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Abstract

First responders often lack information and visual clues regarding interior spaces in disaster rubble,
preventing efficient, effective, and safe search and rescue for victims trapped in collapsed structures.
Rapidly detecting and acquiring information about the voids in collapsed structures that could contain
surviving victims is critical for urban search and rescue. However, reconstructing the buried voids in three-
dimension (3D) and communicating the relevant information such as buried depth and void size to first
responders remain a significant challenge. To address this challenge, this study proposes a see-through
technique by integrating ground penetrating radar (GPR) with interactive augmented reality (AR). The
contribution of this study is two-fold. First, a new method is developed to process collected GPR data to
reconstruct potential voids in disaster rubble in 3D and extract the buried depth and void size from the GPR

data. The coordinates of void boundaries are extracted from multiple GPR scans to generate sparse point
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clouds. An improved alpha shape method is exploited to reconstruct the 3D space beneath disaster rubbles
from the point clouds. Second, an interactive augmented reality interface is developed to enable first
responders to visualize the voids in collapsed structures in 3D together with relevant information to assist
urban search and rescue. The results from simulations and pilot experiments demonstrate the feasibility and
potential of the proposed methods.
Keywords
Augmented Reality; Ground Penetrating Radar; Urban Search and Rescue; Subsurface Reconstruction;
Disaster
Introduction

Natural and man-made disasters result in massive structural collapses, and searching and rescuing
survivors from collapsed structures remain a significant challenge. According to Murphy et al. (2001), 15%
of victims were found to be trapped in void spaces beneath collapsed structures. Searching for trapped
victims is a fight against time, as their survival rate falls considerably after two days (Murphy et al. 2001).
First responders are the main force to search the trapped victims in void spaces, and the success largely
relies on their situational awareness regarding the survivable void spaces in collapse structures. The types
of voids are typically divided into four categories that are V shape, A-frame, pancake, and lean-to voids
(Poteyeva et al. 2007). Among them, lean-to collapse void is the most common at disaster sites (Couch
2008). The trapped victims have a higher survivable rate in lean-to void because it forms a large survivable
void space, known as “triangle of life”. The conventional methods to locate the voids in disaster rubble are
based on first responders’ field observation from the surface. Relying on the experience of first responders,
this method cannot provide quantitative information regarding the interior void spaces. To address this
limitation, Building Information Modeling (BIM) is combined with a collapse simulation engine to simulate
different damage patterns of the building, which compiles a damaged database (Bloch et al. 2016). The as-
damaged exterior model is then compared with the database to select the closest match solution in the
database. The void space in the collapsed building is then predicted using the candidate solution. However,

the method requires a BIM model of the damaged building before the earthquake, which cannot be obtained
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for most of the buildings. In addition, the validity of simulation engines is questionable for complex
building structures in the real world.

There is a critical need to reconstruct void spaces in disaster rubbles, and visually communicate the
relevant information to first responders to ensure safe, efficient, and effective search and rescue. The
absence of a solution to this need represents an important problem because unguided search and rescue
operations may waste valuable time and effort to rescue victims and put first responders at risk. Search and
rescue operations can be significantly improved, if first responders can continuously “see” the occluded
spaces through heterogeneous disaster rubble and be aware of the critical voids that may contain trapped
victims. Therefore, this study proposes a novel framework to see through disaster rubbles in 3D by
integrating airborne ground penetrating radar (GPR)-based sensing for void reconstruction and augmented
reality (AR) interface for information communication. Ground Penetrating Radar (GPR) is used to detect
and reconstruct potential void spaces beneath disaster rubbles. The reconstructed void information
including geometry, volume, and buried depth are communicated to first responders through the AR
interface.

This research leads to a new framework that integrates an unmanned aerial vehicle (UAV)-borne GPR
system to obtain information regarding voids in disaster rubbles and an AR-based interface to communicate
void information to first responders for search and rescue. The contribution of this research is two-fold.
First, a new method is proposed to detect void boundaries from GPR scans and estimate the coordinates
based on the detected boundary with first responders in the loop. An improved weighted alpha shape method
is then used to reconstruct voids in rubbles using the boundary coordinates, and therefore detailed
information including void size and depth can be retrieved. Second, an AR-based interface is developed to
communicate the void information to first responders, providing them important situational awareness and
contextual guidance on disaster sites. Hence, the proposed methods have the potential to improve the

traditional experience-based search and rescue practice to an information-based paradigm.
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Literature Review
Related Studies on GPR in search and rescue

GPR is a non-destructive technique that has been widely used in subsurface mapping and demonstrated
to be an effective method. A large and growing body of literature has developed methods to detect and
locate subsurface targets, such as underground utility (Cai et al. 2020; Li et al. 2015; Yuan et al. 2018),
crack (Levatti et al. 2017; Tong et al. 2017), root (Aboudourib et al. 2019; Hu et al. 2020b; Liu et al. 2020b),
concrete rebar (Hu et al. 2020a), and tunnel (Nufiez-Nieto et al. 2014). Table 1 summarizes related studies
on GPR applications in the search and rescue domain, including avalanche victim detection, victim
detection, and void detection in collapsed rubbles.

Table 1 Related studies on GPR in search and rescue.

Application Approach Limitations Reference
- Recognize hyperbola Cannot adapt to collapsed (Fruehauf et al.
Avalanche victim . . 1 o
. signal caused by buried  buildings due to a more complex 2009; Heilig et al.
detection = .
victims scenario than an avalanche 2008)
Victim detection Monitor human Reqqlrf? the GI.)R. to be no (Cist 2009; Liu et
o proximity of victims which is hard al. 2014; Yan et al.
under collapsed respiration and Lo : ]
rubbles movement to obtain Wlthou.t knowmg 2021; Yang et al.
subsurface conditions. 2019)
Void detection Recognize boundary Cannot provide void boundary (Chen et al. 2020;
under collapsed . .
rubbles features from radargram  coordinates and void volume Hu et al. 2019)

Avalanche victim detection. GPR mounted on the helicopter has been used to detect avalanche victims
for decades. For example, Heilig et al. (2008) conducted a feasibility study of GPR in avalanche victim
detection. In particular, Heilig et al. (2008) investigated the influence of snow properties on radar signal,
the maximum horizontal distance of a buried victim from the flight direction, and the influence of the
scanning direction. In their study, they also developed a semi-automatic detection algorithm to recognize
potential victims from GPR scans. The method is dependent on a handcrafted snowpack extraction to
remove the zone of air and underground in the radargram. To address this limitation, Fruehauf et al. (2009)
developed an automated real-time detection of avalanche victims using airborne GPR. Their method
utilized an active contour model to automatically extract snowpack. Thereafter, a matched filter method

was used to detect hyperbola, which is believed to be the signal feature of buried victims in the radargram.
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However, detecting victims in structural collapses are more challenging than that in avalanche snowpack,
because structural collapses are always cluttered and heterogeneous.

Victim detection under collapsed structures. A number of studies have examined the Ultra-wideband
(UWB) GPR in victim detection under collapsed structures. The UWB GPR exhibits very fine range
resolution due to its large bandwidth, which can capture target features that are much smaller than the target
size. For example, in (Cist 2009), UWB GPR was used to detect survivors’ motion and breathing in rubble
piles by leaving the antenna stationary. Liu et al. (2014) conducted a numerical simulation to investigate
human vital sign detection under collapsed structures caused by earthquakes using UWB GPR. The
collapsed structure was simulated according to site conditions with two entrapped victims. In their study,
source separation and empirical mode decomposition were proposed to locate human subjects in the
recorded radargram. Yang et al. (2019) proposed a novel method to identify and locate human vital signs
from radar-received signals based on permutation entropy (PE) and ensemble empirical mode
decomposition (EEMD) algorithm. In a more recent study, Yan et al. (2021) designed a novel Golay
complementary coded system to detect quasi-static trapped victims under collapsed structures. The
proposed system can detect non-periodic strong respiration with stationary operating mode and quasi-
periodic weak respiration pattern using scanning operating mode. While these methods have been
demonstrated to be feasible and applicable in detecting victims under rubbles, the success of victim
detection is based on the premise that the victims are in close proximity to the GPR, which is difficult to
achieve without knowing subsurface conditions. Identifying subsurface survivable void in disaster rubbles
can pinpoint locations with potential victims, and thus facilitating such victim detection methods.

Void detection under collapsed structures. More recent attention has focused on detecting void space
under collapsed structures to pinpoint areas with potential entrapped survivors. For instance, In (Hu et al.
2019), a probabilistic-based algorithm was developed to detect void boundary in GPR scans for lean-to
collapse void. The method was demonstrated to be effective to detect void boundary in the radargram for
simplified lean-to collapse void. In (Chen et al. 2020), GPR is mounted at the bottom of the drone to locate

critical void space under the rubble to save trapped victims. However, these existing methods have not
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leveraged boundary features to extract their coordinates and combined multiple GPR scans for 3D
reconstruction. This study aims to address this knowledge gap.
Related Studies on Augmented Reality in Search and Rescue

Augmented Reality (AR) technology can be a powerful tool to communicate context-aware information,
as it can intuitively present virtual content in the real world. AR technology has been used to support disaster
search and rescue in a variety of ways, such as robot control and interaction, commander and responder
collaboration, and point-of-interests (POI) information visualization. Table 2 summarizes the related
studies on AR in search and rescue.

Table 2 Related studies on augmented reality in search and rescue.

Application Registration method Limitations Reference

(Burian et al. 2014; Coovert

Robot control and Require marker to be _
interaction installed; cannot align et al. 2014; Gianni et al.

! Marker-based; NA i/i rtual ir;forrnation ft 2013; Reardon et al. 2018)
Commander and disaster sites (Bacim et al. 2012; Vassell et
responder collaboration al. 2016; Wani et al. 2013)
Point-of-interest (POI) . May faﬂ to reglster. (Campos et al. 2019; Wang et

L Location-based virtual information in
visualization al. 2018)

crowded urban areas

Robot control and interaction. Many studies have developed interfaces to facilitate human-robot
coordination in search and rescue (SaR) using AR technology (Burian et al. 2014; Coovert et al. 2014;
Gianni et al. 2013; Reardon et al. 2018). For instance, in (Burian et al. 2014), an AR-based user interface
was developed to control a fleet of robots including unmanned ground robots (UGV) and unmanned aerial
robots (UAV). With the interface, operators have the flexibility to control multiple robots and conduct
search and rescue missions at the same time. Coovert et al. (2014) studied communication strategies to
convey robot upcoming movements to humans. An augmented reality projection system is proposed to
communicate robot intended movement to humans via visual arrows and a simplified map. Reardon et al.
(2018) developed an AR system that enables cooperative search between human and robot teams. Through
the AR device, the robot can share search results with human teammates. In addition, this AR interface can

provide a navigation route to first responders and let them reach their desired target efficiently.
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Commander and responder collaboration. A variety of studies have utilized AR to facilitate
collaboration between incident commanders and responders in search and rescue operations. For example,
AR was used in a collaborative guidance system after disasters for search and rescue in a complex building
(Bacim et al. 2012). The system allows incident commanders and first responders to communicate with
each other effectively using visual and nonverbal information when searching a disaster site. Vassell et al.
(Vassell et al. 2016) developed a novel intelligent dashboard for an AR-based coordination system for
multiple incidents. The system integrated Incident Command System (ICS) with the Internet of Things (IoT)
to achieve minimal human communication and thus improve coordination efficiency. In (Wani et al. 2013),
a wearable AR system was developed to improve collaboration among different agencies using hand
gestures. This method was applied and demonstrated in a fire emergency scenario. However, all of the
above-mentioned approaches either required markers to register virtual information or didn’t utilize the
registration method, which cannot accurately align void information on collapsed structures at disaster sites.

POI information visualization. A recent study conducted by Wang et al. (2018) designed an AR
system to mark the target of interest and then display the target information on the screen of the AR device.
In addition, the system can display the target even when it is outside the view of the camera. Campos et al.
(2019) developed a location-based augmented reality application to provide insight into the surrounding
through mobile phones to improve their situational awareness. The responders can also exchange
information using the application to increase SaR efficiency. However, these two studies are location-based
AR, which requires a high-level positioning accuracy. In urban search and rescue, it is difficult to achieve
accurate positioning. Our study aims to address this knowledge gap by utilizing image-based AR, which is
suitable for complex disaster scenes.

Methodology

Fig. 1 presents an overview of the framework to integrate GPR-based 3D void reconstruction and AR
visualization. In the first step, the UAV-borne GPR system is used to survey disaster sites and collect image
and GPR data. The fast-moving speed of the UAV enables first responders to survey disaster sites quickly

and efficiently. The integration of UAV and GPR can be used to survey structural collapses that are
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dangerous or inaccessible. In the second step, void boundary coordinates are estimated in multiple scans to
generate a sparse 3D point cloud. Thereafter, an improved weighted alpha shape algorithm is proposed to
generate a 3D model of void space using the sparse point cloud. The third step develops an AR interface to
communicate void information such as the buried depth and volume of a void to first responders. The

image-based registration approach is adopted to register void information on disaster sites.
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Fig. 1. Methodology overview
System Configuration and GPR Data Collection

The UAV is equipped with a real-time kinematic (RTK) global positioning system (GPS), inertial
measurement unit (IMU), camera, and GPR. RTK GPS can provide centimeter-level positioning accuracy
for the UAV, which is an essential component to acquire spatial position information. RTK GPS can also
provide accurate positioning for GPR and image data. IMU measures the orientation, velocity, and
gravitational forces of the UAV to aid navigation and control. The camera is used to capture surrounding
information of the disaster area and collect video data. The video stream gives the first responder the ability
to search disaster areas from a bird’s view. In addition, images are also collected for structural collapses,
which will be used as the target to register void information in the real world. GPR mounted on the UAV
can detect subsurface structures such as buried void space under rubbles. GPR is a geophysical method that
uses high-frequency radio waves to image the subsurface. Specifically, GPR transmits high-frequency EM

waves into the ground and receives reflected signals when the energy encounters boundaries with different
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materials such as void boundaries. The reflected signal strength is determined by the relative permittivity
contrast between two materials. The higher the contrast, the reflected signal will be stronger. The void
boundary is the interface between collapse structures formed by typical building material and void formed
by air. The relative permittivity of air is 1 and 3-10 for common building materials such as concrete and
brick (Zhekov et al. 2020). The large permittivity contrast will lead to strong reflections at the interface,
which is an important feature to determine the void boundary.

The UAV can be teleoperated by a first responder to survey disaster areas following a disaster. The first
responder can recognize structural collapses from video data stream and locate the rubble with a high
probability of void based on two observations. First, the lean-to collapse void occurs when one side of a
building fails and stays anchored at the other end, creating a large triangular void. Second, the integrity of
large building components to some extent is preserved, which implies the continuity of their geometries
under occlusions. Thereafter, the first responder can control the UAV to fly toward the rubble. When
approaching the rubble, the first responder will lower the altitude of the UAV and capture the rubble surface
image. The image will be used to link the information of surface disaster rubble and subsurface voids
reconstructed from GPR data. When arriving at the rubble, the first responder will determine appropriate
GPR scanning trajectories given site conditions. For lean-to collapse void, the UAV will fly along the slope
of the lean-to collapse structures. In this way, topographic effects on GPR data can be reduced, given the
variation of ground surface elevation will affect the propagation of EM waves. In addition, the altitude of
the UAV is controlled within 3m to reduce the GPR signal loss in the zone of air above ground. This is
because the GPR signal suffers from energy loss due to geometrical spreading, and a lower amplitude
penetrates through the subsurface could lead to a weaker reflection amplitude from the void boundary that
becomes hard to recognize. Therefore, the altitude of the UAV should maintain within a certain range to
reduce energy loss in the air. This can be achieved coincidently with the UAV scanning trajectory because
the UAV is generally equipped with Radar and Lidar altimeter to measure its distance from the ground. Fig.

2 illustrates the GPR survey of a lean-to collapse void using the UAV-borne GPR system and the
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corresponding GPR B-scan. The B-scan in the figure is simulated using the gprMax simulator (Warren et
al. 2016a) with a 900MHz antenna.
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Fig. 2. lllustration of the GPR survey of a lean-to collapse void: (a) UAV-borne GPR survey along lean-to
collapse rubbles; and (b) GPR B-scan
Void reconstruction

The 3D reconstruction of void using GPR scans consists of two steps. In the first step, void boundary
coordinates are extracted to form a sparse 3D point cloud. The second step proposes an improved weighted
alpha shape (WAS) method to reconstruct the 3D model using the processed point cloud.
Void Boundary Detection

After the UAV surveying, first responders will process the GPR data for each structural collapse. The
void boundary needs to be extracted in the radargram to estimate boundary coordinates. The lean-to collapse
forms a triangular void space known as “triangle of life”, which is supported by floor and wall to maintain
its structural stability. The geometric configuration of lean-to collapse will lead to a triangular zone in the
radargram formed by void boundary features. The boundary features represent reflections from the interface
between void and rubbles, the interface between void and floor, as well as interface between void and wall.
First responders will leverage boundary features and their triangular relationship to determine the existence

of void. The void boundary consists of upper and lower boundaries. The upper boundary is the reflection
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from the interface between collapsed rubbles and void. The lower boundary is composed of reflection from
both the floor and the wall. In addition to the void boundary, ground reflection also needs to be extracted
to calculate coordinates of void boundary, which is the first significant reflection recorded in the radargram.

A semi-automatic approach is developed to detect void boundaries and ground reflection in the
radargram, which consists of three steps. First, deep learning (DL)-based edge detection method is adapted
to extract edge features in the radargram (Wibisono and Hang 2021). This is because the ground surface
and void boundary have relatively strong reflections due to the large dielectric constant contrast with air.
The edge detection model is trained on BSDS500 and PASCAL VOC 2012 datasets, which are standard
benchmarks for edge detection in images. Second, OTSU’s thresholding method (Otsu 1979) is used to
further refine detected edges using the DL-based method, and convert edges into binary classes (i.e.,
boundary and non-boundary). OTSU is an automatic binarization level decision approach based on the
shape of the histogram of pixel intensities. The interface also provides a double thresholding alternative
option to the user by setting a high and low threshold manually. Third, based on the detected boundary, first
responders can annotate the void boundary in the radargram with their judgment. An interactive interface
is developed to facilitate the boundary annotation process. The interface can process multiple radargrams

at the same time. Fig. 3 shows an implementation of the method in the interface.
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250  Fig. 3. Void boundary annotation interface: (a) edge detection; (b) binarization; and (c¢) human annotation
251 Void Boundary Coordinates Estimating
252 To estimate coordinates of void boundary segmented in the radargram, we make three simplifying

253  assumptions shown below.

254 Assumption 1. The covered rubble layer of the lean-to collapse void is assumed to be homogeneous.
255 The research conducted by (Li et al. 2020; Liu et al. 2020a; Zhang and Hoorfar 2019) also adopted this
256 assumption for subsurface layers. In our study, the developed method is still in its initial stages, which
257 aims to demonstrate the feasibility of GPR-based reconstruction for lean-to collapse structures.

258 Assumption 2. The wave is transmitted in an arc shape and the center is the tangent point of incident
259 EM wave on the interface between covered rubble and void, when the EM wave transmits into a
260 medium with much smaller relative permittivity. Appendix A shows the proof for this assumption.
261 Assumption 3. The objects such as furniture inside a lean-to collapse void are treated as a part of the
262 void. This assumption aims to avoid underestimating the volume of void in collapsed structures that

263 may contain survivors.



264 The void boundary coordinates need to be extracted for 3D reconstruction. Fig. 4 illustrates a schematic
265  diagram of the UAV survey at the transition point. The transition point represents the void lower boundary
266  reflection changes from the floor to the wall. The coordinate of UAV is G (X, y, z) which can be obtained
267  from on-board RTK-GPS. The EM wave first travels through the air and reaches the surface of collapsed
268  rubbles. GP is perpendicular to the surface of the rubble since it is the shortest path from the UAV to the
269  ground. The reflection from the surface is the first significant reflection recorded in the radargram, which
270  can be easily recognized. Then, the EM wave penetrates through the rubble and arrives at the upper
271  boundary of the void. For a lean-to collapse void, the surface of the rubble can be considered to be parallel
272  with the void upper boundary. As such, the ray paths GP and PVy can be viewed in the same direction. The
273  reflection from the void upper boundary is the first continuous strong reflection that appears below the

274  surface reflection in the radargram.
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276  Fig. 4. Schematic diagram of UAV survey at the transition point

277 Finally, the EM wave travels in the void space and reaches the floor or the wall. Note that floor and
278  wall support for lean-to collapsed void are generally horizontally and vertically laid out, respectively.
279  According to Assumption 2, the ray path VyVy that is perpendicular to the floor or the wall has the shortest

280 travel distance, which is assumed to be first reflected in this study. The detected lower boundary in the
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radargram consists of reflection from both the floor and the wall. The left section of the lower boundary is
the reflection from the floor and the right section comes from the wall. The transition point can be obtained
from the detected boundary, which is the trace with the largest travel time on the lower boundary. When
the UAV is at the transition point, the distance from Vy to the floor S5 and the wall S3' is the same. The
reflection will come from the wall section after the UAV passes the transition point.

Fig. 5 shows the schematic diagram of coordinates calculation for floor boundary. The coordinate of
upper void boundary for trace i is Vu (x’, y’, z’) that can be approximated in Eq. (1), where S; is the
perpendicular distance from the UAV to the ground surface, and S: is the distance from point P to upper
boundary Vu, £ is the upward flying angle of the UAV.
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Fig. 5. Schematic diagram of coordinates calculation for floor boundary
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S; and S, can be estimated using collected GPR scans as indicated in Eq. (2), where c is the speed of
light equals 3x10® m/s, #;is the two-way travel time in medium i provided by the radargram, & is the relative
permittivity of the material. S; is the wave travel distance in the air which means & is 1. S is the wave

propagation from the rubble surface to the void upper boundary, which can be treated as void depth. Since
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multiple GPR scans are collected for each structural collapse to reconstruct the void, the buried depth of
the void is estimated by an average value of S>. This is because void depth could be different at different
locations. This layer consists of typical building materials such as concrete, brick, and wood. The relative
permittivity of this layer can be estimated based on the surface condition. For instance, for a collapsed
concrete building, the relative permittivity of the rubble layer can be approximated by the concrete material

which is around 7.

t
Si=5s )

The coordinate of floor boundary for trace i is Vi (x’’, y’’, z”°) that is calculated in Eq. (3), where S;

represents the distance to the floor from the upper boundary Vu.
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When the GPR passes the transition point, the reflection on the lower boundary will come from the
wall as indicated in Fig. 6. The coordinates of the upper boundary will be calculated using Eq. (1). The
coordinate of the lower boundary is given in Eq. (4).
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Fig. 6. Schematic diagram of coordinates calculation for wall boundary

As indicated in Fig. 4, there will be missing void boundaries on the floor and wall that will not have
reflections appear on the detected void boundary in the radargram. The missing detection will lead to an
underestimate of void volume. According to Assumption 3, the missing section at the floor and wall is
estimated by linearly extrapolating using detected sections as indicated in Fig. 7. The extracted boundary
coordinates from multiple GPR scans form a sparse 3D point cloud, which will then be fed to the void

reconstruction algorithm.
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Fig. 7. Results of segmented boundary coordinates and extrapolation
3D Model Generation

The alpha shape method is selected to reconstruct void space using the sparse 3D point cloud. The
method is selected for two main reasons. First, the algorithm has been demonstrated to be fast and effective
in 3D reconstruction (Gomes et al. 2014). Second, the method can provide an accurate estimation of the
volume (Al-Tamimi et al. 2015). However, for the traditional alpha shape approach, the shape of the
reconstructed model is determined by a single o value, which is not suitable for non-uniformly distributed
point cloud data. If a value is chosen for dense regions, then the reconstructed model will have holes or
beak apart in sparser regions. For instance, the a value can be either too small or too large in some regions

if the point cloud is not evenly distributed. To overcome this limitation, a weighted alpha shape (WAS)
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method is developed for void reconstruction. The proposed WAS method assigns different weights for each
point in the set. The weight is determined by the density of points in the region. The low-density regions
have a relatively large weight for the a value. The algorithm is detailed as follows.
1) Determine k nearest neighbors for each point using k-d tree algorithm (Hajebi et al. 2011) given
point cloud P (p,, p2, ..., p»); Calculate average distance d (d;, d>, ..., d») for each point to its nearest
neighbors.
2) Draw tetrahedra between points using the Delaunay Triangulation (DT) which can ensure each
tetrahedron contains no other points in its interior.
3) Calculate median edge length L,, of tetrahedral mesh.
4) Calculate the radius of the sphere circumscribed about tetrahedron T;. T, is formed by vertices pa,
Db, Pe, and pg, which are four points in the point cloud P.

5) Calculate threshold value a,, for T; using Eq. (5), where d is the mean of d calculated in step 1.

_ da+db+dc+dd
w 4d

X 2Ly, 5)
6) Remove the edges of the tetrahedra if the radius calculated in step 3 is larger than «,,; Keep the
edges if the radius is smaller than «,,.

7) Repeat steps 3-5 recursively until all the tetrahedra are processed.

8) Generate 3D model in STL format using preserved edges.

The parameter £ determines the number of nearest neighbors for each point. The k is typically selected
as the square root of the total number of points (Nadkarni 2016). The a value is set as two times median
edge length L,, of tetrahedral mesh to ensure resulting alpha shape enclosing all points with one region. The
volume of the 3D model is also estimated based on the discrete form of the divergence theorem (Alyassin
et al. 1994). The volume is calculated in Eq. (6), where z; is the z component of the centroid coordinate, a;

is the triangle area, and nz; represents the z component of normal of the ith triangle.

V =Xiza;nz (6)
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Fig. 8 shows a representative result of void reconstruction using the proposed approach. The estimated
depth and volume of the reconstructed void are 0.51m and 0.87m?, respectively. The generated void
information needs to be communicated to the first responders to improve their situational awareness

regarding subsurface void. Next, the development of an AR-based visualization system is presented.

z (m)

Fig. 8. Example of reconstructed void: (a) void boundary coordinates; and (b) reconstructed void
AR-Based Visualization

The generated void information is registered to the real world using the image-based approach. Ground
surface images are collected during the UAV survey from on-board camera. The image is corresponded to
void information beneath the rubbles. A database is established to store void information and image for
each structural collapse. The database stores ID, image, 3D void model, void volume, and void buried depth
for each site. The images and void information will be uploaded to the database after the UAV finishes the
survey. The registration of void information can then be achieved by comparing the image captured by the
AR device and images in the database. Once the image target is captured, void information will be presented
to first responders through the AR interface.

Fig. 9 illustrates the relationship between the image plane and virtual object coordinate system

(Carmigniani and Furht 2011). It consists of three transformations that are the object-to-world (O), world-
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to-camera (C), and camera-to-image (P). (X,, Y., Z,) is the virtual objects coordinate system, which is the
coordinate frame for void information in the virtual world. (X, Y., Z) is the world coordinate frame acting
as a global reference for objects in the real world. (X., Y., Z.) is the camera coordinate system. This
coordinate system locates at the center of the camera and is used to denote the pose of the AR device at any
given time. (u, v) is the screen coordinate system in the image plane. Eq. (7) is used to transform from
virtual coordinate frame to the camera coordinate frame. The matrix O and C are both 4x4 transformation

matrices that consist of rotation and translation.

Xc Xw
Y Y,
ZC; = 04x4C4xa ZV‘: (7)
1 1
) 7
World coordinate w
system
Y,
(0}
Z,
Object coordinate
system Y X,
"
X, Z,
Camera coordinate k
system
Screen coordinate | ; Y, HoloLens
system v

Fig. 9. Coordinate transformation between virtual object and image plane

The screen coordinate can then be calculated by Eq. (8), where (u, v) is the coordinate of the screen
coordinate system. 4 is free scaling parameter; k, and k, represent the scale factor relating pixels to distance;
fis the focal length; (cx, ¢;) is the principal point that represents the center of the image. These parameters

are intrinsic parameters of the camera.
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The Vuforia SDK is used to detect and track the image target (PTC 2019). The Vuforia SDK has been
widely used with robust performance on a variety of hardware such as HoloLens and smartphones (Frantz
et al. 2018; de Ravé et al. 2016). The Vuforia SDK detects feature points in target images. The detected
features are compared at run time with features in images captured by an AR device. The quality of an
image target is evaluated by star rating ranges between 1 and 5 stars. An image target, with rich in detail,
good contrast, and no repetitive patterns, has a higher star rating, which is easy to detect and track. Once
the image target is detected, the Vuforia engine will track the image and register virtual content into the
real environment. The accuracy of the registration is up to natural features detected in the image target.

Fig. 10 presents an illustration of the developed AR interface prototype. The Unity3D is selected as the
development platform due to its easy handling of virtual objects. In Unity3D, the 3D void with relevant
information and image target for each structural collapse are imported and aligned together. The 3D void
model using the proposed reconstruction method is saved in 3D file format obj. The image target created
by Vuforia SDK is saved as Unity package. The Unity3D can build applications to the AR devices for
different platforms such as Universal Windows Platform (UWP), iOS, and Android. The first responder
will carry AR devices such as HoloLens and mobile phones at disaster sites to visualize void information.
When the first responder arrives at structural collapses, void information will be presented to them through
the AR interface once the image target is detected. The 3D reconstructed void is overlaid on the top of
structural collapse with related depth and volume information. The 3D model is placed on the top of the

rubble to ensure first responders can visualize the geometry of the reconstructed void.
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Fig. 10. Interface of the AR system prototype: (a) disaster rubbles; and (b) disaster rubbles with void

information overlaid

Experimentation and Evaluation

Two sets of experiments were conducted to validate and evaluate the proposed framework. The first set
of experiments aims to evaluate the proposed 3D reconstruction method. The second set of experiments
aims to test the applicability of AR in unfavorable conditions that are commonly seen in disaster areas. The
experimentation details and results are presented below.
Evaluation of 3D Void Reconstruction

The first set of experiments is conducted to evaluate the efficiency of the proposed 3D reconstruction
method. The authors have designed a search and rescue drone to detect voids under the rubble in post-
disaster scenarios (Chen et al. 2020). The multirotor drone is equipped with RTK GPS, IMU, camera, and
GPR to survey disaster areas. The simulator is used to replicate real disaster scenarios based on photos and
videos collected from real disaster sites. With the simulation platform, various disaster scenarios can be
arranged for testing and a large amount of GPR data can be collected as in real disaster sites. In addition,
large-scale disaster rubbles can be created in the virtual environment which is hard to build in reality. Two
lean-to collapse voids were created in the virtual environment. The geometric model of the cross section of
the rubble along the GPR scan path is extracted based on UAV trajectory. The synthetic radargram at each

cross section is simulated using the gprMax simulator (Warren et al. 2016b). The simulated antenna is set
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as a 900 MHz Ricker wavelet, which is well accepted. Fig. 11 presents an overview of the two lean-to

collapsed voids.
Scenario Disaster rubble Side view Volume
I 8.72m’
Il 4.42m’

Fig. 11. Experimental scenarios of collapsed structures

Fig. 12 presents the results of 3D void reconstruction on the two simulated cases. The UAV flies along
the slope of the lean-to collapse structures to collect GPR data. Four GPR scans are collected in both
scenarios, where scan paths are approximately parallel to each other. The GPR scan spacing for the
collapsed rubble is selected based on the size of collapse and site conditions. The scan spacings for scenario
I and scenario IT are 0.8m and 0.6m, respectively. The volume of reconstructed void for scenario I is 4.33m’,
which is smaller than the ground-truth volume of the void. The underestimate of void volume can be
attributed to two reasons. First, the irregular surface will change the transmitting path of EM waves, and
thus estimated boundary coordinates are not aligned well with the ground-truth void boundary. Second,
there are only four GPR scans for each rubble which cannot capture the full image of the buried void.
Increasing the number of scans can better reconstruct void space but at the expense of data collecting and

processing time. The estimated buried depth of the void is 0.23m. The ground-truth depth of void varies
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from 0.13m to 0.55m. The estimated depth is within the range of the ground-truth depth. For Scenario II,
the volume of the reconstructed void is 3.80m?, which is close to ground-truth volume. The estimated buried

depth of void is 0.18m, which is in agreement with ground-truth depth (0.13m to 0.29m).

ey

Fig. 12. Void reconstruction for simulated scenario I and II

A real experiment is also conducted to validate the proposed 3D reconstruction method. Given that
GPR data from recent disasters were not available, a simplified model is built based on the lean-to collapse
void with a smaller scale as shown in Fig. 13. The built lean-to collapse normally happens when floor
structure fails on one side and the other side is still connected to the wall structure. The wood plate is used
to simulate a simplified case of the collapsed floor. It should be noted that the built lean-to collapse is a
relatively ideal scenario that can be much more complex in real disaster sites. The aim here is to show the
feasibility of the void reconstruction method to reconstruct invisible void space using real GPR scans. The

volume of the built lean-to void is around 0.58m? without considering small objects inside the void space.
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The thickness of the wood plate is Scm. The GPR with a 2GHz antenna was used to collect GPR data. The
volume of the reconstructed void is 0.50m?, which is close to the real volume of the void. The estimated
void depth is 4.3cm, which is consistent with ground-truth depth. These results demonstrate the feasibility

of the proposed reconstruction method using GPR data and justify the pursuit of larger-scale testing in the

field.
@ Data collection —————————— @- Void boundary detection @ 3D model
Volume: . ..
0.50 m} 04 22—

Fig. 13. Void reconstruction for the real experiment: (a) data collection; (b) void boundary detection; and
(c) 3D model

Evaluation of the AR System

The second set of experiments evaluates the efficiency of the AR system. The iPhone 11 with i0OS
14.4.2 operating system is selected as the AR device in the evaluation. Note that the developed system can
also be adapted to other devices like HoloLens and Android devices. The tracking time is used as a
quantitative metric to assess the performance of the AR system. The tracking time is the processing time
required to register virtual content into the real world. A small processing time promotes the visualization
of void information in a timely manner and improves the user experience. If there is a significant amount
of processing time, first responders may fail to capture the void under the rubble. This is because that first
responder may move to other places if void information is not visible through the AR device in a short time.
Therefore, tracking time is very important for the successful deployment of the AR system. The amount of
time is related to the number of detected natural features that can be affected by occlusion and lighting

conditions. If nature features cannot be detected or the number of detected features is very small, the void
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information cannot be registered and visualized by first responders. Hence, the impacts of occlusion and
illumination factors on the processing time of the AR system are investigated.

Fig. 14 shows the visualization of reconstructed void overlaid on the abovementioned three collapse
scenarios. The results indicate that void can be correctly registered to the structural collapses and be
visualized through AR device. Note that since the scenarios I and II are built in the simulation platform, the
scene from a first-person perspective is first extracted from the simulator. Then, void information is overlaid
on the image and visualized through the AR device. As indicated in Fig. 14, the interaction with the AR
system is intuitive, and presented information is easy to understand. This can help reduce the cognitive and

information overload of first responders during search and rescue missions.

Void info. Void info. Void info.

\/olume: 3:80m3 Volume: 0.50m3
Depth: 0.18m Depth: 4.3cm

v )
Volume: 4.33m3
Depth::0.23m

(b) (c)
Fig. 14. AR visualization of void information: (a) scenario [; (b) scenario II; and (c) real experiment

In order to evaluate the efficiency of the AR system under occlusion and illumination variations, a total
number of 34 structural collapses with a potential void underneath were collected and their corresponding
surface rubble images were extracted. These surface rubble images were used as image targets to test the
AR system. Fig. 15 presents an illustration of the exposure and occlusion settings using the simulated

scenario I. The exposure values (EVs) and occlusion percentages are simulated to model possible site
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conditions. At disaster sites, scene can be occluded due to the dynamics including human and equipment
movement and debris removal. In addition, the illumination conditions can be affected by weather and the

physical environment at disaster sites.

(b) Occlusion percentage

Fig. 15. Illustration of exposure value and occlusion percentage settings: (a) exposure value; and (b)
occlusion percentage

Fig. 16 (a) indicates the relationship between tracking time and EVs for the 34 investigated collapses.
Positive and negative values represent the increased and decreased level of EV from the original EV of the
image, respectively. A decreased level of EV represents a darker scene. The results suggest that average
tracking time ranges from 0.33 to 0.35s when changes of EV are -2, -1, 0, and 1. Under these scenarios,
images of disaster scenes can be easily recognized and tracked in a timely manner. However, when the EV
value increases by 2, the tracking time increases significantly compared to that of the original images.
Furthermore, eleven images cannot be recognized and tracked in this situation. It indicates that the AR
system may not be able to work properly under the extremely bright scene.

Fig. 16 (b) is the tracking time variation with different occlusion percentages which represents the

proportion of the hidden part of the image. We investigated the AR system performance with occlusion
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percentages of 20%, 40%, and 60%. As indicated in Fig. 16 (b), average tacking times are 0.36 and 0.39
for occlusion 20% and 40%, respectively. The system can perform well under low occlusion. Furthermore,
average tracking times increase with increasing occlusion percentages. The AR system experiences a
significant tracking time increase from occlusion 40% to 60%. In addition, seven images are not recognized
for occlusion 60%. It indicates the AR system performance is compromised under the high occlusion. The
results demonstrated the reliability and efficiency of the AR system under adverse situations other than

extremely bright and high occlusion scenes.
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Fig. 16. Tracking time variation with exposure value and occlusion: a) exposure value; and (b) occlusion
percentage

Discussion
Feasibility of the framework

The proposed 3D reconstruction method was tested in two simulated and one real experiments. The
simulated experiments built relatively large-scale structural collapses with debris and rubbles. 900MHz
GPR antenna is used in the simulation. The real experiment built a small-scale lean-to collapse with rubbles
in void. The GPR data were collected using 2GHz antenna due to the small scale. The 3D reconstruction
method is demonstrated to be feasible to reconstruct void in structural collapses. In all three cases, the

estimated void depth is found to be in good agreement with ground-truth void depth. The volume of
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reconstructed void is found to be smaller than the ground-truth volume of void. This underestimate stems
from the error in boundary coordinates estimation and the limited number of GPR scans. In the next step of
research, the optimal number and path of GPR scans for void reconstruction will be investigated. The
proposed method is suitable for GPR data with different frequencies, which gives more flexibility to first
responders in GPR system selection. The low-frequency GPR has a high penetration depth but a low
resolution. For large structural collapses, a low-frequency antenna is recommended to ensure entire
subsurface structures can be detected in GPR scans. Note that, the low-frequency antenna will reduce the
resolution, which could potentially lead to incorrect boundary estimation. On the other hand, a high-
frequency antenna is recommended for small-scale structural collapses.

The AR system was developed to register reconstructed void and its related information to the structural
collapses in this study. Tracking time was used to evaluate the performance of the AR system. The
developed AR interface is found to be effective in overlying void information on structural collapses under
dynamic occlusion and lighting conditions. The results indicate that the average tracking time is less than
0.4s for occlusion percentages 20%, 40%, and 60%. In addition, the processing time is less than 0.4s for
exposure values -2, -1, 0, and 1. Thus, the proposed AR system is applicable to the dynamic and complex
environment at disaster sites. In addition to void information, the system can also integrate other actionable
information collected from different sensors. For instance, RGB and depth images were used together to
discover access holes in disaster rubbles (Kong et al. 2016). First responders can extricate entrapped victims
through access holes, or deploy robots to further explore inside the rubbles. In another example, the thermal
camera was used to localize victims on the surface in low-visibility conditions at disaster sites (Doroodgar
et al. 2014). The weight of hardware is also acceptable for first responders. For instance, cell phones are
generally less than 200 grams and easily accessible. The weight of the HoloLens is around 579 grams. In
addition, the HoloLens is easy to use and hands-free, allowing first responders to carry out search and rescue

operations while wearing it.
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Applicability of the boundary coordinates extraction method

In this section, we conducted GPR survey on a scaled experiment and simulated collapsed building
structures to investigate the applicability of the proposed boundary coordinates extraction approach. Due
to difficulties in conducting validated experiments at disaster sites, we have conducted a scaled experiment
in our laboratory using the brick wall. A lean-to collapse void was built (see Fig. 17) and scanned along the

slope using the GPR with a 2GHz antenna.

Scanning
trajectory

(a) oblique view (b) Front view

Fig. 17. Lean-to collapse built with brick wall: (a) oblique view; and (b) front view
Furthermore, A multi-storey apartment building collapse was simulated using the collapse simulator
developed in (Walte and Kostack 2017). The area with potential lean-to collapse void is selected for the
GPR survey. The cross section of lean-to collapse is fed into the gprMax simulator to generate the synthetic

radargram. Fig. 18 shows the collapsed structure and cross section of a lean-to collapse void.
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Fig. 18. Simulated collapse structure and cross section of lean-to collapse void

Fig. 19 shows the estimation of boundary coordinates for the lean-to collapses. The results indicate that
the boundary with strong reflections in the radargram can be identified with the processes of edge detection
and binarization. The user can further fine-tune the void boundary based on the binarized boundary. The
estimated boundary coordinates are in good agreement with the ground-truth void shape in a 2D space. The
results demonstrate the feasibility of the proposed boundary coordinates estimation approach. A

combination of multiple GPR scans along the lean-to collapse can reconstruct the void in a 3D space.

Binarization Human annotation Boundary coordinates
0.6

Radargram

(a) Brick wall

(b) Simulate collapsed structure

Fig. 19. Boundary coordinates estimation for the lean-to collapse built using brick walls and in the

simulated collapsed structures: (a) brick wall; and (b) simulated collapse structure
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Limitation and future studies

This study also has several limitations. First, more information can be acquired from the aboveground
and belowground information, thus providing more actionable information through the interface. In the
future, the potential correlation between aboveground and belowground information needs to be explored.
For example, aboveground information such as building materials can be used to calibrate the GPR. In
addition, the predicted subsurface scenarios can be used to determine the GPR scanning trajectory and
facilitate the interpretation of GPR data. Second, as a pilot study to demonstrate the feasibility of GPR-
based 3D void reconstruction in disaster rubbles, experimental scenarios for void reconstruction in this
study were established as relatively simple lean-to collapse voids. In real disaster sites, building collapse
could be much more complex for structural collapse with reinforcement steel and heterogenous rubbles,
which may compromise the effectiveness of void detection from GPR data. In future studies, field
experiments need to be conducted with more realistic scenarios, and advanced processing methods are
needed.

Third, the relative permittivity of collapsed structures is estimated based on the material type in our
analysis, which could lead to inaccurate depth estimation of void spaces. Conventional relative permittivity
estimation approaches such as target burying and common mid-point offset (CMP) are not applicable for
complex disaster sites. In the future, more advanced equipment and methods are needed to accurately
measure the relative permittivity of collapsed structures in the field. Fourth, the developed framework is
not able to provide information regarding objects and trapped victims in the void, which is critical
information for first responders to designate an appropriate search plan. Deep learning-based methods
provide possibilities to extract more information from GPR scans if a large GPR dataset at disaster sites
becomes available. Furthermore, GPR combined with other sensors such as cameras and rescue radar can
generate more data and enable a more comprehensive understanding of subsurface conditions. Finally, the

latency of the AR application still requires further improvement. In the future, algorithms should be
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developed to reduce the time for image detection and tracking under adverse environments such as
extremely bright scenes.
Conclusions

The success of searching and rescuing victims trapped in disaster rubbles primarily depends on the first
responders’ situational awareness regarding the interior spaces in collapsed structures. To improve first
responders’ situational awareness, the proposed framework entails two innovations: GPR-based 3D void
reconstruction and AR-based information communication that collectively enables the first responders to
see through complex and heterogeneous disaster rubbles for efficient, effective, and safe search and rescue.
It was found that GPR has great potential for sensing the interior spaces of disaster rubble, and detecting
possible void spaces by integrating automatic GPR data processing with human interpretations. The
modeling of GPR scanning trajectories and signatures of voids could help the estimation of coordinates of
void boundaries to generate sparse 3D point clouds of the detected voids. An improved weighted alpha
shape algorithm was also shown to be effective in reconstructing the void spaces in 3D to extract detailed
information including depth, size, and geometry for search and rescue operations. The AR-based see-
through interface relies on the robust registration of reconstructed interior voids to the exterior surface on
disaster sites via image-based matching. Although unfavorable lighting conditions and occlusions could
possibly affect the AR performance in terms of average tracking time, the simulations and pilot
experimentations demonstrated the potential and feasibility of the AR-based interface. Therefore, the
proposed framework and developed methods provide an innovative attempt and technical insights for
improving first responders’ situational awareness during the urban search and rescue.
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Appendix A

Fig. 20 shows the schematic diagram of GPR wave propagation through medium 1 to medium 2. The
GPR signal spreads in a medium in a spherical shape. When an EM wave reaches an interface, some of it
is reflected and some of it is transmitted across the interface. EM wave can undergo critical refractions,
which occurs when the incident angle is such that the refracted wave propagates along with the interface.
The critical angle is defined in Eq. (9), where V, and V, represent the wave velocity in medium 1 and

medium 2 respectively.
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Fig. 20. Schematic diagram of EM wave propagates through medium 1 to medium 2
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Since EM wave spreads in a spherical shape, the wave path AO, which is perpendicular to the interface,
should arrive first. The path AB is the incident wave with a critical angle. The travel time difference between

AB and AO can be calculated in Eq. (10)

1
r(cosec_l)

t= 7 (10)
The travel distance d for the refracted wave of AO in medium 2 is calculated in Eq. (11)
r(———1
d = (cosec ) Vz (1 1)

V1
The three points B, C, and D should form a cycle when transmitting in medium 2, since the wave
transmits in a spherical shape. The point O is assumed to be the center of the circles, which leads to d equals

to s. It is defined in Eq. (12).

d=s= S V, =rtan, (12)
1
Eq. (12) can be reformulated as Eq. (13)
VZ—VlsinBC _
cosO. - VZ (13)

Substituting Eq. (9) into Eq. (13) results in Eq. (14). When V, >> V|, the equation holds.

% =1 (14)

VEZ4+VE T 1,
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