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Summary
Fibroblasts are diverse mesenchymal cells that participate in tissue homeostasis and disease by 
producing complex extracellular matrix and creating signaling niches through biophysical and 
biochemical cues. Transcriptionally and functionally heterogeneous across and within organs, 
fibroblasts encode regional positional information and maintain distinct cellular progeny. We 
summarize their development, lineages, functions, and contributions to fibrosis in four fibroblast-
rich organs: skin, lung, skeletal muscle, and heart. We propose that fibroblasts are uniquely 
poised for tissue repair by easily reentering the cell cycle and exhibiting a reversible plasticity in 
phenotype and cell fate. These properties, when aberrantly activated, drive fibrotic disorders in 
humans.

Horsley eTOC in brief
A detailed mechanistic, molecular and functional view of the commonalities and organ-specific 
features of fibroblasts in both health and disease is just beginning to emerge.

Introduction
Fibroblasts are canonically referred to as cells that create and maintain anatomically diverse 
array of extracellular matrix (ECM)-rich connective tissues to support a broad range of 
essential organ functions, like resistance to blunt and sharp injuries in the skin or organ-wide 
stretching and elastic recoiling in the intact breathing lung. In doing so, fibroblasts provide 
essential niches and positional information for neighboring cells via microarchitectural, 
biomechanical, and biochemical cues in the ECM and the regulated secretion of soluble 
mediators such as cytokines, growth factors and metabolites (Figure 1). Beyond producing 
connective tissues, fibroblasts serve as the progenitors for specialized mesenchymal cell 
types, such as for bone-forming osteoblasts or lipid-filled adipocytes during embryonic 
development, adult homeostasis and during injury, repair, and remodeling. In this review, 
we use the term “fibroblasts” to refer to cells that: 1) secrete many of the same structural 
and signaling macromolecules that contribute to tissue’s extracellular space, 2) adopt a 
transient and contractile myofibroblast phenotype in response to tissue damage, 3) act as 
signaling niche cells for tissue-resident stem cells, and/or 4) serve as progenitors, sometimes 
called mesenchymal stem cells, for specialized differentiated mesenchymal cells (Lemos and 
Duffield, 2018; Pittenger et al., 2019; Pittenger et al., 1999).

Fibroblasts were first described as a distinct cell type in 1858 by German pathologist Rudolf 
Virchow, who called them “Spindelzelle des Bindegewebes” – “spindle-shaped cells of the 
connective tissue” (Virchow, 1858) (Figure 2A). The term “fibroblast” was first proposed 
by Ernst Ziegler to describe cells that produce new connective tissue upon healing (Ziegler, 
1895) (Figure 2B) and this observation was replicated by Santiago Ramón y Cajal who 
observed “célula fusiforme” or “fibro-células” as essential producers of granulation tissue in 
both healing skin wounds and scars (Cajal, 1896) (Figure 2C).
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Fibroblast research was facilitated by the advent of in vitro techniques developed in the 
1900s. These methods allowed culture of primary fibroblasts derived from embryonic 
chick heart explants, which could be easily propagated upon passaging before other cell 
types (Burrows and Neymann, 1917; Carrel, 1912; Ebeling, 1913; Hogue, 1919) (Figure 
2D). The establishment of the 3T3 fibroblast cell line derived from mouse embryos more 
than fifty years later (Todaro and Green, 1963; Todaro et al., 1964) further advanced our 
understanding of the biology and lineage potential of fibroblasts. These discoveries include, 
among others, the identification of fibroblast growth factors (FGFs) (Gospodarowicz, 1974), 
the phenomenon of multi-lineage differentiation of cultured fibroblasts into bone, cartilage, 
and adipose cells (Junker et al., 2010), and the key role of fibroblasts in the production, 
remodeling, and contraction of ECM.

Despite the large number of in vitro fibroblast studies, the in vivo relevance of these 
cell culture observations remains unclear, and the true spectrum of fibroblasts’ properties 
and their lineage potential in their native in vivo environment is only recently being 
explored in depth. This is largely enabled by the advent of new genetic model organisms 
that permit specific labeling, tracing and mutating of fibroblasts in tissues and by the 
application of single-cell genomic technologies. Emerging evidence implicates the role of 
fibroblasts in driving significant changes in the tumor-associated macroenvironment as have 
been extensively reviewed elsewhere (Sahai et al., 2020). Here, we focus on fibroblast 
development and their role in adult tissue homeostasis and repair including recent evidence 
that highlights the function and heterogeneity of fibroblasts across and within organs 
and how they are regulated at the molecular level to contribute to tissue development, 
homeostasis, repair and fibrotic diseases.

Cross organ commonalities in fibroblast biology
Single-cell RNA-sequencing (scRNA-seq) data from several organs has revealed an 
unappreciated degree of heterogeneity in fibroblasts within and across tissues. Comparing 
fibroblasts from mouse heart, skeletal muscle, intestine and bladder revealed that less 
than 20% of fibroblast-enriched genes overlapped between these four organs (Muhl et 
al., 2020). Most recently, an even broader cross-tissue comparison of mouse scRNA-seq 
data identified two universal fibroblast populations, expressing peptidase inhibitor Pi16 or 
collagen Col15a1 each with shared enrichment for the ECM factor dermatopontin (Dpt). 
The latter gene marks the majority of PDGFRα+ cells in the surveyed tissues by genetic 
lineage tracing in mice (Buechler et al., 2021). Murine fibroblast populations expressing 
these universal markers persisted throughout injury, tumorigenesis, or inflammation with 
additional specialized subpopulations emerging in these perturbed states. Notably, a 
population similar to Pi16+ mouse fibroblasts was also found in unperturbed human 
tissues (Buechler et al., 2021), suggesting a cross species contribution to homeostasis. 
Further analysis will be required to determine the convergence and divergence of fibroblast 
populations across murine organs, especially since not all fibroblasts express Pdgfra, such 
as lipofibroblasts in the lung (Xie et al., 2018) or skin fibroblasts after wounding (Guerrero-
Juarez et al., 2019), which also show largely nonoverlapping patterns of Dpt and Col15a1 
and nearly absent Pi16 expression. Beyond gene markers, functional properties are the 
ultimate discriminator of shared vs. unique themes in fibroblast biology. In this section, we 
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outline the shared functions of fibroblasts across multiple tissues and, in a separate section, 
highlight numerous tissue-specific differences.

Scaffold and signaling: Common fibroblast functions

A major shared function of fibroblasts is ECM synthesis to create connective tissue 
by depositing fiber- and sheet-forming collagens, proteoglycans, elastin, fibronectin, 
microfibrillar proteins and laminins, that collectively comprise the “matrisome”. Fibroblasts 
also actively remodel ECM microstructure through covalent crosslinking, protein 
glycosylation and controlled proteolysis via balanced secretion of modifying enzymes 
such as lysyl oxidase, matrix metalloproteinases (MMPs), and MMP inhibitors (Lu et 
al., 2011). The ratio of specific ECM molecules and nuanced remodeling activity by 
fibroblasts can produce an array of compositionally, micro-anatomically, biomechanically, 
and functionally distinct ECM across organs that can support a range of specialized cells, 
such as keratinocytes in the resilient and soft skin, epithelial cells in the malleable and 
elastic lung, striated muscle fibers in the contractile skeletal muscle, as well as endothelial 
cells of blood vessels (Figure 1A) (Hynes and Naba, 2012). Fibroblasts also “tug and pull” 
on their ECM, resulting in tissue-level mechanical forces and matrix polarization (Huang et 
al., 2012) (Figure 1C) and contribute to tissue specific matrisomes and tissue mechanics.

Beyond the matrisome, fibroblasts secrete numerous cytokines, adipokines and growth 
factors (Figure 1B, 1H) whose properties, including diffusion dynamics, are modulated 
by the ECM, and converge to create signaling niches and positional cues for diverse other 
cells, including but not limited to tissue-resident stem cells and immune cells (McGee et 
al., 2013) (Figure 1G). In this light, fibroblasts’ role in encoding positional information 
for other cells is particularly important for proper embryonic development, as revealed in 
classic tissue recombination studies. For example, when embryonic chick skin epithelium 
and mesenchyme from scale or feather producing body regions were exchanged, the type of 
skin appendage that formed was instructed by fibroblast-containing dermis (Dhouailly and 
Sengel, 1975).

Signaling between tissue resident cells and fibroblasts can establish regional differences 
and lineage trajectories of fibroblasts in tissues. For instance, synovial fibroblasts exhibit 
positional identity that is induced by endothelium-derived Notch signaling (Wei et al., 2020). 
Another mechanism by which instructive differences in fibroblast biology are established 
is through expression of specific Homeobox (HOX) transcription factors, which specify 
body plan along major axes – cranio-caudal, dorsal-ventral and proximal-distal directions, 
including in humans (Chang et al., 2002). For example, HOXA13 regulates distal identity 
and is expressed specifically by finger and foreskin human fibroblasts (Rinn et al., 2006). 
Regional expression differences exist in other genes, that are likely downstream of HOX 
factors, such as Agouti in mice (Candille et al., 2004), Wingless-related integration site 
(WNT) pathway antagonist DKK1 in humans (Yamaguchi et al., 2004), and fibronectin in 
both rodents and humans (Yasuda et al., 2006). Therefore, distinct “HOX codes” of skin 
fibroblasts drive regional differences in matrisome and signaling factors that, in turn, serve 
as “information” for adjacent cell types. Reestablishing this positional information may also 
be an important step during tissue regeneration after injury. For example, restoration of 
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fibroblast HOX codes may function as a pioneering event to drive skin regeneration in adult 
mice (Abbasi et al., 2020). Beyond skin, positionally distinct fibroblasts with unique HOX 
codes have been recently identified in synovial joints in mice and humans (Frank-Bertoncelj 
et al., 2017).

Myofibroblasts: Contraction and coordination of tissue repair

In adult organs, fibroblasts are relatively quiescent unless tissue repair mechanisms or 
dynamic structural changes are initiated. Recent single-cell analyses indicate that during 
tissue development and repair, fibroblasts display transcriptional changes similar to cellular 
differentiation trajectories, suggesting an adherence to lineage hierarchy (Abbasi et al., 
2020; Guerrero-Juarez et al., 2019; Phan et al., 2020; Phan et al., 2021). Quiescent 
fibroblasts have also been shown to function as progenitors that can be induced to 
rapidly divide to produce many more ECM-secreting fibroblasts and additional distinct 
mesenchymal lineages, such as adipocytes, in response to injury and hair cycling in the skin 
(Figures 3, 4) (Junker et al., 2010; Rivera-Gonzalez et al., 2016).

To facilitate tissue repair, signaling and physical factors induce quiescent fibroblasts to 
form myofibroblasts, which through their expression of contractile proteins such as αSMA 
orchestrate biomechanical remodeling and contraction via traction force (Pakshir et al., 
2019) onto the voluminous amounts of new ECM that they themselves secrete (Hinz, 2010; 
Tschumperlin, 2013) (Figure 3). Compared to quiescent fibroblasts, mature myofibroblasts 
adhere to ECM for longer (Hinz, 2007) even in the presence of the same signals, suggesting 
that disengagement of focal adhesions may be essential for myofibroblast state termination 
(Thannickal, 2013). External adhesion “information” is transduced in myofibroblasts via 
the cytoskeleton and involves activation of tension sensitive myocardin-related transcription 
factor A (MRTF-A) and serum response factor (SRF) (Crider et al., 2011), among other 
mechanisms.

Beyond contraction, myofibroblasts also function to transform the surrounding tissue 
environment by modulating resident immune cell functions (Ferrer et al., 2017; Van Linthout 
et al., 2014) and phagocytosing dead cells (Nakaya et al., 2017). While myofibroblast 
functions are vital during acute injury repair, their aberrant activation upon chronic 
injury or sustained inflammation can lead to disorganized and excessive ECM production, 
promoting localized scarring, diffuse fibrosis and, in some instances, aiding in tumorigenesis 
(Desmouliere et al., 2005; Shi-wen et al., 2009). This excessively stiff and compositionally 
abnormal ECM disrupts microarchitecture, results in loss of other tissue-resident cells, 
causing organ dysfunction that can range from mild derangements to catastrophic failure. 
Fibrosis is estimated to contribute to almost 50% of all deaths in the developed world 
(Friedman et al., 2013) and despite the existence of drugs that can delay its progression, to 
date there exists no truly curative treatment (Dempsey et al., 2019). Thus, illuminating the 
fibrogenic functions of tissue fibroblasts holds remarkable therapeutic potential, which we 
discuss below.

Myofibroblasts arise in response to several signaling pathways including transforming 
growth factor β (TGFβ), WNT, and PDGF signaling and to some extent by inflammatory 
cytokines, such as tumor necrosis factor α (TNFα), interleukin (IL)-1 or IL-6 (Figure 3). 
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These factors act on the quiescent, tissue-resident fibroblasts, which are viewed as the 
dominant source of myofibroblasts after injury. Of note, other specialized mesenchymal 
cells can also alter their lineage specificity and generate myofibroblasts (Figure 4). 
For example, pericytes, mesenchymal cells that surround blood vessels and that are 
transcriptionally distinct from fibroblast populations (Armulik et al., 2011), can migrate out 
of their perivascular location, develop myofibroblast properties and contribute to excessive 
ECM deposition in mouse models (Hung et al., 2013; Kuppe et al., 2020; Sava et al., 2017). 
A relatively small portion of myofibroblasts under certain wounding conditions in the skin 
and other organs has also been shown to derive from circulating hematopoietic progenitors, 
commonly myeloid cells (Guerrero-Juarez et al., 2019; Opalenik and Davidson, 2005; Sinha 
et al., 2018). Studies in mice have also revealed that mature adipocytes in the skin can 
deplete their lipid stores and convert into contractile myofibroblasts (Kruglikov and Scherer, 
2017; Marangoni et al., 2015; Shook et al., 2020). Myoblasts in murine skeletal muscles can 
also form myofibroblasts as part of the persistent injury-repair cycle upon muscle dystrophy 
(Biressi et al., 2014). Finally, lipofibroblasts in the mouse lung can adopt functions of 
myofibroblasts including αSMA expression and ECM overproduction (El Agha et al., 2017; 
Rock et al., 2011).

While traditionally myofibroblasts were thought to be terminally differentiated, 
accumulating evidence indicates that they are, in fact, temporary and reversible (Hinz et 
al., 2012). Despite the prominent transcriptional and epigenetic changes that accompany 
myofibroblast formation, contractile gene expression and function by myofibroblasts 
decrease and eventually cease when tension reduces in late-stage skin wounds (Hinz et 
al., 2001). Moreover, myofibroblasts can display broader lineage plasticity and convert into 
other specialized mesenchymal lineages upon injury resolution. For example, myofibroblasts 
in large murine skin wounds terminate their contractile behavior and reprogram into new 
lipid-filled adipocytes in response to bone morphogenetic protein (BMP) ligands secreted 
by hair follicles (Plikus et al., 2017). During trauma-induced heterotopic ossification, 
fibroblasts can assume chondrogenic and osteogenic mesenchymal fates in extra-skeletal 
locations, such as in the skin, both in mice and humans (Cappato et al., 2020). Whether 
such heterogeneity in origin and function occurs in humans remains an active area of 
investigation.

Fibroblast plasticity

It is, thus, emerging that fibroblast lineages are plastic and do not follow the canonical 
stem cell lineage model, in which undifferentiated and long-term self-renewing progenitors 
unidirectionally produce differentiated and, typically, postmitotic progeny (Morrison and 
Spradling, 2008). Lineage plasticity displayed by fibroblasts during tissue repair resonates 
with that by other cell types, such as epithelial hair follicle stem cells. The latter normally 
produce hair-fated progeny but respond to wounding by temporarily switching to making 
short-lived epidermal keratinocytes to close the breached skin barrier (Ge et al., 2017; Ito 
et al., 2005). The crucial need to repair damaged tissue induces normally quiescent and, 
in some instances, postmitotic mesenchymal cells, such as adipocytes, to reenter cell cycle 
and produce new ECM-making and contracting myofibroblasts. Once the damage is healed, 
myofibroblasts revert to quiescence and in some instances prune via apoptosis or senescence 

Plikus et al. Page 6

Cell. Author manuscript; available in PMC 2022 July 22.

Author M
anuscript

Author M
anuscript

Author M
anuscript

Author M
anuscript



(Demaria et al., 2014; Wilkinson et al., 2019). Fibroblast plasticity may be possible because 
they deposit most of their differentiated product (i.e. ECM proteins) outside of the cell 
(Hynes and Naba, 2012) as opposed to, for example, keratin filament-laden suprabasal 
epidermal cells or sarcomere protein-filled myofibers, which may permit fibroblasts to 
remain relatively unspecialized and exit cellular quiescence upon stimulation.

Epigenetic regulation of fibroblast identity and dynamic state transitions, including the 
myofibroblast state, is a subject of intense research. For example, several microRNAs 
can activate, sustain, and terminate the myofibroblastic state across different reparative 
contexts (Wei et al., 2019; Yang et al., 2013) and more durable epigenetic modifications 
have also been implicated (Duong and Hagood, 2018). For example, during non-scarring 
kidney repair, wound-responsive fibroblasts suppress RASAL1, a promoter that encodes an 
inhibitor of Ras oncoproteins, and this enables transient activation. RASAL1 suppression is 
reversible, and its eventual restoration is necessary for proper myofibroblast state resolution. 
Extended exposure to profibrotic signals, such as TGFβ, results in initial suppression, 
and subsequent hypermethylation of RASAL1 promoter, which causes irreversible 
transcriptional suppression, lasting myofibroblast activation and chronic fibrogenesis 
(Bechtel et al., 2010). It remains less clear which epigenome modifications in fibroblasts 
enable recapitulation of developmental programs during regenerative healing. Future work 
is needed to determine whether different fibroblast pools harbor distinct levels of latent 
plasticity, and whether fibroblasts retain an epigenetic memory of earlier reparative events 
that heightens their responsiveness to subsequent insults, as seen in epithelial cells (Naik et 
al., 2017). Answers to these questions will inform future therapeutic efforts at suppressing 
the dual nature of fibroblast plasticity in tissue repair, by restricting fibrogenic capacity in 
favor of readoption of native tissue functions.

Signaling regulation of fibroblast lineages and function
Key aspects of fibroblast biology, from proliferation and self-renewal to myofibroblast 
formation and differentiation to other mesenchymal lineages, are regulated by a diverse 
array of signaling pathways that act in autocrine, paracrine and endocrine manner. While 
many signaling factors can impact fibroblasts and contribute to fibrosis, such as FGFs (Xie 
et al., 2020), in this section, we review major roles played by platelet-derived growth factor 
(PDGF) pathway in fibroblast proliferation and self-renewal, TGFβ super family pathways 
in fibroblast function, canonical WNT pathway in fibroblast lineage specification and 
fibrosis, as well as mechanotransduction and danger-associated molecular pattern (DAMP) 
stimulation (Figure 3).

Role of PDGF signaling

Developmental expansion and long-term maintenance of fibroblast lineages requires their 
self-renewal via proliferation. This key property of fibroblasts critically relies on PDGF 
signaling. PDGF ligands act locally within tissues and can be produced by fibroblasts 
themselves or by other cell types to function as homo- and heterodimers of four different 
polypeptide chains, from A through D. While PDGF-AA, PDGF-AB and PDGF-BB are 
processed and secreted as dimers, PDGF-CC and PDGF-DD are secreted as inactive forms 
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(Kazlauskas, 2017). PDGF ligands engage with PDGFRα and -β tyrosine kinase receptors, 
which activate multiple downstream signaling cascades, including the RAS/MAP kinase and 
AKT/PI3 kinase cascades, that in turn propagate signaling to their downstream effectors.

PDGFRα is commonly expressed by the progenitor cells of multiple mesenchymal lineages, 
including fibroblasts and adipocytes (Uezumi et al., 2014) and Pdgfra null mice die 
prior to birth, showing prominent deficiencies in cardiac mesoderm, somitic mesoderm, 
and neural crest derived mesenchyme (Soriano, 1997). In the developing mouse heart, 
PDGF signaling induces the expression of transcriptional regulators Sox9, Snail and Slug 
that induce epicardial cells to undergo EMT to form the majority of cardiac fibroblasts 
(Figure 3). Conditional gain- and loss-of-function studies in mice have illustrated the 
importance of PDGF signaling in maturation of postnatal fibroblast lineages, long-term 
maintenance of their progenitor function, and ECM homeostasis. For example, mice with 
constitutively active receptor Pdgfra display connective tissue hyperplasia and develop 
systemic fibrosis in multiple organs, including skin and heart (Gallini et al., 2016; Olson and 
Soriano, 2009). On the other hand, mice with Pdgfra deficiency display tissue hypoplasia. 
Likewise, tissue- and cell type-specific losses of Pdgfa ligand in mice lead to prominently 
reduced proliferation and self-renewing potential of dermal adipocyte precursors in the skin 
(Rivera-Gonzalez et al., 2016), αSMA+ dermal progenitors in the hair follicle (Gonzalez 
et al., 2017) and fibroblasts in the lung (Gouveia et al., 2018). Temporal regulation of 
PDGF activation during myocardial infarction induces cardiac fibroblast self-renewal and 
proliferation without triggering fibrosis (Asli et al., 2018) and pharmacological inhibition of 
PDGF signaling reduces ECM production during skeletal muscle repair (Smith et al., 2011). 
Thus, the PDGF signaling pathway serves as the major signaling regulator of fibroblast 
development and long-term homeostasis by supporting fibroblast stem cell self-renewal, 
proliferation, and migration.

Role of TGFβ superfamily signaling

During tissue repair, fibroblasts secrete and mechanically rearrange large quantities of 
new ECM. To perform these functions, fibroblasts must transition from a resting state, 
when ECM production is minimal, to a contractile myofibroblast state, when they 
upregulate matrisome synthesis and activate contractile apparatus. While the transition 
toward myofibroblast state is essential for tissue repair after injury, its aberrant and 
sustained switch critically drives fibrosis and contributes to cancer progression. Activation 
of myofibroblast state is dominantly controlled by TGFβ pathway (Massague, 2012) and 
human fibrotic tissues display elevated expression of TGFβ ligands in the lung, skin, and 
skeletal muscle (reviewed in Lodyga and Hinz, 2020).

Upon homeostasis, TGFβ ligands, together with latency-associated peptides (LAPs) and 
latent TGFβ-binding proteins (LTBPs) form large latent complexes (LLCs) (Shi et al., 
2011), that are tethered in the ECM. Upon injury or fibrotic stimuli, TGFβs are rapidly 
released from the LLCs upon proteolytic cleavage of LAPs or via mechanical forces 
generated onto ECM. TGFβ ligands bind hetero-tetrameric receptor complexes and activate 
canonical SMAD pathway, including receptor-phosphorylated SMAD2/3, co-activator 
SMAD4, and inhibitory SMAD7 (Hata and Chen, 2016). Phosphorylated SMAD2/3 
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complexes translocate to the nucleus where they interact with other context-dependent 
transcription factors to regulate downstream genes (Verrecchia et al., 2001). TGFβ can 
also activate non-canonical signaling pathways implicated in fibrosis such as MAP kinases, 
Rho-like GTPase signaling, and phosphatidylinositol-3-kinase/AKT (Zhang, 2017). Because 
SMAD-driven mechanisms are the most well studied, they will be discussed in detail below.

Multiple studies reinforce the essential role of TGFβ signaling in ECM homeostasis, 
myofibroblast formation, and fibrosis development (Lodyga and Hinz, 2020). For instance, 
deletion of TGFβ receptor II in mouse fibroblasts abrogates contraction and ECM 
production in skin wounds (Denton et al., 2009). Postnatal activation of TGFβ receptor I 
in mouse fibroblasts recapitulates fibrotic phenotypes in the skin (Sonnylal et al., 2007) 
and heart even in the absence of injury (Nakajima et al., 2000). TGFβ-regulated SMAD2/3 
complexes activate transcription of matrisome genes, contractile factors, such as αSMA, and 
connective tissue growth factor (CTCF), which also cooperates with TGFβ in to sustain a 
myofibroblast state (Tsai et al., 2018). Smad3 deletion in mice protects against bleomycin-
induced lung fibrosis (Zhao et al., 2002), skin fibrosis (Lakos et al., 2004), and cardiac 
fibrosis (Dobaczewski et al., 2010). TGFβ signaling also impacts myofibroblast formation 
via metabolic reprogramming of fibroblasts through mitochondrial biogenesis or glycolysis 
(Bernard et al., 2015).

Other members of the TGFβ superfamily of ligands also impact fibroblast biology. BMP 
signaling, which activates SMAD1/5/8 proteins to alter gene expression with co-activator 
SMAD4 (von Bubnoff and Cho, 2001), impacts differentiation of several fibroblast-derived 
lineages (Wang et al., 2014). During regeneration of the skeletal muscle BMP signaling 
convert fibroblasts to myoblasts (de Lima et al., 2020) and during wound healing in the 
skin it reprograms myofibroblasts to adipocytes (Plikus et al., 2017). BMP is also required 
to maintain the specialized identity of the so-called dermal papilla (DP) fibroblasts that 
constitute essential signaling niche for epithelial stem cells in the hair follicle (Rendl et al., 
2008).

Another TGFβ superfamily member, Activin A, which like TGFβ ligands activates 
SMAD2/3 (Pangas and Woodruff, 2000), is upregulated in human scars and other fibrotic 
diseases. When overexpressed from keratinocytes in mouse skin, Activin A upregulates 
gene expression within matrisome, secretome and modulating enzyme categories by skin 
fibroblasts, and reduces ECM deformability after injury (Wietecha et al., 2020 and 
references therein). Furthermore, Activin A inhibition can attenuate liver and lung fibrosis in 
mouse and rat models, respectively and may impact fibroblast biology in fibrosis more 
broadly (reviewed in Werner and Alzheimer, 2006). Thus, the TGFβ superfamily can 
activate distinct fibroblast mechanisms to drive tissue repair and contribute to fibrosis.

Role of WNT signaling

Canonical WNT pathway regulates fate specification of fibroblasts in development and 
can modulate the continuum of fibrosis and regeneration in adult tissues. Canonical 
WNT ligands bind to complexes of low-density lipoprotein receptors (LRPs) and Frizzled 
receptors on their target cells. In the absence of a WNT signal, cytoplasmic β-catenin is 
phosphorylated by a multiprotein destruction complex consisting of Axin, the adenomatous 
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polyposis coli protein (APC), and several kinases, leading to its ubiquitin-mediated 
degradation. Upon ligand binding, the destruction complex is dissembled, leading to 
cytoplasmic β-catenin stabilization and translocation to the nucleus, where it forms 
complexes with transcription factors of the TCF/LEF family to regulate downstream gene 
expression (MacDonald et al., 2009).

During morphogenesis, canonical WNT pathway has been shown to regulate fate 
specification of fibroblast progenitors into various lineages, notably in the skin. WNT 
signaling is activated in the papillary fibroblast progenitors of the upper skin layer and 
then becomes progressively restricted to the so-called dermal condensate cells of developing 
hair follicles (DasGupta and Fuchs, 1999; Zhang et al., 2009). Dermal condensate cells 
eventually mature into adult DP fibroblasts, and this process fails in mice with the loss-of-
function in WNT signaling (Millar, 2002). On the other hand, consistent with the inhibitory 
effect that WNT signaling exerts on adipocyte differentiation of mesenchymal cell in 
vitro, its activation in the so-called reticular fibroblasts of the lower skin layer inhibits 
formation of cutaneous adipocytes in development (Mastrogiannaki et al., 2016) and during 
regeneration in adult skin wounds (Plikus et al., 2017). Moreover, in skin wounds, transient 
WNT activity in myofibroblasts promotes regenerative healing with new hair follicles (Lim 
et al., 2018), while its chronic activity drives fibrotic response and failure to regenerate 
hairs (Gay et al., 2020). The impact of WNT signaling on fibroblast development and injury 
response in other tissues remains poorly understood.

Mechanotransduction signaling

Along with soluble growth factors, fibroblast behavior is prominently influenced by 
biochemical and biomechanical properties of the surrounding ECM, which vary between 
and even within the same organs. The biomechanical differences in ECM are sensed 
by fibroblasts through integrin-associated focal adhesions (Balaban et al., 2001) and are 
interpreted analogous to biochemical signals. Biomechanical cues from the ECM induce 
activation of myocardin-related transcription factors (Huang et al., 2012) and transcriptional 
cofactors YAP and TAZ (Jorgenson et al., 2017), as well as chromatin state changes 
(Le et al., 2016). Sensing of biomechanical inputs promotes fibroblast proliferation 
and can induce myofibroblast state (Huang et al., 2012) and acquisition of pro-fibrotic 
lineage identity (Mascharak et al., 2021), which in turn can contract ECM to release 
ECM-bound TGFβ (Wipff et al., 2007), further amplifying the response. Restoration 
of biomechanical tissue properties using biomaterials as well as direct pharmacological 
targeting of mechanosensitive pathways that can override this form of fibroblast activation 
are viewed as promising future antifibrotic strategies (Mascharak et al., 2021; Meli et al., 
2020).

DAMP signaling

As key factors in tissue repair, fibroblasts are sensitive to an array of damage associated 
molecular pattern (DAMP) signals like intracellular macromolecules, including RNA, 
DNA, histones and heat shock proteins, released from damaged cells as well as to ECM 
molecule fragments (Turner, 2016). Sensing of DAMPs is mediated through activation of 
pattern recognition receptors (PRRs), such as transmembrane toll-like receptors (TLRs) and 
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cytoplasmic nod-like receptors (NLRs) (Schaefer, 2014). While PRRs are predominantly 
expressed by innate immune cells, there is an emerging evidence that DAMP system is 
also active in fibroblasts (Bautista-Hernandez et al., 2017). For instance, ECM component 
tenascin-C can activate TLR4 signaling in synovial fibroblasts and induce pro-inflammatory 
cytokine production in the mouse model of rheumatoid arthritis (Midwood et al., 2009), 
while in the heart DAMP signaling activates an inflammatory and profibrotic response by 
cardiac fibroblasts (Turner, 2016; Zhang et al., 2015b). Fibroblasts also contribute to DAMP 
response by the surrounding innate immune cells and other tissue-resident cell types by 
promoting ECM degradation and fragmentation via secretion of ECM remodeling enzymes. 
Indeed, following proteolytic cleavage, many ECM fragments can bind to PRRs (McQuitty 
et al., 2020). For example, cleaved low molecular weight hyaluronan (LMW-HA), an 
abundant extracellular polysaccharide, can bind to TLR2/4 and promote NF-kB mediated 
proinflammatory cytokine production (Lee-Sayer et al., 2015). Interestingly, ECM-derived 
DAMPs can also mediate the immunosuppressive and pro-repair functions of immune cells 
that are linked to fibrotic remodeling (Frevert et al., 2018). For example, while LMW-HA 
promotes inflammation by agonizing TLR2 signaling, high molecular weight hyaluronan 
(HMW-HA) inhibits TLR2 signaling and can promote immunosuppressive T regulatory cell 
action (Bollyky et al., 2007). Thus, fibroblasts contribute to inflammation and tissue repair 
via activation and responding to DAMP signals.

Organ-specific fibroblasts
Despite sharing similar properties and responding to many of the same signal 
transduction pathways, tissue specific fibroblast functions and lineages exist to support 
the developmental, homeostatic and repair needs of specific organs. These emerge 
during embryonic development as multiple cell lineages converge to form fibroblasts 
that populate organs arising from all three somatic germ layers, such as ectodermally 
derived skin and mammary gland, mesodermally derived skeletal or heart muscles, and 
endodermally derived lung. The majority of fibroblasts in the body derive from the 
precursors of paraxial mesoderm and lateral plate mesoderm, while fibroblasts in the 
craniofacial structures originate from the neural crest mesenchyme (Herriges and Morrisey, 
2014; Soriano, 1997) (Figure 5). In the heart, epicardial and endocardial epithelial cells 
generate fibroblasts through epithelial-to-mesenchymal transition (EMT) and endothelial-to-
mesenchymal transition (EndMT), respectively (Gittenberger-de Groot et al., 1998) (Figure 
5D).

Once fibroblasts populate specific organs, they generate distinct microarchitecture, 
biophysical and biochemical components of connective tissues. Here, we will focus on four 
well-characterized organs with diverse architectural designs and physiology: two epithelium-
rich organs – skin and lung, and two mesenchymal organs – skeletal muscle and heart. We 
will introduce the organization of these organs into their functional units, delineate fibroblast 
heterogeneity, and briefly discuss where fibroblasts are located within each unit and the 
molecular mechanisms that contribute to their development, function, and fibrosis.
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Fibroblasts of the skin

Fibroblasts in the skin produce a mechanically resilient, adhesive yet elastic structural 
foundation which supports epithelial keratinocytes of the outward-facing stratified epidermis 
and its numerous appendages, primarily hair follicles and sweat glands. Fibroblasts and 
other mesenchymal lineages in the skin establish three anatomically distinct layers: papillary 
and reticular dermis and dermal white adipose tissue (dWAT) (Figure 5A). The epidermis 
is separated from the upper papillary dermis by a sheet of collagen and laminin-rich 
basement membrane jointly produced by interfacing epidermal keratinocytes and papillary 
fibroblasts. While in mice the papillary dermis in most body sites is very thin, in humans 
it forms complex undulating interdigitations with the epidermis, especially in the digit tips. 
Fibroblasts within often very thick reticular dermis produce densely packed ECM which 
endows skin with its mechanical strength. Fibroblast progenitors also produce and maintain 
dWAT, which contains a fine, web-like ECM that encases clusters of lipid-filled adipocytes. 
All three dermal layers also contain immune cells, epidermal appendages, sensory neurons, 
blood and lymphatic vessels, creating a complex network of cell communities that jointly 
support skin’s protective functions.

During embryonic development in mice, early mesenchymal precursors give rise to 
a common skin fibroblast progenitor, marked by the expression of the transcriptional 
regulators Engrailed 1 (En1) or Hypermethylated in cancer 1 (Hic1), or the transmembrane 
Protein delta homolog 1 (Dlk1) (Abbasi et al., 2020; Driskell et al., 2013; Rinkevich et al., 
2015). After establishing a nascent connective tissue, skin fibroblast progenitors undergo 
progressive specification into distinct fibroblast lineages that assume discrete anatomical 
niches and express distinct molecular markers. Specifically, papillary fibroblasts in neonatal 
mouse skin express transmembrane factors CD26 (also known as Dpp4), Lrig1 and integrin 
Itga8, as well as the transcriptional repressor Prdm1 (also known as Blimp1). At the same 
time, precursors of reticular fibroblasts and dermal adipocytes express transcriptional factors 
Pparγ, Ebf2 as well as transmembrane proteins Pdpn and multifunctional signaling factor 
Sca1 (also known as Atxn1) (Driskell et al., 2013). As skin morphogenesis completes 
in early postnatal time and adult homeostasis ensues, fibroblasts undergo maturation and 
change their marker expression patterns (Driskell et al., 2013; Rognoni et al., 2016). For 
example, unlike in fetal skin, transcriptional regulator Lef1 becomes a gene marker of adult 
mouse papillary fibroblasts (Phan et al., 2020).

Despite papillary and reticular dermis being clearly demarcated from one another, mouse 
studies reveal the distribution of transcriptionally overlapping fibroblasts across skin layers 
(Shook et al., 2018). This observation suggests that distinct features and functions of dermal 
layers are the composite result of many cell types, and several fibroblast types working 
together. Recent scRNA-seq studies also rapidly increase our appreciation for fibroblast 
heterogeneity in the human skin. When carefully compared across several independent 
human skin scRNA-seq datasets, more than 90% of all dermal fibroblasts can be assigned 
to one of three shared groups, marked by the expression of WNT pathway members SFRP1 
and SFRP2, as well as fat-binding Apolipoprotein E (APOE), respectively (Ascension et al., 
2020). Each of these fibroblast groups can then be further subdivided, collectively resulting 
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in as many as ten sub-groups with distinct marker gene combinations. Future work is needed 
to define the functional role of these heterogenous fibroblast populations.

Skin appendages, especially hair follicles, are populated by highly specialized fibroblasts 
whose major function is to regulate epithelial lineage activities, including stem cell 
quiescence, proliferation and differentiation. In the hair follicle, these include the so-called 
dermal papilla (DP) fibroblasts that form a tight cell cluster at its base, and the fibroblasts of 
the dermal sheath (DS) that encases hair follicle from the outside (Figure 5A). Both types of 
fibroblasts develop during hair follicle morphogenesis from embryonic papillary precursors 
via an intermediary dermal condensate progenitor (Mok et al., 2019; Sennett et al., 2015) 
and once fully formed, they express several specific marker genes (Driskell et al., 2011; 
Rezza et al., 2016; Shin et al., 2020) (Tables 1, 2). Compared to other skin fibroblasts, DP 
fibroblasts have several distinctive features. First, they are highly aggregative, including in 
vitro, where they form mound-like colonies before reaching confluence (Jahoda and Oliver, 
1984). Second, they specifically associate with and function as the signaling niche for 
epithelial hair stem cells. Third, their gene expression prominently and periodically changes 
in synchrony with the hair growth cycle – a repetitive process of growing hairs that consists 
of dormant, active and regression phases. The resulting changes in DP fibroblast secretome 
critically drive transitions between cycle phases (Sennett and Rendl, 2012). Fourth, unlike 
other adult skin fibroblasts, DP fibroblasts can induce formation of new hair follicles when 
recombined with appropriately competent skin epithelium (Guerrero-Juarez et al., 2018; 
Reynolds and Jahoda, 1992). Lastly, just like hair follicles themselves, DP fibroblasts are 
highly heterogeneous across body regions and within the same region. For example, mouse 
DP fibroblasts that associate with different hair shapes (e.g. straight vs. zigzag) exhibit 
unique gene expression patterns (Driskell et al., 2009; Rezza et al., 2016). Analogous to 
mice, DP fibroblasts in humans play critical roles in hair follicle morphogenesis and cyclic 
growth (Higgins et al., 2013; Oh et al., 2016) and differences in the transcriptional response 
by DP fibroblasts to androgens across scalp skin regions underlie the pathogenesis of male 
and female pattern baldness (Chew et al., 2016).

Likewise, gene expression by DS fibroblasts is distinct and, prominently, includes contractile 
proteins (Table 1) (Heitman et al., 2020; Shin et al., 2020). The latter are important during 
hair growth termination, when smooth muscle-like contraction by DS helps the shrinking 
hair follicle to properly remodel to its dormant shape (Heitman et al., 2020). Near its base, 
DS harbors the so-called hair follicle dermal stem/progenitor cells that assure long-term 
replenishment of DP and DS with new fibroblasts (Rahmani et al., 2014; Shin et al., 2020). 
With advanced age, self-renewal capacity of dermal stem cells diminishes, leading to their 
exhaustion and permanent hair follicle atrophy. Moreover, DS fibroblasts directly interface 
with skin-resident immune cells and produce immune suppressive factors such as TGF 
ligands β1 and β2 and immunomodulatory molecules, such as Programmed death-ligand 
1 (PDL1) and CD200, which may contribute to the immune privilege of hair follicles, a 
property that guards them against autoimmune reactions (Paus et al., 2003).

Underlying the reticular dermis, fibroblast progenitors with adipogenic potential give rise 
to lipid-laden adipocytes of the dWAT layer, which displays several distinctive properties 
compared to other white adipose depots in the body (Zwick et al., 2018) (Figure 5A). In 
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addition to responding to changes in systemic nutrient availability, dWAT also prominently 
responds to local signals from cyclically growing hair follicles. During active hair growth 
phase, dWAT expands by hypertrophy of preexisting adipocytes and hyperplasia from 
dermal adipose stem cells (Festa et al., 2011; Zhang et al., 2016). Growth promoting effect 
of hair follicles on dWAT is mediated by signals, including BMP and Hedgehog ligands 
(Plikus et al., 2008; Zhang et al., 2016). Following hair growth regression, dWAT shrinks in 
part from loss of lipid and possibly through dedifferentiation of mature adipocytes. dWAT 
cells also exert several reciprocal effects on hair follicles. During rest phase, dWAT supports 
hair stem cell quiescence by secreting BMP ligands (Plikus et al., 2008), while at the onset 
of new hair growth, dWAT stimulates DP fibroblast activity via PDGF ligands (Festa et 
al., 2011). Beyond hair growth, dWAT progenitors actively sense bacteria and respond by 
rapidly differentiating and secreting the antimicrobial peptide cathelicidin (Zhang et al., 
2019; Zhang et al., 2015a), while lipid content of mature dermal adipocytes can modulate 
skin ECM homeostasis (Zhang et al., 2021).

Skin fibrosis can occur in response to many triggers, including thermal burn, mechanical 
trauma, infection, radiation or surgery, or in association with systemic diseases, such 
as scleroderma and graft-versus-host disease, and it can result in hypertrophic scarring, 
keloid scarring and contractures that can impede mobility and skin reinnervation. Multiple 
populations of dermal fibroblasts, perivascular cells as well as dedifferentiated mature 
dermal adipocytes are the source of activated myofibroblasts and fibrotic ECM in injured 
or diseased skin (Dulauroy et al., 2012; Marangoni et al., 2015). Proliferative expansion 
of dermal fibroblasts is a common component of skin fibrosis, however, in certain 
contexts, such as upon bleomycin-induced fibrosis in mice, dermal fibroblast numbers, 
in fact, decrease (Shook et al., 2018). This suggests that fibrosis can occur because 
of exacerbated ECM-production of fewer preexisting fibroblasts. Moreover, increasing 
fibroblast proliferation within permissive wound environments can be associated with 
enhanced regeneration, further suggesting that fibroblast overproduction alone is not a key 
determinant of fibrosis (Abbasi et al., 2020). Both genetic mutations, as well as aberrant 
inflammatory signaling, can drive excessive skin fibrosis. For example, skin in patients 
with systemic sclerosis shows upregulated production of interleukin IL-13 (Li et al., 2017), 
while in mouse models skin fibrosis can be driven by interleukin IL-21 or by matrix 
metalloproteinase MMP12 (Taylor et al., 2018). Multiple types of immune cells have been 
implicated in skin fibrosis, prominently T cells and macrophages. Studies on immune and 
non-immune drivers of skin fibrosis, many of which are beyond the scope of this review, 
are informing the search for new anti-fibrotic therapies. For example, dermal fibrosis can be 
ameliorated in mouse models upon inhibition of myofibroblast-activating TGFβ and integrin 
signaling, such as with neutralizing antibodies, or upon stimulation of dermal adipogenesis 
with small-molecule PPARγ agonist rosiglitazone (Shi-wen et al., 2010).

Lung fibroblasts

While analogous to skin in being an epithelium-rich tissue, the lung is developmentally, 
architecturally, and functionally distinct which impacts the extent to which their fibroblast 
populations differ from one another. Skin epithelium is ectodermally derived, and its 
connective tissue forms distinct layers with voluminous ECM primed to provide mechanical 
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resilience. In contrast, lung epithelium is of endodermal origin and forms a highly 
branched tree that terminates in expandable sacs, called alveoli. Gas exchange function 
of the lung critically relies both on the alveolar epithelium forming close physical 
connections with extensive capillary networks, and on repetitive and rapid ability of 
the lung to expand and contract. These functions necessitate the lung’s reticular ECM 
that is optimally viscoelastic and yet sufficiently strong to withstand changes in the 
air pressure and prevent alveolar rupture and potentially lethal barotrauma. Such ECM 
is produced by a diverse group of pulmonary mesenchymal cells, that in development 
originate from a subset of migrating cardiac mesoderm (Peng et al., 2013) (Figure 5B). 
As the lung matures, pulmonary mesenchymal progenitors assume distinct spatial positions 
and functions, including peribronchiolar and perivascular smooth muscle cells, pericytes, 
numerous populations of interstitial fibroblasts, pneumocyte-supporting lipofibroblasts, and 
mesothelial cells which line the visceral pleura (Figure 5B).

Cellular genealogy and disease contributions of these heterogeneous mesenchymal lung 
populations have been largely defined in mice on the basis of genetic lineage tracing 
and, more recently, with scRNA-seq. Early mesodermal progenitors that give rise to 
nearly all mesenchymal cells in an uninjured adult lung and that serve as the source for 
αSMA+ myofibroblasts following lung injury can be marked on the basis of expression of 
transcriptional factor Tbx4 (Arora et al., 2012). In fetal mice, Hedgehog pathway member 
Gli1 labels mesenchymal lung cells except lipofibroblasts (Li et al., 2015). Gli1 expression 
in these progenitors is functionally important as they depend on Hedgehog signaling for 
expansion (Kugler et al., 2017). Upon maturation Gli1+ progenitors increase expression 
of shared fibroblast marker PDGFRα (Rock et al., 2011). Additional heterogeneity is 
recognized within PDGFRα+ lung fibroblasts and that includes a WNT responsive subset, 
identified on the basis of Axin2 expression (Rock et al., 2011). Lipid droplet-containing 
lipofibroblasts are a distinct mesenchymal lung cell population required for proper 
development of epithelial alveolar type 2 cells, storage of vitamin A and production of 
surfactant (Al Alam et al., 2015). Intriguingly, it remains unclear if the major population of 
Gli1+/PDGFRα+ fibroblasts is the dominant source of lung ECM. It is likely that other lung 
cell populations partake in ECM synthesis, since the latter remains largely intact following 
Gli1+ cell pruning.

Upon injury, epithelial cells in the adult lung downregulate Hedgehog signaling, which 
activates proliferation of epithelium and normally quiescent mesenchyme (Peng et al., 
2013). While epithelial stem cells repair airway and alveolar tissue, mesenchymal cells 
both repair and constrict the interstitial stroma. Mouse studies have identified PDGFRα+/
Axin2+ fibroblasts that respond to injury by proliferating within the alveolar niche, and 
PDGFRα−/Axin2+ fibroblasts that largely contribute to forming anatomically distinct set of 
parabronchial myofibroblasts. Among other pathways, WNT signaling is an important driver 
of injury response by mouse pulmonary fibroblasts, especially by Axin2-expressing cells, 
and this signaling requirement is conserved in humans, for example during pathogenesis of 
pulmonary lymphangioleiomyomatosis, a rare disease in which fibroblasts and other cells 
form nodules that leads to progressive decline of pulmonary function (Obraztsova et al., 
2020).
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Many forms of pulmonary fibrosis involve the inexorable, progressive obliteration of 
parenchymal tissue which ultimately impairs gas exchange to cause respiratory failure 
and death. While no animal model accurately recapitulates all aspects of human lung 
fibrosis, bleomycin-induced lung injury can transiently increase the abundance of αSMA+ 

myofibroblasts and ECM in alveolar regions (Rock et al., 2011). Lineage tracing in 
this mouse model implicated numerous mesenchymal cells as the source for fibrotic 
myofibroblasts, including PDGFRα+ fibroblasts, lipofibroblasts, pericytes, and WT1+ 

mesothelial cells (El Agha et al., 2017; Hung et al., 2013). Such cooperative contribution of 
several tissue-resident mesenchymal cell types to fibrosis parallels analogous observations 
in other organs, including skin responses to wounding. Intriguingly, the bulk of the fibrotic 
tissue-producing lung fibroblasts can be marked with and are regulated by Tbx4 (Xie et 
al., 2016), a transcriptional factor that also marks early mesodermal lung progenitors during 
embryonic morphogenesis (Arora et al., 2012). This suggests cooption of developmental 
transcriptional regulators by adult fibroblasts for injury response. The targeting of these cells 
for the treatment of human disease remains an active area of investigation.

Skeletal muscle fibroblasts

Distinct from skin and lung, voluntary striated muscles lack epithelial structures and instead 
consists of parallel arrays of large, highly differentiated and multinucleated muscle fibers, 
whose primary function is force generation via contraction. Whereas some muscle fibers 
terminate at the tendon junctions, many of them end within the intramuscular connective 
tissue and transmit their contractile forces laterally. Intramuscular connective tissue has 
complex and hierarchical organization. Its innermost layer, called endomysium, surrounds 
individual muscle fiber and contains specialized laminin- and type IV collagen-rich 
basement membrane. Acting via its transmembrane receptors, laminin aids in mechanical 
force transduction from the intracellular contractile apparatus to the outer endomysium 
layer, rich in type I and III collagens (Chapman et al., 2016). Groups of myofibers, called 
fascicles, are surrounded by perimysium, which forms a continuum with tendons and is 
rich in the so-called perimysium “cables” – thick connective tissue bundles primarily 
composed of tightly packed type I and III collagen III fibrils. Finally, the entire muscle 
is enveloped by the epimysium connective layer (Chapman et al., 2016). The major role 
of perimysium in force transduction and its distinct ECM is supported by specialized 
perimysial fibroblasts that express high levels of thrombospondins 1 and 4, and type 
XI collagen. Perimysial fibroblasts express a number of matrisome and non-matrisome 
genes shared with tendon and cartilage and on scRNA-seq display substantial additional 
heterogeneity, whose functional significance remains to be understood (Muhl et al., 2020). 
A distinct type of perimysial fibroblasts, that expresses high levels of periostin, uniquely 
localizes at the perimysium-endomysium boundary and on scRNA-seq shares similarity with 
a constellation of endomysial mesenchymal cells, which include perivascular fibroblasts and 
fibro-adipogenic progenitors, that have a lineage potential to differentiate toward lipid-laden 
adipocytes (Figure 5C). Similar to skin and heart muscle, which we discuss below, skeletal 
muscle fibroblasts with progenitor properties express Sca1 (Joe et al., 2010; Uezumi et al., 
2010), and similar to lung and heart – Gli1 (Kramann et al., 2015. Further, as with the heart, 
transcriptional repressor HIC1 has been identified as the regulator of quiescence for skeletal 
muscle fibroblasts (Scott et al., 2019).
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Skeletal muscles are highly regenerative, a property that is supported by the so-called 
satellite stem cells, that are myogenic and express PAX7 (Relaix and Zammit, 2012). In 
response to muscle injury, both satellite stem cells and the surrounding interstitial fibroblasts 
activate and expand concurrently. Normally, satellite cells should expand more to give rise 
to new myoblasts that upon fusion produce new myofibers. However, upon the satellite cell 
deficiency that can be experimentally induced in mice through genetic means or normal 
aging, muscle fiber regeneration becomes deficient. In response, fibroblasts - including 
fibro-adipogenic progenitors - expand and generate excessive fibrotic ECM and excessive 
intramuscular adipocytes that become collectively detrimental to muscle’s contractile 
property. Conversely, if fibroblasts are depleted, premature myoblast differentiation, smaller 
myofibers, and rapid depletion of the satellite cell reserve occurs (Murphy et al., 2011). 
Therefore, fibroblasts do not merely compete for tissue space with satellite cells, but form 
a signaling niche, necessary for long-term maintenance and proper cellular dynamics of 
the myogenic lineage. Niche function of muscle fibroblasts parallels that played by DP 
fibroblasts in the context of hair follicle epithelial stem cells.

Notably, in response to injury, activated skeletal muscle fibroblasts undergo dynamic gene 
expression changes that are analogous to these in other organs, such as skin or heart. First, 
they express cytokines and other proinflammatory factors, followed by genes involved in 
the cell cycle and ECM. The latter enable activated myofibroblasts to rapidly deposit a 
provisional matrix, which then provides a new scaffold for regenerating myofibers. As 
muscle regenerates, the provisional matrix becomes rapidly remodeled and then almost 
completely removed, leaving space for the newly expanding myofibers (Joe et al., 2010; 
Scott et al., 2019). In this regard, regeneration of myofibers over the provisional ECM that 
rapidly remodels partially parallels the ability of large skin wounds to regenerate new hair 
follicles and adipocytes, both of which form within a provisional scar tissue.

Fibroblasts of the heart

Heart muscle is an anatomically and physiologically complex contractile organ, whose 
major cell population, cardiomyocytes connect with one another to form an electrically 
coupled tissue via intercalated disks that constitute its middle layer called myocardium. 
Heart is also rich in fibroblasts that generate and remodel a robust ECM network essential 
for electrical conductivity and heartbeat rhythm. In addition to myocardium, fibroblasts 
populate the outermost epicardium layer, which contains specialized adipose tissue, as 
well as the innermost endocardium, which is bordered by a layer of endothelial cells. In 
contrast to fibroblasts in most other organs that originate from mesenchymal progenitors 
via progressive specification, the majority of cardiac fibroblasts form via epithelial-to-
mesenchymal transition (EMT) and those residing in the interventricular septum and right 
ventricle are the product of endothelial-to-mesenchymal transition (EndMT) (Gittenberger-
de Groot et al., 1998) (Figure 5D).

As in other organs, adult cardiac fibroblasts are heterogeneous, and their lineage 
contributions are distinct. Single-cell transcriptomic studies on adult murine cardiac 
fibroblasts consistently reveal two main populations (Skelly et al., 2018) A smaller 
population of endocardial-derived fibroblasts expresses WNT signaling factors Wif1 and 
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Dkk3 and presents a gene signature related to valve leaflets and, intriguingly, endochondral 
specification toward the bone lineage. A larger population of epicardial-derived fibroblasts 
further dichotomizes into groups characterized by either high expression of genes associated 
with metabolism, or genes associated with cell migration. The latter single-cell fibroblast 
population is likely identical to previously isolated fibroblast population that expressed 
markers PDGFRα and Sca1 and displays high clonogenic properties (Chong et al., 2011).

Considering that heart muscle is poorly regenerative, and that injury typically results 
in repair with a functionally deficient, non-contractile scar, much effort has focused 
on understanding cardiac fibroblasts in the context of fibrosis. In response to an acute 
injury, such as myocardial infarction, cardiac fibroblasts rapidly activate expression of 
chemoattractant, proinflammatory and profibrotic signals (Forte et al., 2020). Epicardial 
adipocytes in mice can also promote inflammation, such as via release of fatty acids 
(Chang et al., 2018). Similar to acute wounds in other organs, such as skin, murine cardiac 
fibroblasts in the infarction site become contractile (i.e. myofibroblasts) and transiently 
proliferative (Fu et al., 2018). They acquire an elongated aspect ratio and express distinct 
ECM proteins, including Cartilage oligomeric matrix protein (Comp) and thrombospondin 
4, which are normally restricted to skeletal elements, such as bones, tendons or cartilages. 
These and other related ECM factors are thought to confer added strength to the mature 
cardiac scar, which is critical for its longevity within the constantly contracting heart. As 
cardiac scar remodels, fibroblast populations distal of the infarcted muscle also display 
changes consistent with compensatory interstitial fibrosis, including expression of ECM 
proteins and matrix remodeling factors.

When lineages are considered, injury to the myocardium activates both epicardial- and 
endocardial-derived fibroblast populations (Moore-Morris et al., 2014), yet the exact cellular 
origin of cardiac fibrosis has yet to be fully resolved. The essential role of PDGFRα+ 

fibroblasts in cardiac fibrosis is supported by mouse studies in which deletion of Hic1 
in Pdgfra-expressing cells results in epicardium thickening, interstitial fibrosis and intra-
myocardial adipogenesis in the absence of damage (Soliman et al., 2020). Other studies in 
mice have suggested that heterogeneous populations of PDGFRα+ fibroblasts are important 
for cardiac fibrosis development, including epicardial-derived Sca1+ Gli1+ (Farbehi et al., 
2019; Soliman et al., 2020), as well as Fibroblast activation protein α-expressing subsets. 
Clinically relevant marker podoplanin (Pdpn) is highly expressed in human ischemic 
cardiomyopathy patients and when inhibited in mice, post-infarction repair is promoted 
(Cimini et al., 2019).

Fibroblast-targeting therapies
Promoting regenerative healing

While robust mechanisms exist to repair injuries in mammals, they often culminate with 
fibrosis, which presents a major clinical challenge. Currently approved antifibrotic therapies 
target fibroblast activation in established disease and are not able to restore the architecture 
and function of diseased tissues. Thus, the development of strategies aimed at promoting 
repair of injured tissues would significantly advance the field. In this light, chronic non-
healing wounds of the skin offer an opportunity to intervene because they can be diagnosed 
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at an early stage. To date, however, the only FDA approved growth factor for chronic 
diabetic foot ulcers is the gel preparation of low doses of recombinant PDGF, which in 
clinical studies significantly decreases the time to healing (Steed, 2006). Yet, this treatment 
has limited impact on other forms of non-healing skin ulcers, such as pressure ulcers 
(Yamakawa and Hayashida, 2019). Several other studies have shown promising results with 
other growth factors in animal models, but clinical trials did not prove effective in humans, 
which may reveal the difference in tissue repair strategies between human and murine skin 
(Yamakawa and Hayashida, 2019).

Mechanical tension may also be a therapeutic target to improve tissue repair and promote 
regeneration. Deletion of the mechanically sensitive focal adhesion kinase (FAK) in 
fibroblasts can reduce scar formation in mice. Interestingly, mechanical offloading can 
improve wound repair in pigs (Gurtner et al., 2011) and a study inhibiting the mechanically 
sensitive transcription factor Yes-associated protein (YAP) in mouse skin fibroblasts 
promotes scarless wound healing and tissue regeneration, including hair follicle regeneration 
(Mascharak et al., 2021). Yap inhibition has also been shown to abrogate liver, lung, and 
kidney fibrosis in animal models, suggesting that targeting mechanically sensitive pathways 
might shift scarring repair to a more regenerative healing process.

While the plasticity of fibroblasts can be problematic in the context of fibrotic diseases, 
it also presents an opportunity for regenerative interventions. This realization has driven 
recent efforts to restore tissue anatomy and function by reprogramming fibroblasts in 
vivo in situ via molecular strategies, that include direct reprogramming. In the context 
of skin wounds, the innate ability of fibroblasts to become supportive of hair follicle 
regeneration can be induced by transcriptional reprogramming. For example, temporally 
induced supra-physiological activation of Hedgehog signaling in wound fibroblasts in 
mice can potently enhance their ability to acquire DP fibroblast identity, which results 
in regeneration of large numbers of hair follicle-like structures both in large and in 
small wounds (Lim et al., 2018). Similar results have also been achieved by deleting the 
transcriptional repressor Hic1 in fibroblasts (Abbasi et al., 2020) or following fibroblast-
specific overexpression of Lef1 (Phan et al., 2020). “Deeper” trans-lineage reprogramming 
of fibroblasts into keratinocytes in skin wounds in situ is possible upon viral transduction 
with keratinocyte lineage-associated transcription factors Dnp63a Grhl2, Tfap2a and Myc, 
producing fibroblast-derived epidermis and enhancing wound re-epithelialization in mice 
(Kurita et al., 2018).

Analogous proof-of-principle examples of therapeutic in vivo reprogramming of fibroblasts 
have been shown in the liver and heart. Viral delivery of transcription factors, such 
as Foxa3, Gata4, Hnf1a and Hnf4a, to myofibroblasts in liver reprograms them into 
hepatocyte-like cells and reduces signs of liver fibrosis in the mouse model (Rezvani et 
al., 2016; Song et al., 2016). Likewise, virally delivered Gata4, Mef2c and Tbx5 induces 
direct reprogramming of heart-resident fibroblasts into cardiomyocytes in vivo, resulting in 
reduced fibrosis and improved cardiac function in a mouse model of myocardial infarction 
(Miyamoto et al., 2018). The above examples clearly highlight the therapeutic potential of 
direct reprogramming of tissue-resident fibroblasts into “worker” cells and suggest it as a 
novel scar-replacement strategy. However, several important issues, including efficiency of 
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reprogramming factor delivery using non-integrative vectors and high fibroblast specificity 
if not exclusivity, will need to be solved for this attractive approach to be deemed safe for 
clinical applications.

Conclusions and Perspectives
The last several decades have seen remarkable progress in the understanding of fibroblast 
biology across organs and conditions. The field has progressed from phenotypic studies 
of cultured cells performed more than a century ago to complex genetic and functional 
observations in vivo that have been facilitated by new methods and techniques. These 
advances have revealed unexpected similarities and unique characteristics of fibroblasts 
across diverse organs such as the skin, lung, heart, and skeletal muscle that are currently 
being leveraged for the treatment of human disease.

Despite this progress, many questions and opportunities remain. For example, ongoing 
efforts employing single-cell multi-omic and spatial genomic technologies will provide key 
insights into fibroblast heterogeneity within and across tissues as well as their ability to 
assume multiple functional states in response to physiological or disease triggers. As our 
appreciation of essential fibroblasts’ functions extends well beyond ECM synthesis, so 
does the excitement over novel therapeutic possibilities that modulating them in situ can 
bring for a broad spectrum of diseases characterized by aging, pathologic remodeling, and 
tissue fibrosis. Emerging areas of investigation, including cross-regulation between wound 
fibroblasts, immune cells, and peripheral nervous system will be critical for understanding 
how to restore tissues to their pre-injury state. Finally, effective clinical translation will 
require rigorous verification in native human tissues and in human-like models such as 
organotypic cultures, xenografts and pluripotent cell-derived organoids. These and other 
advances will enable new approaches to the prevention, treatment, and perhaps reversal of 
fibrotic conditions by the achievement of appropriate and controlled repair.
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Figure 1. Summary of fibroblast outputs and functions.
Key functions for fibroblasts (shown in the center) and their mesenchymal lineages include 
extracellular matrix (ECM) secretion and remodeling (A), secretion of signaling factors for 
surrounding cells (B), mechanical force generation (C), and regulation of tissue metabolism 
and metabolite secretion (D). Fibroblasts also function as progenitor cells for mesenchymal 
lineages (E), as “makers” of new tissue during organ morphogenesis, tissue repair and 
upon various pathological conditions (F), as sources of positional information across distinct 
anatomical regions of the same organ and as key signal contributors toward stem cell niches 
(G), as well as target cells and reciprocal modulators of diverse innate and adaptive immune 
functions (H).
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Figure 2. History of fibroblast discovery.
A. First drawing of fibroblasts by Rudolf Virchow as “spindle-shaped” cells embedded 
within the connective tissue of pig embryo. Modified from Virchow (1858). B. Drawing by 
Ernst Ziegler, who first proposed the term “fibroblast” to describe cells that produce new 
connective tissue upon healing. Various forms of cells in the new granulation tissue are 
shown. Mononuclear fibroblast-shaped cells are in the bottom left corner. Modified from 
Ziegler (1895). C. Drawing of fibroblasts as fusiform cells within newly formed connective 
tissue of a “painful” keloid. Modified from Cajal (1896). D. Microphotograph of fibroblasts 
established from embryonic chick heart explant. Cells after 75 passages are shown. Modified 
from Ebeling (1913).
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Figure 3. Key roles of PDGF, TGFβ and WNT signaling pathways in regulating fibroblast 
functions.
Platelet derived growth factor (PDGF) signaling (blue) regulates diverse aspects of fibroblast 
development and homeostasis, including epithelial-to-mesenchymal transition (EMT) in the 
embryonic heart, long-term self-renewal, and proliferation in adult tissues. Signaling via the 
transforming growth factor β (TGFβ) superfamily of ligands promotes myofibroblast state 
activation, including contractile protein and extracellular matrix (ECM) gene expression. 
Among other effects, TGFβ superfamily signaling can induce fibroblast proliferation and 
lineage transitions by other cells toward a fibroblast state, including via EMT in the lung. 
WNT signaling regulates fibroblast proliferation, migration, myofibroblast state activation, 
and ECM deposition. All three pathways can activate transcription of genes to control 
fibroblast biology and TGFβ activates Akt and RhoA to induce cellular contraction.
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Figure 4. Diverse cellular sources of myofibroblasts.
Diverse tissue resident mesenchymal cells, including specialized fibroblast progenitors, 
pericytes and adipocytes can become activated and undergo reversible conversion toward 
a myofibroblast state. Examples of lung, skeletal muscle and skin are provided.
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Figure 5. Organ-specific fibroblast organization and lineage relationships.
A. In the skin, diverse fibroblast types reside within its dermal layers, in dermal 
white adipose tissue and in association with hair follicles. During skin development, a 
common mesenchymal progenitor gives rise to dermal fibroblast progenitors that further 
specify toward fibroblasts of papillary and reticular dermis and hair follicle-associated 
fibroblasts, and to adipocyte precursors of dermal adipose tissue. B. In the lung, diverse 
fibroblasts associate with alveoli at the end of the branched epithelium, bronchioles and 
vasculature. During lung development, common cardiopulmonary progenitors generate a 
diverse array of fibroblasts, including mesothelial cells of the pleura, alveolar fibroblasts that 
support gas-exchanging epithelium, lipid droplet-containing lipofibroblasts, peribronchiolar 
and perivascular smooth muscle cells. C. Skeletal muscle fibroblasts, fibro-adipogenic 
precursors, and pericytes lie in the space between muscle fibers. Several developmentally 
distinct embryonic mesenchymal progenitors give rise to fibro-adipogenic precursors 
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that, in turn, serve as long-lasting sources for muscle-associated fibroblasts as well as 
adipocytes upon aging and diseased states. D. Cardiac fibroblasts and pericytes reside 
between cardiomyocytes. During development, cardiac fibroblasts form from epicardial 
and endocardial epithelial cells via epithelial-to-mesenchymal transition (EMT) and 
endothelial-to-mesenchymal transition (EndMT), respectively. In A-D arrows indicate 
lineage relationships.
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