

Full Length Article

Surface engineered polar CeO₂-based cathode host materials for immobilizing lithium polysulfides in High-performance Li-S batteries

Zhen Wei, Junhao Li, Ruigang Wang*

Department of Metallurgical and Materials Engineering, The University of Alabama, Tuscaloosa, AL 35487, United States

ARTICLE INFO

Keywords:
 Li-S battery
 Shuttle effect
 CeO₂ nanocrystals
 Shape-controlled synthesis
 Host materials

ABSTRACT

The particle morphology of CeO₂ nanocrystals with different exposed crystal facets is a crucial factor influencing the surface-related materials performance. In this report, shape-controlled synthesis of CeO₂ nanocrystals with various preferentially exposed crystal facets (CeO₂ nanorods with (110)/(100)/(111), CeO₂ nanocubes with (100) and CeO₂ nanoctahedra with (111)) was conducted aiming to investigate the crystal plane effect of polar CeO₂ as a cathode host on the immobilization of lithium polysulfides and electrochemical performance of the assembled Li-S batteries. The strong chemical bonding between lithium polysulfides and CeO₂ host, including Ce-S and Li-O bonds formed on the exposed (110)/(100) and defected (111) crystal facets of CeO₂ nanorods during reversible electrochemical conversion from soluble long-chain polysulfides to insoluble short-chain Li₂S/Li₂S₂, results in superb diffusion restriction of lithium polysulfides towards Li anode and endows CeO₂ nanorods@CC electrode with a superior electrochemical property among three tested electrodes of CeO₂ nanorods@carbon cloth (CC), CeO₂ nanocubes@CC, and CeO₂ nanoctahedra@CC. However, such strong chemical interaction against polysulfides was not observed by CeO₂ nanocubes with preferentially exposed (100) crystal planes and CeO₂ nanoctahedra with preferentially exposed (111) crystal planes. In addition to the factor of the exposed crystal planes, CeO₂ nanorods possess defect-rich surfaces (i.e., oxygen vacancies and Ce³⁺) also serving as possible polysulfides anchoring sites, which can contribute to effective immobilization of lithium polysulfides. Benefiting from the above-mentioned advantages, CeO₂ nanorods are considered as an outstanding candidate of cathode host materials for long life and high-performance Li-S batteries.

1. Introduction

To effectively address the parasitic issues of highly polluted environment due to burning conventional fossil fuels, novel environmentally friendly and sustainable energy production and storage systems are urgently needed, i.e., replacing fossil fuels driven vehicles by electric vehicles. Rechargeable lithium-ion batteries (LIBs) have been extensively investigated and utilized over the past two decades since their commercial launch in the early 1990s by Sony. However, conventional LIBs have already reached their theoretical energy density (150–200 Wh kg⁻¹), so they are difficult to meet the continuously rising demands in fast-developing portable electronics, advanced electric vehicles and grid storage for intermittent renewable energy storage from solar and wind resources [1]. There is an urgent demand to develop rechargeable energy storage systems with excellent attributes such as low-cost fabrication, fast charging, great cyclability and high energy density. Lithium sulfur batteries (LSBs), considered as one of the most favorable

candidates to meet the above-mentioned requirements, have attracted ever-increasing attention due to their remarkably high theoretical capacity of 1675 mAh g⁻¹, high theoretical energy density of 2600 Wh kg⁻¹ and low cost of sulfur (\$40 per metric ton in 2020) [2–5]. Despite many favorable advantages of elemental sulfur cathode including non-toxicity, natural abundance and low cost, the practical large-scale commercialization of rechargeable LSBs is restricted by several intractable technical challenges, including (1) poor electronic conductivity of sublimed sulfur and lithium sulfide (Li₂S: discharge product) [6,7]; (2) formidable volumetric expansion of sulfur (~80%) during charge–discharge cycling process [6,7]; (3) highly soluble long-chain intermediate polysulfide species can easily dissolve into organic solvents upon the formation and huge loss of active materials is caused by the diffusion of a significant amount of dissolved intermediate polysulfide species from the cathode side to the lithium metal anode side, which is known as “shuttle effect” [6–11]. The combination of these technical challenges leads to fast capacity decay, low sulfur utilization and cycling

* Corresponding author.

E-mail address: rwang@eng.ua.edu (R. Wang).

instability of LSBs.

In order to mitigate those aforementioned technical limitations of LSBs, enormous efforts have been devoted to formulating and assessing the feasibility of a number of trapping strategies of lithium polysulfides. Firstly, incorporating insulating sublimed sulfur with highly conductive carbonaceous nanomaterials to fabricate multifunctional hybrid composites has been enormously successful in the field of LSBs, due to their remarkable physical confining capability against polysulfides and excellent electronic conductivity of carbon materials in various forms. Therefore, diverse high-surface-area carbonaceous host nanomaterials with various dimensionalities, sizes and morphologies were innovatively developed, including 0D microporous/mesoporous carbon particles [12], 1D carbon nanomaterials like multi-walled carbon nanotubes (MWCNT) [13] and 2D nanostructured layered carbon materials like graphene [14]. However, for long-term electrochemical cycling, limited restriction of polysulfide diffusion was achieved using the aforementioned diverse carbonaceous host nanomaterials due to their non-polar nature leading to weak affinity against lithium polysulfides species. Therefore, enormous attention has been paid to numerous metal sulfides, metal nitrides and metal oxides hosts and/or additives due to their polar-nature surface with strong polysulfides adsorption capability. Particularly, varied metal oxides (ZnO [15], Fe₃O₄ [16], V₂O₃ [17], Ta₂O₅ [18], and MnO [19]) have been reported to successfully entrap polysulfides, resulting in enhanced sulfur utilization and battery cell performance.

Recently, polar CeO₂ has been reported as effective polysulfides absorbent in the cathode of LSBs. For example, Ma et al. [20] reported that their assembled LSBs exhibited high reversible capacity of 1066 mAh g⁻¹ at 0.2C after 200 cycles and 836 mAh g⁻¹ at 1C after 500 cycles, with an efficient sulfur host material prepared by implanting CeO₂ nanocrystals homogeneously into well-designed bimodal micro- and meso-porous nitrogen-rich carbon nanospheres. Later Qi et al. [21] designed a hollow nanosphere structure with CeO₂/ultrathin nitrogen-doped carbon shells as sulfur host for LSBs, which demonstrated a high reversible capacity of 1348 mAh g⁻¹ at 0.2C and superior cycle stability (632 and 458 mAh g⁻¹ at 2C and 5C after 500 cycles, respectively). In another study, Xiao et al. [22] also achieved good specific capacities of 1359 and 715 mAh g⁻¹ at rates of 0.1C and 1C, respectively, using CeO₂-webbed carbon nanotubes (CeO₂@CNT) as sulfur absorbent for LSBs.

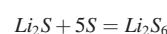
Meanwhile, the investigation of diverse CeO₂ nanocrystals with different morphologies including nanorods, nanocubes and nanoctahedra has been extensively conducted in the field of catalysis for various gas or chemical conversion applications such as ethanol reforming [23], CO oxidation [24], H₂ oxidation [25], catalytic ozonation [26], H₂S selective oxidation [27], dimethyl carbonate synthesis [28], 2-chloroethylsulfide degradation [29], HCl oxidation [30], and NO reduction [31] due to the crystal plane-dependent materials properties. Different nanoshaped CeO₂ has their own preferentially exposed crystal facets (thermodynamically stable or metastable), which is a significant determining factor influencing the catalytic activity and selectivity when used in the field of redox related catalysis. Typically, CeO₂ nanorods (CeO₂ NR) preferentially expose (110) and (100) or defected (111) crystal facets, CeO₂ nanoctahedra (CeO₂ NO) are enclosed by dominant (111) crystal planes and CeO₂ nanocubes (CeO₂ NC) only exhibit (100) crystal planes [32].

Recently, shaped-controlled synthesis of various metal oxide nanocrystals used in electrodes for diverse rechargeable battery systems such as LSBs [33,34], Na-ion batteries [35] and LIBs [36] has been investigated. It appears that the morphology and surface structure of metal oxide hosts or additives are important factors affecting electrochemical performance of the batteries due to their impact on various intrinsic properties such as surface area, adsorption, and redox related behavior. To the best of our knowledge, a comprehensive investigation on morphology-dependent electrochemical properties of surface-engineered CeO₂ nanocrystals used as sulfur host or additive for

rechargeable LSBs has not been conducted. Herein, morphology-controlled synthesis of diverse CeO₂ additives with different preferentially exposed crystal facets (CeO₂ NR with (110) and (100) and (111), CeO₂ NC with (100), and CeO₂ NO with (111)) was implemented aiming to understand the role of CeO₂ termination surfaces and surface defects on the electrochemical performance of the assembled LSBs. Hereinafter, the developed electrodes composed of self-supporting carbon cloth (CC) with decorated CeO₂ NR, CeO₂ NO and CeO₂ NC are refereed as CeO₂ NR@CC, CeO₂ NO@CC, and CeO₂ NC@CC respectively.

2. Experimental section

2.1. Preparation of CeO₂ NR@CC, CeO₂ NO@CC and CeO₂ NC@CC


The preparation of CeO₂ NR@CC and CeO₂ NC@CC was completed by an one-step *in situ* hydrothermal deposition method as previously reported [37]. Typically, 8 mL of 6.0 M aqueous NaOH (VWR, 99%) was added into 88 mL of 0.1 M Ce(NO₃)₃·6H₂O (Acros Organics, 99.5%) solution and subsequently the mixed solution was stirred vigorously for ~ 15 s. A free-standing carbon cloth (Fuel cell earth, 20 cm × 20 cm, thickness = 0.381 mm, density = 1.75 g/cm³) was firstly cut into a 3.5 cm × 3.5 cm piece and then placed into a 200 mL Teflon-lined autoclave before the mixed solution was poured into it. The hydrothermal synthesis was conducted in a programmable box furnace at 90 °C and 150 °C with a dwell time of 48 h to obtain CeO₂ NR@CC and CeO₂ NC@CC respectively. After the hydrothermal reaction, the autoclave was cooled down to room temperature, CeO₂ NR@CC and CeO₂ NC@CC were collected and washed thoroughly with DI water to eliminate Na⁺ and other residual ions. After rinsing, CeO₂ NR@CC and CeO₂ NC@CC were transferred into a vacuum drying oven and the samples were collected after drying at 60 °C overnight.

The preparation of CeO₂ NO@CC was achieved by a slightly different procedure compared to those of CeO₂ NR@CC and CeO₂ NC@CC. Firstly, CeO₂ NR powder was obtained by the hydrothermal reaction as described above. Subsequently, the CeO₂ NR powder was calcined at 600 °C for 6 h to fulfill a morphological conversion from nanorods to nanooctahedra. After the thermal calcination, CeO₂ NO powder was obtained. CeO₂ NO@CC was prepared by directly drop-casting the suspension solution containing CeO₂ NO powder onto free-standing carbon cloth. Finally, CeO₂ NO@CC was obtained after drying at 60 °C overnight. In this study, the loading content of CeO₂ was measured based on the difference between the mass of bare carbon cloth disc (diameter = 15 mm, ~21 mg) and the mass of loaded CeO₂ NR@CC disc (diameter = 15 mm, ~22 mg). Therefore, the content of CeO₂ in CeO₂ NR@CC can be calculated as: 22 mg-21 mg = 1 mg. The weight percentage of CeO₂ can be determined as:

$$\frac{1 \text{ mg}}{22 \text{ mg}} \times 100\% = 4.55\%$$

2.2. Preparation of Li₂S₆ solution and polysulfide adsorption test

1.0 M Li₂S₆ solution was prepared by directly adding sublimed elemental sulfur powder (Alfa Aesar, ≥ 99.5%) and Li₂S (Alfa Aesar, ≥ 99.9%) with a molar ratio of 5:1 into a liquid organic electrolyte containing 1.0 M lithium bis(trifluoromethane) sulfonimide (LiTFSI) (AdipoGen Life Sciences, ≥ 99%) and 0.5 M LiNO₃ (Alfa Aesar, 99.999%) mixed with dioxolane:dimethoxyethane (DOL:DME) (1:1 by volume ratio) (Alfa Aesar, 99%). To thoroughly dissolve sulfur and Li₂S, the previously obtained mixed suspension solution was heated on a hot plate at 60 °C for 24 h with vigorously stirring inside an Argon-filled glovebox. The final solution had a reddish color without apparent sediment. The chemical reaction involved is shown below:

Specifically, 0.002 mol (92 mg) of Li_2S and 0.01 mol (320 mg) of sulfur were dissolved into 2 mL blank electrolyte. After thoroughly stirring and heating, the reddish-colored solution containing 412 mg of Li_2S_6 was obtained. Theoretically, 1 μL of the reddish-colored solution contains 0.206 mg of Li_2S_6 . It is worth noting that sulfur is the active material and the amount of sulfur involved in 1 μL of the reddish-colored solution can be calculated through the equation below:

$$0.206 \text{ mg} \mu\text{L}^{-1} \times \frac{6 \times 32 \text{ gmol}^{-1} (\text{molar mass of sulfur})}{206 \text{ gmol}^{-1} (\text{molar mass of } \text{Li}_2\text{S}_6)} = 0.192 \text{ mg} \mu\text{L}^{-1}$$

To implement polysulfide adsorption test, 1.0 M polysulfide solution was diluted to 3.0 mM Li_2S_6 solution. 25 mg of CeO_2 NR, CeO_2 NO and CeO_2 NC powders were placed separately into three 2 mL vials of 3.0 mM Li_2S_6 solution. Photos were taken at the beginning of the test and after 1 h of adsorption.

2.3. Cell assembly

The previously obtained CeO_2 NR@CC, CeO_2 NO@CC and CeO_2 NC@CC were punched out into circular disks with 15 mm diameter. By measuring the mass change of the circular disks (diameter = 15 mm) with and without CeO_2 loading, the mass loading of different shaped CeO_2 nanocrystals can be determined. The corresponding mass loading of CeO_2 NR, CeO_2 NO and CeO_2 NC was properly controlled within the range (0.9 ~ 1.1 mg, corresponding to the areal density of 0.51 ~ 0.62 mg cm^{-2}). The circular disks of CeO_2 NR@CC, CeO_2 NO@CC and CeO_2 NC@CC were coated with a slurry prepared by mechanically mixing super P carbon black (Alfa Aesar, ≥ 99%) used as conductive agent and polyvinylidene fluoride (PVDF) used as binder in N-methyl-2-pyrrolidone (NMP) solvent, which was followed by vacuum drying at 60 °C overnight. For each circular disk (diameter = 15 mm), the mass loadings of the super P and PVDF binder were 0.9 and 0.1 mg, respectively. These three different shaped CeO_2 coated CC disks were used as the cathodes in this work. The CR2032 coin-type cell assembly was conducted in an Argon-filled glovebox with the oxygen and moisture levels lower than 0.1 ppm. Lithium metal and Celgard 2400 membrane were used as the anode and separator, respectively. Firstly, 9.2 μL of Li_2S_6 solution was dropped onto the disks (diameter = 15 mm, area = 1.77 cm^2) of CeO_2 NR@CC, CeO_2 NO@CC and CeO_2 NC@CC, fulfilling a sulfur mass loading of 1.77 mg (areal sulfur loading of 1 mg cm^{-2}). Then, 30 μL of the electrolyte (1.0 M LiTFSI and 0.5 M LiNO_3 dissolved in mixed DME and DOL solvent with a volume ratio of 1:1) was dropped onto each of the cathode disks. Next, the separator was placed on the top of the cathode disks, which was followed by adding another 30 μL of the electrolyte. Finally, the lithium metal anode was placed on the top of the cathodes.

2.4. Materials characterization

The morphological and structural characterization of the investigated CeO_2 NR@CC, CeO_2 NO@CC and CeO_2 NC@CC was carried out by using scanning electron microscopy (SEM, JEOL 7000 FE) coupled with an Oxford Instruments energy dispersive X-ray spectrometer (EDS). Transmission electron microscopy (TEM, FEI Tecnai F-20) operated at 200 kV was used to obtain the particle size, morphology and atomic level structures of CeO_2 NR, CeO_2 NO and CeO_2 NC. The preparation of TEM samples consists of several simple steps: firstly, ultrasonication of CeO_2 NR, CeO_2 NO and CeO_2 NC powders in ethanol using three 25 mL vials; secondly, dropping homogeneous CeO_2 NR, CeO_2 NO and CeO_2 NC suspension solution onto ultrathin carbon film attached to a 400-mesh copper grid (Ted Pella Inc.); finally, letting CeO_2 NR, CeO_2 NO and CeO_2 NC dispersion dry in a fume hood. The dried CeO_2 NR, CeO_2 NO and CeO_2 NC samples were directly used for TEM analysis. A Kratos Axis Ultra DLD spectrometer equipped with monochromatic Al K α radiation ($\hbar\nu = 1486.6$ eV) under ultra-high vacuum (10^{-10} Torr) was used to

perform X-ray photoelectron spectroscopy (XPS) analysis. The carbon peak C 1 s (284.8 eV) was used as a reference to calibrate the binding energy drift due to possible charging issue. CasaXPS software was used to implement the fitting and deconvolution of peak spectra. A Horiba LabRAM HR 800 Raman spectrometer equipped with a spectral window ranging from 100 to 1200 cm^{-1} and a 100 long-working-distance objective (NA = 0.60) was used to collect the Raman spectra. The calibration of Raman spectra was achieved by using a silicon single-crystal wafer as the reference (520.7 cm^{-1}).

2.5. Electrochemical measurement

Galvanostatic charge discharge cycling was implemented on an MTI battery tester within a voltage window ranging from 1.7 V to 2.8 V with various current densities ($1\text{C} = 1675 \text{ mAh g}^{-1}$). Cyclic voltammetry (CV) measurement within a voltage potential window of 1.7–2.8 V at a scan rate of 0.1 mV s^{-1} was carried out on a Gamry Potentiostat/Galvanostat workstation (Gamry Interface 1000E). Electrochemical impedance spectroscopy (EIS) measurement with a frequency range of 0.01–10⁵ Hz was implemented on the same Gamry Instrument. All the electrochemical measurements were conducted at room temperature (20 °C).

3. Results and discussion

3.1. Morphological characterization before cycling

Fig. 1 illustrates the fabrication processes of CeO_2 NR@CC, CeO_2 NO@CC and CeO_2 NC@CC and the detailed procedure is described in the experimental section. **Fig. S1** exhibits the XRD patterns of CeO_2 NR, CeO_2 NC and CeO_2 NO powders. The representative diffraction peaks can be observed at 28.5, 33.1, 47.5, 56.3, 59.1, 69.4, 76.7, 79.1 and 88.4° for all three CeO_2 samples, corresponding to face centered cubic CeO_2 phase with fluorite structure (JCPDS#: 34–0394). The morphological characterization of *in situ* hydrothermally deposited CeO_2 on CC was conducted using scanning electron microscopy (SEM). As demonstrated in **Fig. S2 a-c**, CeO_2 NR synthesized via hydrothermal method were directly attached onto the individual carbon fibers of free-standing carbon cloth that was placed at the bottom of Teflon-lined stainless-steel autoclave prior to hydrothermal reaction. The localized formation of a dense and uniform CeO_2 NR layer was easily observed from the enlarged SEM image (**Fig. S2 c**), showing the strong anchoring effect of CeO_2 NR onto the individual carbon fibers. Similarly, CeO_2 NC were uniformly covered onto the individual carbon fibers forming a dense layer, as exhibited in **Fig. S2 g-i**. In contrast to CeO_2 NR@CC and CeO_2 NC@CC, from **Fig. S2 d-e**, it appears that there is a greater density of particle agglomeration and weak attachment of CeO_2 NO on the carbon fibers. EDS elemental mapping was used to further investigate the CeO_2 distribution on carbon cloth. As displayed in **Fig. S3 a-c**, all three CeO_2 nanocrystals were homogeneously distributed throughout the 3-D interconnected and highly conductive self-supporting carbon cloth framework.

Transmission electron microscopy (TEM) was used to provide the particle size, morphology and atomic level structural information about three different shaped CeO_2 . As exhibited in **Fig. 2 a-b**, rod-like morphology can be clearly seen from the TEM images of CeO_2 NR. The exposed (110) crystal facet was validated by the HRTEM images of CeO_2 NR with an interplanar spacing of 0.19 nm as shown in **Fig. 2 c-d**. The (100) and (111) crystal facets of CeO_2 NR were also observed. **Fig. 2 e-f** present the octahedron-like morphology of CeO_2 NO. The (111) crystal facet was confirmed by the HRTEM images of CeO_2 NO with an interplanar spacing of 0.31 nm as exhibited in **Fig. 2 g-h**. As displayed in **Fig. 2 i-j**, cube-like morphology can be easily seen from the TEM images of CeO_2 NC. The exposed (100) crystal plane was substantiated by the HRTEM images of CeO_2 NC with an interplanar spacing of 0.27 nm as shown in **Fig. 2 k-l**. It should be pointed out that, due to the

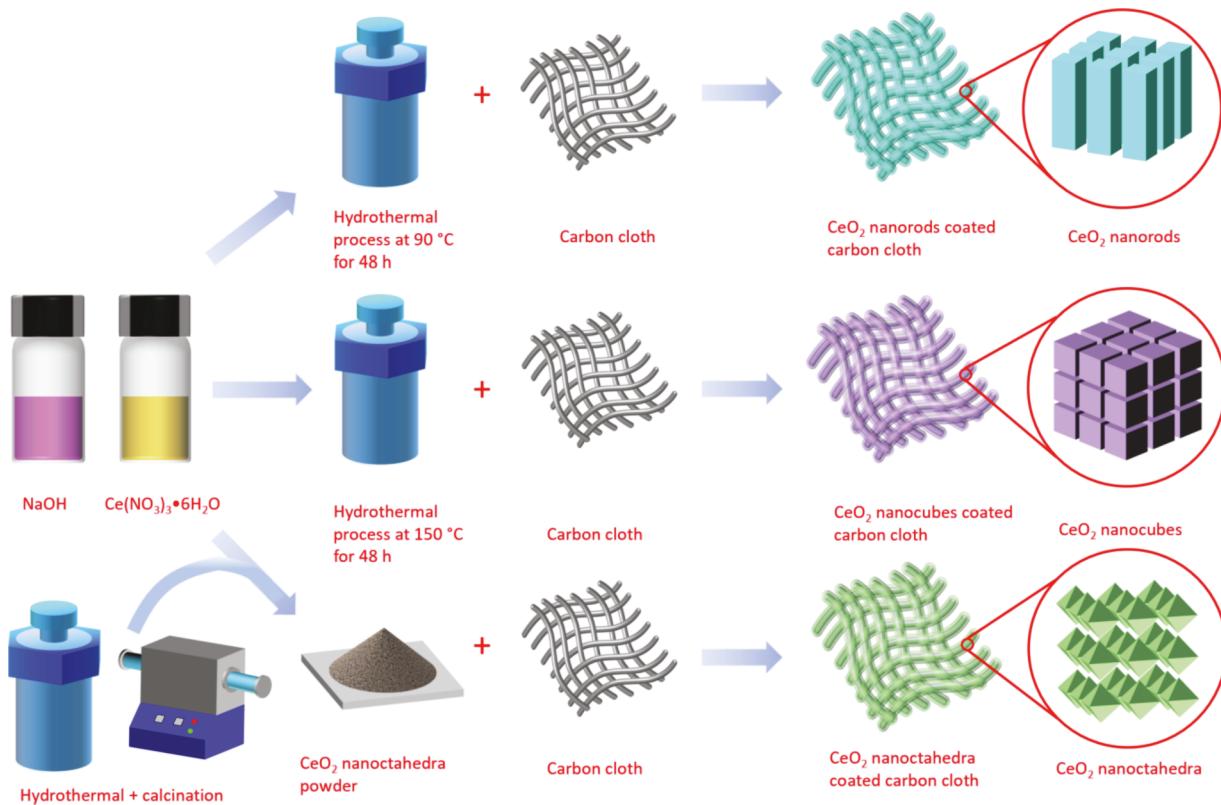


Fig. 1. Schematic diagram showing the preparation routes of CeO_2 NR@CC, CeO_2 NO@CC and CeO_2 NC@CC electrodes.

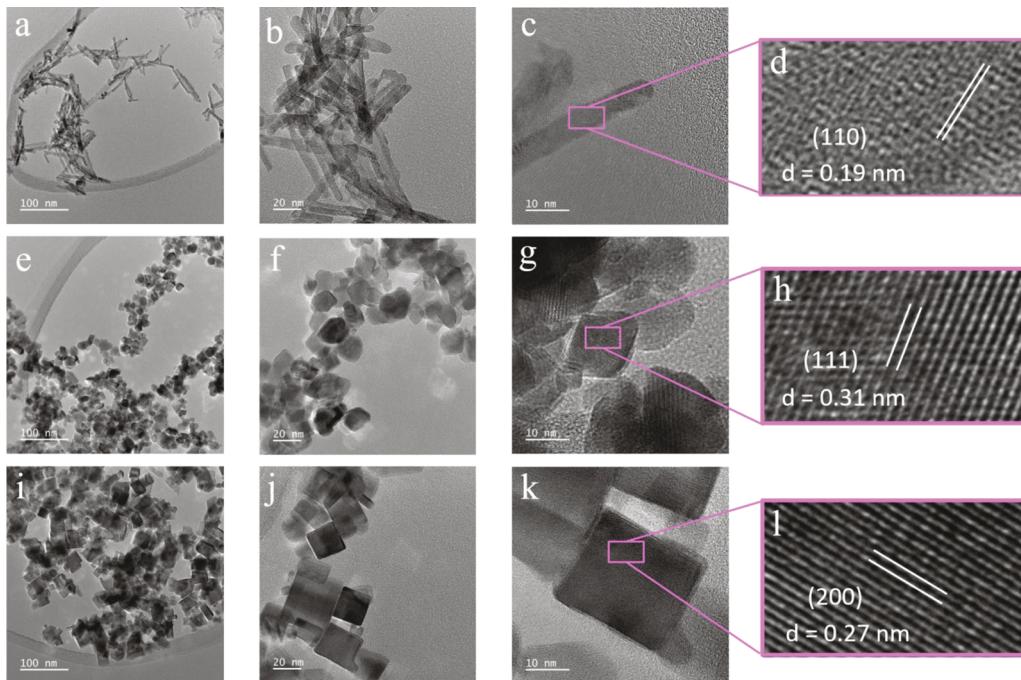
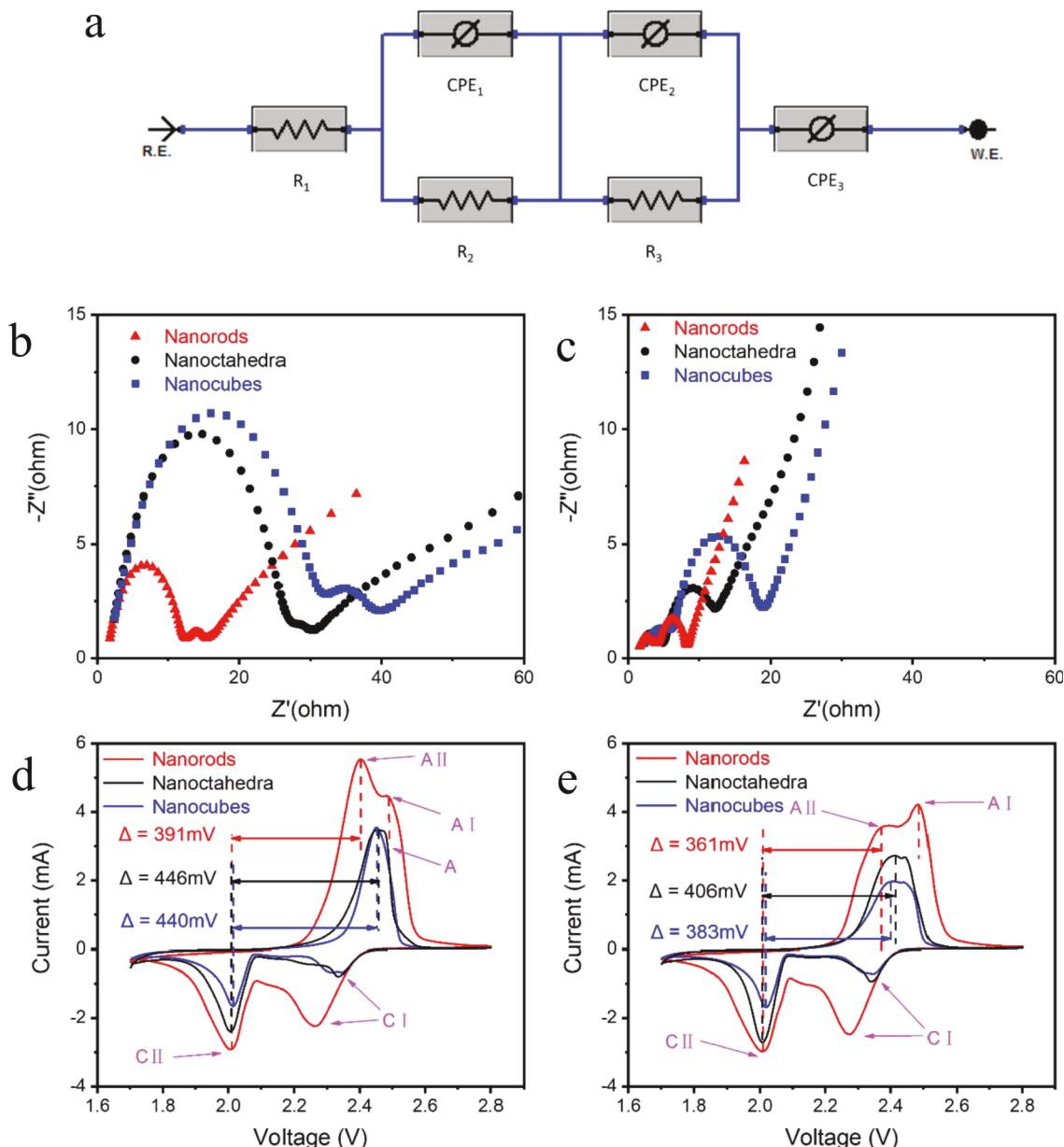


Fig. 2. TEM and HRTEM images of (a-d) CeO_2 NR, (e-h) CeO_2 NO, and (i-l) CeO_2 NC at various magnifications.


difference of SEM/TEM resolution and the sample preparation methods as described in the experimental section, the particle dispersion of CeO_2 is quite different exhibited in the SEM and TEM images (Fig. S2 and Fig. 2).

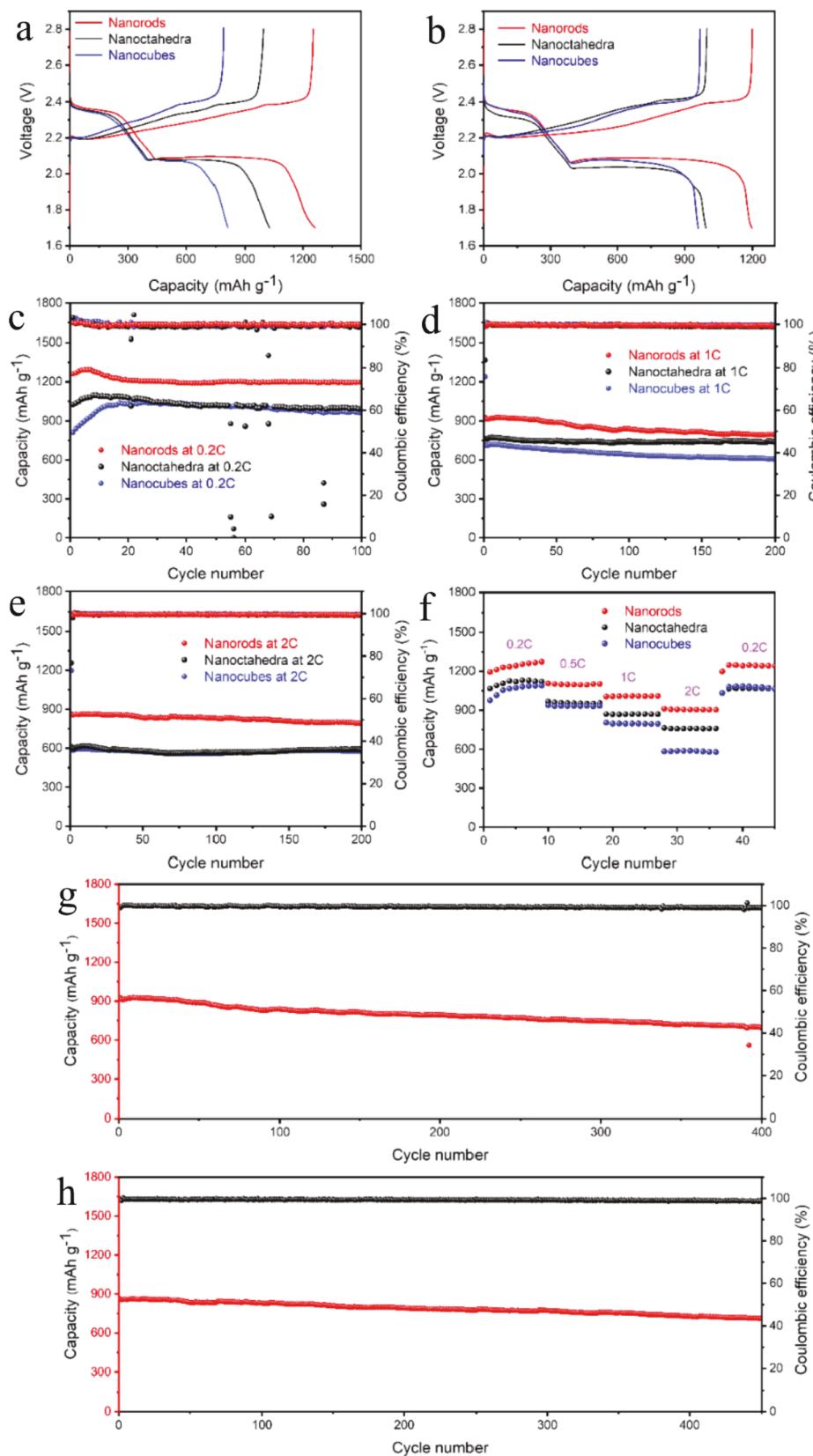
3.2. Electrochemical characterization

To assess the redox kinetics and the electrochemical performance of three different shaped CeO_2 cathode hosts, CR-2032 button cells were assembled with the same areal sulfur loading of 1.0 mg cm^{-2} . Electrochemical impedance spectroscopy (EIS) with a frequency ranging from

0.01 to 10⁵ Hz was carried out to compare the internal impedance and investigate the electrochemical reaction kinetics prior to and after galvanostatic charge discharge cycling test. The equivalent circuit model for the EIS curve analysis is shown in Fig. 3 a. The equivalent circuit model consists of the resistance of electrolyte (R_1), the internal phase contact of resistance and its related capacitance in electrode (R_2/CPE_1), the charge-transfer resistance and its related capacitance (R_3/CPE_2), and the CPE for diffusion (CPE_3). As depicted in Fig. 3 b, for three fresh coin cells, a semicircle located in the high frequency region can be clearly seen from the EIS curves prior to the galvanostatic cycling, corresponding to the charge transfer resistance (R_{ct}) at the interface between the electrode and liquid organic electrolyte, and an oblique line is situated in the low frequency region related to the Warburg impedance representing the diffusion process of lithium ions in liquid organic electrolyte [38–41]. The diameter of the semicircle of the CeO₂ NR@CC cell is much smaller than those of the CeO₂ NO@CC and CeO₂ NC@CC cells. Quantitatively, the R_{ct} value is 12.44 Ω for the CeO₂ NR@CC

electrode compared with the values of 29.98 Ω for the CeO₂ NO@CC electrode and 32.12 Ω for the CeO₂ NC@CC electrode. This low impedance typically leads to accelerated charge transfer enabling favorable improvement of sluggish redox kinetics and facilitated electrochemical transformation of lithium polysulfides for the CeO₂ NR@CC electrode [42]. In comparison, as displayed in Fig. 3 c, the EIS plots of three cycled coin cells demonstrated that one small semicircle in the high frequency region is related to the formation of solid Li₂S₂/Li₂S film and one big semicircle in the middle frequency region is associated with the charge transfer resistance [42]. A dramatic decrease in the charge transfer resistance of three different shaped CeO₂ electrodes was clearly observed owing to rearrangement of the active materials and better electrolyte wettability after the initial charge discharge galvanostatic cycles [43]. Among three different electrodes with CeO₂ additives after the galvanostatic cycling process, the CeO₂ NR@CC electrode cell had the lowest charge transfer resistance indicating superior electronic/ionic transport capability and accelerated redox kinetics of intermediate

Fig. 3. (a) The equivalent circuit model for EIS curves; (b) EIS curves of CeO₂ NR@CC, CeO₂ NO@CC and CeO₂ NC@CC prior to galvanostatic cycling; (c) EIS curves of CeO₂ NR@CC, CeO₂ NO@CC and CeO₂ NC@CC after 200 galvanostatic cycles at 1C; (d) CV curves of CeO₂ NR@CC, CeO₂ NO@CC and CeO₂ NC@CC for the 1st cycle; (e) CV curves of CeO₂ NR@CC, CeO₂ NO@CC and CeO₂ NC@CC for the 2nd cycle.


lithium polysulfides. This observation can be explained by the strong chemical bonding effect constructed between intermediate polysulfides and CeO₂ NR, leading to favorable inhibition of polysulfide diffusion and excellent cycling performance [44–46].

Cyclic voltammetry (CV) measurement operated within a potential window ranging from 1.7 V to 2.8 V at a scan rate of 0.1 mV s⁻¹ was carried out to further understand the underlying mechanisms related to the accelerated electron transport and enhanced redox kinetics of CeO₂ NR@CC compared with the counterparts of CeO₂ NO@CC and CeO₂ NC@CC. For all three assembled coin cells, two representative cathodic peaks (referred as C: C I and C II) can be easily observed from Fig. 3 d. The cathodic peak (C I) situated at higher voltage potential (approximately 2.3 V) is attributed to the reductive conversion from elemental sulfur (S₈) to soluble long-chain intermediate lithium polysulfide species (S₈ → Li₂S_x, x ≥ 4) and the other cathodic peak (C II) located at lower voltage potential (approximately 2.0 V) is associated with the electrochemical reduction from soluble long-chain polysulfide species to insoluble short-chain Li₂S₂/Li₂S (Li₂S_x → Li₂S₂/Li₂S, x ≥ 4) [47,48]. It is worth mentioning that the large portion of discharge capacity of rechargeable Li-S battery is realized by the electrochemical reduction from soluble long-chain polysulfide species to insoluble short-chain Li₂S₂/Li₂S at lower potential (the CII region). Therefore, the cathodic peak (C II) located nearby 2.0 V at lower voltage potential plays a more significant role in realizing high discharge capacity of LSBs. All the assembled coin cells manifest a similar position of the cathodic reduction peaks (C II), but the CeO₂ NR@CC electrode cell possesses the largest current response compared with the CeO₂ NO@CC and CeO₂ NC@CC electrode cells. The higher and broader cathodic peak (C II) of the CeO₂ NR@CC electrode with a larger reduction current of 2.93 mA is clearly demonstrated compared to the CeO₂ NO@CC electrode with a reduction current of 2.39 mA (the current of CeO₂ NR@CC is 22.6% higher than that of CeO₂ NO@CC) and the CeO₂ NC@CC electrode with a reduction current of 1.65 mA (the current of CeO₂ NR@CC is 77.6% higher than that of CeO₂ NC@CC), indicating a much stronger electronic and ionic transport capability for the CeO₂ NO@CC electrode cell [49]. In addition, two adjacent anodic peaks (referred as A: A I and A II) can be easily visualized from the CV curve of the CeO₂ NR@CC electrode, representing the electrochemical transformation from insoluble short-chain Li₂S₂/Li₂S to soluble long-chain intermediate lithium polysulfide species (Li₂S₂/Li₂S → Li₂S_x, x ≥ 4) and the electrochemical conversion from soluble long-chain intermediate polysulfide species to elemental sulfur (Li₂S_x → S₈, x ≥ 4) [50]. However, as depicted in Fig. 3 d, only one anodic peak can be seen from the CV curves of the CeO₂ NO@CC electrode and CeO₂ NC@CC electrode, possibly due to: 1) severe polarization issue; 2) slow electronic and ionic transport leading to sluggish redox kinetics; 3) weak chemical interaction with lithium polysulfides resulting in parasitic shuttle effect [51]. All the assembled coin cells have a similar cathodic peak (C II) position, but the anodic peak (A II) of the CeO₂ NR@CC electrode is located at the lowest potential compared with those of the CeO₂ NO@CC electrode and CeO₂ NC@CC electrode. In other words, the polarization potential of the CeO₂ NR@CC electrode (391 mV) is smaller than those of the CeO₂ NO@CC electrode (446 mV) and CeO₂ NC@CC (440 mV), indicating a strong chemical affinity between CeO₂ NR and lithium polysulfides [52]. It is also worth mentioning that the higher and broader anodic peak (A II) of the CeO₂ NR@CC electrode with a larger oxidation current of 5.50 mA is clearly observed compared to those of the CeO₂ NO@CC electrode with an oxidation current of 3.46 mA (the current of CeO₂ NR@CC is 59.0% higher than that of CeO₂ NO@CC) and the CeO₂ NC@CC electrode with an oxidation current of 3.52 mA (the current of CeO₂ NR@CC is 56.3% higher than that of CeO₂ NC@CC), demonstrating a significantly enhanced charge transport ability for the CeO₂ NR@CC electrode cell. Fig. 3 e exhibits the 2nd scan of the CV curves for CeO₂ NR@CC, CeO₂ NO@CC and CeO₂ NC@CC. These polarization potentials, cathodic peak current (C II), anodic peak current (A II) of CeO₂ NR@CC, CeO₂ NO@CC and CeO₂ NC@CC are summarized in Table S1.

Galvanostatic charge discharge cycling ranging from 1.7 V to 2.8 V was performed to gather insights into capacity retention and cycling stability of three button cells with different shaped CeO₂ additives. The 1st galvanostatic cycle profiles of three fabricated coin cells were illustrated in Fig. 4 a. In accordance with the CV curves, for all the fabricated electrodes, two representative discharge voltage plateaus can be easily observed from Fig. 4 a. The upper discharge plateau situated at higher voltage potential (approximately 2.35 V) is attributed to the reductive conversion from elemental sulfur (S₈) to soluble long-chain intermediate lithium polysulfide species (S₈ → Li₂S_x, x ≥ 4) and the lower discharge plateau located at lower voltage potential (approximately 2.05 V) is associated with the electrochemical reduction from soluble long-chain polysulfide species to insoluble short-chain Li₂S₂/Li₂S (Li₂S_x → Li₂S₂/Li₂S, x ≥ 4) [53–56]. For the 1st galvanostatic cycle at 0.2C, the discharge capacities of the CeO₂ NR@CC, CeO₂ NO@CC, CeO₂ NC@CC electrodes reached 1261 mAh g⁻¹, 1026 mAh g⁻¹ and 810 mAh g⁻¹, respectively. It is worth mentioning that the active material sulfur utilization rate of the CeO₂ NR@CC electrode (75.3%) is higher than those of the CeO₂ NO@CC electrode (61.3%) and CeO₂ NC@CC electrode (48.4%) for the 1st galvanostatic cycle. Additionally, the voltage difference between the charge and discharge plateaus (ΔE) of the CeO₂ NR@CC electrode is smaller than those of the CeO₂ NO@CC electrode and CeO₂ NC@CC electrode, indicating low polarization of the CeO₂ NR@CC electrode compared with the CeO₂ NO@CC electrode and CeO₂ NC@CC electrode, which is in accordance with the CV results. The 100th galvanostatic cycle profiles of three assembled button cells were shown in Fig. 4 b. For the 100th galvanostatic cycle at 0.2C, the discharge capacities of the CeO₂ NR@CC, CeO₂ NO@CC, CeO₂ NC@CC electrodes reached 1196 mAh g⁻¹, 995 mAh g⁻¹ and 960 mAh g⁻¹, respectively. The active material sulfur utilization rate of the CeO₂ NR@CC electrode (71.4%) is higher than those of the CeO₂ NO@CC electrode (59.4%) and CeO₂ NC@CC electrode (57.3%) for the 100th galvanostatic cycle. The active material sulfur utilization rate can be calculated through the equation shown below.

$$\text{utilization rate} = \frac{\text{discharge capacity}}{\text{theoretical discharge capacity}(1675 \text{ mAh g}^{-1})} \times 100\%$$

In addition, for the 100th galvanostatic cycle, a smaller polarization of the CeO₂ NR@CC electrode compared with the CeO₂ NO@CC and CeO₂ NC@CC electrodes was also easily observed from Fig. 4 b. Capacity retention and cycling reversibility were further investigated by conducting long-term galvanostatic charge discharge cycling for all three fabricated button cells at various current densities (0.2C, 1C and 2C). As depicted in Fig. 4 c, it can be seen that the initial discharge capacity of CeO₂ NR@CC was up to 1261 mAh g⁻¹ at low current density of 0.2C and approximately 94.8% of the initial discharge capacity was successfully remained after 100 galvanostatic cycles, which results in superior capacity retention with a minimal capacity fading of 0.052% per cycle. Fig. 4 d and Fig. 4 e exhibited the galvanostatic cycling comparison between three samples at high current density of 1C and 2C, respectively. In order to demonstrate noticeable difference in their galvanostatic cycling performance, Table S1 summarizes the initial discharge capacity and reversible capacity of three samples at various current densities. The rate performance of the CeO₂ NR@CC, CeO₂ NO@CC and CeO₂ NC@CC electrodes was assessed at different current densities varying from 0.2C to 2C and the corresponding results were exhibited in Fig. 4 f. The CeO₂ NR@CC electrode demonstrated favorable discharge capacities of 1195 mAh g⁻¹, 1108 mAh g⁻¹, 1006 mAh g⁻¹ and 912 mAh g⁻¹ at 0.2C, 0.5C, 1C and 2C, respectively. However, the counterpart CeO₂ NO@CC electrode exhibited low discharge capacities of 1068 mAh g⁻¹, 967 mAh g⁻¹, 870 mAh g⁻¹ and 763 mAh g⁻¹ at 0.2C, 0.5C, 1C and 2C, respectively. In addition, the counterpart CeO₂ NC@CC electrode manifested low discharge capacities of 977 mAh g⁻¹, 939 mAh g⁻¹, 805 mAh g⁻¹ and 583 mAh g⁻¹ at 0.2C, 0.5C, 1C and 2C, respectively. It can be concluded that the discharge capacities of the CeO₂ NR@CC electrode at varying current rate were higher than those of

Fig. 4. (a) Galvanostatic charge discharge profiles of CeO₂ NR@CC, CeO₂ NO@CC and CeO₂ NC@CC at 0.2C for (a) the 1st cycle and (b) the 100th cycle; The cycling performance of CeO₂ NR@CC, CeO₂ NO@CC and CeO₂ NC@CC at (c) 0.2C for 100 galvanostatic cycles, (d) 1C for 200 galvanostatic cycles, and (e) 2C for 200 galvanostatic cycles; (f) The comparison of the rate performance of CeO₂ NR@CC, CeO₂ NO@CC and CeO₂ NC@CC electrodes; Long cycle performance of CeO₂ NR@CC: (g) at 1C for 400 cycles and (h) at 2C for 450 cycles.

the CeO₂ NO@CC and CeO₂ NC@CC electrodes. When reverted back to 0.2C, approximately 100% of the initial discharge capacity at 0.2C was remained for the CeO₂ NR@CC electrode. As depicted in Fig. 4 g, for the CeO₂ NR@CC electrode, the discharge capacity was well maintained at

697 mAh g⁻¹ after 400 galvanostatic cycles at 1C, demonstrating a superior capacity retention with a minimal capacity decay of 0.062% per cycle. As exhibited in Fig. 4 h, the CeO₂ NR@CC electrode demonstrated a well-maintained discharge capacity of 712 mAh g⁻¹ after 450

galvanostatic cycles at 2C, indicating a superb capacity retention with a minimal capacity attenuation of 0.038% per cycle. As a cathode material of LSBs, the sulfur-loading ability is an indispensable indicator for its performance. Furthermore, taking the practical commercialization into account, the electrochemical measurements for the $\text{CeO}_2 \text{ NR@CC}$, $\text{CeO}_2 \text{ NO@CC}$ electrode and $\text{CeO}_2 \text{ NC@CC}$ electrodes with high areal sulfur loading (3 mg cm^{-2}) and a smaller amount of electrolyte ($40 \mu\text{L}$) were carried out (Fig. S4). Two noticeable voltage plateaus still can be easily recognized under high areal sulfur loading of 3 mg cm^{-2} for all three samples (Fig. S4 a-c). However, the $\text{CeO}_2 \text{ NR@CC}$ electrode cell displays smaller polarization between the charge curve and the discharge curve. Additionally, the $\text{CeO}_2 \text{ NR@CC}$ electrode cell also demonstrates the highest initial discharge capacity and reversible capacity after 100 cycles at 0.2C (Fig. S4 d). The specific values of discharge capacity of three different electrodes with high areal sulfur loading are given in Table S1.

3.3. Morphological characterization after cycling

To further understand chemical adsorption capability against polysulfides of three prepared electrodes with different shaped CeO_2 , morphological characterization of Li anode surfaces from the disassembled $\text{CeO}_2 \text{ NR@CC}$, $\text{CeO}_2 \text{ NO@CC}$ and $\text{CeO}_2 \text{ NC@CC}$ coin cells after 200 galvanostatic cycles at 1C was implemented by SEM to gather information about the structural and chemical changes. As demonstrated in Fig. 5 a-c, a smooth surface of Li metal anode from the disassembled $\text{CeO}_2 \text{ NR@CC}$ button cell without noticeable pulverization or cracks can be easily seen, providing powerful evidence of lithium polysulfides being efficiently trapped on the cathode side through the strong chemical interaction constructed by $\text{CeO}_2 \text{ NR}$ [57]. In contrast, as depicted in Fig. 5 d-f and Fig. 5 g-i, the surfaces of Li metal anode from the disassembled $\text{CeO}_2 \text{ NO@CC}$ and $\text{CeO}_2 \text{ NC@CC}$ button cells exhibited numerous cracks, severe pulverization and a large amount of $\text{Li}_2\text{S}_2/\text{Li}_2\text{S}$ deposition due to the detrimental side reactions caused by the diffusion

of lithium polysulfides between intermediate polysulfide species and Li metal anode [57,58], indicating that the chemical adsorption capability of $\text{CeO}_2 \text{ NO}$ and NC was lower than that of $\text{CeO}_2 \text{ NR}$. Fig. 6 a-l exhibited the corresponding EDS elemental mapping and spectra of the Li anode surfaces from the disassembled $\text{CeO}_2 \text{ NR@CC}$, $\text{CeO}_2 \text{ NO@CC}$ and $\text{CeO}_2 \text{ NC@CC}$ button cells after 200 galvanostatic cycles at 1C. The surface sulfur concentration of the $\text{CeO}_2 \text{ NR@CC}$ electrode (10.9 wt%) is relatively lower than those of the $\text{CeO}_2 \text{ NO@CC}$ electrode (14.7 wt%) and $\text{CeO}_2 \text{ NC@CC}$ electrode (19.3 wt%), indicating successful immobilization of polysulfides is achieved by $\text{CeO}_2 \text{ NR}$ compared with $\text{CeO}_2 \text{ NO}$ and $\text{CeO}_2 \text{ NC}$.

Fig. S5 a-f displayed the cross-sectional SEM images and EDS line scans of the Li metal anodes from the disassembled $\text{CeO}_2 \text{ NR@CC}$, $\text{CeO}_2 \text{ NO@CC}$ and $\text{CeO}_2 \text{ NC@CC}$ button cells after 200 galvanostatic cycles at 1C. The EDS line scan of the $\text{CeO}_2 \text{ NR@CC}$ electrode exhibited the minimum thickness of elemental S deposited on the cycled Li anode among three cells indicating the smallest polysulfide penetration and efficient inhibition of polysulfide migration.

3.4. XPS and Raman spectroscopy analysis

The XPS S 2p spectra of the cathodes from the disassembled $\text{CeO}_2 \text{ NR@CC}$, $\text{CeO}_2 \text{ NO@CC}$ and $\text{CeO}_2 \text{ NC@CC}$ button cells after 200 galvanostatic cycles at 2C were displayed in Fig. 7 a-c. The peaks situated at $\sim 170.5 \text{ eV}$ are assigned to polythionate ($[\text{SO}_3\text{S}_2\text{SO}_3]^{2-}$) and the peaks located at $\sim 168.3 \text{ eV}$ are attributed to the formation of thiosulfate ($[\text{S}_2\text{O}_3]^{2-}$) [59–61]. Moreover, the peaks situated at $\sim 162.9 \text{ eV}$ correspond to the bridged S-S bond (S_B^0) representing the presence of elemental sulfur, and the peaks located at $\sim 161.3 \text{ eV}$ are attributed to the terminal Li-S bond (S_T^{-1}) indicating the existence of $\text{Li}_2\text{S}_2/\text{Li}_2\text{S}$ [62]. For the 200 discharge and charge cycling tests, each galvanostatic cycle started with a discharge process and ended with a charge process. The electrochemical conversion from insoluble Li_2S to elemental sulfur

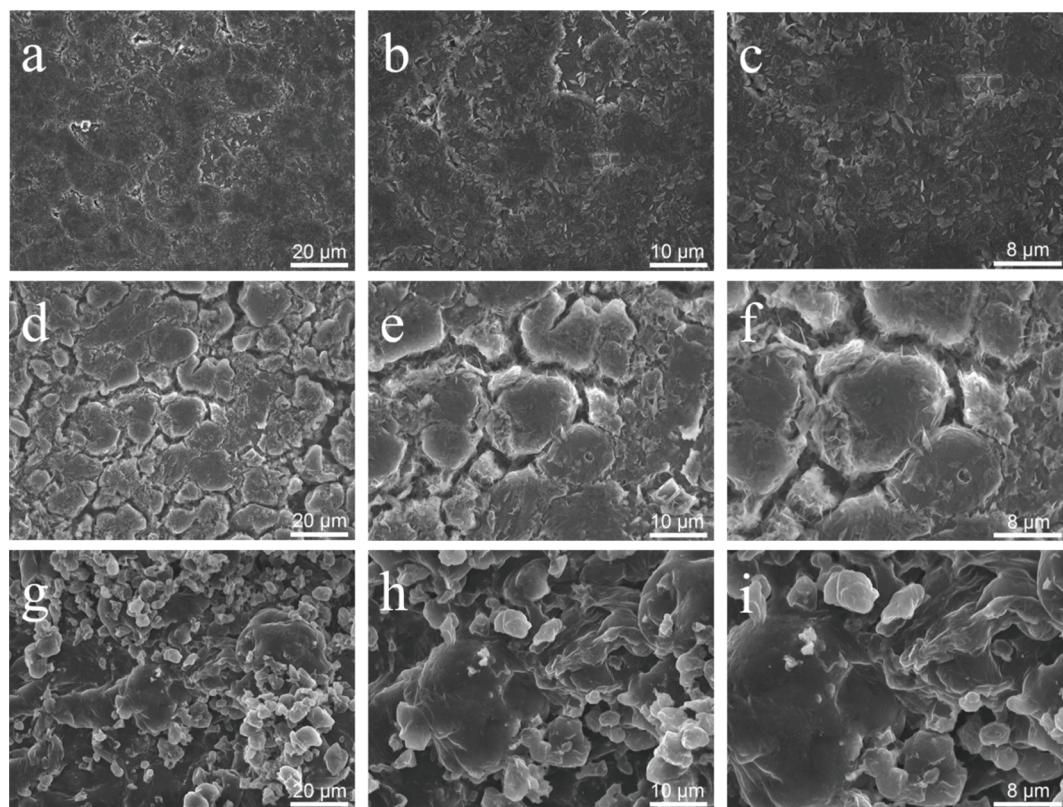
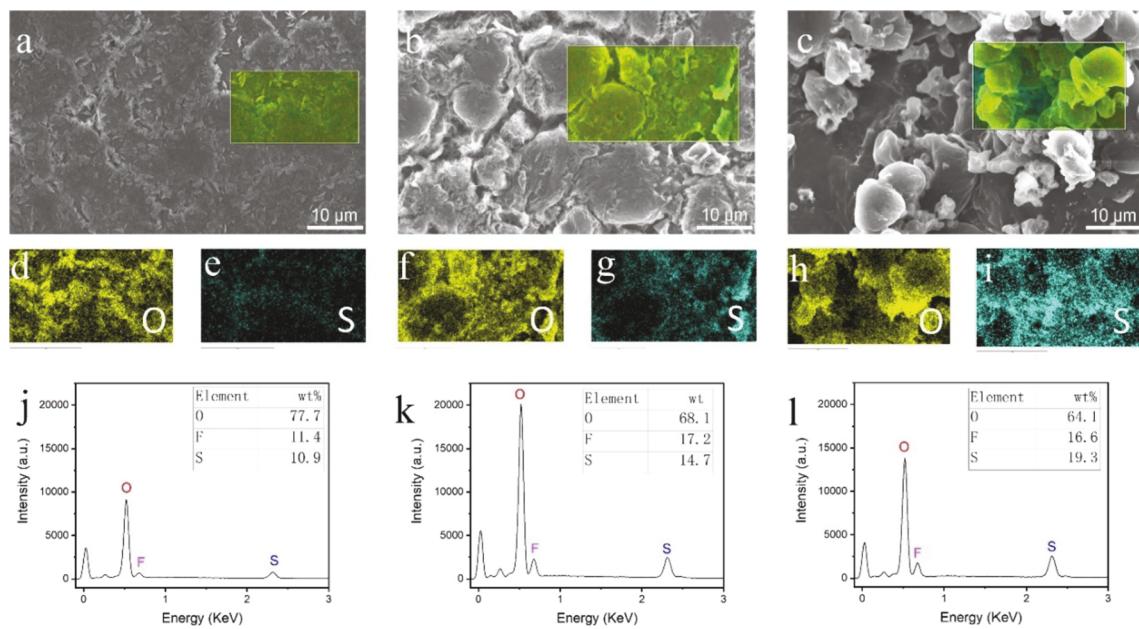
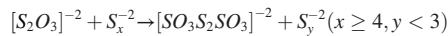




Fig. 5. SEM images of Li anode surface from the disassembled (a-c) $\text{CeO}_2 \text{ NR@CC}$, (d-f) $\text{CeO}_2 \text{ NO@CC}$, and (g-i) $\text{CeO}_2 \text{ NC@CC}$ coin cells after 200 galvanostatic cycles at 1C at different magnifications.

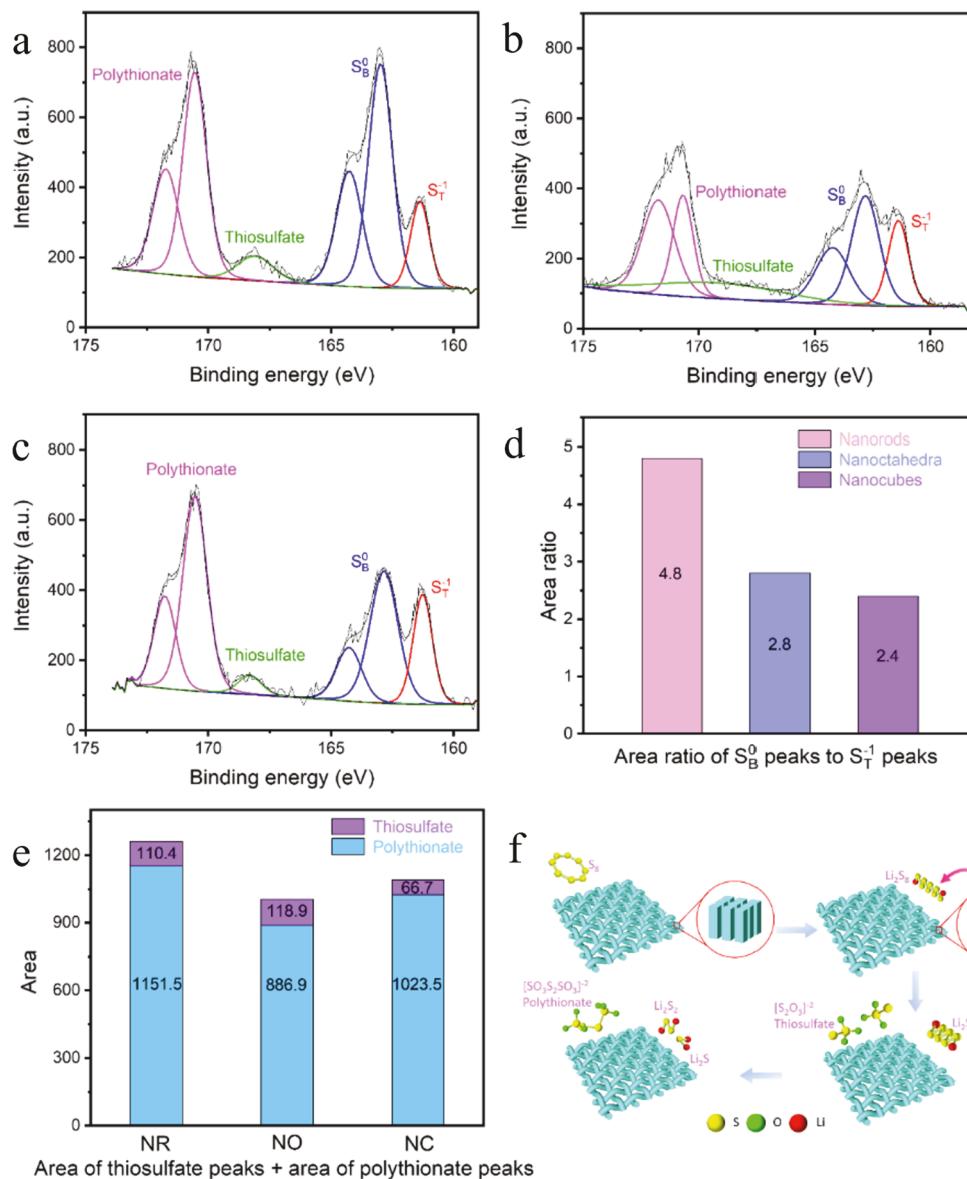
Fig. 6. (a-c) SEM images of the Li anode surfaces from the disassembled CeO₂ NR@CC, CeO₂ NO@CC and CeO₂ NC@CC button cells after 200 galvanostatic cycles at 1C; Corresponding EDS elemental mapping of the Li anode surfaces from the disassembled (d-e) CeO₂ NR@CC, (f-g) CeO₂ NO@CC, and (h-i) CeO₂ NC@CC button cells after 200 galvanostatic cycles at 1C. Corresponding EDS plots of the Li anode surfaces from the disassembled (j) CeO₂ NR@CC, (k) CeO₂ NO@CC, and (l) CeO₂ NC@CC button cells after 200 galvanostatic cycles at 1C.

should be completed when the galvanostatic cycling was finished. The area ratio of elemental sulfur (S_B^0 peaks) to insoluble Li₂S (S_T^{-1} peaks) at the end of the charge process can effectively represents the effectiveness of the electrochemical conversion ($\text{Li}_2\text{S} \rightarrow \text{Li}_2\text{S}_x \rightarrow \text{S}_8$) of the assembled button cells [62]. In other words, the greater the area ratio of elemental sulfur (S_B^0 peaks) to insoluble Li₂S (S_T^{-1} peaks) is, the better the electrochemical conversion will be. As shown in Fig. 7 d, the area ratio of S_B^0 to S_T^{-1} peaks on the surface of the cycled CeO₂ NR@CC cathode (≈ 4.8) is much greater compared with those of the CeO₂ NO@CC (≈ 2.8) and CeO₂ NC@CC (≈ 2.4) cathodes, demonstrating superb electrochemical conversion efficiency of CeO₂ NR@CC. The calculated areas of S_B^0 and S_T^{-1} peaks from the XPS S 2p spectra of three samples are exhibited in Fig. S6 a-b. Moreover, the formation of thiosulfate and polythionate is a good indication for an accelerated electrochemical transformation during galvanostatic cycling [63–65]. As displayed in Fig. 7 e, the area combination of polythionate and thiosulfate peaks of CeO₂ CC@NR ($1151.1 + 110.4 \approx 1261.9$) is $14 \sim 20\%$ greater than those of CeO₂ CC@NO ($886.9 + 118.9 \approx 1005.8$) and CeO₂ CC@NC ($1023.5 + 66.7 \approx 1090.2$). A possible working mechanism of soluble intermediate polysulfides adsorption via CeO₂ NR is schematically illustrated in Fig. 7 f. Firstly, *in-situ* oxidation of polysulfides occurs on the surface of CeO₂ NR with significant amount of surface defects to form the thiosulfate group $[\text{S}_2\text{O}_3]^{2-}$ with a strong S-O chemical bonding between O of CeO₂ and S of lithium polysulfides [66]. Secondly, thiosulfates $[\text{S}_2\text{O}_3]^{2-}$ adsorb the newly formed polysulfides to create polythionates $[\text{SO}_3\text{S}_2\text{SO}_3]^{2-}$ and insoluble short-chain Li₂S₂/Li₂S through a disproportionation reaction as shown below [67].

Moreover, polythionates $[\text{SO}_3\text{S}_2\text{SO}_3]^{2-}$ can function as efficient mediators for accelerating the electrochemical transformation from soluble long-chain polysulfides to insoluble short-chain Li₂S₂/Li₂S as reported previously [68].

Raman spectroscopy was implemented to gain insight of coordination environment and defects (i.e., oxygen vacancies) of three surface engineered CeO₂ additives. As exhibited in Fig. S7, the strongest vibrational peak near 460 cm^{-1} corresponds to triply degenerate F_{2g}

mode of fluorite structure CeO₂ [69]. For CeO₂ NR, one noticeable band situated near 255 cm^{-1} is attributed to doubly degenerate TO mode (2TA) of CeO₂. Another observable band located near 600 cm^{-1} is assigned to the defect-induced band (D band) used for estimating the concentration of the oxygen vacancy defects [69]. However, these above-mentioned representative 2TA and D defect bands on CeO₂ NR were not observed from the Raman spectra of CeO₂ NC and NO.

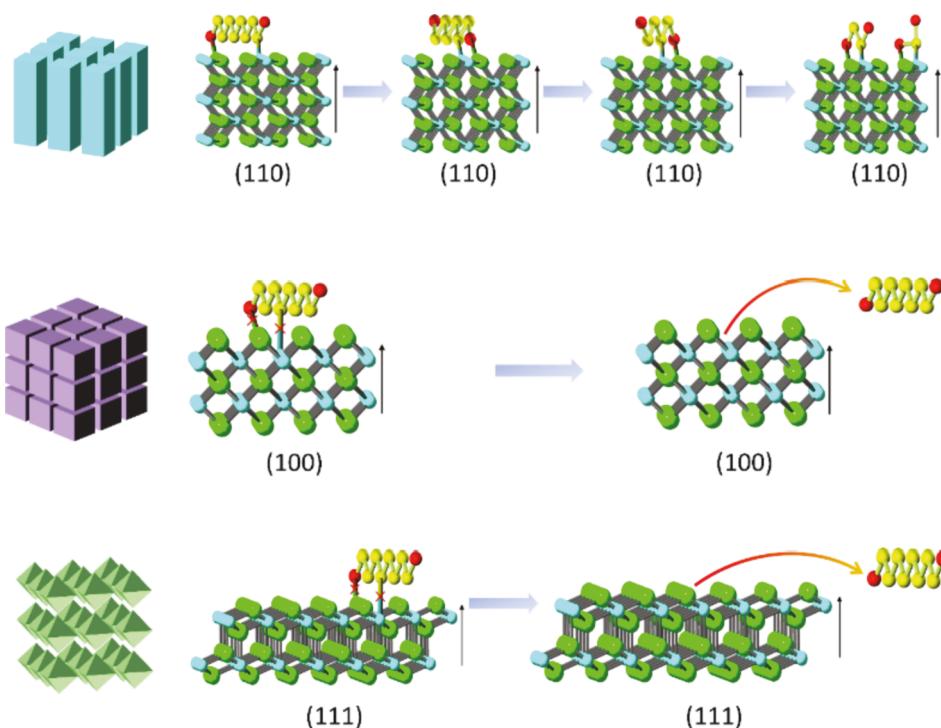

3.5. *Li₂S₆* adsorption test

Li₂S₆ adsorption test was carried out to gather more information of Li₂S₆ adsorption capability onto CeO₂ NR, NO, NC. As shown in Fig. S8 a-c, Li₂S₆ solution containing CeO₂ NR exhibited a noticeable color change after 20 min of the adsorption test and a complete decolorization was fulfilled after 60 min of the test, indicating superior polysulfide adsorption capability. However, the counterparts CeO₂ NC and CeO₂ NO exhibited no apparent color change after 20 min and a slight decolorization after 60 min.

3.6. Possible working mechanism of CeO₂ additive

Based on the previously reported DFT simulation of TiO₂ similarly used as a functional host in LSBs [70–74], we propose a possible working principle of lithium polysulfides adsorption on surface engineered CeO₂ nanocrystals involved in this work as shown in Fig. 8. For the chemical binding mechanism of lithium polysulfides on polar host materials, the surface termination crystal planes and surface defect concentration are keys to immobilize soluble Li₂S_x ($x \geq 4$) and avoid their shuttling to Li anode. To substantiate this hypothesis, CeO₂ nanocrystals with various termination crystal facets (CeO₂ NR with (110) and (100) and (111), CeO₂ NC with (100) and CeO₂ NO with (111)) were investigated by comparing the difference in electrochemical performance and understanding the shape-performance correlation.

First of all, the electrochemical measurements and structural characterizations involved in this work showed that CeO₂ NC with preferentially exposed (100) crystal facets and CeO₂ NO with preferentially exposed (111) crystal planes were less effective to form strong chemical affinity against polysulfides (i.e., formation of Ce-S and Li-O chemical


Fig. 7. XPS of S 2p spectra of (a) CeO₂ NR@CC, (b) CeO₂ NO@CC, and (c) CeO₂ NC@CC after 200 galvanostatic cycles at 2C. In the S 2p spectra, the area ratio (d) of S_B⁰ peaks to S_T⁻¹ peaks for CeO₂ NR@CC, CeO₂ NO@CC and CeO₂ NC@CC. In the S 2p spectra, the integration(e) of the areas of the thiosulfate and polythionate peaks for CeO₂ NR@CC, CeO₂ NO@CC and CeO₂ NC@CC. (f) Schematic diagram of the proposed interaction mechanism of polysulfides and CeO₂ NR@CC.

bonding), resulting in detrimental polysulfides diffusion and poor utilization of sulfur. The CeO₂ NR with preferentially exposed (110) and (100) and defected (111) crystal facets seem to more effectively trap lithium polysulfides and enabling an enhanced electrochemical conversion. Secondly, according to the DFT calculation, polar TiO₂ with different termination planes (110, 101, 100) showed significantly variable binding energies towards Li₂S₄ [70,71,75]. The calculated binding energies of Li₂S₄ on the TiO₂ are -2.38, -2.41, and -3.95 eV for plane (110), plane (101) and plane (100), respectively. Therefore, surface engineered CeO₂ with different terminal planes (nanorods with (110)/(100)/(111) planes, nanocubes with (100) plane and nanoctahedra with (111) plane) will bind lithium polysulfides differently, which influences their adsorption capability towards polysulfides shuttling. Therefore, surface engineering is an effective approach to controllably obtain CeO₂ nanocrystals with various termination crystal planes and surface defect concentration that can affect the immobilization capability towards intermediate soluble Li₂S_x (x ≥ 4) and impede their shuttling to Li anode [76,77]. Benefiting from the aforementioned merits, CeO₂ NR are recognized as a more promising candidate of

functional sulfur host materials for LSBs.

4. Conclusion

In summary, three CeO₂ NR@CC, CeO₂ NO@CC and CeO₂ NC@CC electrodes were prepared via simple hydrothermal reaction employed as sulfur host materials in LSBs to understand the effects of CeO₂ shape and exposed crystal facets on the adsorption of lithium polysulfides and battery electrochemical performance. Among all three investigated electrodes, the CeO₂ NR@CC electrode exhibited superior capability of immobilizing polysulfides and the best electrochemical performance, which can be attributed to the strong chemical bonding including Ce-S and Li-O bonds formed on the exposed (110)/(100) and defected (111) crystal planes of CeO₂ NR during the electrochemical conversion from long-chain polysulfides to insoluble short-chain Li₂S/Li₂S₂. However, weaker interactions or adsorption of polysulfides was observed on CeO₂ NC and NO with predominant (100) and (111) crystal facets, respectively. This study provides new insights into the morphological tailoring for functional sulfur host materials and effective polysulfide

Fig. 8. Schematic illustration of working mechanism of CeO₂ NR, CeO₂ NC and CeO₂ NO against polysulfides.

adsorbents to solve intractable shuttle effect issue and promote high-performance LSBs.

CRediT authorship contribution statement

Zhen Wei: Investigation, Methodology, Formal analysis, Writing – original draft, Writing – review & editing. **Junhao Li:** Formal analysis, Writing – review & editing. **Ruigang Wang:** Conceptualization, Investigation, Methodology, Supervision, Formal analysis, Writing – review & editing, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This work is supported by the National Science Foundation (CBET-2118784 and IIP-2147564). This project also receives partial financial support from Alabama Transportation Institute and Alabama Water Institute. The use of electron microscopy facilities at the Alabama Analytical Research Center (AARC), The University of Alabama, is gratefully acknowledged.

Appendix A. Supplementary material

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.apsusc.2021.152237>.

References

- [1] A. Manthiram, S.H. Chung, C. Zu, Lithium-sulfur batteries: progress and prospects, *Adv Mater* 27 (2015) 1980–2006.
- [2] M. Zhang, W. Chen, L. Xue, Y. Jiao, T. Lei, J. Chu, J. Huang, C. Gong, C. Yan, Y. Yan, Y. Hu, X. Wang, J. Xiong, Adsorption-Catalysis Design in the Lithium-Sulfur Battery, *Advanced Energy Materials* 10 (2019) 1903008.
- [3] J. He, A. Manthiram, A review on the status and challenges of electrocatalysts in lithium-sulfur batteries, *Energy Storage Materials* 20 (2019) 55–70.
- [4] L. Zhang, Y. Wang, Z. Niu, J. Chen, Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries, *Carbon* 141 (2019) 400–416.
- [5] L. Yang, H. Li, Q. Li, Y. Wang, Y. Chen, Z. Wu, Y. Liu, G. Wang, B. Zhong, W. Xiang, Y. Zhong, X. Guo, Research Progress on Improving the Sulfur Conversion Efficiency on the Sulfur Cathode Side in Lithium-Sulfur Batteries, *Industrial & Engineering Chemistry Research* 59 (2020) 20979–21000.
- [6] X. Fang, H. Peng, A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries, *Small* 11 (2015) 1488–1511.
- [7] L. Chen, L.L. Shaw, Recent advances in lithium-sulfur batteries, *Journal of Power Sources* 267 (2014) 770–783.
- [8] H. Shi, J. Qin, P. Lu, C. Dong, J. He, X. Chou, P. Das, J. Wang, L. Zhang, Z.S. Wu, Interfacial Engineering of Bifunctional Niobium (V)-Based Heterostructure Nanosheet Toward High Efficiency Lean-Electrolyte Lithium-Sulfur Full Batteries, *Advanced Functional Materials* 31 (2021) 2102314.
- [9] B. Chen, T. Wang, S. Zhao, J. Tan, N. Zhao, S.P. Jiang, Q. Zhang, G. Zhou, H. M. Cheng, Efficient Reversible Conversion between MoS₂ and Mo/Na₂S Enabled by Graphene-Supported Single Atom Catalysts, *Adv Mater* 33 (2021), e2007090.
- [10] T. Liu, H. Hu, X. Ding, H. Yuan, C. Jin, J. Nai, Y. Liu, Y. Wang, Y. Wan, X. Tao, 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020), *Energy Storage Materials* 30 (2020) 346–366.
- [11] B. Chen, X. Zhong, G. Zhou, N. Zhao, H.M. Cheng, Graphene-Supported Atomically Dispersed Metals as Bifunctional Catalysts for Next-Generation Batteries Based on Conversion Reactions, *Adv Mater* (2021), e2105812.
- [12] J. Wang, Y. Wu, Z. Shi, C. Wu, Mesoporous carbon with large pore volume and high surface area prepared by a co-assembling route for Lithium-Sulfur Batteries, *Electrochimica Acta* 144 (2014) 307–314.
- [13] J.J. Chen, Q. Zhang, Y.N. Shi, L.L. Qin, Y. Cao, M.S. Zheng, Q.F. Dong, A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries, *Phys Chem Chem Phys* 14 (2012) 5376–5382.
- [14] J. Zhang, Z. Dong, X. Wang, X. Zhao, J. Tu, Q. Su, G. Du, Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium-sulfur batteries, *Journal of Power Sources* 270 (2014) 1–8.
- [15] R. Yang, H. Du, Z. Lin, L. Yang, H. Zhu, H. Zhang, Z. Tang, X. Gui, ZnO nanoparticles filled tetrapod-shaped carbon shell for lithium-sulfur batteries, *Carbon* 141 (2019) 258–265.
- [16] L. Fan, H. Wu, X. Wu, M. Wang, J. Cheng, N. Zhang, Y. Feng, K. Sun, Fe-MOF derived jujube pit like Fe₃O₄/C composite as sulfur host for lithium-sulfur battery, *Electrochimica Acta* 295 (2019) 444–451.
- [17] M. Zhu, S. Li, J. Liu, B. Li, Promoting polysulfide conversion by V₂O₃ hollow sphere for enhanced lithium-sulfur battery, *Applied Surface Science* 473 (2019) 1002–1008.
- [18] J. Choi, T.-G. Jeong, D. Lee, S.H. Oh, Y. Jung, Y.-T. Kim, Enhanced rate capability due to highly active Ta₂O₅ catalysts for lithium sulfur batteries, *Journal of Power Sources* 435 (2019), 226707.

[19] G. Feng, X. Liu, Z. Wu, Y. Chen, Z. Yang, C. Wu, X. Guo, B. Zhong, W. Xiang, J. Li, Enhancing performance of Li–S batteries by coating separator with MnO₂ @ yeast-derived carbon spheres, *Journal of Alloys and Compounds* 817 (2020), 152723.

[20] L. Ma, R. Chen, G. Zhu, Y. Hu, Y. Wang, T. Chen, J. Liu, Z. Jin, Cerium Oxide Nanocrystal Embedded Bimodal Micromesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium-Sulfur Batteries, *ACS Nano* 11 (2017) 7274–7283.

[21] W. Qi, W. Jiang, F. Xu, J. Jia, C. Yang, B. Cao, Improving confinement and redox kinetics of polysulfides through hollow NC@CeO₂ nanospheres for high-performance lithium-sulfur batteries, *Chemical Engineering Journal* 382 (2020), 122852.

[22] D. Xiao, C. Lu, C. Chen, S. Yuan, CeO₂-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries, *Energy Storage Materials* 10 (2018) 216–222.

[23] W.-I. Hsiao, Y.-S. Lin, Y.-C. Chen, C.-S. Lee, The effect of the morphology of nanocrystalline CeO₂ on ethanol reforming, *Chemical Physics Letters* 441 (2007) 294–299.

[24] S.T. Hossain, Y. Almesned, K. Zhang, E.T. Zell, D.T. Bernard, S. Balaz, R. Wang, Support structure effect on CO oxidation: A comparative study on SiO₂ nanospheres and CeO₂ nanorods supported CuOx catalysts, *Applied Surface Science* 428 (2018) 598–608.

[25] T. Désaunay, G. Bonura, V. Chiodo, S. Freni, J.P. Couzinié, J. Bourgon, A. Ringuedé, F. Labat, C. Adamo, M. Cassir, Surface-dependent oxidation of H₂ on CeO₂ surfaces, *Journal of Catalysis* 297 (2013) 193–201.

[26] S. Afzal, X. Quan, S. Lu, Catalytic performance and an insight into the mechanism of CeO₂ nanocrystals with different exposed facets in catalytic ozonation of p-nitrophenol, *Applied Catalysis B: Environmental* 248 (2019) 526–537.

[27] X. Zheng, Y. Li, L. Zhang, L. Shen, Y. Xiao, Y. Zhang, C. Au, L. Jiang, Insight into the effect of morphology on catalytic performance of porous CeO₂ nanocrystals for H₂S selective oxidation, *Applied Catalysis B: Environmental* 252 (2019) 98–110.

[28] S.-Y. Zhao, S.-P. Wang, Y.-J. Zhao, X.-B. Ma, An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO₂, *Chinese Chemical Letters* 28 (2017) 65–69.

[29] W. Chen, R. Ran, D. Weng, X. Wu, J. Zhong, S. Han, Influence of morphology on basicity of CeO₂ and its use in 2-chloroethyl ethyl sulfide degradation, *Journal of Rare Earths* 35 (2017) 970–976.

[30] C. Li, Y. Sun, I. Djerdj, P. Voepel, C.-C. Sack, T. Weller, R. Ellinghaus, J. Sann, Y. Guo, B.M. Smarsly, H. Over, Shape-Controlled CeO₂ Nanoparticles: Stability and Activity in the Catalyzed HCl Oxidation Reaction, *ACS Catalysis* 7 (2017) 6453–6463.

[31] L. Liu, Z. Yao, Y. Deng, F. Gao, B. Liu, L. Dong, Morphology and Crystal-Plane Effects of Nanoscale Ceria on the Activity of CuO/CeO₂ for NO Reduction by CO, *ChemCatChem* 3 (2011) 978–989.

[32] J. Li, Z. Liu, D.A. Cullen, W. Hu, J. Huang, L. Yao, Z. Peng, P. Liao, R. Wang, Distribution and Valence State of Ru Species on CeO₂ Supports: Support Shape Effect and Its Influence on CO Oxidation, *ACS Catalysis* 9 (2019) 11088–11103.

[33] Y. Ge, P. Chen, W. Zhang, Q. Shan, Y. Fang, N. Chen, Z. Yuan, Y. Zhang, X. Feng, Shape-controlled MnO₂ as a sulfur host for high performance lithium-sulfur batteries, *New Journal of Chemistry* 44 (2020) 11365–11372.

[34] Y. Zhang, S. Yao, R. Zhuang, K. Luan, X. Qian, J. Xiang, X. Shen, T. Li, K. Xiao, S. Qin, Shape-controlled synthesis of Ti4O7 nanostructures under solvothermal-assisted heat treatment and its application in lithium-sulfur batteries, *Journal of Alloys and Compounds* 729 (2017) 1136–1144.

[35] G. Longoni, R.L. Pena Cabrera, S. Polizzi, M. D'Arienzo, C.M. Mari, Y. Cui, R. Ruffo, Shape-Controlled TiO₂ Nanocrystals for Na-Ion Battery Electrodes: The Role of Different Exposed Crystal Facets on the Electrochemical Properties, *Nano Lett* 17 (2017) 992–1000.

[36] Y. Wang, X. Su, S. Lu, Shape-controlled synthesis of TiO₂ hollow structures and their application in lithium batteries, *J. Mater. Chem. B* 22 (2012) 1969–1976.

[37] S.T. Hossain, E. Azeeva, K. Zhang, E.T. Zell, D.T. Bernard, S. Balaz, R. Wang, A comparative study of CO oxidation over Cu-O-Ce solid solutions and CuO/CeO₂ nanorods catalysts, *Applied Surface Science* 455 (2018) 132–143.

[38] J. Tu, H. Li, T. Lan, S.-Z. Zeng, J. Zou, Q. Zhang, X. Zeng, Facile synthesis of TiN nanocrystals/graphene hybrid to chemically suppress the shuttle effect for lithium-sulfur batteries, *Journal of Alloys and Compounds* 822 (2020), 153751.

[39] S. Yao, H. Tang, M. Liu, L. Chen, M. Jing, X. Shen, T. Li, J. Tan, TiO₂ nanoparticles incorporation in carbon nanofiber as a multi-functional interlayer toward ultralong cycle-life lithium-sulfur batteries, *Journal of Alloys and Compounds* 788 (2019) 639–648.

[40] W. Yao, C. Chu, W. Zheng, L. Zhan, Y. Wang, “Pea-pod-like” nitrogen-doped hollow porous carbon cathode hosts decorated with polar titanium dioxide nanocrystals as efficient polysulfide reservoirs for advanced lithium-sulfur batteries, *Journal of Materials Chemistry A* 6 (2018) 18191–18205.

[41] W. Yao, W. Zheng, K. Han, S. Xiao, Ultrathin double-shell nanotubes of narrow band gap titanium oxide@carbon as efficient polysulfide inhibitors towards advanced lithium-sulfur batteries, *Journal of Materials Chemistry A* 8 (2020) 19028–19042.

[42] Z. Ye, Y. Jiang, T. Feng, Z. Wang, L. Li, F. Wu, R. Chen, Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries, *Nano Energy* 70 (2020), 104532.

[43] Q. Peng, F. Yu, W. Wang, A. Wang, F. Wang, Y. Huang, Ultralight polyethylenimine/porous carbon modified separator as an effective polysulfide-blocking barrier for lithium-sulfur battery, *Electrochimica Acta* 299 (2019) 749–755.

[44] Z. Zhang, A.H. Shao, D.G. Xiong, J. Yu, N. Koratkar, Z.Y. Yang, Efficient Polysulfide Redox Enabled by Lattice-Distorted Ni3Fe Intermetallic Electrocatalyst-Modified Separator for Lithium-Sulfur Batteries, *ACS Appl Mater Interfaces* 12 (2020) 19572–19580.

[45] A.H. Shao, Z. Zhang, D.G. Xiong, J. Yu, J.X. Cai, Z.Y. Yang, Facile Synthesis of a “Two-in-One” Sulfur Host Featuring Metallic-Cobalt-Embedded N-Doped Carbon Nanotubes for Efficient Lithium-Sulfur Batteries, *ACS Appl Mater Interfaces* 12 (2020) 5968–5978.

[46] Z. Wei, J. Li, Y. Wang, R. Wang, High-performance Li-S batteries enabled by polysulfide-infiltrated free-standing 3D carbon cloth with CeO₂ nanorods decoration, *Electrochimica Acta* 388 (2021), 138645.

[47] D. Cai, L. Wang, L. Li, Y. Zhang, J. Li, D. Chen, H. Tu, W. Han, Self-assembled CdS quantum dots in carbon nanotubes: induced polysulfide trapping and redox kinetics enhancement for improved lithium-sulfur battery performance, *Journal of Materials Chemistry A* 7 (2019) 806–815.

[48] D. Cai, M. Lu, J. Li, D. Cao, H. Chen, J. Tu, W.H. Li, A Highly Conductive MOF of Graphene Analogue Ni3 (HTP)2 as a Sulfur Host for High-Performance Lithium-Sulfur Batteries, *Small* 15 (2019), e1902605.

[49] Z.L. Xu, S. Lin, N. Onofrio, L. Zhou, F. Shi, W. Lu, K. Kang, Q. Zhang, S.P. Lau, Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries, *Nat Commun* 9 (2018) 4164.

[50] C. Wang, H. Song, C. Yu, Z. Ullah, Z. Guan, R. Chu, Y. Zhang, L. Zhao, Q. Li, L. Liu, Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries, *Journal of Materials Chemistry A* 8 (2020) 3421–3430.

[51] D. Tian, X. Song, M. Wang, X. Wu, Y. Qiu, B. Guan, X. Xu, L. Fan, N. Zhang, K. Sun, MoN Supported on Graphene as a Bifunctional Interlayer for Advanced Li-S Batteries, *Advanced Energy Materials* 9 (2019) 1901940.

[52] M. Chen, X. Zhao, Y. Li, P. Zeng, H. Liu, H. Yu, M. Wu, Z. Li, D. Shao, C. Miao, G. Chen, H. Shu, Y. Pei, X. Wang, Kinetically elevated redox conversion of polysulfides of lithium-sulfur battery using a separator modified with transition metals coordinated g-C3N4 with carbon-conjugated, *Chemical Engineering Journal* 385 (2020), 123905.

[53] M. Xu, P. Dong, T. Li, H. Hua, Y. Li, X. Li, Y. Zhang, Y. Zhang, J. Zhao, Promoting kinetics of polysulfides redox reactions by the multifunctional CoS/C/CNT microspheres for high-performance lithium-sulfur batteries, *Applied Surface Science* 504 (2020), 144463.

[54] B. Ye, C. Feng, G. Zhu, S. Wang, A. Fakhri, Feather duster like CeO₂ as efficient adsorber host material for advanced lithium-sulfur batteries, *Journal of Alloys and Compounds* 823 (2020), 153743.

[55] S. Yan, J. Wu, Y. Dai, Z. Pan, W. Sheng, J. Xu, K. Song, Excellent electrochemical application of Ni-based hydroxide/biomass porous carbon/sulfur composite cathode on lithium-sulfur batteries, *Colloids and Surfaces A: Physicochemical and Engineering Aspects* 591 (2020), 124513.

[56] Y. Huang, X. Sun, J. Wang, X. Li, W. Chen, C. Wei, H. Hu, G. Liang, Hydroxylated sandwich-structure interlayer as a polysulfide reservoir for lithium-sulfur battery, *Journal of Alloys and Compounds* 776 (2019) 187–193.

[57] Z. Zhang, S. Basu, P. Zhu, H. Zhang, A. Shao, N. Koratkar, Z. Yang, Highly sulfiphilic Ni-Fe bimetallic oxide nanoparticles anchored on carbon nanotubes enable effective immobilization and conversion of polysulfides for stable lithium-sulfur batteries, *Carbon* 142 (2019) 32–39.

[58] J. Yan, X. Liu, H. Qi, W. Li, Y. Zhou, M. Yao, B. Li, High-Performance Lithium-Sulfur Batteries with a Cost-Effective Carbon Paper Electrode and High Sulfur-Loading, *Chemistry of Materials* 27 (2015) 6394–6401.

[59] W. Yao, W. Zheng, J. Xu, C. Tian, K. Han, W. Sun, S. Xiao, ZnS-SnS@NC Heterostructure as Robust Lithiophilicity and Sulfiphilicity Mediator toward High-Rate and Long-Life Lithium-Sulfur Batteries, *ACS Nano* 15 (2021) 7114–7130.

[60] D.K. Lee, Y. Chae, H. Yun, C.W. Ahn, J.W. Lee, CO₂-Oxidized Ti3C2Tx-MXenes Components for Lithium-Sulfur Batteries: Suppressing the Shuttle Phenomenon through Physical and Chemical Adsorption, *ACS Nano* 14 (2020) 9744–9754.

[61] F. Ma, Y. Wan, X. Wang, X. Wang, J. Liang, Z. Miao, T. Wang, C. Ma, G. Lu, J. Han, Y. Huang, Q. Li, Bifunctional Atomically Dispersed Mo-N₂/C Nanosheets Boost Lithium Sulfide Deposition/Decomposition for Stable Lithium-Sulfur Batteries, *ACS Nano* 14 (2020) 10115–10126.

[62] B. Li, Q. Su, L. Yu, J. Zhang, G. Du, D. Wang, D. Han, M. Zhang, S. Ding, B. Xu, Tuning the Band Structure of MoS₂ via Co₉S₈@MoS₂ Core-Shell Structure to Boost Catalytic Activity for Lithium-Sulfur Batteries, *ACS Nano* 14 (2020) 17285–17294.

[63] X. Ding, R. Gu, P. Shi, Q. Xu, Y. Min, A three-dimensional hierarchical porous carbon network decorated with MnO₂ nanoparticles (HPCM) as an efficient sulfur host for high-performance lithium-sulfur batteries (LSBs), *Journal of Alloys and Compounds* 835 (2020), 155206.

[64] Q. Shao, D. Guo, C. Wang, J. Chen, Yolk-shell structure MnO₂@Hollow carbon nanospheres as sulfur host with synergistic encapsulation of polysulfides for improved Li-S batteries, *Journal of Alloys and Compounds* 842 (2020), 155790.

[65] S. Rehman, T. Tang, Z. Ali, X. Huang, Y. Hou, Integrated Design of MnO₂ @Carbon Hollow Nanoboxes to Synergistically Encapsulate Polysulfides for Empowering Lithium Sulfur Batteries, *Small* 13 (2017) 1700087.

[66] H. Chen, W.-D. Dong, F.-J. Xia, Y.-J. Zhang, M. Yan, J.-P. Song, W. Zou, Y. Liu, Z.-Y. Hu, J. Liu, Y. Li, H.-E. Wang, L.-H. Chen, B.-L. Su, Hollow nitrogen-doped carbon/sulfur@MnO₂ nanocomposite with structural and chemical dual-encapsulation for lithium-sulfur battery, *Chemical Engineering Journal* 381 (2020), 122746.

[67] L. Ni, Z. Wu, G. Zhao, C. Sun, C. Zhou, X. Gong, G. Diao, Core-Shell Structure and Interaction Mechanism of gamma-MnO₂ Coated Sulfur for Improved Lithium-Sulfur Batteries, *Small* 13 (2017) 1603466.

[68] W. Sun, X. Ou, X. Yue, Y. Yang, Z. Wang, D. Rooney, K. Sun, A simply effective double-coating cathode with MnO₂ nanosheets/graphene as functionalized

interlayer for high performance lithium-sulfur batteries, *Electrochimica Acta* 207 (2016) 198–206.

[69] Z. Liu, J. Li, M. Buettner, R.V. Ranganathan, M. Uddi, R. Wang, Metal-Support Interactions in CeO₂- and SiO₂-Supported Cobalt Catalysts: Effect of Support Morphology, Reducibility, and Interfacial Configuration, *ACS Appl Mater Interfaces* 11 (2019) 17035–17049.

[70] M. Cheng, T. Han, M. Zhang, H. Zhang, B. Sun, S. Zhu, M. Zhai, Y. Wu, J. Liu, Hydrogel and sulfur co-coating on semispherical TiO₂ as polysulfides-immobilized cathodes for high capacity and stable rate performance lithium-sulfur batteries, *Applied Surface Science* 513 (2020), 145887.

[71] H.-E. Wang, K. Yin, N. Qin, X. Zhao, F.-J. Xia, Z.-Y. Hu, G. Guo, G. Cao, W. Zhang, Oxygen-deficient titanium dioxide as a functional host for lithium-sulfur batteries, *Journal of Materials Chemistry A* 7 (2019) 10346–10353.

[72] G. Chen, J. Li, N. Liu, Y. Zhao, J. Tao, G. Kalimuldina, Z. Bakenov, Y. Zhang, Synthesis of nitrogen-doped oxygen-deficient TiO_{2-x}/reduced graphene oxide/sulfur microspheres via spray drying process for lithium-sulfur batteries, *Electrochimica Acta* 326 (2019), 134968.

[73] C. Zha, D. Wu, T. Zhang, J. Wu, H. Chen, A facile and effective sulfur loading method: Direct drop of liquid Li₂S₈ on carbon coated TiO₂ nanowire arrays as cathode towards commercializing lithium-sulfur battery, *Energy Storage Materials* 17 (2019) 118–125.

[74] W. Dong, D. Wang, X. Li, Y. Yao, X. Zhao, Z. Wang, H.-E. Wang, Y. Li, L. Chen, D. Qian, B.-L. Su, Bronze TiO₂ as a cathode host for lithium-sulfur batteries, *Journal of Energy, Chemistry* 48 (2020) 259–266.

[75] Y. Yu, M. Yan, W.-D. Dong, L. Wu, Y.-W. Tian, Z. Deng, L.-H. Chen, T. Hasan, Y. Li, B.-L. Su, Optimizing inner voids in yolk-shell TiO₂ nanostructure for high-performance and ultralong-life lithium-sulfur batteries, *Chemical Engineering Journal* 417 (2021), 129241.

[76] J. Li, Z. Liu, R. Wang, Support structure and reduction treatment effects on CO oxidation of SiO₂ nanospheres and CeO₂ nanorods supported ruthenium catalysts, *J Colloid Interface Sci* 531 (2018) 204–215.

[77] R. Wang, R. Dangerfield, Seed-mediated synthesis of shape-controlled CeO₂nanocrystals, *RSC Adv.* 4 (2014) 3615–3620.