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The Snowdrift Game, also known as the Hawk-Dove Game, is a social dilemma in which an individual can participate (cooperate)
or not (defect) in producing a public good. It is relevant to a number of collective action problems in biology. In a population of
individuals playing this game, traditional evolutionary models, in which the dynamics are continuous and deterministic, predict a
stable, interior equilibrium frequency of cooperators. Here, we examine how finite population size and multilevel selection affect the
evolution of cooperation in this game using a two-level Moran process, which involves discrete, stochastic dynamics. Our analysis
has two main results. First, we find that multilevel selection in this model can yield significantly higher levels of cooperation than
one finds in traditional models. Second, we identify a threshold effect for the payoff matrix in the Snowdrift Game, such that below
(above) a determinate cost-to-benefit ratio, cooperation will almost surely fix (go extinct) in the population. This second result calls
into question the explanatory reach of traditional continuous models and suggests a possible alternative explanation for high levels
of cooperative behavior in nature.

1. Introduction Payoff Matrix 1. A two-player, symmetric game is as follows:

Evolutionary game theory (Hotbauer and Sigmund 1998 [1];
Smith 1982 [2]; Smith and Price 1973 [3]) allows one to analyze
the evolutionary dynamics of a population of individuals in
which individual fitness is frequency dependent. A model in
evolutionary game theory is based on a payoft matrix, which
describes the payoff an individual will receive given its own
behavior and the behavior of its partner(s). Payoft Matrix 1
represents a symmetric, two-player game. The entries in the
matrix—a, f3, y, and §—represent the payoft the row player
will receive when it plays strategy A or B with its partner, the
column player, who can also play either strategy A or B.

A B
Aa B 1)
B y 4.

The Prisoner’s Dilemma, in whichy > o« > § > S, is
perhaps the most widely studied form of social interaction,
having been used to model systems ranging from microor-
ganisms (Conlin et al. 2014; [4], Frey 2010 [5]; West et al. 2006
[6]) to human societies (Axelrod and Hamilton [7]; Bowles
and Gintis [8]). However, The Prisoner’s Dilemma does not
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accurately represent social dilemmas in which there is no
strictly dominant strategy.

The Snowdrift Game (Sugden 1986 [9]), also known as
the Hawk-Dove Game (Smith 1982 [2]), is a social dilemma
in which an individual can participate (“cooperate”) or not
(“defect”) in producing a public good. In this game, two indi-
viduals, each in her own car, want to get home, but their cars
are blocked by a large pile of snow. For either to get home, at
least one person must get out of her car to shovel the snow.
But there is a cost to doing so, creating a strategic dilemma in
which y > & > 8 > §. The game is relevant to a number of
phenomena in biology, such as collective defense and
resource extraction among microorganisms (Gore et al. 2009
[10]; Conlin et al. 2014 [4]), behavioral contests (Smith 1982
[2]), distributive justice in humans (Sugden 1986 [9]), behav-
ioral diversification (Doebeli et al. 2004 [11]), and branching
events (Wakano and Lehmann 2014 [12]).

In what we might think of as a “standard” model in evo-
lutionary game theory, there is an infinitely large, well-mixed
population within which individuals either cooperate or
defect in one-time, pairwise games with each other. One gen-
erally assumes that individuals reproduce asexually and that
the number of offspring each individual has is proportional
to its fitness. This makes it easy to track how the frequencies
of cooperators and defectors change in the population over
time. The rate of change of a strategy is given by the replicator
dynamics (Hofbauer and Sigmund 1998 [1]; Hotbauer et al.
1979 [13]; Taylor and Jonker 1978 [14]), an ordinary differen-
tial equation.

If a population of individuals is playing this game, then
traditional evolutionary models, in which the dynamics are
continuous and deterministic, predict a stable, interior equi-
librium frequency of cooperators (Doebeli and Hauert 2005
[15]; Doebeli et al. 2004 [11]; Hauert and Doebeli 2004 [16])
(see (7)). Thus, the standard, deterministic model of the
Snowdrift Game describes a scenario in which, even in the
absence of facultative trait expression or heterozygote superi-
ority, a stable polymorphism of behaviors can emerge.

However, all biological communities are finite, and many
are small and organized into groups that together form a
metapopulation (Gilpin 2012 [17]; Hanski 1999 [18]). This was
certainly the case for ancestral hominins, which has plausibly
influenced the evolution of human cooperation (Bowles and
Gintis 2011 [8]), and it also appears to characterize many
other taxa, including bacteria (Lieberman et al. 2016 [19]). It
is therefore important to understand how a model with finite
population size and metapopulation structure can change
the predictions generated from models that assume a single
population whose size tends to infinity.

Here we explore a discretization of the standard model
of the Snowdrift Game. We consider a metapopulation com-
posed of a finite set of discrete, nonintermixing groups, which
are themselves composed of a finite set of discrete individuals
who either cooperate or defect in the Snowdrift Game. The
evolutionary dynamics both between and within groups are
governed by a discrete time Moran process (Moran 1958 [20],
1962 [21]), a special case of a discrete time Markov chain.

Our analysis has two main results. First, we show that
the combination of within-group stochasticity and group
selection can promote the evolution of cooperation in the
metapopulation and can even result in cooperation’s fixation.
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This would be an impossible result were the evolutionary dy-
namics deterministic.

Second, we describe a phase transition for the fixation
and extinction probabilities of cooperation in any finite
group of a constant size whose members play the Snowdrift
Game. Letting r stand for the cost-to-benefit ratio in a given
Snowdrift Game, this threshold quantity, which we call r,
is approximately equal to 0.796. If r < r,, the probability
cooperators will fix tends to 1 as group sizes go to infinity. If
r > r,, the probability cooperators will go extinct tends to 1 as
group size goes to infinity. This is true so long as the starting
frequency of cooperators is strictly between 0 and 1. (As we
detail, more complicated dynamics occur when r = r,.)
The existence of this threshold quantity allows us to state
a sufficient condition for cooperators to fix in a metapop-
ulation. Moreover, while this threshold result comes about
from taking the limit of group size, we in fact show that even
when group size is fairly small (e.g., 100), the value of r effec-
tively determines whether cooperators will fix or go extinct
within a group. This threshold has no analogue in a deter-
ministic model of the Snowdrift Game, and it makes the
important differences between discrete and continuous mod-
els of evolution salient.

As we discuss, our results provide insight into the evolu-
tion of cooperation, particularly from a multilevel perspective
(Luo 2014 [22]; Okasha 2006 [23]; Simon et al. 2013 [24];
Traulsen and Nowak 2006 [25]), evolving games (Ak¢ay and
Roughgarden 2011 [26]; Hashimoto and Kumagai 2003 [27];
Smead 2014 [28]), and the relationship between discrete and
continuous models of evolutionary dynamics (Traulsen et al.
2005 [29]).

2. The Model

Here, we describe the within- and between-group Moran
processes in our model.

Payoff Matrix 2 provides the payoff matrix for the two-
player Snowdrift Game we will assume throughout this paper.
Let b refer to the benefit of getting home and let ¢ refer to the
cost of shoveling snow, where b > c. Each driver can either get
out of her car to shovel (C for “cooperate”) or stay in her car
(D for “defect”). If both drivers cooperate, then each receives
a net payoff of b — ¢/2, since both receive the benefit of going
home, while the cost of shoveling is divided in half. If one
driver cooperates and the other defects, then both get to go
home, but the cooperator must pay the full cost of shoveling
snow, receiving a net payoff of b—c, while the defector pays no
cost, receiving a net payoff of b. If each driver stays in her car,
neither pays the cost of shoveling, but neither gets to go home,
so neither receives any reward. Following Zheng et al. (2007
[30]), we let » stand for the ratio of the cost of cooperating in
the Snowdrift Game to the benefit of doing so (r = ¢/b). We
can thereby speak of the “r-value” of an instantiation of the
game.

Payoff Matrix 2. The Snowdrift Game is as follows (r = ¢/b):
C D
Cb-Sb-c )
2

D b 0.
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Note that “cooperation” in this context refers to the shov-
eling snow behavior—that is, strategy C in Payoff Matrix 2.
This strategy is not a form of altruism since cooperation can
be in the interest of the actor, depending on the behavior of
the other player. Strategy C in Payoff Matrix 2 coincides with
a technical definition of cooperation (West et al. 2007 [31]):
cooperative behaviors (i) increase the payoft to others and
(ii) carry a benefit (or cost) to the actor contingent on the
behavior of others.

2.1. Within-Group Moran Process. Suppose there is a meta-
population composed of a finite number # of discrete groups,
indexed by j, so that j € {1,2,...,n}. The size of a
given group j (N;) is finite and constant, and each group
in the metapopulation is of the same size. We assume the
individuals in each group are hard-wired to either cooperate
or defect in the Snowdrift Game. The evolutionary dynamics
within each group are governed by a discrete time Moran
process (Moran 1958 [20], 1962 [21]). At each time step, an
individual in a group j is chosen to reproduce and have one
offspring. The probability that a given individual is chosen to
reproduce is proportional to its fitness relative to the average
fitness of the individuals in its group. The behavior of an
offspring is always identical to the behavior of its parent—that
is, cooperators always beget cooperators, while defectors
always beget defectors. At the moment it is born, an offspring
replaces uniformly at random some individual in j, perhaps
its parent, but not itself. The probability an individual will be
replaced is unaffected by that individual’s phenotype or fit-
ness and is always 1/N;. For our purposes here, we assume
there is no migration between groups and no mutations dur-
ing reproduction.

Since we are interested in modeling interactions that gen-
erate public goods that can be used by all, we will assume
individuals play the Snowdrift Game with all of the members
of their respective groups, including themselves, simulta-
neously. This is equivalent to using the expected fitness of
random pairwise interactions among members of the group
allowing for self-interaction.

Formally, we can represent the fitness of cooperators and
defectors in a group j as follows. Let b; and ¢; index the para-
meters b and ¢ for a given group j, let x; stand for the frequen-
cy of cooperators in j, and let 1 — x; stand for the frequency
of defectors in j. The fitness of a cooperator and a defector in
group j for a given value of x; are given, respectively, by

C:
we,j = (bj - é)xj +(b-) (1)),

wD’j = be].

(3)

The average individual fitness of the members of a group j is
given by

w; =xjwc‘j+(1—xj) Wp,j.- (4)

The composition of a group can change in one of two

ways: a cooperator can replace a defector, or a defector can

replace a cooperator. Letting i; stand for the number of

cooperators in a group j, we can represent the first transition
as (i; — i. + 1) and the second as (i; — ij— 1). As de-
scribed elsewhere (Fudenberg et al. 2006 [32]; Nowak 2006
[33]; Taylor et al. 2004 [34]), we can use the fitness given in
(3)-(4) to calculate the probability, P, of each of these two
transitions:

S _ Wy i Nj—i
P(’j_”j“Ll)—w_xﬁx N
J J J
N (5)
; ; Wp,j 1 il
Plij —i=1)= T x Xy
J J J

Since no other changes within a group are possible, the
probability that the state of the group will not change is given
by,

1-P(i; —i;+1)-P(i; —i;-1). (6)

Were each group well-mixed and infinitely large, each
group j would converge to a stable, internal equilibrium fre-
quency of cooperators (x;), which is given by the following
(Hauert and Doebeli 2004 [16]):

b. —c;
* J ]
xi=2 7 )

However, because group size is finite in our model and
there are no mutations, the only truly stable states of a group
are the two absorbing states, in which cooperators fix (x; = 1)
or go extinct (x; = 0). Nevertheless, the frequency of cooper-
ators in a group in our model will often temporarily oscillate
around what its internal equilibrium value would be were
group size to be infinite; for a finite population, this is some-
times called its “quasi-equilibrium” (Shpak et al. 2013 [35]).

2.2. Between-Group Moran Process. Our model also involves
a discrete time Moran process that occurs between groups.
Within the metapopulation, a “parent” group is chosen to rep-
licate, thereby producing a “daughter” group, which replaces
uniformly at random some group in the metapopulation,
perhaps its parent, but not itself. A daughter group of some
group j that is created at time t has the same frequency of
cooperators as j at t and has the same payoft matrix as j. (See
Figure 1.)

The probability that a given group is chosen to reproduce
is proportional to the average individual fitness of its mem-
bers relative to the average individual fitness of the members
of all the groups in the metapopulation. Taking the first and
second derivatives of (4), we see that the average individual
fitness of a group increases monotonically but nonlinearly as
its frequency of cooperators increases:

Z—w=(c—2b)x+(2b—c),

x

pul (8)
d—Lg=C—2b<0.

x

In our model, a group’s fitness is equal to the probability
it will give rise to a daughter group at the next time step.
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FIGURE 1: Two-Level Moran Process. This is a condensed representation of the two-level, discrete time Moran process in our model. Each
isolated cluster of red and blue ovals is a “group,” while the ovals themselves are “individuals,” which come in two varieties, cooperators
(blue) and defectors (red). The set of six groups constitutes a metapopulation. Within a group, an individual is chosen to reproduce and replace
some individual in the same group: the arrow represents an individual having an identical offspring, which replaces another individual in the
group. (The replaced individual has a dashed border around it.) Across groups, a group is chosen to reproduce and replace some group in the
metapopulation. The group in the bottom-left corner reproduces and replaces the group in the top-right corner. (The replaced group has a

dashed border around it.)

Hence, a groups fitness increases along with its frequency
of cooperators. (One can of course consider other config-
urations of the relationship between individual fitness and
group fitness—e.g., where a group’s fitness decreases as its fre-
quency of cooperators increases—but we do not pursue such
extensions here.)

In our model, we assume individual-level birth-death
events occur more frequently than group-level reproduction-
extinction events. Again, the abstract structure of the model
itself does not require this. Presumably, the relative rates of
the individual- and group-level events in a model should be
governed by the target system one is modeling.

There is a straightforward way to calculate the probability
that a given group j will replicate or die at the next time
step. Letting P;(+1) and Pi(-1) refer, respectively, to these two
probabilities, we have

w, 1 n-1
P(+1) = =L x — x T,
wy n n o)
w; 1 n-1
P.(—1)=_—J><—><n ,
J
wy n n

where w; is the average fitness of the individuals in group j,

given by equation (4),

w; = ‘wk (10)

refers to the average fitness of all groups other than group j,
and w,, is the average of the average individual fitness of each
group in the metapopulation, which is given by

_ I
Wy = —ij. (11)

The probability that there will be no change in the meta-
population is given by

1- Z [Pj (+1) + P; (—1)]. (12)
j=1

3. Methods

3.1. Simulations of Moran Process. We ran two classes of
simulations. In the first class, we were concerned exclusively
with the Moran process within a group. In the second class,
we were concerned with our “complete” model, in which
Moran processes occur both within and between groups.
Both classes of simulations were implemented in R version
3.2.3 (R Core Team 2016 [36]). High Performance Computing
(HPC) was necessary to perform some of the metapopulation
simulations. This is because our code “counts” each individ-
ualin the metapopulation at each individual-level birth-death
event and at each group-level replication-extinction event.
This creates a computational bottleneck that can be nontrivial
when group size is large (N; > 1000). The source code is
available by request.

3.1.1. Simulations of Within-Group Moran Process. In our first
class of simulations, we sought to explore how the within-
group evolutionary dynamics were affected by the size of
a group and the group’s r-value. We therefore simulated the
within-group evolutionary dynamics of nine groups, where
each group was associated with a different r-value. The range
of r-values that we simulated was r € {0.1,0.2,0.3,0.4,0.5,
0.6,0.7,0.8, 0.9}, where b was set to 10 and ¢ ranged from 1 to
9 in increments of 1. We simulated a range of group sizes, N; €
{10, 100, 1000, 10,000}, and we allowed each group to evolve
for 100 generations, where 1 generation for a group of size N;
is equal to N birth-death events. The observed frequency of
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cooperators within each group after a given number of birth-
death events was plotted against the equilibrium frequency
of cooperators predicted by the deterministic within-group
model, as given by (7).

3.1.2. Simulations of Two-Level Moran Process. In our second
class of simulations, we simulated the complete version of our
model, in which there are discrete time Moran processes that
occur both within groups and between groups.

In our first set of simulations within this class, we consid-
ered a scenario in which the groups in the metapopulation do
notvary in their r-values. We seeded the metapopulation with
25 groups, where the frequency of cooperators in each was
initially set to 0.10. We ran three versions of these simulations,
which differed in the r-value we assigned to each group (r =
25;r = .67; r = .90). For each r-value, we ran simulations
where N; € {10, 100, 1000}. We ran 500 independent simula-
tions for each combination of r-value and group size. Withina
given simulation, there were approximately 100 within-group
generations and 20 between-group generations, where one
generation for a metapopulation of size n is equal to n group
replication events.

In our second set of simulations within this class, we con-
sidered a scenario in which the groups in the metapopulation
initially varied in their r-values. To explore the sensitivity of
the metapopulation dynamics to the r-values of each group,
we ran two versions of this type of simulation. In the first ver-
sion, we seeded the metapopulation with 25 groups and asso-
ciated each with a unique r-value so that the average r-value
was relatively low: the benefit b of cooperating was set to 10,
while c ranged from 0.25 to 6.25, in increments of 0.25, result-
ing in an initial average r-value of 0.33. In the second version,
we performed the same analysis, except that we associated
each group with a unique r-value so that the average r-value
was relatively high: b was set to 10, while ¢ ranged from
7.79 to 9.94, in increments of approximately 0.09 on average,
resulting in an initial average r-value in the metapopulation
of 0.89.

These simulations were “truncated” in that they could
stop before the metapopulation became monomorphic. We
conducted truncated simulations because we were interested
in documenting the evolutionary dynamics in the short and
medium term, not only as one takes the limit of time. As our
results show, the groups in the metapopulation, and the meta-
population itself, often spend a good deal of time at a poly-
morphic state. This is because the fixation times can be long,
which underscores the need to not only consider the end state
of the system. Eventually, this polymorphism will disappear,
and so the simulations are an inaccurate representation of the
dynamics of the system for an arbitrarily long sequence of
events.

Comparison with Null Models. For each set of simulations
within this class, we plotted the observed frequency of
cooperators in the simulations against what the long-term,
expected frequency of cooperators in the metapopulation
(E[x,]) would be given two alternative, null models. In the
first null model, there is a single, well-mixed population of
individuals playing the Snowdrift Game, within which the

dynamics are deterministic. In the second, there is a meta-
population of groups whose members play the Snowdrift
Game, where the within-group dynamics are deterministic,
there is group reproduction, and there is no group selection
(i.e., groups do not vary in their probability of replicating).
Conveniently, the value for (E[x,,]) for each of these null
models is given by the same equation:

1 *
E [xpy] = ;anxr, (13)
r€R

where n, represents the number of groups with a given r-
value in the metapopulation, x, stands for the equilibrium
frequency of cooperators in a group of type-r, and the nota-
tion r € R indicates that we perform this operation for each
r-value that is in the set of r-values that are represented in the
metapopulation. In the case where there is a single, infinitely
large population, we can think of this population as a “meta-
population” with a single, infinitely large group.

4. Results

4.1. Characterization of Within-Group Moran Process

4.1.1. Diffusion Approximation and Fixation Probability. Fol-
lowing Traulsen et al. (2005 [29]), we can obtain the diffusion
approximation of the Moran process for a group whose
members are playing a two-player game of the form given in
Payoff Matrix 1. It is a diffusion process XV = (XEN )5 that
solves the following SDE:

o (x)

VN

where N is the size of the group (note that we have left out
the j subscripts from N for ease of reading), W, is the Wiener
process (standard Brownian motion), and y and o are the
“drift” and the “volatility” functions given, respectively, by

dX{™ = p(xV)dt + dw,, (14)

) =T (x)-T (x),

(15)
o(x) =T (x)+ T (x),
where
T* (x) = ocx+,8_(1—x)x(1 ),
(16)
T (= POUTD gy,

Equation (14) describes how a change in the frequency
of cooperators is dependent both on selection and on the
stochasticity of the system that emerges because the popu-
lation is finite. Observe that when the group’ size tends to
infinity, the SDE reduces to an ODE:

dx (t)
— = t)). 17
o S Hx®) (17)
The precise connections between the Moran process and

the corresponding SDE and the Moran process and the



corresponding ODE are given by the following lemma. A
rigorous proof follows from standard stochastic analysis
(Durrett 1996 [37]).

Lemma 1. Let N be the total number of individuals and let
Cy (i) be the number of cooperators at the ith step in the Moran
process. Suppose the initial fraction of cooperative players
Cn(0)/N tends to x, € [0,1] as N — oo. Then, for alle > 0
and T < 0o, we have the following.

(1) Deterministic approximation: Moran process versus

ODE:
Cy ([tN
lim [P( sup M—x(t) <e)=l, (18)
N=00  \ tefo,T]

where x(t) is the solution to the ODE (17) starting with
x(0) = xq, “sup”is the supremum, and [s] is the largest
integer smaller than or equal to s.

(2) Diffusion approximation: Moran process versus SDE:
there exists a diffusion process XﬁN ) defined on the same
probability space as that of the Moran process, which
starts at X(()N) = X, solves (14), and is such that

Cn ([EN])

lim [P’( sup XEN)

N—co  \ tefo,1]

< aNe) =1 (19)

for any sequence ay such thatlimy_, ., (log N/Nay) =
0.

Remark 2. Convergence (18) says that when the population
size N is large, most sample paths of the process Cy([tN])/N
stay within distance € from the solution x(t) of the ODE for
any timet € [0, T]. That is, once we specify the error tolerance
€ and the duration T', we can choose N large enough so that
|Cy([ENT)/N — x(t)| < € uniformly in t € [0,T] with a
probability close to one.

Remark 3. Convergence (19) says that X™ is a better
approximation than x(t) and precisely quantifies the extent
to which it is a better approximation. Specifically, (19) holds
as long as ay; — 0 slower than log N/N. This roughly says
that sup,¢(o 7 |Cn([EN])/N — XEN)| — 0 at a rate of order at
least O(log N/N).

Remark 4. Lemma 1 remains true if we replace the discrete
time Moran process by the continuous time version of the
Moran process with rate N. This follows directly from Kurtz
(1978 [38], theorems 2.2 and 3.3).

In evolutionary biology, one is often interested in the
probabilities of fixation and extinction. Let h(x) be the
probability that the diffusion process X™” hits 1 before 0 (i.e.,
cooperators fix), given that the process starts at X(()N ) = x
In mathematical notation, we let 7 := inf{t > 0 : XEN) =
0 or 1} be the time it takes for the population to become

monomorphic, and we let P, be the probability law of X
starting at x € [0, 1]. Then,

h(x) =P, (X7 =1). (20)
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1.2 b=10,c=3(r=0.3)
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FIGURE 2: The plot of h(x). When r = 0.3, which is below r,, the
probability that cooperators will fix gets very large, regardless of the
starting frequency of cooperators, as group size increases.

Note that h(x) depends on N and the parameters in the game
matrix.

This probability can be found in standard textbooks on
the subject (e.g., Otto and Day 2007 [39], Chapter 15). We
record the exact formula for our case in the following lemma.

Lemma 5. Let h(x) be the probability that cooperation fixes,
defined in (20). Then,

* Ny
h(x) = —J% oo 2, 1
Jo €1y
where f(y) = -2 _[Oy(Cu + D)/(Au + B)du and
A=a+y-p-4,
B=[+6,
(22)
C=a--y+6,
D=p-6.

4.1.2. Asymptotic Analysis Reveals a Threshold Cost-to-Benefit
Ratio. Through an application of Laplace’s method to the
explicit formula for the fixation probability obtained in
Lemma 5, we discover a threshold quantity r, = 0.796 such
that when » < r, the probability cooperators will fix tends
to 1 as group size goes to infinity (Figure 2). Likewise, when
r > r,, the probability cooperators will go extinct tends to 1
as group size goes to infinity (Figure 3). More complicated
dynamics occur when r is roughly equal to r, (Figure 4).
Remarkably, this holds irrespective of the initial frequency
of cooperators in the group. Moreover, the probability coop-
eration will fix or go extinct, given an arbitrary starting
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1. b=10,c=9 (r=0.9)

0.8

0.6

0.4 |

Fixation probability h(x)

0.2 F

0 0.2 0.4 0.6 0.8 1
Initial frequency x
— N=10
—— N =100
N =1000

F1GURE 3: The plot of h(x). When » = 0.9, which is above r,, the
probability that cooperators will fix is negligible, regardless of the
starting frequency of cooperators, as group size increases.

1 b =10, ¢ = 7.9559250931 (r = r,)
0.8 |

0.6 -

0.4 -

Fixation probability h(x)

0.2

v

0 0.2 0.4 0.6 0.8 1
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— N=10
— N =100

N =1000
— 1, /4

FIGURE 4: The plot of /(x). When r is almost exactly equal to r,,
the probability that cooperators will fix is approximately r, /4 = 0.2,
regardless of the starting frequency of cooperators, as group size
increases.

frequency of cooperators, can be extremely high even when
group size is relatively small (e.g., N; = 100) (Figures 2
and 3). To the best of our knowledge, this threshold quantity
is unreported in the extant literature. We now describe its
derivation in the “Snowdrift Game Threshold Theorem.”
Note that this theorem applies only to the form of the
Snowdrift Game presented in Payoff Matrix 2, not to the more
general form of the game presented in Lemma 5.

Theorem 6 (snowdrift game threshold theorem). There exists
a threshold number r, € (0, 1) such that, for all x € (0, 1), we
have the limiting probability

0, ifr>r,,
"

=, ifr=r,, (23)
R

1, ifr<r,,

-

where h(x) = [F"x(XiN) = 1) is the probability that cooperation
goes to fixation, given that the starting point is X((]N) =x €

[0, 1]. Furthermore, r, = 0.79559250931 is the unique solution
of the following equation:

2

1—%—2(1—r)1n<

4”):0 (24)
2-=2r

on the positive real axis.

Remark 7. The endpoints are given by /(0) = 0 and h(1) = 1
for all N.

Proof. Asymptotic analysis (see, e.g., Murray 1984 [40])
reveals that the large N behavior of the probability h(x)
is governed by the maximum of the function f. Recall
the explicit formula and the notation in Lemma 5. For the
Snowdrift Game, we have

YCu+D
=-2
) L LD

=—2<9y+Mln<l+éy>),
A A? B
_2Cy+D

Ay +B’

du

'y =

AD - BC
)y =2—m—3.
(A +B)
Clearly, f"" > 0 and the maximum of f is attained at the end-
points f(0) and f(1). To derive (23), note that

2
fO-F@=200)

. (26)

r 4-r

where 0 (r) =1 1 2(1 r)ln<2_2r>.
Elementary calculus shows that f(0) < f(1) whenr € [0,7,),
f(0) = f(1) whenr =r,,and f(0) > f(1) whenr € (r,,1],
where r, is the solution of 6(r) = 0 on the positive real axis,
which was found to be , = 0.79559250931. When f(0) =
f(1) (i.e, r = r,), we have, by the Laplace method (see, e.g.,
Murray 1984 [40]),

1 1\ 1 r
lim h(x) = - —
NS ( 70 f’(1)> 70 4 @)
Vx € (0,1).
Result (23) then follows. O



4.1.3. Simulations of Within-Group Moran Process. The results
of our purely within-group simulations are presented in
Figure 5. The jagged lines are the observed frequency of coop-
erators within a group with a particular r-value after a given
number of birth-death events. The horizontal lines of the
corresponding color are the equilibrium frequency of coop-
erators one would expect in that group were the group to be
infinitely large, as given by (7).

In accord with analytic predictions, over a given number
of generations, relatively smaller groups are more susceptible
to larger fluctuations in group composition. Moreover, given
a sufficient amount of time, and large enough groups, the
within-group dynamics tend to follow a given pattern: in the
short term, the frequency of cooperators in a group migrates
toward the equilibrium frequency of cooperators given by (7),
and in the medium term the frequency of cooperators in a
group tends to oscillate around this equilibrium frequency,
creating a quasi-equilibrium. This pattern becomes more evi-
dent as one moves from the simulations with the smallest
group size (Figure 5(a)) to the simulations with the largest
group size (Figure 5(d)).

4.2. Characterization of Metapopulation Dynamics. Theo-
rem 6 allows us to state a sufficient condition for whether
cooperators will fix (go extinct) in our two-level Moran
model of the Snowdrift Game. As one takes the limit of group
size, cooperation will fix (go extinct) in the metapopulation
if each group in the metapopulation has an r-value below
(above) r,. Note that, in the limit of group size, the between-
group selection process is irrelevant to the long-term dynam-
ics of cooperation in the metapopulation. While this sufficient
condition is a limit result, we stress that a group’s size need
not be very large for its r-value, relative to r,, to substantially
influence the probability cooperators will fix or go extinct.

When groups’ r-values straddle r,, when group sizes are
small, or when one is concerned with evolutionary dynamics
over shorter intervals of time, simulations are informative,
owing to the challenge of formal analysis of these cases. Even
though the two-level Moran process is a finite state Markov
chain that counts the number of cooperators in each group,
and so the probability of fixation can be computed explicitly,
it is not obvious how to write down a closed-form expression
in terms of (i) the number of groups, (ii) the number of
individuals in each group, and (iii) the initial frequencies of
cooperators in the groups when the number of groups and/or
the size of the groups are as large as we are concerned with
here.

The results of our metapopulation simulations are pre-
sented in Figures 6 and 7.

5. Discussion

5.1. Stochasticity and the Snowdrift Game. There is a good
deal of work that explores how stochasticity affects the evo-
lutionary dynamics of a population of individuals playing a
game in general (Fudenbergetal. 2006 [32]; Nowak et al. 2004
[41]; Sandholm 2011 [42]; Traulsen and Hauert 2009 [43]).
In our model, we explore a particular form of “demographic
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stochasticity” (Rice 2008 [44]; Shaffer 1981 [45]; Shpak et
al. [35]). Demographic stochasticity occurs when there is a
difference between an individual’s (or type’s) expected fitness
and its realized fitness. In our model, this occurs when the
type (“cooperator” or “defector”) that is chosen to reproduce
within a group is not the type with the higher fitness, and
when the group that is chosen to replicate is not the group
with the highest group fitness. Other forms of demographic
stochasticity can emerge if an individual plays a random sam-
ple of the members of a finite population (Shpak et al. 2013
[35]), or if there are “shocks” to the payoffs of a game (Fuden-
berg and Harris 1992 [46]).

There is, in fact, a considerable amount of work that
explores how stochasticity affects the evolution of coopera-
tion in a single, unstructured population of individuals play-
ing the Snowdrift Game (Ficici and Pollack 2000 [47]; Fogel
et al. 1997 [48]; Fogel et al. 1998 [49]; Fudenberg et al. 2006
[32]; Shpak et al. 2013 [35]; Taylor et al. 2004 [34]; Voelkl 2010
[50]). While the results of these analyses are consistent with
our mathematical and simulation results, to the best of our
knowledge we are the first to report a threshold quantity for
the fixation and extinction probabilities of a finite group of
individuals playing the version of the Snowdrift Game pre-
sented in Payoff Matrix 2.

It is worth commenting on the general approach we have
used to derive the value of this threshold quantity. In many
traditional analyses in evolutionary game theory, one takes
the limit of population size (N — ©0) and then time (¢ —
00) to arrive at the long-term behavior of an evolutionary
system. To derive the value of 7, we have switched the order
in which these limits are taken. We take (t — 00) to derive the
formula for the fixation probability of cooperation. Then we
take (N — 00) by applying Laplace’s method (Murray 1984
[40]) to this formula. Determining the “correct” order in
which limits are taken presumably depends on the nature of
the system one has in mind. (For a discussion of this issue as it
relates to mutations and population size, see Sandholm 2010
(51].)

Within the context of the Snowdrift Game, if the popula-
tion is large and one is concerned with a short- or medium-
term time horizon, then the evolutionary trajectory of the
system may be adequately represented by a “deterministic
approximation” of the microscopic dynamics (Sandholm
2011 [42]). Indeed, our simulation results show a marked
correspondence to the deterministic dynamics after 100 gen-
erations when N > 1000 (Figures 5(c) and 5(d)). If, in con-
trast, one is concerned with smaller populations or the
longer-term behavior of a larger population, the stochasticity
of the system becomes increasingly important—see Figures
5(a) and 5(b) and Theorem 6, respectively.

5.2. Multilevel Selection and the Snowdrift Game. Our results
provide insight into when within-group stochasticity and
group selection do (and do not) result in evolutionary
dynamics that are different from those in our two null models.

For instance, our results show that when the members
of each group in the metapopulation play precisely the same
parameterization of the Snowdrift Game, and when group
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FIGURE 5: Simulation results of within-group Moran process. Each panel shows the evolution of cooperation in each of nine different groups
over the course of 100 generations within each group. Within a panel, groups are all the same size but vary in their r-values. The range of
r-values that were simulated was r € {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}, where b was set to 10 and ¢ ranged from 1 to 9 in increments of
1. The jagged lines represent the frequency of cooperators in a group. As r-values get larger, the equilibrium frequency of cooperators gets
smaller; thus, r = 0.1 is black, while r = 0.9 is teal. Each horizontal line of a corresponding color represents the equilibrium frequency of

cooperators for that r-value given by (7).

size is small (N = 10), the combination of within-group sto-
chasticity and group selection can promote the evolution of
cooperation in the metapopulation above what its value would
be given either of the two null models we consider (Figures
6(a)-6(c)).

Why does this occur? Within each group, the frequency
of cooperators is oscillating. Because the probability that a
group will replicate at the next group replication event is
proportional to its frequency of cooperators at the time of
the group replication event, those groups with a relatively
higher frequency of cooperators during the group replication
event are more likely to replicate. When this occurs, the
frequency of cooperators in the metapopulation will “jump”
upward, as in a jump diffusion process. Indeed, within-group
stochasticity can result in cooperators fixing in a group, which

results in that group having the highest possible group fitness,
making it possible that this group will then overtake the
entire metapopulation. It is for this reason that we say within-
group stochasticity in combination with group selection can
promote the evolution of cooperation in the metapopulation,
even its fixation, for a range of parameter values. (Note, as the
number of groups in the metapopulation becomes increas-
ingly large, the between-group selection dynamics become
increasingly deterministic; thus, that there are a finite, rather
small number of groups in our metapopulation simulations
in fact dampens the efficacy of group selection; this modeling
choice was intentional. We wanted to, if anything, load the die
against the evolution of cooperation.)

However, our results also show that as the size of each
group increases (N > 100), the within-group dynamics, over
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dots are the first, second, and third quartiles of the observed frequencies of cooperators in the metapopulation, while the thin black line is the
mean frequency. The blue lines are the maximum and minimum observed frequency across 100 simulations. The dashed, horizontal line is the
long-term, expected frequency of cooperation in the metapopulation assuming a null model given by (13). Note that the observed frequency
of cooperators is substantially above its value predicted by the null models for smaller populations (a)-(c) and for one larger population with
a high quasi-equilibrium value (d).

the time intervals we have simulated here, become increas- to continue to evolve, owing to the distribution of r-values of

ingly deterministic. Over these time intervals, within-group
stochasticity is less capable of resulting in jumps in the fre-
quency of cooperators in the metapopulation after a group
replication event, or resulting in cooperators fixing within a
group (Figures 6(d)-6(h)). To be sure, because each metapop-
ulation we simulated is composed of finite groups, the deter-
ministic approximation of the dynamics will prove to be
inaccurate in the long term. Our r, results tell us that it is ex-
tremely likely cooperators would have overtaken the entire
metapopulation in some of our simulations (Figures 6(a),
6(b), 6(d), 6(e), 6(g), and 6(h)) and gone extinct in others
(Figures 6(c), 6(f), and 6(i)) had we allowed the simulations

the groups in those simulations.

When we allow the groups in the metapopulation to
initially vary in their r-values, group selection can be quite
efficacious, even for large group sizes (Figures 7(c)-7(f)).
Regardless of group size, those groups with quasi-equilibria
frequencies that are relatively closer to x = 1 will be more
likely to replicate. When group sizes are small (e.g., N = 10),
cooperators will fix in many of these groups (Figures 7(a)
and 7(b)). But even as group size becomes larger (N >
100), and the within-group dynamics become increasingly
deterministic, those groups with higher quasi-equilibria are
more likely to replicate. For this reason, we again see the
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jump diffusion process of cooperators in the metapopulation
that we saw in the version of our model in which each group
initially had the same r-value. Within-group stochasticity and
group selection are pushing the observed frequency of coop-
erators above what its expected frequency would be, given our
null models.

Why have we considered a case in which we allow groups
to vary in the parameter values of the Snowdrift Game their
members play? First, in a biological context, if a metapopu-
lation is composed of groups whose members are engaged
in collective action that is qualitatively characterized by the
Snowdrift Game, it would in fact be somewhat surprising
if there were no quantitative differences between the payoft
matrices associated with each group. (To be sure, there would
also likely be variation in payoffs within groups, an interesting
possibility we did not explore here.) For instance, these differ-
ences could emerge for reasons intrinsic to the group if, as an
example, the members of some groups can more efficiently
expend energy, so that the cost of participating in collective
action is mitigated. Differences could also emerge because
of ecological facts about the location of a group within the
metapopulation, such as its proximity to energy sources or to
external threats. To model the latter case, which we have not
done, one would need to allow the payoff matrix to vary as a
function of a group’s location, which is an interesting avenue
for future research.

Second, by allowing group payoft matrices to vary in our
model, we learn something about the evolution of games
themselves. Note that a central change brought about by
selection and replacement of groups is a change to the payof
f matrix of the underlying game. That is, as groups reproduce
and go extinct, the payoffs of the game evolve. The possibility
of an evolving game has been explored in other contexts,
especially that of the Prisoners Dilemma, where it tends to
promote cooperation in some contexts (Ak¢ay and Rough-
garden 2011 [26]; Worden and Levin 2007 [52]) and inhibit
cooperation in others (Stewart and Plotkin 2014 [53]). Addi-
tionally, Hashimoto and Kumagai (2003 [27]) and Smead
(2014 [28]) both present frameworks for the evolution of pay-
offs across a broad range of games. With respect to evolving
games, our model is novel in two ways. First, we specifically
target the Snowdrift Game and find that evolution of the
payoffs promotes cooperation. Second, our model provides
a mechanism for the evolution of the payoffs based on multi-
level selection. This framework could be extended to a num-
ber of other games or settings for the purposes of modeling
evolving payofts.

Our model and results connect in illuminating ways to
other work on multilevel selection in general, as well as to
applications of multilevel selection to the Snowdrift Game
in particular. Others have used a multilevel Moran model,
or close variants, to explore the evolution of social traits
(Hauert and Imhof 2012 [54]; Luo 2014 [22]; Simon et al. 2013
[24]; Traulsen and Nowak 2006 [25]). Notably, Traulsen and
Nowak consider a model in which within-group dynamics are
governed by the payoffs of playing a game, while in the meta-
population a group fissions (with some probability) when
a group reaches a maximum size, replacing some other
group in the metapopulation. Traulsen and Nowak provide
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conditions for when cooperation will be “favored” in terms of
a payoff matrix, the maximum size of a fissioning group, and
the number of groups in the metapopulation. In their work,
selection favors cooperation when a mutant cooperator has
a higher probability of fixing than does a mutant defector.
Traulsen and Nowak’s results extend to cases in which the
within-group dynamics are governed by a Snowdrift Game
(SI Traulsen and Nowak 2006 [25]). (See Simon and Pilosov
2016 [55] for discussion of limitations of Traulsen and
Nowak’s model.)

Ours is a different model than Traulsen and Nowak’s in
that we consider a “strict” two-level Moran process, wherein
both group size and metapopulation size are held constant.
While two-level Moran models have been discussed before,
and close variants of such a model have been described within
the context of the Snowdrift Game (SI Traulsen and Nowak
2006 [25]), ours appears to be the most in-depth application
of a two-level Moran model to the Snowdrift Game in the
literature.

In fact, the dynamics of a strict two-level Moran model
can differ in nontrivial ways from more general two-level
Markov chain models. For instance, both Traulsen and No-
wak (2006 [25]) and Simon et al. (2013 [24]) consider a model
in which, when a group fissions, both the size and com-
position of the two resultant daughter groups are random
variables. Because of this, a daughter group may end up with
all cooperators (or none), even though its parent group was
polymorphic. All else being equal, compared to a model, like
ours, in which an entire group replicates, the stochasticity that
emerges from the random seeding of daughter groups would
appear to increase the probability that cooperation will fix
in some groups and, hence, in the metapopulation as a whole.
While such a model of group fissioning is biologically justifi-
able, in many cases more so than our own, our results show
that one does not need the size or composition of daughter
groups to be random variables in order for cooperation to
evolve.

Finally, there has been other work that explores how
group structure can affect the evolution of cooperation in
the Snowdrift Game, where it has been shown to sometimes
promote the evolution of cooperation, though not always
(Hauert and Doebeli 2005 [15]; Killingback and Doebeli 1996
[56]). Hauert and Doebeli’s work is particularly relevant to
our own because they contrast the equilibrium of frequency
of cooperators that would be found in a well-mixed popula-
tion, given particular parameter values for a Snowdrift Game,
with the frequency of cooperators observed in a population
with individuals arranged on a lattice, given those same para-
meter values. The authors found that, for small x* values, the
equilibrium frequency of cooperators in a population with
a lattice structure is larger than what is expected in a well-
mixed population. However, for intermediate and large x*
values, the equilibrium frequency of cooperators found in the
population is smaller than what is expected in a well-mixed
population. They conclude, “unexpectedly, spatial structure
reduces the proportion of cooperators for a wide range
of parameters,” adding, “our results caution against the
common belief that spatial structure is necessarily beneficial
for cooperative behavior” (p. 643).
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In contrast, our analysis shows that quite a different kind
of population structure—namely, in which the groups are
discrete units that are spatially isolated within a metapopula-
tion and replicate as a function of their internal composi-
tion—can, in certain cases, facilitate the evolution of coop-
eration, rather than hinder it. Whether a lattice structure or
the form of population structure we consider above is a better
representation of a given biological system of course depends
on the details of that system.

6. Conclusion

This article presented a model of discrete individuals pack-
aged into discrete groups, where the individual- and group-
level dynamics were stochastic. We showed that within-group
stochasticity and group selection promote the evolution of
cooperation in the metapopulation when group size is small,
and also when group size is large and groups are allowed to
vary in the payoff matrices their members play. We further
showed that the long-term fate of cooperation as one takes
the limit of group size is determined by the cost-to-benefit
ratio of cooperating in the Snowdrift Game and that this ratio
effectively determines the long-term fate of cooperation even
when group size is fairly small (e.g., N = 100).

All biological populations are finite (though they can
be quite large), and they are often nested within a larger
metapopulation. When these factors are incorporated into a
model that would otherwise assume deterministic dynamics
and no group structure (or group structure but no group
selection), the differences in the predicted levels of cooper-
ation can be substantial.
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