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Abstract

This paper illustrates the application of machine learning
algorithms in predictive analytics for local governments
using administrative data. The developed and tested ma-
chine learning predictive algorithm overcomes known
limitations of the conventional ordinary least squares
method. Such limitations include but not limited to im-
posed linearity, presumed causality with independent
variables as presumed causes and dependent variables
as presume result, likely high multicollinearity among
features, and spatial autocorrelation. The study applies
the algorithms to 311 non-emergency service requests
in the context of Miami-Dade County. The algorithms
are applied to predict the volume of 311 service requests
and the community characteristics affecting the volume
across Census tract neighborhoods. Four common fami-
lies of algorithms and an ensemble of them are applied.
They are random forest, support vector machines, lasso
and elastic-net regularized generalized linear models,
and extreme gradient boosting. Two feature selection
methods, namely Boruta and fscaret, are applied to iden-
tify the significant community characteristics. The re-
sults show that the machine learning algorithms capture
spatial autocorrelation and clustering. The features gen-
erated by fscaret algorithms are parsimonious in predict-
ing the 311 service request volume.
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1 | INTRODUCTION

The Federal Communications Commission designated the 311 phone number for public agencies
to provide non-emergency public services in 1997. The allocation of 311 was designed to reduce
the volume of 911 calls to police departments, which are mainly for emergency life-saving calls.
Local governments (i.e., cities and counties) use the 311 customer centers as one-stop centers to
fulfill non-emergency service requests, such as bulk trash pickup, pothole repairs, city service
inquiries, or complaints. Residents who need these services can simply call the 311 customer
center, instead of searching and identifying which department to call for a service. The service
requests are routed to the appropriate department through a customer relationship management
system on the backend. There are over 300 local governments with such 311 customer centers
and they provide critical services to the local communities (Ganapati & Scutelnicu, 2015). In
the Covid-19 pandemic context, the 311 centers have become important centers of disseminat-
ing information about testing sites, food security, mental health, childcare, and other resources
(Descant, 2020).

The 311 customer centers are new sources of big administrative data. Administrative data are
the data derived from the operation of government administrative systems such as registration,
licensing, as well as delivery of services (e.g., in education, healthcare, taxation, criminal jus-
tice, or housing) (Elias, 2014). These administrative data are generated for specific departmental
purposes rather than research purposes. Researchers typically are not involved in the data’s de-
sign, collection, structure, or content. The administrative data are powerful, but underutilized
resources. They can shed light on operational efficiency, service delivery, social inequality, and
effectiveness of public policies and programs (Einav & Levin, 2013).

There is an urgent need to develop analytical approaches and methods for using and applying
administrative data for decision-making processes. The strength of the “big data” is its volume,
variety, and velocity (Connelly et al., 2016). Although administrative data are not as “big” as
other data sets collected from social media posts, commercial transactions, or cell phone track-
ing, the administrative data are still complex and large for social scientists. Manipulating the
administrative data for decision making requires advanced capacity in data management, trans-
formation, and analytics. For example, New York City’s 311 service request records for any given
year are well over one gigabyte (GB), which is beyond the capacity of ordinary statistical software
such as Excel or SPSS.

The purpose of the paper is to exemplify a machine learning predictive algorithm for public
policy, using the 311 data. The paper analyzes the spatial and temporal patterns of service re-
quests to uncover the factors that predict the call volume. Although we use the 311 data from
Miami-Dade County as an empirical illustration for this paper, our aim is more to provide a
methodological foundation to generalize the algorithm’s application for analyzing administrative
data. The principles of analysis can be extended 311 administrative data from other cities.

The developed and tested machine learning predictive algorithm overcomes known limita-
tions of the conventional ordinary least squared method. Such limitations include but not limited
to imposed linearity, presumed causality with independent variables as presumed causes and
dependent variables as presume result, likely high multicollinearity among features, and spatial
autocorrelation. All the limitations are explicitly and successfully addressed in the developed
predictive algorithm to show the usage and advantages of the predictive capacity. Specifically,
random forest and other tree-based algorithms will be tested which relax the assumption of a
linear relationship and can predict relying on associations rather than presumed causality. More
importantly, two feature selection methods are applied and tested to show means to address
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potential multicollinearity or overfitting when high-dimensional and correlated data are used.
Spatial data science methods are also employed to demonstrate that the developed predictive
algorithm is capable of coping with spatial autocorrelation.

Identifying the patterns of service requests and their determinants is important for an-
swering crucial policy questions about deploying resources and public services more equi-
tably and efficiently to all residents. Residents are increasingly engaged in asking for public
services. Government’s allocation of services is increasingly linked to such preference expres-
sion. For example, residents living in politically connected neighborhoods may demand more
of public services from their elected officials, and the local government may respond to such
neighborhoods preferentially. There are equity questions surrounding such distribution of
municipal resources and provision of public services across neighborhoods—governments
are not expected to demonstrate a systematic bias. Minority and/or economically disadvan-
taged neighborhoods often do not get adequate service simply due to their non-participation
in requesting services from local governments (Thomas & Streib, 2013). Local governments
are not aware of public service disruptions when residents do not participate in demanding
services. Even when 311 centers are designed to make governments more accessible and to
facilitate engagement and participation in local governance, governmental response time to
service requests may vary between the different types of neighborhoods. Analysis of the 311
administrative data offers a refined understanding of spatial and temporal patterns of the ser-
vice requests for identifying participation gaps, enhancing governmental preparedness, and
achieving equitable and efficient public service provision.

This paper does not directly examine propensity of and its disparities among different pop-
ulation groups or variations in infrastructure quality/conditions across communities. Impacts
of propensity to report and infrastructure quality/conditions across communities, however, are
likely be incorporated in the predictive outcome because they are highly associated with commu-
nity characteristics which are the key features for predicted volumes and distributions of 311 ser-
vice requests. Both propensity to request and communities’ infrastructure conditions are strongly
correlated with community factors. For example, low propensity of participation among minority
populations is correlated with distribution of minority groups, poverty rate, unemployment rate,
housing characteristics, or education attainment. Similarly, infrastructure quality, such as likeli-
hood of a pothole, is correlated with community environment too, that is, minority and economic
challenged communities would have inferior community conditions. When diverse community
attributes are incorporated in the developed and tested machine learning predictive algorithm,
their influences on resident participation are captured in the prediction of counts of 311 requests.

Two related research questions guide this paper in applying the machine learning algorithms.
The first question is: to what extent can we predict the residents’ participation in 311 service
requests across neighborhoods? Here, we apply the algorithms to predict the total annual counts
of 311 service requests across Census tracts in Miami-Dade County. Answering the question is
useful in understanding the geographic variations in service requests across neighborhoods (a
Census tract approximates a neighborhood in this context). The second question is: what are the
community level determinants that predict service requests in a neighborhood? The machine
learning algorithms are used in a novel way to answer this question: the algorithm is trained
using the year 311 data from 2017 in order to predict annual counts of 311 requests in a prior
year (2014) and the subsequent year (2018). The algorithm takes into consideration a range of
community characteristics, including demographic, social, economic, and employment features.
It also accounts for spatial autocorrelation, which is an important consideration for considering
spatial spillovers in small(er) geographic units.
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The machine learning algorithm starts with identifying spatial autocorrelation and clustering
of 311 requests by Census tracts. The Census tracts are used to approximate neighborhoods since
they are generally cohesive small areas with a sense of community. Zip codes are much larger in
geographic size and may have more variations within, so that they may not be reflective of neigh-
borhoods. More granular geographic units that the Census tracts, such as Census block groups,
can also be used for analysis.

The spatial exploratory analysis is then followed by a feature selection process which is to
evaluate and select “important” features of community characteristics that determine the 311
service requests. The characteristics considered include race and ethnicity, gender, income, hous-
ing, education, employment, and age. Two feature selection algorithms (Boruta and fscaret) are
compared for how accurately they predict the volume of 311 service requests. The features gen-
erated by these two algorithms are applied independently to demonstrate the algorithm’s efficacy
in feature selection and in predicting 311 service requests. The machine learning algorithms
used for predicting the volume of service requests include random forest, support vector ma-
chines (SVM), lasso and elastic-net regularized generalized linear models, and extreme gradient
boosting. These predictive algorithms are selected because they are the most commonly used
approaches in machine learning. An ensemble prediction is also implemented based on each
learning algorithm’s separate prediction.

Selecting the 311 service requests for 2017 as training data and applying it for predicting 2014
and 2018 service requests requires explanation. Testing the prediction of 2018 service requests
is justifiable since these requests could be hypothesized to be influenced by the previous year’s
requests. However, the temporal closeness could also arguably result in temporal correlation.
Hence, to enhance robustness of the prediction from the trained algorithm, a retrospective data
set from a prior year (2014) is used, which would be more exogenous and temporally indepen-
dent from a future year. Last but not least, predictive errors are examined for spatial autocor-
relation and clustering to show the extent to which spatial autocorrelation and clustering are
controlled in the algorithm.

2 | LITERATURE REVIEW

The open data and open government movement have gathered momentum worldwide as public
agencies have made their data available online (e.g., data.gov in the United States). Local, state,
and federal government agencies mandatorily collect vast amounts of data. The data are of differ-
ent types (quantitative, spatial, textual, image, voice) and from various sources (record keeping,
surveys, public meetings, sensors). As a result, public agencies are vast repositories of adminis-
trative data (Ganapati & Reddick, 2012, 2014). Yet, these data have limited use for researchers
because they are unstructured and have various degrees of integrity, quality, and accessibility
(Wang & Shepherd, 2020; Wang et al. 2018). The data are also too big and complex for typical so-
cial science researchers (Connelly et al., 2016). If the data are standardized and made accessible
and if appropriate public policy analytical algorithms are developed and readily available, public
policy research and practice may be greatly enhanced from new insights gained from analysis of
the vast and complex administrative data.

The 311 service requests data are emblematic of the big administrative data from local gov-
ernments. These data are collected and maintained by 311 customer contact centers across many
local governments in the United States. These 311 centers are modeled after 911, which has been
long used for public safety and emergency services by the law enforcement agencies within local
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governments. Local governments adopted 311 initially to reduce the volume of non-emergency
calls coming to 911 centers. Since then, the 311 centers have emerged as a hub for all local gov-
ernment services, fielding both information and service requests from residents.

The 311 centers receive requests for information (e.g., how much do I owe on my property
tax) and services (e.g., paying the property tax, picking up trash, fixing potholes, etc.). Residents
traditionally made such requests to the 311 centers via phone calls only, but modern 311 cen-
ters allow the requests to be initiated through phone, apps, or website. Information requests
comprise about 70% of the request volume and service requests comprise the rest 30%. The 311
center employs professionals who respond to the information and service requests. They forward
the service requests to the relevant governmental departments or agencies through a customer
relationship management system. The working hours of these 311 centers vary from 24/7 to ac-
tivation for limited time periods during emergencies (e.g., in the Covid-19 pandemic situation).

Studying the pattern of 311 service requests is important not only because they connect res-
ident demand/need directly with governmental service delivery, but also because they are im-
portant means of coproduction of public goods and services. Ostrom (1996, p. 1,073) defined
coproduction as “the process through which inputs used to provide a good or service are con-
tributed by individuals who are not ‘in’ the same organization.” Coproduction is manifest when
residents request information, provide assistance in public service delivery, and interact with
public agencies on obtaining public services (Whitaker, 1980). Coproduction normatively sup-
ports democratic governance and public accountability through long-term interaction between
residents and governments (Jakobsen & Andersen, 2013; Meijer, 2011). From an operational or
managerial perspective, coproduction improves the efficiency and effectiveness of public ser-
vices (Levine & Fisher, 1984). Residents are no longer passive recipients of public services who
await local governments to identify and then fix a service outrage or disruption. They are instead
encouraged to actively report their service requests and service issues in a process of working
collaboratively with local governments to locate and resolve an issue in a timely and satisfac-
tory manner. The rapid proliferation of 311 centers represents the resurgence of coproduction in
urban governance, public administration, and service delivery (Nabatchi et al., 2017).

Existing literature on 311 service requests centers on civic participation and distributional
equity. Residents from different racial, ethnic, and social-economic groups may have distinct at-
titudes toward making 311 service requests (Chatfield & Reddick, 2018; Clark et al., 2020). Older
people, for example, normally prefer to call the city for specific services. Technologically savvy
young professionals could be comfortable with making the service requests through online apps
and social media. Age could thus be a distinctive factor in determining participation via phone
apps or website compared with traditional phone calls (Pak et al., 2017). Moreover, digital divide
among the socially disadvantaged and low-income residents could impede them from making
the 311 service requests. Low participation in 311 requests may further exacerbate individual
and community disparities in service delivery. Individual residents who file 311 requests tend to
receive expedited service restoration, because closing a request is often a performance indicator
for the public organization (Xu & Tang, 2020). Communities with disproportionate share of so-
cially disadvantaged and economically challenged residents may, as a whole, receive low service
delivery and/or slow service restoration, because a service issue or disruption is less likely to be
reported and be made aware to local governments (Pak et al., 2017).

The extant literature, however, does not provide a method for analyzing and predicting the
311 requests. Forecasting the 311 service requests will enable and empower local governments
to proactively allocate resources, identify service disparity, and achieve service efficiency and
equity across communities and residents. Filling this methodological gap is important for local
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governments to use the 311 data effectively to make decisions and evaluate their service provi-
sion. It is in this context that this paper aims to advance a machine learning model for predicting
311 request data, using the Miami-Dade County as an example. The prediction algorithm takes
into consideration the community characteristics that influence the service requests.

3 | DATA

The data on 311 requests are readily available from Miami-Dade County’s open data hub (https://
gis-mdc.opendata.arcgis.com/). The 311 data from the periods of 2017, 2018, and 2014 are uti-
lized for analysis in this paper. The data for the year 2020 had not been made available by the
time of writing this paper. The 2020 data are also a deviation from past years because of the
Covid-19 pandemic. Although current data sets and analysis do not directly pertain to Covid-19,
algorithms used in this paper can be adapted and expanded in the future for analyzing Covid-19
requests with other types of requests.

Each 311 request provides the location information (latitude and longitude coordinates) based
on the address where public service was requested and needed. Figure 1 presents a choropleth
map showing tract-level spatial distribution of 311 requests based on Jenks natural breaks. In ad-
dition, the 311 service request data contain detailed descriptions of requested services, targeted
and actual days of service completion, and modality of service requests. For each year, all 311
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requests are aggregated into the Census tract level. Using machine learning algorithms to predict
the numbers of total 311 requests across Census tracts is therefore the main focus of this paper.
To examine the determinants of the 311 service requests, the Census Bureau on economic, demo-
graphic, employment, and housing information are also added to the 311 data set (for more info,
https://geolytics.com/census-data). Understanding and accurately predicting 311 requests across
Census tracts are important for public policy makers and professionals to be better prepared and
more effectively allocate resources in anticipation of incoming 311 requests across Census tracts.

4 | METHODS AND ALGORITHM BUILDING
4.1 | Spatial autocorrelation and clustering

The spatial unit of analysis is Census tract. Exploratory data analysis on spatial autocorrelation
and spatial clustering are carried out with Geoda, a free and open source software tool that is
designed to explore and model spatial patterns (downloadable at http://geodacenter.github.io/).
Global Moran’s Iindicator is first calculated to assess the overall extent of spatial autocorrelation
regarding total counts of 311 requests among all Census tracts within the Miami-Dade County.
Then, the local indicator of spatial association (LISA), using local Moran’s I, is calculated in ac-
cordance with Anselin (1995). Unlike global Moran’s I indicator, which assumes spatial homo-
geneity, LISA explores localized spatial clusters by calculating a local Moran’s I index for each
individual geographic unit and testing each local index’s statistical significance.

A LISA cluster map shows the statistically significant locations which are color coded by four
types of spatial autocorrelation, that is, high-high, low-low, high-low, and low-high. The first
two types are generally referred to as spatial clusters while the latter two as spatial outliers. The
spatial clusters are identified when the value at a location (either high or low) is more similar to
its neighbors’ spatially weighted average value than it would be under spatial randomness. The
spatially weighted average values may vary when different spatial interaction relationships are
imposed through the creation of different spatial weighting matrixes. On the contrary, spatial
outliers signal dissimilarity between a location and its neighbors.

4.2 | Algorithms utilized

For answering the two related research questions, the paper first explores the predictability of
total counts of 311 requests by applying and comparing four commonly used machine learn-
ing algorithms, namely, random forest (RF), lasso and elastic-net regularized generalized linear
models (GLMNET), SVM with radial basis and polynomial functions, respectively (svmRadial
and svmPoly), and extreme gradient boosting (XGBoost). Two variants of the SVM algorithm are
also used, each of which utilizes a different kernel function to show how the choice of the kernel
function may potentially affect predictability. In total, five models are thus employed. These
methods are briefly described below.

Random forest (RF) is a tree-based ensemble learning model for classification and regression
by randomly constructing a multitude of decision trees (forest). It is flexible, easy to use, and
known for its superior performance and robust outcomes. In addition, random forest has an
easily understandable predictive mechanisms compared with other robust but “black box” types
of algorithms, such as neural network or even the support vector machine (Duro et al., 2012).
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Although the generalization error that occurs in a Random Forest depends on the predictive
strength of the decision trees in the models, ensemble models are suggested to provide robust
models with a high predictive accuracy when compared with individual classifiers (Svetnik
et al., 2003). As an ensemble model, random forest relies on aggregated votes of each individ-
ual trees and their results. Votes from all trees are pooled, and results with the maximum votes
are finally computed. Random forest has been widely and successfully applied in various fields,
such as finance, sports, medicine, and corruption across countries (Lima & Delen, 2020; Sharda
etal., 2017).

Lasso and elastic-net regularized generalized linear models (GLMNET) are another set of
algorithms that are widely used. They are efficient because they can apply entire lasso (short for
least absolute shrinkage and selection operator) and/or ridge regularization into linear and logis-
tic regression models. Both lasso and ridge techniques are shrinkage tools that impose penalty
functions to overcome model overfitting and thus enhance the prediction accuracy (Friedman
et al., 2010). The shrinkage effects are particularly significant when input features are highly
correlated, because some of the correlated features may be redundant and thus overfit a model.
By shrinking the number of (correlated) features and their estimated effects, lasso and ridge
regularization methods can produce more robust algorithms with improved predictive accuracy.

SVM was first introduced and expanded by Boser et al. (1992) and Cortes and Vapnik (1995).
It can also be used for both classification and regression predictions. SVM transforms original
finite-dimensional feature space into a much higher- dimensional space and then construct a
hyperplane that maximizes prediction. In SVM, both linear and non-linear kernel functions can
be applied to convert original input variables into high dimensional feature spaces. Two kernel
functions will be used in this paper and they are Polynomial and Radial Basis functions (svmPoly
and svmRadial). They are both commonly used kernel functions in various kernelized learning
algorithms (Chang et al., 2010).

Extreme gradient boosting (XGBoost) is a scalable decision tree-based ensemble algorithm
that uses a gradient boosting framework. It is flexible and effective but requires minimal amount
of computational resources. It was created by Chen and Guestrin (2016), but has been widely
used in data science and machine learning, particularly after it successfully won in a series of
Kaggle challenges' as well as in the annual Data Mining and Knowledge Discovery competition
organized by ACM Special Interest Group on Knowledge Discovery and Data Mining (KDDCup).
Built upon a gradient boosting framework, XGBoost can combine any singular models, which are
often referred to as base learners or boosters, into an ensemble model. Commonly used boost-
ers are linear models (xgbLinear) and tree-based models (xgbTree), though other boosters are
readily available, such as splines and radial basis functions (Hastie et al., 2009). Both xgbTree
and random forest are tree-based algorithms, but they differ significantly. Random forest builds
and trains each tree independently, using a random sample of the data. This randomness helps
to make the model more robust than a single decision tree and is also less likely to overfit on the
training data. xgbTree builds one tree at a time in a forward stepwise manner, identifies weak-
learner trees which have high prediction errors, and improves on existing weak learners.

4.3 | Feature selection

For the second research question, that is, what are the community level determinants that pre-
dict service requests in a neighborhood? This paper uses all the aforementioned four families of
algorithms (five models) for training and testing the determinants. The 311 service requests data
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are first aggregated at the Census tract level and then combined with Census Bureau’s social,
economic, and demographic information. Two feature selection algorithms, namely “Boruta”
and “fscaret” are used to identify the features that are the determining factors of the service re-
quests. Feature selection is important because very often researchers and practitioners have high-
dimensional data, in which many features are correlated and potentially redundant. Reducing
dimensionality and extracting information that is uncorrelated and non-redundant allows to
train a model faster because of low(er) complexity of the model, improves model accuracy, and
reduces model overfitting.

Boruta is a tree-based algorithm wrapped around the RF algorithm. Boruta duplicates each
feature in a data set by reshuffling its values in a column. The duplicated variables with randomly
shuffled values are referred to as “shadow values.” It trains a RF model using the extended data
set (both original and shuffled features) for a predetermined maximum number of iterations
(e.g., 500 times). In each iteration, it employs a feature importance measure (by default, Mean
Decrease Accuracy) to evaluate if the importance of each original feature is higher (more import-
ant) than the highest of the shadow features. The Boruta algorithm stops either when all original
features are confirmed as important or rejected as unimportant, or it reaches the maximum num-
ber of RF runs. Additional RF runs can be added for any undecided features or the inconclusive
features can be decided based on their respective probability of being important or unimportant.

The fscaret algorithm is also a wrapper, but it differs from Boruta as it wraps around all the
models with the caret package instead of only RF models. It is an ensemble procedure which
aggregates variable importance evaluation results of individual, selected regression algorithms,
such as RF, SVM, and XGBoost. Szlek (2018) indicated that there are over 100 models in fscaret
and technically they are all collectively applied in one model training run. As selected models are
built using all input features against the outcome variable, their respective variable importance
results would be called upon and then scaled against their prediction errors. An error scaled
variable ranking is produced for each of the selected models. Different models are likely to rank
feature importance differently and therefore the ensemble approach can draw evidence and sup-
port from uncorrelated learning algorithms and generate an aggregated importance ranking list.
Unlike Boruta which relies exclusively on RF and thus may favor tree-based models, fscaret is
more versatile and provides a more balanced feature selection that is independent of any partic-
ular learning algorithm.

4.4 | Algorithm calibration

All five selected algorithms were calibrated with the R package of “caret,” which is short for
“Classification And REgression Training”. It was created in 2005 by Max Kuhn from Pfizer. Caret
is transformative because it unifies distinct packages and algorithms and makes the process of
training, tuning and evaluating machine learning models consistent and easy. It wraps around
more than 200 existing machine learning models and packages,” which often vary greatly in syn-
tax and estimated parameters, and provides standardized and comparable model learning and
prediction, using a common set of caret functions.

In this paper, the 311 requests data in 2017 are used to train and test the above algorithms
and then apply the algorithms for predicting 2018 and 2014 data. The 2017 data set is randomly
divided by a 70-30 split, that is, 70% of the original data set is used for training and the remaining
30% for testing. Furthermore, the n-time repeated, k-fold cross-validation method is used. The
k-fold method randomly splits the training data into mutually exclusive k number of subsets.
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The n-time repeats suggest how many times the k-fold cross validation will be repeated. In this
cross-validation method, the k—1 folds of the data are used to build the model and the remain-
ing fold is used to test the model. Cross validation is an effective tool for mitigating heteroge-
neous training and testing subsets and biased results caused by one single random split (Delen
et al., 2012). We employed ten rounds (k = 10) of cross validations on the training data set, and
these ten-fold cross validations are repeated five times (n = 5). A total of 50 runs are thus conducted
for the training data set for each algorithm. The average model from all 50 rounds is used with
the testing data set for evaluating accuracy. This process is repeated for the ensemble algorithms.

4.5 | Algorithm comparison and ensemble prediction

As discussed earlier, each of the five predictive models, namely, rf, glmnet, symRadial, svmPoly,
and xgbLinear, undergo n-repeats k-fold cross-validation during model training and tuning. So,
each model has a total of (n X k) sets of trained parameters and model accuracy indicators of
regression models (such as, MAE (Mean Absolute Error), RMSE (Root Mean Squared Error),
and R-squared (Coefficient of Determination)). Also, for each model, the distribution of a single
accuracy indicator is constructed within the 95% confidence interval range. By plotting distribu-
tions of the accuracy indicators of all models and comparing them, we can assess their accuracy
and show if the differences are statistically significant (e.g., by using a Student’s ¢-test).

After the ensemble algorithms are trained and evaluated, they are combined to predict the out-
come variable. The ensemble prediction is more advantageous than individual model predictions
because it produces better results by decreasing generalization error (Hastie et al., 2009). Accuracy
of ensemble prediction would improve if uncorrelated models are combined. A typical ensemble
approach involves computing the arithmetic mean of predictions derived from various component
models or a weighted average after (arbitrary) weights are assigned to the different model predic-
tions. In this paper, we have instead relied on “stacking” ensemble multiple models. The stacking
approach organizes models into top and bottom layers. Models in the bottom layer make predic-
tions based on original input features; while those in the top layer take predictions of the bottom
layer models as their input and predict the final output (Kuhn & Johnson, 2013). Any model can
be used for top and bottom layers. In this paper, all five algorithms, RF, GLMNET, svmPoly, svm-
Radial, and xgbLinear, are used in the bottom layer, and xgbTree is used for the top layer model.

5 | RESULTS AND DISCUSSIONS
51 | Results of spatial autocorrelation and clusters

The global Moran’s I indicator for total counts of 311 requests in 2017 is 0.589, suggesting a
positive spatial autocorrelation across all 519 Census tracts that compose Miami-Dade County. A
spatial boxplot is presented in Figure 2 highlighting the outliers and their geographic locations.
There are six Census tracts whose numbers of 311 calls exceed three standard deviations from
the mean. The map next to the boxplot indicates the location of the six outlier tracts.’ They are
roughly located in the eastern side of the County. The two largest Census tracts along the eastern
border of the County cover, respectively, the Francis S. Taylor Wildlife Management Area and
the Everglades National Park, both of which belong to the Greater Everglades Ecosystem of tropi-
cal wetlands (which are largely uninhabited areas).
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FIGURE 2 Spatial box plot (six outliers)

LISA results are presented in the Figure 3 showing spatial clusters and outliers in the numbers
of 311 request calls. According to the LISA map, there is a divide between the eastern/middle and
western parts of Miami-Dade County. On the eastern and middle parts, there is a high-high pat-
tern, suggesting hot spots of 311 requests. On the contrary, on the other side of the County, there
is a low-low pattern, indicating cold spots. Besides the hot and cold spots, the remaining 226
Census tracts do not have statistically significant differences compared with their neighboring
tracts in terms of 311 request calls received. This lack of statistical significance suggests limited
spatial autocorrelation, that is, the 311 calls are spatially random.

Residuals of 2017 requests after ensemble predictions are shown in a LISA map in Figure 3. It
shows that there are 416 Census tracts (80% of all tracts) that do not have statistically significant
differences compared with their neighboring tracts in terms of 311 request calls received. This
number is considerably greater than 226 tracts before ensemble predictions, thus indicating a
great level of spatial autocorrelation has been controlled by ensemble predictions and by input
features used in ensemble predictions.

5.2 | Results of feature selection

A total of 48 original features are inputted into the two feature selection algorithms. The set of 48
features include variables capturing social, economic, demographic, housing, employment, and
migration characteristics of all Census tracts within the Miami-Dade County. In addition, each
Census tract’s longitudinal and latitudinal coordinates and its previous years’ number of 311
requests are incorporated to control potential spatial and temporal autocorrelation, respectively.
The Boruta algorithm generated 28 confirmed features (Table 1 and Figure 4), based on the
comparison between a feature and a “shadow value,” which is a manufactured feature of reshuf-
fled values of the original features. As discussed before, Boruta feature selection relies exclusively
on RF. The fscaret algorithm generated six features based on their relative variable importance.
When comparing these two sets of selected features (Table 1), it is evident that Boruta-informed
features are much more extensive and includes all the features generated by fscaret. Features
informed by the fscaret algorithm center on housing and locational characteristics while those
informed by Boruta span income, employment, demographic, and employment factors.
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FIGURE 3 LISA map of 311 requests in 2017 across census tracts

Both sets of selected features are calibrated with the various algorithms for predicting the
numbers of 311 requests in 2017 and subsequent years. The efficiency and effectiveness of the
two types of feature selection are compared according to model predictability using two different
sets of selected variables. For any algorithm, the set of selected features that gives lower predic-
tion errors are considered to be more efficient than those compared with the other set of vari-
ables. If, however, two sets of selected features generate the same or similar predictive accuracy,
the set with fewer selected features will be arguably more efficient because it is parsimonious.
In addition, because multiple learning algorithms are applied in this paper, average predictive
accuracy of all models will be used to assess efficiency of the two sets of selected features.

5.3 | Results of predictive accuracy
For all five algorithms, namely, RF, GLMNET, svmPoly, svmRadial, and xgbLinear, that are

being trained and tested in the paper, Table 2 presents their comparative powers of predictive
accuracy. The top section of the table presents accuracy of models using features selected by
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TABLE 1 Comparison of selected features informed by two algorithms

Boruta informed features, 28 in total fscaret informed features, six in total
Longitudinal coordinate of tract centroid Longitudinal coordinate of tract centroid
Latitudinal coordinate of tract centroid Latitudinal coordinate of tract centroid
Lagged request count of a tract Lagged request count of a tract

# of owner-occupied housing units # of owner-occupied housing units

# of detached single housing units # of detached single housing units

# of employment in government # of employment in government

# of total housing units

# of vacant housing units

# of rental housing units
Median household income
Median housing value

Total population

Female population

Male population

White population

Black population

Hispanic population

Median age

Male population in labor force
Female population in labor force
Self-employment population
Population in poverty

Married population

Area of tract

Growth rate of housing units
Growth rate of detached single housing units
Growth rate of vacant housing units

Growth rate of employment in government

the fscaret algorithm, while the bottom section shows accuracy of models using Boruta selected
features. The table depicts that all models produce comparatively similar predictive accuracy re-
gardless of which feature set is used. For example, for the 2017 test data set, xgbLinear generate a
R-squared value of 0.946 using fscaret selected features and a value of 0.942 with Boruta selected
features. However, because the number of Boruta selected features (28) is much greater than that
of fscaret feature set (6), models using the fscaret feature set are more parsimonious and there-
fore more efficient in providing predictive accuracy. In addition, for either of the selected feature
sets, the ensemble prediction accuracy which relies on a combination of the five individual algo-
rithms does not differ significantly from that of well-performing individual models. For example,
with the fscaret feature set, the ensemble prediction registers a R-squared value of 0.950, while
RF and xgbLinear, respectively, have a value of 0.944 and 0.946.
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FIGURE 4 Feature selection results of Boruta algorithm. Features (red) that are not confirmed or selected

by the Boruta algorithm consist of growth rate of % of residents stayed in the same houses, growth rate of

median household income, growth rate of female population, growth rate of Hispanic population, growth rate

of total population, growth rate of population in poverty, growth rate of female population in labor force, growth

rate of population in self-employment, growth rate of rental housing units, number of residents staying in the

same houses, growth rate of married population, growth rate of male population, growth rate of owner-occupied

housing units, growth rate of male population in labor force, growth rate of median age, growth rate of white

population, and growth rate of median housing value

TABLE 2

rf

[fscaret feature selection

2017 test dataset 0.944
2018 full dataset 0.953
2014 full dataset 0.949

Boruta feature selection

2017 test dataset 0.943
2018 full dataset 0.955
2014 full dataset 0.951

Across all five algorithms, as shown in Figures 5 and 6, GLMNET and svmPoly have the high-
est prediction accuracy, which are followed by xgbLinear and RF. The model of svmRadial has
the lowest prediction accuracy. In addition, based on 50 repeated cross-validation samples (10
cross validations and five repeats), GLMNET and svmPoly also have the smallest 95% confidence
intervals, followed by xgbLinear and RF. svmRadial does not only have the lowest accuracy, but
also has the widest confidence interval, suggesting that its prediction is widely spread out and is

thus unreliable.

glmnet

0.945
0.945
0.942

0.947
0.930
0.940

Predictive power (R?) of algorithms

svmRadial

0.863
0.900
0.900

0.830
0.885
0.861

svmPoly

0.949
0.939
0.938

0.830
0.885
0.861

xgbLinear

0.946
0.940
0.933

0.942
0.947
0.934

Ensemble

0.950
0.938
0.941

0.948
0.936
0.944
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FIGURE 5 Algorithm comparison based on fscaret selected features (n = 50, six features)
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FIGURE 6 Algorithm comparison based on Boruta selected features (n = 50, 28 features)

All five trained models and the ensemble model with year 2017 data are applied with year
2018 and 2014 data. The purpose is to test if the trained models can predict counts and patterns
of 311 requests with new and unseen data in 2018 and 2014. Results of this exercise is important
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because accurate prediction of the future with existing data is the essential for allocation of re-
sources based on 311 service requests. Table 2 presents that prediction accuracy of the 2018 and
2014 data is consistent with that of the 2017 training data set. Models using either feature set
selected by Boruta or fscaret are consistent in predictive accuracy, except two SVM models, svm-
Poly and svmRadial, which have considerably lower accuracy than other models. The accuracy
of ensemble prediction is comparable with other individual models.

6 | CONCLUSIONS AND POLICY IMPLICATIONS

This paper illustrated the application of machine learning algorithms to administrative data for
predictions. Local government administrators, policy makers, and researchers can analyze and
predict 311 requests based on community characteristics and changes. 311 requests are unique
to understand resident participation, service delivery and governmental efficiency and equity,
because 311 requests allow residents to request information, provide assistance in public service
delivery, and interact with public agencies on service variety and output. The predictive capacity
could enable local governments to proactively allocate resources, identify service disparity, and
achieve service efficiency and equity across communities and residents.

Four families of machine learning algorithms to predict 311 service requests have been exam-
ined in this paper: random forest, SVM, lasso and elastic-net regularized generalized linear mod-
els, and extreme gradient boosting. Their respective predictive accuracy is then compared with
that of an ensemble prediction which aggregates outcome of each individual algorithm. For the
test data set of 2017 311 requests, the ensemble approach had the highest predictive accuracy. But
for 311 requests of 2018 and 2014, the random forest method had the highest predictive accuracy.

The algorithms were able to capture spatial autocorrelation and clustering. The spatial anal-
ysis of service requests in 2017 shows the global Moran’s I test to be 0.589. About half of all 519
tracts in Miami-Dade are statistically significant in the LISA test. The analysis of residuals after
the ensemble prediction, however, suggests that 416 Census tracts (80% of all tracts) become
statistically insignificant in the LISA test. Incorporating each Census tract’s longitudinal and
latitudinal coordinates is thus effective for accounting spatial autocorrelation and clustering in
machine learning predictive algorithms.

Two feature selection algorithms were applied in this paper, namely Boruta and fscaret. They gen-
erated distinct numbers of selected features—Boruta generated 28 features while fscaret generated
six features. While Boruta-informed selected features span over locational, economic, demographic,
employment, and housing factors, features selected by fscaret center on locational and housing char-
acteristics. Both sets of selected features were used in the paper with various learning algorithms to
examine their comparative predictive accuracy. Features selected by the fscaret algorithm produce
more parsimonious models and are arguably better in providing predictive accuracy.

The predictive algorithms used in this paper is a methodological stepping stone which can be fur-
ther expanded to examine community changes in shorter time intervals, such as quarterly, monthly,
or weekly. Insights gained from the application of algorithms to the administrative data can provide
objective performance indicators for various public services. In the context of 311, the algorithms
provide predictive insights into the volume of service requests, and which features influence the vol-
ume of service requests. Examining the features can shed light on structural or systemic deficiencies
in service provision. Residents and communities can hold government agencies accountable by ex-
amining the patterns of the 311 calls. The machine learning algorithms are new tools in this account-
ability process. They extend the traditional methods of regression analysis to identify parsimonious
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features that predict the volume of 311 requests. These tools are likely to play an increasingly import-
ant role in analyzing administrative data and government provision of services.

The paper also holds at least two policy insights from the perspective of 311 customer cen-
ters. The first insight is that fscaret generated parsimonious categories for predicting the factors
influencing the volume of 311 service requests. The fscaret features are centered on locational
and housing attributes. These fscaret-based attributes predict as much as, if not higher than the
features identified through Boruta, which identified five times as many features. The results
show a lack of importance of economic and demographic variables on predictive accuracy of
311 service requests. This could signal to policy makers that socioeconomic and demographic
differences across communities do not correlate with neighborhood variations of 311 requests.
This is preliminary evidence that there is no significant disparity in engagement with and par-
ticipation in coproduction with local governments on public goods and services, across diverse
communities, and demographic groups, especially those in disadvantaged socioeconomic status.
In other words, fscaret-informed features and resulting predictive accuracy could suggest that
there is equitable participation in 311 requests across diverse demographic and socioeconomic
status and background.

The second policy insight is that the predictive algorithms could enable local governments to
proactively allocate resources, identify service disparity, and achieve service efficiency and equity
across communities and residents. The algorithms build upon commonly available community
characteristics from the Census Bureau. They take into consideration spatial patterns and clus-
tering, which could obviate the need for separate examination of spatial autocorrelation. The
predictive capacity enables local governments to be pro-active in allocating resources to so that
311 requests can be fulfilled in an efficient manner across all neighborhoods. The 311 customer
centers can thus proactively improve the efficiency and effectiveness of public services.
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ENDNOTES
! Kaggle, a subsidiary of Google LLC, is an online community of data scientists and machine learning practi-
tioners. For more info, https://www.kaggle.com/competitions.

? Max Kuhn’s caret package page, https://topepo.github.io/caret/available-models.html, indicates there are 238
models available.

3 GeoDa is particularly helpful because of its visualization functionality of “brushing” across different graphs
and charts, allowing users to view the data simultaneously from distinct perspectives. In this specific example,
the six outliers are selected and highlighted in the boxplot and they are highlighted automatically, thanks to
“brushing,” in the GIS map window.
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