefits of CARAT-Based Systems

	4 Design and Implementation: Baking a CARAT CAKE
	4.1 System and Design Choices
	4.2 Compiler
	4.3 Kernel
	4.4 Other Implementation Aspects
	4.5 Paging Alternative

	5 Linux Compatible Process (LCP)
	5.1 Code Generation and Linking
	5.2 Process-in-Kernel Abstraction
	5.3 CARAT CAKE and the Trusted Back Door
	5.4 Linux Compatibility and the Untrusted Front Door

	6 Evaluation
	7 Generality and Future Work
	8 Related work
	9 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List (Meta-Information)
	A.3 Description
	A.4 Installation
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Results
	A.7 Notes
	A.8 Methodology

	References

