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Abstract 16 

First responders often lack information and visual clues regarding interior spaces in disaster rubble, 17 

preventing efficient, effective, and safe search and rescue for victims trapped in collapsed structures. 18 

Rapidly detecting and acquiring information about the voids in collapsed structures that could contain 19 

surviving victims is critical for urban search and rescue. However, reconstructing the buried voids in three-20 

dimension (3D) and communicating the relevant information such as buried depth and void size to first 21 

responders remain a significant challenge. To address this challenge, this study proposes a see-through 22 

technique by integrating ground penetrating radar (GPR) with interactive augmented reality (AR). The 23 

contribution of this study is two-fold. First, a new method is developed to process collected GPR data to 24 

reconstruct potential voids in disaster rubble in 3D and extract the buried depth and void size from the GPR 25 

data. The coordinates of void boundaries are extracted from multiple GPR scans to generate sparse point 26 
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clouds. An improved alpha shape method is exploited to reconstruct the 3D space beneath disaster rubbles 27 

from the point clouds. Second, an interactive augmented reality interface is developed to enable first 28 

responders to visualize the voids in collapsed structures in 3D together with relevant information to assist 29 

urban search and rescue. The results from simulations and pilot experiments demonstrate the feasibility and 30 

potential of the proposed methods. 31 
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Introduction 35 

Natural and man-made disasters result in massive structural collapses, and searching and rescuing 36 

survivors from collapsed structures remain a significant challenge. According to Murphy et al. (2001), 15% 37 

of victims were found to be trapped in void spaces beneath collapsed structures. Searching for trapped 38 

victims is a fight against time, as their survival rate falls considerably after two days (Murphy et al. 2001). 39 

First responders are the main force to search the trapped victims in void spaces, and the success largely 40 

relies on their situational awareness regarding the survivable void spaces in collapse structures. The types 41 

of voids are typically divided into four categories that are V shape, A-frame, pancake, and lean-to voids 42 

(Poteyeva et al. 2007). Among them, lean-to collapse void is the most common at disaster sites (Couch 43 

2008). The trapped victims have a higher survivable rate in lean-to void because it forms a large survivable 44 

void space, known as “triangle of life”. The conventional methods to locate the voids in disaster rubble are 45 

based on first responders’ field observation from the surface. Relying on the experience of first responders, 46 

this method cannot provide quantitative information regarding the interior void spaces. To address this 47 

limitation, Building Information Modeling (BIM) is combined with a collapse simulation engine to simulate 48 

different damage patterns of the building, which compiles a damaged database (Bloch et al. 2016). The as-49 

damaged exterior model is then compared with the database to select the closest match solution in the 50 

database. The void space in the collapsed building is then predicted using the candidate solution. However, 51 

the method requires a BIM model of the damaged building before the earthquake, which cannot be obtained 52 



for most of the buildings. In addition, the validity of simulation engines is questionable for complex 53 

building structures in the real world.  54 

There is a critical need to reconstruct void spaces in disaster rubbles, and visually communicate the 55 

relevant information to first responders to ensure safe, efficient, and effective search and rescue. The 56 

absence of a solution to this need represents an important problem because unguided search and rescue 57 

operations may waste valuable time and effort to rescue victims and put first responders at risk. Search and 58 

rescue operations can be significantly improved, if first responders can continuously “see” the occluded 59 

spaces through heterogeneous disaster rubble and be aware of the critical voids that may contain trapped 60 

victims. Therefore, this study proposes a novel framework to see through disaster rubbles in 3D by 61 

integrating airborne ground penetrating radar (GPR)-based sensing for void reconstruction and augmented 62 

reality (AR) interface for information communication. Ground Penetrating Radar (GPR) is used to detect 63 

and reconstruct potential void spaces beneath disaster rubbles. The reconstructed void information 64 

including geometry, volume, and buried depth are communicated to first responders through the AR 65 

interface.  66 

This research leads to a new framework that integrates an unmanned aerial vehicle (UAV)-borne GPR 67 

system to obtain information regarding voids in disaster rubbles and an AR-based interface to communicate 68 

void information to first responders for search and rescue. The contribution of this research is two-fold. 69 

First, a new method is proposed to detect void boundaries from GPR scans and estimate the coordinates 70 

based on the detected boundary with first responders in the loop. An improved weighted alpha shape method 71 

is then used to reconstruct voids in rubbles using the boundary coordinates, and therefore detailed 72 

information including void size and depth can be retrieved. Second, an AR-based interface is developed to 73 

communicate the void information to first responders, providing them important situational awareness and 74 

contextual guidance on disaster sites. Hence, the proposed methods have the potential to improve the 75 

traditional experience-based search and rescue practice to an information-based paradigm. 76 



Literature Review  77 

Related Studies on GPR in search and rescue 78 

GPR is a non-destructive technique that has been widely used in subsurface mapping and demonstrated 79 

to be an effective method. A large and growing body of literature has developed methods to detect and 80 

locate subsurface targets, such as underground utility (Cai et al. 2020; Li et al. 2015; Yuan et al. 2018), 81 

crack (Levatti et al. 2017; Tong et al. 2017), root (Aboudourib et al. 2019; Hu et al. 2020b; Liu et al. 2020b), 82 

concrete rebar (Hu et al. 2020a), and tunnel  (Núñez-Nieto et al. 2014). Table 1 summarizes related studies 83 

on GPR applications in the search and rescue domain, including avalanche victim detection, victim 84 

detection, and void detection in collapsed rubbles.  85 

Table 1 Related studies on GPR in search and rescue. 86 

Application Approach Limitations Reference 

Avalanche victim 

detection 

Recognize hyperbola 

signal caused by buried 

victims 

Cannot adapt to collapsed 

buildings due to a more complex 

scenario than an avalanche 

(Fruehauf et al. 

2009; Heilig et al. 

2008) 

Victim detection 

under collapsed 

rubbles 

Monitor human 

respiration and 

movement 

Require the GPR to be in 

proximity of victims which is hard 

to obtain without knowing 

subsurface conditions.  

(Cist 2009; Liu et 

al. 2014; Yan et al. 

2021; Yang et al. 

2019) 

Void detection 

under collapsed 

rubbles 

Recognize boundary 

features from radargram 

Cannot provide void boundary 

coordinates and void volume 

(Chen et al. 2020; 

Hu et al. 2019) 

 87 

Avalanche victim detection. GPR mounted on the helicopter has been used to detect avalanche victims 88 

for decades. For example, Heilig et al. (2008) conducted a feasibility study of GPR in avalanche victim 89 

detection. In particular, Heilig et al. (2008) investigated the influence of snow properties on radar signal, 90 

the maximum horizontal distance of a buried victim from the flight direction, and the influence of the 91 

scanning direction. In their study, they also developed a semi-automatic detection algorithm to recognize 92 

potential victims from GPR scans. The method is dependent on a handcrafted snowpack extraction to 93 

remove the zone of air and underground in the radargram. To address this limitation, Fruehauf et al. (2009) 94 

developed an automated real-time detection of avalanche victims using airborne GPR. Their method 95 

utilized an active contour model to automatically extract snowpack. Thereafter, a matched filter method 96 

was used to detect hyperbola, which is believed to be the signal feature of buried victims in the radargram. 97 



However, detecting victims in structural collapses are more challenging than that in avalanche snowpack, 98 

because structural collapses are always cluttered and heterogeneous.  99 

Victim detection under collapsed structures. A number of studies have examined the Ultra-wideband 100 

(UWB) GPR in victim detection under collapsed structures. The UWB GPR exhibits very fine range 101 

resolution due to its large bandwidth, which can capture target features that are much smaller than the target 102 

size. For example, in (Cist 2009), UWB GPR was used to detect survivors’ motion and breathing in rubble 103 

piles by leaving the antenna stationary. Liu et al. (2014) conducted a numerical simulation to investigate 104 

human vital sign detection under collapsed structures caused by earthquakes using UWB GPR. The 105 

collapsed structure was simulated according to site conditions with two entrapped victims. In their study, 106 

source separation and empirical mode decomposition were proposed to locate human subjects in the 107 

recorded radargram. Yang et al. (2019) proposed a novel method to identify and locate human vital signs 108 

from radar-received signals based on permutation entropy (PE) and ensemble empirical mode 109 

decomposition (EEMD) algorithm. In a more recent study, Yan et al. (2021) designed a novel Golay 110 

complementary coded system to detect quasi-static trapped victims under collapsed structures. The 111 

proposed system can detect non-periodic strong respiration with stationary operating mode and quasi-112 

periodic weak respiration pattern using scanning operating mode. While these methods have been 113 

demonstrated to be feasible and applicable in detecting victims under rubbles, the success of victim 114 

detection is based on the premise that the victims are in close proximity to the GPR, which is difficult to 115 

achieve without knowing subsurface conditions. Identifying subsurface survivable void in disaster rubbles 116 

can pinpoint locations with potential victims, and thus facilitating such victim detection methods.  117 

Void detection under collapsed structures. More recent attention has focused on detecting void space 118 

under collapsed structures to pinpoint areas with potential entrapped survivors. For instance, In (Hu et al. 119 

2019), a probabilistic-based algorithm was developed to detect void boundary in GPR scans for lean-to 120 

collapse void. The method was demonstrated to be effective to detect void boundary in the radargram for 121 

simplified lean-to collapse void. In (Chen et al. 2020), GPR is mounted at the bottom of the drone to locate 122 

critical void space under the rubble to save trapped victims. However, these existing methods have not 123 



leveraged boundary features to extract their coordinates and combined multiple GPR scans for 3D 124 

reconstruction. This study aims to address this knowledge gap.  125 

Related Studies on Augmented Reality in Search and Rescue 126 

Augmented Reality (AR) technology can be a powerful tool to communicate context-aware information, 127 

as it can intuitively present virtual content in the real world. AR technology has been used to support disaster 128 

search and rescue in a variety of ways, such as robot control and interaction, commander and responder 129 

collaboration, and point-of-interests (POI) information visualization. Table 2 summarizes the related 130 

studies on AR in search and rescue.  131 

Table 2 Related studies on augmented reality in search and rescue. 132 

Application Registration method Limitations Reference 

Robot control and 

interaction 
Marker-based; NA 

Require marker to be 

installed; cannot align 

virtual information at 

disaster sites 

(Burian et al. 2014; Coovert 

et al. 2014; Gianni et al. 

2013; Reardon et al. 2018) 

Commander and 

responder collaboration 

(Bacim et al. 2012; Vassell et 

al. 2016; Wani et al. 2013) 

Point-of-interest (POI) 

visualization  
Location-based 

May fail to register 

virtual information in 

crowded urban areas 

(Campos et al. 2019; Wang et 

al. 2018) 

 133 

Robot control and interaction. Many studies have developed interfaces to facilitate human-robot 134 

coordination in search and rescue (SaR) using AR technology (Burian et al. 2014; Coovert et al. 2014; 135 

Gianni et al. 2013; Reardon et al. 2018). For instance, in (Burian et al. 2014), an AR-based user interface 136 

was developed to control a fleet of robots including unmanned ground robots (UGV) and unmanned aerial 137 

robots (UAV). With the interface, operators have the flexibility to control multiple robots and conduct 138 

search and rescue missions at the same time. Coovert et al. (2014) studied communication strategies to 139 

convey robot upcoming movements to humans. An augmented reality projection system is proposed to 140 

communicate robot intended movement to humans via visual arrows and a simplified map. Reardon et al. 141 

(2018) developed an AR system that enables cooperative search between human and robot teams. Through 142 

the AR device, the robot can share search results with human teammates. In addition, this AR interface can 143 

provide a navigation route to first responders and let them reach their desired target efficiently.  144 



Commander and responder collaboration. A variety of studies have utilized AR to facilitate 145 

collaboration between incident commanders and responders in search and rescue operations. For example, 146 

AR was used in a collaborative guidance system after disasters for search and rescue in a complex building 147 

(Bacim et al. 2012). The system allows incident commanders and first responders to communicate with 148 

each other effectively using visual and nonverbal information when searching a disaster site. Vassell et al. 149 

(Vassell et al. 2016) developed a novel intelligent dashboard for an AR-based coordination system for 150 

multiple incidents. The system integrated Incident Command System (ICS) with the Internet of Things (IoT) 151 

to achieve minimal human communication and thus improve coordination efficiency. In (Wani et al. 2013), 152 

a wearable AR system was developed to improve collaboration among different agencies using hand 153 

gestures. This method was applied and demonstrated in a fire emergency scenario. However, all of the 154 

above-mentioned approaches either required markers to register virtual information or didn’t utilize the 155 

registration method, which cannot accurately align void information on collapsed structures at disaster sites.  156 

POI information visualization. A recent study conducted by Wang et al. (2018) designed an AR 157 

system to mark the target of interest and then display the target information on the screen of the AR device. 158 

In addition, the system can display the target even when it is outside the view of the camera. Campos et al. 159 

(2019) developed a location-based augmented reality application to provide insight into the surrounding 160 

through mobile phones to improve their situational awareness. The responders can also exchange 161 

information using the application to increase SaR efficiency. However, these two studies are location-based 162 

AR, which requires a high-level positioning accuracy. In urban search and rescue, it is difficult to achieve 163 

accurate positioning. Our study aims to address this knowledge gap by utilizing image-based AR, which is 164 

suitable for complex disaster scenes.  165 

Methodology 166 

Fig. 1 presents an overview of the framework to integrate GPR-based 3D void reconstruction and AR 167 

visualization. In the first step, the UAV-borne GPR system is used to survey disaster sites and collect image 168 

and GPR data. The fast-moving speed of the UAV enables first responders to survey disaster sites quickly 169 

and efficiently. The integration of UAV and GPR can be used to survey structural collapses that are 170 



dangerous or inaccessible. In the second step, void boundary coordinates are estimated in multiple scans to 171 

generate a sparse 3D point cloud. Thereafter, an improved weighted alpha shape algorithm is proposed to 172 

generate a 3D model of void space using the sparse point cloud. The third step develops an AR interface to 173 

communicate void information such as the buried depth and volume of a void to first responders. The 174 

image-based registration approach is adopted to register void information on disaster sites. 175 

 176 

Fig. 1. Methodology overview  177 

System Configuration and GPR Data Collection 178 

The UAV is equipped with a real-time kinematic (RTK) global positioning system (GPS), inertial 179 

measurement unit (IMU), camera, and GPR. RTK GPS can provide centimeter-level positioning accuracy 180 

for the UAV, which is an essential component to acquire spatial position information. RTK GPS can also 181 

provide accurate positioning for GPR and image data. IMU measures the orientation, velocity, and 182 

gravitational forces of the UAV to aid navigation and control. The camera is used to capture surrounding 183 

information of the disaster area and collect video data. The video stream gives the first responder the ability 184 

to search disaster areas from a bird’s view. In addition, images are also collected for structural collapses, 185 

which will be used as the target to register void information in the real world. GPR mounted on the UAV 186 

can detect subsurface structures such as buried void space under rubbles. GPR is a geophysical method that 187 

uses high-frequency radio waves to image the subsurface. Specifically, GPR transmits high-frequency EM 188 

waves into the ground and receives reflected signals when the energy encounters boundaries with different 189 



materials such as void boundaries. The reflected signal strength is determined by the relative permittivity 190 

contrast between two materials. The higher the contrast, the reflected signal will be stronger. The void 191 

boundary is the interface between collapse structures formed by typical building material and void formed 192 

by air. The relative permittivity of air is 1 and 3-10 for common building materials such as concrete and 193 

brick (Zhekov et al. 2020). The large permittivity contrast will lead to strong reflections at the interface, 194 

which is an important feature to determine the void boundary.  195 

The UAV can be teleoperated by a first responder to survey disaster areas following a disaster. The first 196 

responder can recognize structural collapses from video data stream and locate the rubble with a high 197 

probability of void based on two observations. First, the lean-to collapse void occurs when one side of a 198 

building fails and stays anchored at the other end, creating a large triangular void. Second, the integrity of 199 

large building components to some extent is preserved, which implies the continuity of their geometries 200 

under occlusions. Thereafter, the first responder can control the UAV to fly toward the rubble. When 201 

approaching the rubble, the first responder will lower the altitude of the UAV and capture the rubble surface 202 

image. The image will be used to link the information of surface disaster rubble and subsurface voids 203 

reconstructed from GPR data. When arriving at the rubble, the first responder will determine appropriate 204 

GPR scanning trajectories given site conditions. For lean-to collapse void, the UAV will fly along the slope 205 

of the lean-to collapse structures. In this way, topographic effects on GPR data can be reduced, given the 206 

variation of ground surface elevation will affect the propagation of EM waves. In addition, the altitude of 207 

the UAV is controlled within 3m to reduce the GPR signal loss in the zone of air above ground. This is 208 

because the GPR signal suffers from energy loss due to geometrical spreading, and a lower amplitude 209 

penetrates through the subsurface could lead to a weaker reflection amplitude from the void boundary that 210 

becomes hard to recognize. Therefore, the altitude of the UAV should maintain within a certain range to 211 

reduce energy loss in the air. This can be achieved coincidently with the UAV scanning trajectory because 212 

the UAV is generally equipped with Radar and Lidar altimeter to measure its distance from the ground. Fig. 213 

2 illustrates the GPR survey of a lean-to collapse void using the UAV-borne GPR system and the 214 



corresponding GPR B-scan. The B-scan in the figure is simulated using the gprMax simulator (Warren et 215 

al. 2016a) with a 900MHz antenna.  216 

 217 

Fig. 2. Illustration of the GPR survey of a lean-to collapse void: (a) UAV-borne GPR survey along lean-to 218 

collapse rubbles; and (b) GPR B-scan 219 

Void reconstruction 220 

The 3D reconstruction of void using GPR scans consists of two steps. In the first step, void boundary 221 

coordinates are extracted to form a sparse 3D point cloud. The second step proposes an improved weighted 222 

alpha shape (WAS) method to reconstruct the 3D model using the processed point cloud.  223 

Void Boundary Detection 224 

After the UAV surveying, first responders will process the GPR data for each structural collapse. The 225 

void boundary needs to be extracted in the radargram to estimate boundary coordinates. The lean-to collapse 226 

forms a triangular void space known as “triangle of life”, which is supported by floor and wall to maintain 227 

its structural stability. The geometric configuration of lean-to collapse will lead to a triangular zone in the 228 

radargram formed by void boundary features. The boundary features represent reflections from the interface 229 

between void and rubbles, the interface between void and floor, as well as interface between void and wall. 230 

First responders will leverage boundary features and their triangular relationship to determine the existence 231 

of void. The void boundary consists of upper and lower boundaries. The upper boundary is the reflection 232 



from the interface between collapsed rubbles and void. The lower boundary is composed of reflection from 233 

both the floor and the wall. In addition to the void boundary, ground reflection also needs to be extracted 234 

to calculate coordinates of void boundary, which is the first significant reflection recorded in the radargram. 235 

A semi-automatic approach is developed to detect void boundaries and ground reflection in the 236 

radargram, which consists of three steps. First, deep learning (DL)-based edge detection method is adapted 237 

to extract edge features in the radargram (Wibisono and Hang 2021). This is because the ground surface 238 

and void boundary have relatively strong reflections due to the large dielectric constant contrast with air. 239 

The edge detection model is trained on BSDS500 and PASCAL VOC 2012 datasets, which are standard 240 

benchmarks for edge detection in images. Second, OTSU’s thresholding method (Otsu 1979) is used to 241 

further refine detected edges using the DL-based method, and convert edges into binary classes (i.e., 242 

boundary and non-boundary). OTSU is an automatic binarization level decision approach based on the 243 

shape of the histogram of pixel intensities. The interface also provides a double thresholding alternative 244 

option to the user by setting a high and low threshold manually. Third, based on the detected boundary, first 245 

responders can annotate the void boundary in the radargram with their judgment. An interactive interface 246 

is developed to facilitate the boundary annotation process. The interface can process multiple radargrams 247 

at the same time. Fig. 3 shows an implementation of the method in the interface.  248 



 249 

Fig. 3. Void boundary annotation interface: (a) edge detection; (b) binarization; and (c) human annotation 250 

Void Boundary Coordinates Estimating 251 

To estimate coordinates of void boundary segmented in the radargram, we make three simplifying 252 

assumptions shown below. 253 

Assumption 1. The covered rubble layer of the lean-to collapse void is assumed to be homogeneous. 254 

The research conducted by (Li et al. 2020; Liu et al. 2020a; Zhang and Hoorfar 2019) also adopted this 255 

assumption for subsurface layers. In our study, the developed method is still in its initial stages, which 256 

aims to demonstrate the feasibility of GPR-based reconstruction for lean-to collapse structures.  257 

Assumption 2. The wave is transmitted in an arc shape and the center is the tangent point of incident 258 

EM wave on the interface between covered rubble and void, when the EM wave transmits into a 259 

medium with much smaller relative permittivity. Appendix A shows the proof for this assumption.  260 

Assumption 3. The objects such as furniture inside a lean-to collapse void are treated as a part of the 261 

void. This assumption aims to avoid underestimating the volume of void in collapsed structures that 262 

may contain survivors.   263 



The void boundary coordinates need to be extracted for 3D reconstruction. Fig. 4 illustrates a schematic 264 

diagram of the UAV survey at the transition point. The transition point represents the void lower boundary 265 

reflection changes from the floor to the wall. The coordinate of UAV is G (x, y, z) which can be obtained 266 

from on-board RTK-GPS. The EM wave first travels through the air and reaches the surface of collapsed 267 

rubbles. GP is perpendicular to the surface of the rubble since it is the shortest path from the UAV to the 268 

ground. The reflection from the surface is the first significant reflection recorded in the radargram, which 269 

can be easily recognized. Then, the EM wave penetrates through the rubble and arrives at the upper 270 

boundary of the void. For a lean-to collapse void, the surface of the rubble can be considered to be parallel 271 

with the void upper boundary. As such, the ray paths GP and PVU can be viewed in the same direction. The 272 

reflection from the void upper boundary is the first continuous strong reflection that appears below the 273 

surface reflection in the radargram. 274 

 275 

Fig. 4. Schematic diagram of UAV survey at the transition point 276 

Finally, the EM wave travels in the void space and reaches the floor or the wall. Note that floor and 277 

wall support for lean-to collapsed void are generally horizontally and vertically laid out, respectively. 278 

According to Assumption 2, the ray path VUVL that is perpendicular to the floor or the wall has the shortest 279 

travel distance, which is assumed to be first reflected in this study. The detected lower boundary in the 280 



radargram consists of reflection from both the floor and the wall. The left section of the lower boundary is 281 

the reflection from the floor and the right section comes from the wall. The transition point can be obtained 282 

from the detected boundary, which is the trace with the largest travel time on the lower boundary. When 283 

the UAV is at the transition point, the distance from VU to the floor S3 and the wall S3' is the same. The 284 

reflection will come from the wall section after the UAV passes the transition point.  285 

Fig. 5 shows the schematic diagram of coordinates calculation for floor boundary. The coordinate of 286 

upper void boundary for trace i is VU (x’, y’, z’) that can be approximated in Eq. (1), where S1 is the 287 

perpendicular distance from the UAV to the ground surface, and S2 is the distance from point P to upper 288 

boundary VU, 𝛽 is the upward flying angle of the UAV.  289 

{

𝑥′ = 𝑥 + (𝑆1 + 𝑆2) 𝑠𝑖𝑛 𝛽

𝑦′ = 𝑦

𝑧′ = 𝑧 − (𝑆1 + 𝑆2) 𝑐𝑜𝑠 𝛽

                                                     (1) 290 

 291 

Fig. 5. Schematic diagram of coordinates calculation for floor boundary 292 

S1 and S2 can be estimated using collected GPR scans as indicated in Eq. (2), where c is the speed of 293 

light equals 3×108 m/s, ti is the two-way travel time in medium i provided by the radargram, i is the relative 294 

permittivity of the material. S1 is the wave travel distance in the air which means i is 1. S2 is the wave 295 

propagation from the rubble surface to the void upper boundary, which can be treated as void depth. Since 296 



multiple GPR scans are collected for each structural collapse to reconstruct the void, the buried depth of 297 

the void is estimated by an average value of S2. This is because void depth could be different at different 298 

locations. This layer consists of typical building materials such as concrete, brick, and wood. The relative 299 

permittivity of this layer can be estimated based on the surface condition. For instance, for a collapsed 300 

concrete building, the relative permittivity of the rubble layer can be approximated by the concrete material 301 

which is around 7.   302 

𝑆𝑖 =
𝑐𝑡𝑖

2√𝜀𝑖
                                                                     (2) 303 

The coordinate of floor boundary for trace i is VL (x’’, y’’, z’’) that is calculated in Eq. (3), where S3 304 

represents the distance to the floor from the upper boundary VU.  305 

{

𝑥" = 𝑥 + (𝑆1 + 𝑆2) 𝑠𝑖𝑛 𝛽
𝑦" = 𝑦

𝑧" = 𝑧 − (𝑆1 + 𝑆2) 𝑐𝑜𝑠 𝛽 − 𝑆3

                                               (3) 306 

When the GPR passes the transition point, the reflection on the lower boundary will come from the 307 

wall as indicated in Fig. 6. The coordinates of the upper boundary will be calculated using Eq. (1). The 308 

coordinate of the lower boundary is given in Eq. (4). 309 

{

𝑥" = 𝑥 + (𝑆1 + 𝑆2) 𝑠𝑖𝑛 𝛽 + 𝑆3
𝑦" = 𝑦

𝑧" = 𝑧 − (𝑆1 + 𝑆2) 𝑐𝑜𝑠 𝛽
                                              (4) 310 

 311 



Fig. 6. Schematic diagram of coordinates calculation for wall boundary 312 

As indicated in Fig. 4, there will be missing void boundaries on the floor and wall that will not have 313 

reflections appear on the detected void boundary in the radargram. The missing detection will lead to an 314 

underestimate of void volume. According to Assumption 3, the missing section at the floor and wall is 315 

estimated by linearly extrapolating using detected sections as indicated in Fig. 7. The extracted boundary 316 

coordinates from multiple GPR scans form a sparse 3D point cloud, which will then be fed to the void 317 

reconstruction algorithm.  318 

 319 

Fig. 7. Results of segmented boundary coordinates and extrapolation 320 

3D Model Generation  321 

The alpha shape method is selected to reconstruct void space using the sparse 3D point cloud. The 322 

method is selected for two main reasons. First, the algorithm has been demonstrated to be fast and effective 323 

in 3D reconstruction (Gomes et al. 2014). Second, the method can provide an accurate estimation of the 324 

volume (Al-Tamimi et al. 2015). However, for the traditional alpha shape approach, the shape of the 325 

reconstructed model is determined by a single α value, which is not suitable for non-uniformly distributed 326 

point cloud data. If α value is chosen for dense regions, then the reconstructed model will have holes or 327 

beak apart in sparser regions. For instance, the α value can be either too small or too large in some regions 328 

if the point cloud is not evenly distributed. To overcome this limitation, a weighted alpha shape (WAS) 329 



method is developed for void reconstruction. The proposed WAS method assigns different weights for each 330 

point in the set. The weight is determined by the density of points in the region. The low-density regions 331 

have a relatively large weight for the α value. The algorithm is detailed as follows. 332 

1) Determine k nearest neighbors for each point using k-d tree algorithm (Hajebi et al. 2011) given 333 

point cloud P (p1, p2, …, pn); Calculate average distance d (d1, d2, …, dn) for each point to its nearest 334 

neighbors. 335 

2) Draw tetrahedra between points using the Delaunay Triangulation (DT) which can ensure each 336 

tetrahedron contains no other points in its interior.  337 

3) Calculate median edge length Lm of tetrahedral mesh.  338 

4) Calculate the radius of the sphere circumscribed about tetrahedron T1. T1 is formed by vertices pa, 339 

pb, pc, and pd, which are four points in the point cloud P. 340 

5) Calculate threshold value 𝛼𝑤 for T1 using Eq. (5), where 𝑑̅ is the mean of d calculated in step 1. 341 

𝛼𝑤 =
𝑑𝑎+𝑑𝑏+𝑑𝑐+𝑑𝑑

4𝑑̄
× 2𝐿𝑚                                                 (5) 342 

6) Remove the edges of the tetrahedra if the radius calculated in step 3 is larger than 𝛼𝑤; Keep the 343 

edges if the radius is smaller than 𝛼𝑤.  344 

7) Repeat steps 3-5 recursively until all the tetrahedra are processed. 345 

8) Generate 3D model in STL format using preserved edges.  346 

The parameter k determines the number of nearest neighbors for each point. The k is typically selected 347 

as the square root of the total number of points (Nadkarni 2016). The α value is set as two times median 348 

edge length Lm of tetrahedral mesh to ensure resulting alpha shape enclosing all points with one region. The 349 

volume of the 3D model is also estimated based on the discrete form of the divergence theorem (Alyassin 350 

et al. 1994). The volume is calculated in Eq. (6), where zi is the z component of the centroid coordinate, ai 351 

is the triangle area, and nzi represents the z component of normal of the ith triangle.  352 

𝑉 = ∑ 𝑧𝑖𝑎𝑖𝑖 𝑛𝑧𝑖                                                               (6) 353 



Fig. 8 shows a representative result of void reconstruction using the proposed approach. The estimated 354 

depth and volume of the reconstructed void are 0.51m and 0.87m3, respectively. The generated void 355 

information needs to be communicated to the first responders to improve their situational awareness 356 

regarding subsurface void. Next, the development of an AR-based visualization system is presented. 357 

 358 

Fig. 8. Example of reconstructed void: (a) void boundary coordinates; and (b) reconstructed void 359 

AR-Based Visualization  360 

The generated void information is registered to the real world using the image-based approach. Ground 361 

surface images are collected during the UAV survey from on-board camera. The image is corresponded to 362 

void information beneath the rubbles. A database is established to store void information and image for 363 

each structural collapse. The database stores ID, image, 3D void model, void volume, and void buried depth 364 

for each site. The images and void information will be uploaded to the database after the UAV finishes the 365 

survey. The registration of void information can then be achieved by comparing the image captured by the 366 

AR device and images in the database. Once the image target is captured, void information will be presented 367 

to first responders through the AR interface.  368 

Fig. 9 illustrates the relationship between the image plane and virtual object coordinate system 369 

(Carmigniani and Furht 2011). It consists of three transformations that are the object-to-world (O), world-370 



to-camera (C), and camera-to-image (P). (Xv, Yv, Zv) is the virtual objects coordinate system, which is the 371 

coordinate frame for void information in the virtual world. (Xw, Yw, Zw) is the world coordinate frame acting 372 

as a global reference for objects in the real world. (Xc, Yc, Zc) is the camera coordinate system. This 373 

coordinate system locates at the center of the camera and is used to denote the pose of the AR device at any 374 

given time. (u, v) is the screen coordinate system in the image plane. Eq. (7) is used to transform from 375 

virtual coordinate frame to the camera coordinate frame. The matrix O and C are both 4×4 transformation 376 

matrices that consist of rotation and translation.  377 

[

𝑋𝐶
𝑌𝐶
𝑍𝐶
1

] = 𝑶4×4𝑪4×4 [

𝑋𝑤
𝑌𝑤
𝑍𝑤
1

]                                                   (7) 378 

 379 

Fig. 9. Coordinate transformation between virtual object and image plane 380 

The screen coordinate can then be calculated by Eq. (8), where (u, v) is the coordinate of the screen 381 

coordinate system. λ is free scaling parameter; ku and kv represent the scale factor relating pixels to distance; 382 

f is the focal length; (cx, cy) is the principal point that represents the center of the image. These parameters 383 

are intrinsic parameters of the camera. 384 



[
𝑢
𝑣
1
] = 𝜆 [

𝑓 × 𝑘𝑢 0 𝑐𝑥
0 𝑓 × 𝑘𝑣 𝑐𝑦
0 0 0

] [

𝑋𝐶
𝑌𝐶
𝑍𝐶

]                                           (8) 385 

The Vuforia SDK is used to detect and track the image target (PTC 2019). The Vuforia SDK has been 386 

widely used with robust performance on a variety of hardware such as HoloLens and smartphones (Frantz 387 

et al. 2018; de Ravé et al. 2016). The Vuforia SDK detects feature points in target images. The detected 388 

features are compared at run time with features in images captured by an AR device. The quality of an 389 

image target is evaluated by star rating ranges between 1 and 5 stars. An image target, with rich in detail, 390 

good contrast, and no repetitive patterns, has a higher star rating, which is easy to detect and track. Once 391 

the image target is detected, the Vuforia engine will track the image and register virtual content into the 392 

real environment. The accuracy of the registration is up to natural features detected in the image target.  393 

Fig. 10 presents an illustration of the developed AR interface prototype. The Unity3D is selected as the 394 

development platform due to its easy handling of virtual objects. In Unity3D, the 3D void with relevant 395 

information and image target for each structural collapse are imported and aligned together. The 3D void 396 

model using the proposed reconstruction method is saved in 3D file format obj. The image target created 397 

by Vuforia SDK is saved as Unity package. The Unity3D can build applications to the AR devices for 398 

different platforms such as Universal Windows Platform (UWP), iOS, and Android. The first responder 399 

will carry AR devices such as HoloLens and mobile phones at disaster sites to visualize void information. 400 

When the first responder arrives at structural collapses, void information will be presented to them through 401 

the AR interface once the image target is detected. The 3D reconstructed void is overlaid on the top of 402 

structural collapse with related depth and volume information. The 3D model is placed on the top of the 403 

rubble to ensure first responders can visualize the geometry of the reconstructed void.  404 



 405 

Fig. 10. Interface of the AR system prototype: (a) disaster rubbles; and (b) disaster rubbles with void 406 

information overlaid 407 

Experimentation and Evaluation 408 

Two sets of experiments were conducted to validate and evaluate the proposed framework. The first set 409 

of experiments aims to evaluate the proposed 3D reconstruction method. The second set of experiments 410 

aims to test the applicability of AR in unfavorable conditions that are commonly seen in disaster areas. The 411 

experimentation details and results are presented below. 412 

Evaluation of 3D Void Reconstruction 413 

The first set of experiments is conducted to evaluate the efficiency of the proposed 3D reconstruction 414 

method. The authors have designed a search and rescue drone to detect voids under the rubble in post-415 

disaster scenarios (Chen et al. 2020). The multirotor drone is equipped with RTK GPS, IMU, camera, and 416 

GPR to survey disaster areas. The simulator is used to replicate real disaster scenarios based on photos and 417 

videos collected from real disaster sites. With the simulation platform, various disaster scenarios can be 418 

arranged for testing and a large amount of GPR data can be collected as in real disaster sites. In addition, 419 

large-scale disaster rubbles can be created in the virtual environment which is hard to build in reality. Two 420 

lean-to collapse voids were created in the virtual environment. The geometric model of the cross section of 421 

the rubble along the GPR scan path is extracted based on UAV trajectory. The synthetic radargram at each 422 

cross section is simulated using the gprMax simulator (Warren et al. 2016b). The simulated antenna is set 423 



as a 900 MHz Ricker wavelet, which is well accepted. Fig. 11 presents an overview of the two lean-to 424 

collapsed voids.  425 

 426 

Fig. 11. Experimental scenarios of collapsed structures 427 

Fig. 12 presents the results of 3D void reconstruction on the two simulated cases. The UAV flies along 428 

the slope of the lean-to collapse structures to collect GPR data. Four GPR scans are collected in both 429 

scenarios, where scan paths are approximately parallel to each other. The GPR scan spacing for the 430 

collapsed rubble is selected based on the size of collapse and site conditions. The scan spacings for scenario 431 

Ⅰ and scenario Ⅱ are 0.8m and 0.6m, respectively. The volume of reconstructed void for scenario Ⅰ is 4.33m3, 432 

which is smaller than the ground-truth volume of the void. The underestimate of void volume can be 433 

attributed to two reasons. First, the irregular surface will change the transmitting path of EM waves, and 434 

thus estimated boundary coordinates are not aligned well with the ground-truth void boundary. Second, 435 

there are only four GPR scans for each rubble which cannot capture the full image of the buried void. 436 

Increasing the number of scans can better reconstruct void space but at the expense of data collecting and 437 

processing time. The estimated buried depth of the void is 0.23m. The ground-truth depth of void varies 438 

Scenario Disaster rubble Side view Volume 

Ⅰ 

  

8.72m3 

Ⅱ 

 

 

4.42m3 

 



from 0.13m to 0.55m. The estimated depth is within the range of the ground-truth depth. For Scenario Ⅱ, 439 

the volume of the reconstructed void is 3.80m3, which is close to ground-truth volume. The estimated buried 440 

depth of void is 0.18m, which is in agreement with ground-truth depth (0.13m to 0.29m). 441 

 442 

Fig. 12. Void reconstruction for simulated scenario Ⅰ and Ⅱ 443 

A real experiment is also conducted to validate the proposed 3D reconstruction method. Given that 444 

GPR data from recent disasters were not available, a simplified model is built based on the lean-to collapse 445 

void with a smaller scale as shown in Fig. 13. The built lean-to collapse normally happens when floor 446 

structure fails on one side and the other side is still connected to the wall structure. The wood plate is used 447 

to simulate a simplified case of the collapsed floor. It should be noted that the built lean-to collapse is a 448 

relatively ideal scenario that can be much more complex in real disaster sites. The aim here is to show the 449 

feasibility of the void reconstruction method to reconstruct invisible void space using real GPR scans. The 450 

volume of the built lean-to void is around 0.58m3 without considering small objects inside the void space. 451 



The thickness of the wood plate is 5cm. The GPR with a 2GHz antenna was used to collect GPR data. The 452 

volume of the reconstructed void is 0.50m3, which is close to the real volume of the void. The estimated 453 

void depth is 4.3cm, which is consistent with ground-truth depth. These results demonstrate the feasibility 454 

of the proposed reconstruction method using GPR data and justify the pursuit of larger-scale testing in the 455 

field.   456 

 457 

Fig. 13. Void reconstruction for the real experiment: (a) data collection; (b) void boundary detection; and 458 

(c) 3D model 459 

Evaluation of the AR System  460 

The second set of experiments evaluates the efficiency of the AR system. The iPhone 11 with iOS 461 

14.4.2 operating system is selected as the AR device in the evaluation. Note that the developed system can 462 

also be adapted to other devices like HoloLens and Android devices. The tracking time is used as a 463 

quantitative metric to assess the performance of the AR system. The tracking time is the processing time 464 

required to register virtual content into the real world. A small processing time promotes the visualization 465 

of void information in a timely manner and improves the user experience. If there is a significant amount 466 

of processing time, first responders may fail to capture the void under the rubble. This is because that first 467 

responder may move to other places if void information is not visible through the AR device in a short time. 468 

Therefore, tracking time is very important for the successful deployment of the AR system. The amount of 469 

time is related to the number of detected natural features that can be affected by occlusion and lighting 470 

conditions. If nature features cannot be detected or the number of detected features is very small, the void 471 



information cannot be registered and visualized by first responders. Hence, the impacts of occlusion and 472 

illumination factors on the processing time of the AR system are investigated.  473 

Fig. 14 shows the visualization of reconstructed void overlaid on the abovementioned three collapse 474 

scenarios. The results indicate that void can be correctly registered to the structural collapses and be 475 

visualized through AR device. Note that since the scenarios Ⅰ and Ⅱ are built in the simulation platform, the 476 

scene from a first-person perspective is first extracted from the simulator. Then, void information is overlaid 477 

on the image and visualized through the AR device. As indicated in Fig. 14, the interaction with the AR 478 

system is intuitive, and presented information is easy to understand. This can help reduce the cognitive and 479 

information overload of first responders during search and rescue missions.  480 

 481 

Fig. 14. AR visualization of void information: (a) scenario Ⅰ; (b) scenario Ⅱ; and (c) real experiment 482 

In order to evaluate the efficiency of the AR system under occlusion and illumination variations, a total 483 

number of 34 structural collapses with a potential void underneath were collected and their corresponding 484 

surface rubble images were extracted. These surface rubble images were used as image targets to test the 485 

AR system. Fig. 15 presents an illustration of the exposure and occlusion settings using the simulated 486 

scenario Ⅰ. The exposure values (EVs) and occlusion percentages are simulated to model possible site 487 



conditions. At disaster sites, scene can be occluded due to the dynamics including human and equipment 488 

movement and debris removal. In addition, the illumination conditions can be affected by weather and the 489 

physical environment at disaster sites. 490 

 491 

Fig. 15. Illustration of exposure value and occlusion percentage settings: (a) exposure value; and (b) 492 

occlusion percentage 493 

Fig. 16 (a) indicates the relationship between tracking time and EVs for the 34 investigated collapses. 494 

Positive and negative values represent the increased and decreased level of EV from the original EV of the 495 

image, respectively. A decreased level of EV represents a darker scene. The results suggest that average 496 

tracking time ranges from 0.33 to 0.35s when changes of EV are -2, -1, 0, and 1. Under these scenarios, 497 

images of disaster scenes can be easily recognized and tracked in a timely manner. However, when the EV 498 

value increases by 2, the tracking time increases significantly compared to that of the original images. 499 

Furthermore, eleven images cannot be recognized and tracked in this situation. It indicates that the AR 500 

system may not be able to work properly under the extremely bright scene.  501 

Fig. 16 (b) is the tracking time variation with different occlusion percentages which represents the 502 

proportion of the hidden part of the image. We investigated the AR system performance with occlusion 503 



percentages of 20%, 40%, and 60%. As indicated in Fig. 16 (b), average tacking times are 0.36 and 0.39 504 

for occlusion 20% and 40%, respectively. The system can perform well under low occlusion. Furthermore, 505 

average tracking times increase with increasing occlusion percentages. The AR system experiences a 506 

significant tracking time increase from occlusion 40% to 60%. In addition, seven images are not recognized 507 

for occlusion 60%. It indicates the AR system performance is compromised under the high occlusion. The 508 

results demonstrated the reliability and efficiency of the AR system under adverse situations other than 509 

extremely bright and high occlusion scenes.  510 

 511 

Fig. 16. Tracking time variation with exposure value and occlusion: a) exposure value; and (b) occlusion 512 

percentage 513 

Discussion 514 

Feasibility of the framework 515 

The proposed 3D reconstruction method was tested in two simulated and one real experiments. The 516 

simulated experiments built relatively large-scale structural collapses with debris and rubbles. 900MHz 517 

GPR antenna is used in the simulation. The real experiment built a small-scale lean-to collapse with rubbles 518 

in void. The GPR data were collected using 2GHz antenna due to the small scale. The 3D reconstruction 519 

method is demonstrated to be feasible to reconstruct void in structural collapses. In all three cases, the 520 

estimated void depth is found to be in good agreement with ground-truth void depth. The volume of 521 



reconstructed void is found to be smaller than the ground-truth volume of void. This underestimate stems 522 

from the error in boundary coordinates estimation and the limited number of GPR scans. In the next step of 523 

research, the optimal number and path of GPR scans for void reconstruction will be investigated. The 524 

proposed method is suitable for GPR data with different frequencies, which gives more flexibility to first 525 

responders in GPR system selection. The low-frequency GPR has a high penetration depth but a low 526 

resolution. For large structural collapses, a low-frequency antenna is recommended to ensure entire 527 

subsurface structures can be detected in GPR scans. Note that, the low-frequency antenna will reduce the 528 

resolution, which could potentially lead to incorrect boundary estimation. On the other hand, a high-529 

frequency antenna is recommended for small-scale structural collapses.  530 

The AR system was developed to register reconstructed void and its related information to the structural 531 

collapses in this study. Tracking time was used to evaluate the performance of the AR system. The 532 

developed AR interface is found to be effective in overlying void information on structural collapses under 533 

dynamic occlusion and lighting conditions. The results indicate that the average tracking time is less than 534 

0.4s for occlusion percentages 20%, 40%, and 60%. In addition, the processing time is less than 0.4s for 535 

exposure values -2, -1, 0, and 1. Thus, the proposed AR system is applicable to the dynamic and complex 536 

environment at disaster sites. In addition to void information, the system can also integrate other actionable 537 

information collected from different sensors. For instance, RGB and depth images were used together to 538 

discover access holes in disaster rubbles (Kong et al. 2016). First responders can extricate entrapped victims 539 

through access holes, or deploy robots to further explore inside the rubbles. In another example, the thermal 540 

camera was used to localize victims on the surface in low-visibility conditions at disaster sites (Doroodgar 541 

et al. 2014). The weight of hardware is also acceptable for first responders. For instance, cell phones are 542 

generally less than 200 grams and easily accessible. The weight of the HoloLens is around 579 grams. In 543 

addition, the HoloLens is easy to use and hands-free, allowing first responders to carry out search and rescue 544 

operations while wearing it. 545 



Applicability of the boundary coordinates extraction method 546 

In this section, we conducted GPR survey on a scaled experiment and simulated collapsed building 547 

structures to investigate the applicability of the proposed boundary coordinates extraction approach. Due 548 

to difficulties in conducting validated experiments at disaster sites, we have conducted a scaled experiment 549 

in our laboratory using the brick wall. A lean-to collapse void was built (see Fig. 17) and scanned along the 550 

slope using the GPR with a 2GHz antenna.  551 

 552 

Fig. 17. Lean-to collapse built with brick wall: (a) oblique view; and (b) front view 553 

Furthermore, A multi-storey apartment building collapse was simulated using the collapse simulator 554 

developed in (Walte and Kostack 2017). The area with potential lean-to collapse void is selected for the 555 

GPR survey. The cross section of lean-to collapse is fed into the gprMax simulator to generate the synthetic 556 

radargram. Fig. 18 shows the collapsed structure and cross section of a lean-to collapse void.  557 



 558 

Fig. 18. Simulated collapse structure and cross section of lean-to collapse void 559 

Fig. 19 shows the estimation of boundary coordinates for the lean-to collapses. The results indicate that 560 

the boundary with strong reflections in the radargram can be identified with the processes of edge detection 561 

and binarization. The user can further fine-tune the void boundary based on the binarized boundary. The 562 

estimated boundary coordinates are in good agreement with the ground-truth void shape in a 2D space. The 563 

results demonstrate the feasibility of the proposed boundary coordinates estimation approach. A 564 

combination of multiple GPR scans along the lean-to collapse can reconstruct the void in a 3D space. 565 

 566 

Fig. 19. Boundary coordinates estimation for the lean-to collapse built using brick walls and in the 567 

simulated collapsed structures: (a) brick wall; and (b) simulated collapse structure 568 



 569 

Limitation and future studies 570 

This study also has several limitations. First, more information can be acquired from the aboveground 571 

and belowground information, thus providing more actionable information through the interface. In the 572 

future, the potential correlation between aboveground and belowground information needs to be explored. 573 

For example, aboveground information such as building materials can be used to calibrate the GPR. In 574 

addition, the predicted subsurface scenarios can be used to determine the GPR scanning trajectory and 575 

facilitate the interpretation of GPR data. Second, as a pilot study to demonstrate the feasibility of GPR-576 

based 3D void reconstruction in disaster rubbles, experimental scenarios for void reconstruction in this 577 

study were established as relatively simple lean-to collapse voids. In real disaster sites, building collapse 578 

could be much more complex for structural collapse with reinforcement steel and heterogenous rubbles, 579 

which may compromise the effectiveness of void detection from GPR data. In future studies, field 580 

experiments need to be conducted with more realistic scenarios, and advanced processing methods are 581 

needed.  582 

Third, the relative permittivity of collapsed structures is estimated based on the material type in our 583 

analysis, which could lead to inaccurate depth estimation of void spaces. Conventional relative permittivity 584 

estimation approaches such as target burying and common mid-point offset (CMP) are not applicable for 585 

complex disaster sites. In the future, more advanced equipment and methods are needed to accurately 586 

measure the relative permittivity of collapsed structures in the field.  Fourth, the developed framework is 587 

not able to provide information regarding objects and trapped victims in the void, which is critical 588 

information for first responders to designate an appropriate search plan. Deep learning-based methods 589 

provide possibilities to extract more information from GPR scans if a large GPR dataset at disaster sites 590 

becomes available. Furthermore, GPR combined with other sensors such as cameras and rescue radar can 591 

generate more data and enable a more comprehensive understanding of subsurface conditions. Finally, the 592 

latency of the AR application still requires further improvement. In the future, algorithms should be 593 



developed to reduce the time for image detection and tracking under adverse environments such as 594 

extremely bright scenes. 595 

Conclusions 596 

The success of searching and rescuing victims trapped in disaster rubbles primarily depends on the first 597 

responders’ situational awareness regarding the interior spaces in collapsed structures. To improve first 598 

responders’ situational awareness, the proposed framework entails two innovations: GPR-based 3D void 599 

reconstruction and AR-based information communication that collectively enables the first responders to 600 

see through complex and heterogeneous disaster rubbles for efficient, effective, and safe search and rescue. 601 

It was found that GPR has great potential for sensing the interior spaces of disaster rubble, and detecting 602 

possible void spaces by integrating automatic GPR data processing with human interpretations. The 603 

modeling of GPR scanning trajectories and signatures of voids could help the estimation of coordinates of 604 

void boundaries to generate sparse 3D point clouds of the detected voids. An improved weighted alpha 605 

shape algorithm was also shown to be effective in reconstructing the void spaces in 3D to extract detailed 606 

information including depth, size, and geometry for search and rescue operations. The AR-based see-607 

through interface relies on the robust registration of reconstructed interior voids to the exterior surface on 608 

disaster sites via image-based matching. Although unfavorable lighting conditions and occlusions could 609 

possibly affect the AR performance in terms of average tracking time, the simulations and pilot 610 

experimentations demonstrated the potential and feasibility of the AR-based interface. Therefore, the 611 

proposed framework and developed methods provide an innovative attempt and technical insights for 612 

improving first responders’ situational awareness during the urban search and rescue. 613 
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Appendix A 625 

Fig. 20 shows the schematic diagram of GPR wave propagation through medium 1 to medium 2. The 626 

GPR signal spreads in a medium in a spherical shape. When an EM wave reaches an interface, some of it 627 

is reflected and some of it is transmitted across the interface. EM wave can undergo critical refractions, 628 

which occurs when the incident angle is such that the refracted wave propagates along with the interface. 629 

The critical angle is defined in Eq. (9), where V1 and V2 represent the wave velocity in medium 1 and 630 

medium 2 respectively.  631 

           𝑠𝑖𝑛𝜃𝑐 =
𝑉1

𝑉2
                                                                (9) 632 

 633 

Fig. 20. Schematic diagram of EM wave propagates through medium 1 to medium 2 634 



Since EM wave spreads in a spherical shape, the wave path AO, which is perpendicular to the interface, 635 

should arrive first. The path AB is the incident wave with a critical angle. The travel time difference between 636 

AB and AO can be calculated in Eq. (10) 637 

𝑡 =
𝑟(

1

𝑐𝑜𝑠𝜃𝑐
−1)

𝑉1
                                                              (10) 638 

The travel distance d for the refracted wave of AO in medium 2 is calculated in Eq. (11) 639 

𝑑 =
𝑟(

1

𝑐𝑜𝑠𝜃𝑐
−1)

𝑉1
𝑉2                                                          (11) 640 

The three points B, C, and D should form a cycle when transmitting in medium 2, since the wave 641 

transmits in a spherical shape. The point O is assumed to be the center of the circles, which leads to d equals 642 

to s. It is defined in Eq. (12).   643 

𝑑 = 𝑠 ⇒
𝑟(

1

𝑐𝑜𝑠𝜃𝑐
−1)

𝑉1
𝑉2 = 𝑟𝑡𝑎𝑛𝜃𝑐                                           (12) 644 

Eq. (12) can be reformulated as Eq. (13) 645 

𝑉2−𝑉1𝑠𝑖𝑛𝜃𝑐

𝑐𝑜𝑠𝜃𝑐
= 𝑉2                                                       (13) 646 

Substituting Eq. (9) into Eq. (13) results in Eq. (14). When V2 >> V1, the equation holds.   647 

2𝑉2

𝑉1
2+𝑉2

2 =
1

𝑉2
                                                           (14) 648 
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