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Resilience Enhancement of Electric Power
Distribution Grids against Wildfires

Mostafa Nazemi, Student Member, IEEE, Payman Dehghanian, Senior Member, IEEE,
Mohannad Alhazmi, Student Member, IEEE, and Yousef Darestani

Abstract—Wildfires have been growingly recognized as a
prominent threat in regions with high temperatures during the
summer. Power distribution systems, especially those passing
through forest regions, are exposed and highly vulnerable to
wildfires. This paper applies a general formulation to enhance the
operational resilience of power distribution networks equipped
with renewable energy resources (RESs), e.g., wind and solar
energy, micro turbines (MTs) as well as energy storage systems
(ESSs) when exposed to progressive wildfires. The wildfire event
is characterized comprehensively and the dynamic line rating
(DLR) of overhead distribution branches is used to model the
impacts of wildfires on distribution power lines. A scenario-
based optimization formulation is applied to tackle the system
prevailing uncertainties. The applied framework is evaluated on
the IEEE 33-node test system and the numerical results reveal
the promising efficacy of the methodology.

Index Terms—Power distribution systems; wildfire hazards;
distributed energy resources; resilience.

NOMENCLATURE

A. Abbreviations

DLR Dynamic line rating
ESSs Energy storage systems
RESs Renewable energy resources
MTs Micro-turbines
PV Photovoltaic energy
WT Wind turbine
SoC State of charge

B. Sets and Indices

i, j ∈ NB Indices/set of nodes.
ij ∈ L Indices/set of distribution lines between nodes

i and j.
t ∈ NT Indices/set of time periods.
NB, NT, NL Number of all nodes, time periods, and

branches.
ω ∈ Ω Index/set of scenarios.
S Set of all PV panels.

C. Parameters and Constants

1) Fire Parameters:
T f Flame zone temperature (◦k).
νf Fire front length (m).
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αf Fire tilt angle (rad).
ρb The bulk density of the fuel (kg/m3).
εf Flame zone emissivity.

2) Environmental Conditions:

τ Dimensionless atmospheric transmissivity.
B Stefan-Boltzman constant (W/m2K4).
V wind Wind speed (m/s).
σwind Angle between the fire and power line conduc-

tors (rad).
T a Ambient temperature (◦k).
ka Thermal conductivity of air (W/mK).
µα Air dynamic viscosity (kg/ms).
ρα Air density (kg/m3).
K0 Shape index of the Weibull distribution.
C Scale index of the Weibull distribution.

3) Conductor Specifications:

mCp Total heat capacity of conductor (J/mK).
D Conductor diameter (m).
K Solar absorptivity.
φsun Solar radiation rate (W/m2).
Rij,a Ambient line resistance.
Tmax Maximum permitted conductor temperature

(◦k).

4) Price and Costs:

VoLL Value of lost load ($/MWh).
cD Selling electricity price ($/MWh).
cMT MTs generation cost ($/MW).
csu/sd MTs switching cost ($).

5) Power Distribution System Components:

P demand
i,ω,t Real power demand at node i at time t (MW).
Qdemand
i,ω,t Reactive power demand at node i at time t

(MVar).
nST Conversion efficiency of ESSs.
EST Energy capacity of ESSs (MWh).

D. Functions and Variables

1) Fire Model:

θfij,t View angle between fire and conductor line ij
at time t (rad).

dfij,t Distance between fire and line ij at time t (m).
V ft Fire spread rate (m/s) at time t.
Tij,t Conductor temperature of line ij at time t (◦k).
χft Radiative heat flux at time t (W/m2).
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2) Heat Gain and Loss:
qline
ij,t Resistance heat gain rate of line ij at time t

(W/m).
qsun
ij,t Solar heat gain rate of line ij at time t (W/m).
qfire
ij,t Fire heat gain rate of line ij at time t (W/m).
qcon
ij,t Convection heat loss rate of line ij at time t

(W/m).
qrad
ij,t) Radiation heat loss rate of line ij at time t

(W/m).
3) Power System Model:
pDi,t, q

D
i,t Real and reactive power supplied at node i at

time t (MW, MVar).
P fl
ij,t, Q

fl
ij,t Real and reactive power flow on branch ij at

time t (MW, MVar).
SoCSTi,t SoC of ESS at time t.
pCh
i,ω,t, p

DC
i,ω,t Charging and discharging power of ESS at

node i at time t (MW).
pMT
i,t , q

MT
i,t Real and reactive power output of MT at node

i (MW, MVar).
PWT
i,t , P

S
i,t Real power output of WT and PV at node i at

time t (MW).
Vsqri,t Squared voltage magnitude at node i at time t

(kV2).
pshed
i,t , q

shed
i,t Real and reactive load shedding at node i at

time t (MW, MVar).
pUP
t Active power exchange with the upstream net-

work at time t (MW).

E. Binary Variables

αij,t Connection status of branch ij at time t (1 if
the branch is connected, 0 otherwise).

uSoC
i,t Charging and discharging status of ESS at node

i at time t (1 if charging, 0 otherwise).
ui,t Status of MT at node i at time t (1 if the MT

is generating, 0 otherwise).
ϕUP
t Buying or selling energy from/to the up stream

network at time t (1 if buying, 0 otherwise).

I. INTRODUCTION

THE growing severity and duration of power outages
triggered by wildfires impose an adverse impact on

the operation of multiple life-line networks and results in
significant financial risks. For instance, in May 2016, a wildfire
was initiated in Alberta, Canada. The direct financial loss to
insurance providers from the great Alberta fire was estimated
at about $3.7 billion [1]. In October 2017, a series of wildfires
started to burn across the wine county of Northern California.
These wildfires caused at least $9.4 billion in insured damages
and the death of 44 people [2]. In fiscal year 2017, the cost of
battling blazes topped $2.4 billion [3]. For the first time in its
110-year history, the U.S. Forest Service is spending more than
50 percent of its budget fighting wildfires [4]. The California
Department of Forestry and Fire Protection reports that the
2018 Woolsey and Camp fires caused $4 billion and $11
billion in damages, respectively [5]. In addition, wildfire risks
in October 2018 and 2019 forced Pacific Gas and Electric to

anticipatively cut off electricity to a sizable number of end-use
consumers in high-risk areas in northern California, resulting
in missed opportunity costs though no wildfires happened
[6]. Therefore, one can notice that maintaining the nation’s
electric power system resilience against wildfires and ensuring
a reliable, secure, and sustainable supply of electricity during
such threatening events are among the top priorities for the
electric power industry.

Several papers in the literature have studied the power
system’s resistance to severe fire conditions. Among which,
the thermal rating of the at-risk power lines was dynamically
adjusted in [7] to reduce the line heat gained from the
fire. In order to model the effect of wildfires on conductor
temperature and consequently on the flowing current, reference
[8] suggested a DLR mechanism for overhead lines. Reference
[9] proposed a technique for quantifying the destruction caused
by wildfires to electric distribution grids. In [10], [11], a
strategy for optimal distribution system operation in the face
of a huge fire is introduced, where the operating performance
of microgrids and the role of demand response programs
are investigated. Reference [12] examines different faults and
situations that contribute to wildfire ignition, establishing the
mathematical relation between the wind speed and fire ignition
risk. A statistical characterization model is developed in [13]
to demonstrate the relationship between continuous ignition of
a dry fuel bed and multiple determining parameters such as
wind speed, fuel moisture content, and arc length. While the
models in [11]–[14] are important to understand the wildfire
ignition problem, the literature lacks a comprehensive model
that characterizes wildfire propagation and its impacts on
overhead line’s temperature in power distribution systems.

The wildfire impacts on power transmission and distribution
lines are not limited to the actual destruction of the structures.
In case of a major wildfire, such as one in a forest, the wooden
poles would most likely catch fire and the conductors would
melt. However, there are many small or moderate wildfires
with a long front length in areas with low-height combustibles
that pose thermal stress on overhead wires where even if
there is no physical damage to the system, the flame and
smoke may have an indirect effect on the line’s transmitting
capability [15]. Furthermore, an increase in the conductor’s
surface temperature will influence the conductor’s rate of
annealing and decrease its tensile strength. Therefore, it is vital
to develop a comprehensive methodology to study the dynamic
operation of microgrids in face of massive wildfires. This
paper focuses on the resilient operation of power distribution
systems exposed to an approaching wildfire where a DLR
model is developed based on [8] to capture the impacts of
wildfire on the conductor’s temperature.

The rest of the paper is organized as follows. Section II
introduces a general wildfire model while the problem formu-
lation is provided in Section III. Numerical case study and
simulation results on a modified IEEE 33-bus test system are
demonstrated in Section IV. The paper is eventually concluded
in Section V.
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Fig. 1. The big-picture architecture of the problem.

II. WILDFIRE MODELING FORMULATION

The big picture of the applied framework is shown in Fig.
1. The applied framework consists of two stages. In the first
stage, the progressive wildfire is modeled based on the DLR
concept [8] where the dynamic temperature of conductors is
determined per the heat gain and loss in different time periods.
In stage 2, the optimization problem formulation is applied
where different types of constraints related to power system
operation and fire behavior are included, linearized, and then
convexified to be solved by off-the-shelf optimization solvers.
The details of each stage are presented in the following.

A. Wildfire Model

The applied wildfire model used in this paper is compre-
hensively introduced for the first time in [8]. Wildfire heat
is transferred through radiation and convection. Convective
transmission is not of concern in this paper since it influences
the temperature of the conductors only when the fire is exactly
under the overhead line. The radiative heat flux χf from the
entire flame transmitted to a conductor is then calculated using
the geometry of the flame and the fire front properties as
follows:

χf
ij,ω,t =

τ · εf ·B · T f4

2
· sin(θfij,ω,t) (1)

where τ , εf and B are all parameters related to the environ-
ment. T f is the temperature of the fire front set as 1200◦k
[16], and θf is the view angle between the threatened line
and the fire front expressed in the following:

θfij,ω,t = tan−1(
νf · cos(αf )

dfij,ω,t − (νf · sin(αf ))
) (2)

where νf represents the length of the fire and df indicates the
distance between wildfire and the affected conductor which is
computed in (3).

dfij,ω,t = dfij,ω,t−1 · V
f
ω,t ·∆t · cos(σwind

ij,ω,t) (3)

V f
ω,t =

k · (1 + V wind
ω,t )

ρb
(4)

V f (m/s) is the specific rate of flame spread in wildland on a
flat ground that depends on the wind speed V wind(m/s). ρb is
the bulk density of the fuel equal to 40 kg/m3 in the forest. k
is equal to 0.07 for wildland fire and 0.05 for wood crib [7].

Fig. 2. Illustration of different types of heat gain and heat loss for a conductor
in the event of wildfire.

B. On the Concept of DLR

According to [8], the power line conductor’s total heat is
the multiplication of coefficients and heat loss rates— i.e., the
convective heat loss rate qcon, the radiative heat loss rate qrad—
, as well as heat gain rates—i.e., ohmic losses resistance of the
power line qline, radiative heat flux from fire qfire and solar heat
gain rate qsun. Figure 2 illustrates different types of heat gain
and loss for a power line conductor. Therefore, any changes
in the temperature at any time interval is calculated using the
following non-steady-state heat equation which is a first-order
nonlinear differential constraint:

(Tij,ω,t+1 − Tij,ω,t) =
∆t

mCp
· (qline

ij,ω,t + qsun
ij,ω,t + qfire

ij,ω,t

−qcon
ij,ω,t − qrad

ij,ω,t)

(5)

Each of the above terms are explained as follows.
1) Heat Gain: In the given equation, the heating terms

are the solar heat energy that the conductor can absorb, the
resistive thermal energy produced by currents flowing through
the power line conductor, and the fire radiation heat measured
as follows:

qsun
ij,ω,t = Dij ·Kij · φsun

ij,ω,t (6)
qline
ij,ω,t = Rline(Tij,ω,t) · (Iij,ω,t)

2 (7)
qfire
ij,ω,t = Dij · χf

ij,ω,t (8)

In equation (6), Dij is the diameter of the conductors and
φsun
ij,ω,t is the sun radiation rate. Kij is the solar absorptivity

that varies between 0.27 for the bright stranded aluminum
conductor and 0.95 for the weathered conductor in an indus-
trial environment. A value of 0.5 is often used if nothing is
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known about the conductor absorptivity [17]. In equation (7),
Rline(Tij,ω,t) reflects a function that describes the relationship
between the resistance of the power line conductor and its
temperature. Rij,a is the resistance of the line at ambient tem-
perature Tij,a (298◦k). dij is the conductor thermal resistant
coefficient.

Rline(Tij,ω,t) = Rij,a · (1 + dij · (Tij,ω,t − Tij,a)) (9)

2) Heat Loss: The last two terms in (5) account for the
cooling down of the power line conductor. The convection
loss in this paper is considered as the conductor is cooled
down via a cylinder of moving air around the conductor. The
convection heat loss is the largest value between high-speed
wind qcon

ij,ω,t,(high) and low-speed wind qcon
ij,ω,t,(low) according to

the IEEE standard [18]. Equations (10) and (11) represent the
calculation of the convection loss.

qcon
ij,ω,t,(high) = Kangle · 0.754 ·N0.6

Re · ka · (T − T a) (10)

qcon
ij,ω,t,(low) = Kangle · [1.01 + 1.35 ·N0.52

Re ] · ka · (T − T a)
(11)

The magnitude of the equation depends on NRe, the Reynolds
number and wind direction factor Kangle given by:

NRe =
Dij · ρα · V wind

ω,t

µα
(12)

Kangle = 1.194− cos(σwind
ij,ω,t) + 0.194 cos(2σwind

ij,ω,t)

+0.368 sin(2σwind
ij,ω,t)

(13)

Next, the cable radiated heat rate can be described by the
following equation:

qrad
ij,ω,t = 17.8Dij · ε · [(Tij,ω,t

100
)4 − (

Tij,a
100

)4] (14)

More detailed information is available in [8], [19].

III. PROBLEM FORMULATION

A. Optimization Problem Formulation

Based on [8], [19], a linear optimization model is used to
boost the power distribution system resilience in the face of
progressive wildfires. Although resilience is directly linked to
load outages [20], operating costs should also be considered
to ensure the most cost-effective solution during the emer-
gency operating conditions when facing a progressive wildfire.
Therefore, the objective function is designed to minimize the
expected cost as expressed below:

min(

NT∑
t=1

NΩ∑
ω=1

πω ·
NB∑
i=1

(VoLL · pshed
i,ω,t − cD · pDi,ω,t)

+

NT∑
t=1

NΩ∑
ω=1

πω ·
NB∑
i=1

(cMT · pMT
i,ω,t) +

NT∑
t=1

NB∑
i=1

(suMT
i,t + sdMT

i,t ))

+

NT∑
t=1

NΩ∑
ω=1

πω · cUP
t · (p

UPB
ω,t − p

UPS
ω,t )

(15)

In the first line, VoLL ·pi,ω,t represents the load shedding cost
and cD · pDi,ω,t indicates the revenue from providing energy

to the end customers. The second and third terms represent
the generation, start-up, and shut down costs of MTs. The last
term represents the power exchange cost with the upstream
network. To optimally operate the power distribution network
during a progressive wildfire event, multiple constraints should
be considered as described in the following.

1) Distributed Energy Constraints: RESs, i.e., wind and
solar energy, is considered in this paper that can be utilized
when the fire hits the power distribution grid. To tackle
the uncertain nature of RESs, the Weibull and von Mises
distributions are considered. Suppose that the wind speed
V wind is a stochastic quantity with the following probability
density function:

f(V wind) =
K0

Ck
· V K

0−1 · e(−V/C)K
0

(16)

where K0 and C are the shape index and the scale index of the
Weibull distribution. In this paper, a k-factor of 2 and standard
deviation equal to 15% of the mean value are considered
for wind speed and direction as well as solar illumination
which can be used as inputs to the optimization engine. The
relationship between the output power of a wind generating
unit and the wind speed can be formulated as follows:

PWT
i,t = 0, 0 ≤ v ≤ vci or vco ≤ v

PWT
i,t = Pwrated · (

v − vci
vr − vci

), vci ≤ v ≤ vr

PWT
i,t = Pwrated, vr ≤ v ≤ vco

(17)

Where v is the wind speed at the hub height of the wind unit;
vci, vco, and vr are, respectively, the cut-in wind speed, the
cut-out wind speed, and the rated wind speed; and Pwrated is the
rated output power of the wind unit [21].

As for the solar power, the illumination intensity is usually
considered the dominant factor affecting the output power
of the solar panel. The relationship between the illumination
intensity and the output power of a solar generating unit can
be described as follows:

PSi,t = PSrated · (
S

Sr
), 0 ≤ S ≤ Sr

PSi,t = PSrated, Sr ≤ S
(18)

Where S is the illumination intensity, Sr is the rated value,
and PSrated indicates the rated output power of the solar cells.

2) MTs Constraints: The active and reactive output power
of MTs and their start-up and shut-down costs have to be
considered as follows to guarantee the power balance in the
system at the minimum cost.

pMT
i(min) · u

MT
i,t ≤ pMT

i,ω,t ≤ pMT
i(max) · u

MT
i,t (19)

qMT
i(min) · u

MT
i,t ≤ qMT

i,ω,t ≤ qMT
i(max) · u

MT
i,t (20)

sdMT
i,t ≥ cSDi · (uMT

i,t − uMT
i,t−1) ≥ 0 (21)

suMT
i,t ≥ cSUi · (uMT

i,t − uMT
i,t−1) ≥ 0 (22)

where (19) and (20) determine the maximum and minimum
limits for active and reactive power of MTs, respectively;
equations (21) and (22) reflect the start up and shut down
costs of the turbines, respectively. The binary variable ui,t is
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used to determine the status of MTs, i.e., 1 for start up and 0
for shut down and the corresponding costs cSDi and cSUi are
considered the same.

3) ESSs Constraints: The operation constraints of ESSs can
be expressed as follows.

SoCSTi,ω,t = SoCSTi,ω,t−1 + (
nSTi · pCh

i,ω,t · ( ∆t
3600 )

ESTi
)−

(
pDC
i,ω,t · ( ∆t

3600 )

nSTi · ESTi
))

(23)

SoCSTi,(min) ≤ SoCi,ω,t ≤ SoCSTi,(max) (24)

0 ≤ pCh
i,ω,t ≤ pCh

i,ω,t,(max) · u
SoC
i,ω,t (25)

0 ≤ pDC
i,ω,t ≤ nSTi · pDC

i,ω,t,(max) · (1− u
SoC
i,ω,t) (26)

qESS
i(min) ≤ q

ESS
i,ω,t ≤ qESS

i(max) (27)

SoCSTi,ω,tend
≥ SoCthre (28)

In the equations above, (23) calculates the SoC of ESSs. The
limitation on the SoC of ESSs is set by (24). Constraints (25)
and (26) guarantee that the active charged or discharged power
by ESSs is within the limits considering their operation mode.
Constraint (27) represents the reactive power limits of ESSs.
Constraint (28) is to ensure that the SoC of ESSs is above
a certain threshold SoCthre at the end of the simulation. nSTi
is the conversion efficiency of the ESSs, ESTi represents the
energy capacity, pCh

i,ω,t and pDC
i,ω,t are respectively the charging

and discharging active power of the ESS, and ∆t is the
duration of time intervals.

4) Power Balance Constraints: Each node should maintain
a real and reactive power balance between the generated power
and the demanded electricity.

NB∑
i=1

P fl
i,ω,t = pMT

i,ω,t + pWT
i,ω,t + psi,ω,t + pUP

ω,t + pCh
i,ω,t

−pDC
i,ω,t − pDi,ω,t

(29)

NB∑
i=1

Qfl
i,ω,t = qMT

i,ω,t + qCh
i,ω,t − qDi,ω,t (30)

−M1 ∗ ulij,ω,t ≤ P fl
ij,t ≤M1 ∗ ulij,ω,t (31)

−M1 ∗ ulij,ω,t ≤ Qfl
ij,t ≤M1 ∗ ulij,ω,t (32)

Constraints (31) and (32) allow the power flow through each
line only when ulij,ω,t is equal to 1 meaning the line is online.
The large-enough positive number M1 is a relaxation param-
eter. The variables pDi,ω,t and qDi,ω,t are the supplied active and
reactive power to the customers which are calculated by the
load shedding pshed

i,ω,t subtracted from the original demand at
each node P demand

i,ω,t in (33) and (34).

pDi,ω,t = P demand
ω,t − pshed

ω,t (33)

qDω,t = Qdemand
ω,t − qshed

ω,t (34)

0 ≤ pshed
i,ω,t ≤ P demand

i,ω,t (35)

qshed
i,ω,t = pshed

i,ω,t ·
Qdemand
i,ω,t

P demand
i,ω,t

(36)

In (29), the active power pUP
ω,t represents the power exchange

with the upstream system during the optimization. It depends
on the energy purchases from or sold to the main grid and
needs to be limited as shown in (37), (38), and (39). The
binary variable ϕUP

ω,t is used to determine buying (1) or selling
(0) energy during the considered time horizon.

pUP
ω,t = p

UPbuy
ω,t − p

UPsell
ω,t (37)

0 ≤ pUPbuy
ω,t ≤ p

UPbuy
max · ϕUP

ω,t (38)

0 ≤ pUPsell
ω,t ≤ pUPsell

max · (1− ϕUP
ω,t) (39)

B. Convexification and Linearization

The heat gain due to the ohmic losses presented in (7), is the
multiplication of current flow square and conductor resistance.
For an ohmic conductor, as shown in (9), the resistance can
be calculated by a function of conductor temperature. In order
to convexify the heat caused by the current, we consider that
the resistance of the conductor is a constant value equal to
its maximum at the highest temperature Tij,(max). Also, the
voltage is considered close to 1 p.u.. Applying this method,
the current flow is equal to the apparent power flow and the
equality constraint (7) is relaxed to the following inequality.

qline
ij,ω,t ≥ Rline(Tij,(max) · (|P fl

ij,ω,t|2 + |Qfl
ij,ω,t|2) (40)

The radiation heat loss rate can be piece-wise linearized.
The radiation heat loss depends on the fourth power of
the conductor temperature as shown in (14). To piece-wise
linearize this term, it is written as a function of the conductor
temperature with a domain between the maximum conductor
temperature and the ambient temperature. The radiation heat
rate is finalized as in below:

qrad
ij,ω,t = a · Tij,ω,t + b (41)

where a and b are the coefficients used in the radiated heat
loss rate.

Based on the DistFlow branch equations in [22], constraint
(42) and (43) represent the power flow equation. The large-
enough positive number M2 is a relaxation parameter to relax
these two constraints for open branches. Constraint (44) states
the boundary for the nodal voltage magnitudes across the
power distribution network.

Vsqri,t − Vsqrj,t ≤ (1− αij,t) ·M2+

2 · (rij · P fl
ij,t + xij ·Qfl

ij,t), ∀ij ∈ L, ∀t ∈ T
(42)

Vsqri,t − Vsqrj,t ≥ (αij,t − 1) ·M2+

2 · (rij · P fl
ij,t + xij ·Qfl

ij,t), ∀ij ∈ L, ∀t ∈ T
(43)

Vsqr
i
≤ Vsqri,t ≤ Vsqri, ∀i ∈ B, ∀t ∈ T (44)

IV. CASE STUDY AND NUMERICAL RESULTS

A. Test System Properties and Simulation Data

A modified IEEE 33-node test system [23] is considered
to illustrate the effectiveness of the applied framework for
resilient operation of the power distribution grids when fac-
ing wildfires. The single-line diagram of the considered test
system is illustrated in Fig. 3. The test system is assumed
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TABLE I
SIMULATION RESULTS FOR DIFFERENT NUMBER OF SCENARIOS

# of
Scenarios

Objective
Function ($×103)

Load
Shedding (MW)

Computation
Time (s)

10 -52.31 2.52 21.5
50 -52.32 2.67 791.56
100 -52.95 2.96 3802.5

to be a balanced distribution grid with active peak demand
equal to 11 MW. Since the distribution grid covers a small
geographical area, its components all are subjected to similar
environmental conditions. The location of ESSs, MTs, and
RESs are depicted in Fig. 3 and the capacity of the distribution
system components are taken from [8]. The cut-in, cut-out, and
rated wind speeds for WTs are 4, 20, and 12 m/s, respectively.
The PVs have a rated illumination intensity of 1000 W/m2.
The weather parameters and wildfire information are derived
from [7] and the wind and solar data are taken from [24],
[25]. The standard deviation is calculated to be 15% of the
mean value for wind speed and solar radiation and 5% of the
mean value for loads. The von Mises distribution is supposed
to have a k-factor of 2 [8]. The time step is considered 1
hour and the studied emergency horizon is 24 hours. The
initial distance of the fire from the affected power lines are
assumed as 1300 m and it is also assumed that the affected
lines will be out of service until the end of the time horizon
until which the fire will be suppressed. The SoC of the
ESSs is expected to remain greater than 30% of the full
potential, in order to contribute to demand fulfillment for
the next hours after the analysis. An ASCR type of power
line conductor is considered. The diameter and the maximum
acceptable temperature of the power line is considered equal to
21 mm and 353 K◦, respectively. All other data can be found
in [8], [19]. The optimization problem is performed using
CPLEX solver to handle the MILP optimization formulation.
A General Algebraic Modeling System (GAMS) environment,
using a PC with an Intel Xeon E5-2620 v2 processor, 16 GB
of memory, and 64-bit operating system is used to solve and
numerically analyze the results.

B. Resilient Operation of the Test System

The proposed framework in [8] is applied to this paper to
enhance the distribution grid resilience when a progressive fire
hits the grid. Different number of scenarios are considered
to tackle the stochasticity of wind speed, wind direction, and
solar radiation. For Case I, we assume that the fire only hits
and affects the line 1-2. The simulation results reveal that
line 1-2 will be out of order after t = 19 and the demand
is not fully met. The numerical results for different number
of scenarios are tabulated in Table. I. Since there is not a
big difference between the objective function with different
number of scenarios, the following analyses are presented with
10 number of scenarios. Note that in this paper, 10 number
of scenarios satisfies the need of uncertainty consideration in
wind speed, wind direction, and solar radiation. Figure 4
illustrates the expected energy exchange with the upstream

Fig. 3. Modified IEEE 33-node test system: The studied test system.

Fig. 4. Expected energy exchange with the main grid and the output generated
power by MTs during the 24-hour time horizon.

Fig. 5. Expected charging/discharging power and SoC of ESS at node 19.

network as well as the energy generated by MTs. One can
see from the results that after t = 16, the energy is sold to
the main grid since the cost of power generation by MTs is
much lower than the purchasing energy from the main grid.
Moreover, the expected energy exchanges drop significantly
after t = 18 because of the unavailability of line 1-2. The
expected discharging power and SoC of ESS at node 19 is
depicted in Fig. 5.

C. Sensitivity Analyses

The applied framework is generic enough to be applied for
the study of any distribution line approached by a progressive
wildfire. In this section, two different lines are considered to
be hit by the fire and we investigate how the system should
proactively operate to ensure a resilient performance during
the emergency. The expected energy exchange with the main
grid for different cases are shown in Fig. 6 where Case I is the
base case scenario when only line 1-2 is affected by wildfire,
while Case II: line 1-2 and line 2-3; Case III: line 8-9 and
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Fig. 6. Expected energy exchange for different cases.

line 9-10; and Case IV: line 3-23 and line 23-24 are assumed
to be affected by the approaching wildfire. It is observed from
Fig. 6, during the hours 15-24 when the wildfire hits the grid,
those different combinations of affected lines by fire result in
different expected energy exchange with the main grid. One
can realize that the worst scenario is when the approaching
fire hits line 1-2 and make the network isolated from the up-
stream network. For instance, the average of expected energy
exchange with the main network after t = 19 for Case II, Case
III, Case IV are respectively 0.0143, 6.6286, and 7.7714 MWh,
while the expected energy exchange for Case I is 0. Hence,
the role of ESSs, MTs, and RESs becomes much important
in Case I compared to other cases. For instance, after the
unavailability of line 1-2, MTs and ESSs supply respectively
18.69 and 1.3 MWh which highlights the importance and
necessity of optimally employing local energy resources for
resilience services during wildfire events.

V. CONCLUSION

This paper applied a general framework to enhance the
power distribution system’s operational resilience in the face
of wildfire hazards. In particular, different aspects of wildfire
are characterized first where DLR and the non-steady-state
heat balance equations were used to mathematically model the
impacts of wildfire on overhead power line conductor’s tem-
perature. The optimization model aimed to minimize the load
outages and the corresponding consequences in the grid during
wildfires. Different scenarios were fed into the mixed-integer
linear optimization formulation to overcome the prevailing
uncertainties of RESs distributed across the power distribution
network. The numerical results revealed that the load outage
could be remarkably reduced if the progressive wildfire is
characterized in advance and all local resources, i.e., RESs,
MTs, and ESSs, are strategically and optimally coordinated.
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