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The bigerbes introduced here give a refinement of the notion of 2–gerbes, repre-
senting degree four integral cohomology classes of a space. Defined in terms of
bisimplicial line bundles, bigerbes have a symmetry with respect to which they
form “bundle 2–gerbes” in two ways; this structure replaces higher associativity
conditions. We provide natural examples, including a Brylinski–McLaughlin bigerbe
associated to a principal G –bundle for a simply connected simple Lie group. This
represents the first Pontryagin class of the bundle, and is the obstruction to the lifting
problem on the associated principal bundle over the loop space to the structure group
consisting of a central extension of the loop group; in particular, trivializations of
this bigerbe for a spin manifold are in bijection with string structures on the original
manifold. Other natural examples represent “decomposable” 4–classes arising as cup
products, a universal bigerbe on K.Z; 4/ involving its based double loop space, and
the representation of any 4–class on a space by a bigerbe involving its free double
loop space. The generalization to “multigerbes” of arbitrary degree is also described.
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1. Čech theory 3342

2. Bundle gerbes 3348

3. Doubling and the free loop space 3361

4. Bundle bigerbes 3367

5. Examples of bigerbes 3379

6. Multigerbes 3391

References 3397

Introduction

Gerbes provide a (more or less) geometric representation of integral cohomology 3–
classes on a space; see Giraud [8] and Brylinski [4]. Bundle gerbes, introduced by
Murray in [16], are particularly geometric and have a well-known application in the
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form of the “lifting bundle gerbe”, representing the obstruction to the extension of a
principal G –bundle to a principal bundle with structure group a U.1/ central extension
of G. Here we present a direct extension of the notion of a bundle gerbe to obtain
a similar representation of integral 4–classes. These bigerbes are special cases, in a
sense more rigid, of the bundle 2–gerbes as defined by Stevenson [22], which in turn
are a more geometric version of 2–gerbes as defined by Breen [3]. In particular, our
bigerbes induce bundle 2–gerbes in two ways. One application of this notion is to
Brylinski–McLaughlin (bi)gerbes [5], corresponding to the existence of an extension
of the principal bundle over the loop space induced by a principal G –bundle over the
original space, to a bundle with structure group a central extension of the loop group.

A gerbe may be defined as a simplicial object; see Murray and Stevenson [17; 22]. We
work in the context of locally split maps, which is to say continuous maps � W Y !X

with local right inverses over an open cover of the topological space X. Such a map
determines an associated simplicial space, Y Œ�� , over X, formed from the fiber products
Y Œk� D Y �X � � � �X Y :

(1) Y � Y Œ2� 
 
 Y Œ3� � � � :

This constitutes a contravariant functor �! Top=X, where � denotes the simplex
category with objects the sets nD f1; : : : ; ng for n 2N0 with morphisms the order-
preserving maps between these, and Top=X denotes the category of spaces with
commuting maps to X. Functions on Y Œ�� admit a simplicial differential, denoted
by d , by taking the alternating sum of the pullbacks, and this operation extends to line
(or circle) bundles and sections thereof by taking the alternating tensor product of the
pullbacks.

A bundle gerbe on X is specified in terms of the simplicial space (1) by the prescription
of a complex line bundle L over Y Œ2� such that dL over Y Œ3� has a section s which
pulls back to be the canonical section of d2L over Y Œ4� . The important special case
of the lifting bundle gerbe is obtained when � WE!X is a principal G –bundle; then
there is a natural map EŒ2�!G, and the line bundle is the pullback of the line bundle
over G associated to a given central extension of G by C� or U.1/.

Our notion of a bigerbe is based on a split square of maps. This is a commutative
square of locally split maps

(2)
Y2 W

X Y1
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with the additional property that the induced map

W ! Y1 �X Y2

is also locally split (and in particular surjective).

Such a split square induces a bisimplicial space W Œ�;�� over X,

(3)

Y
Œ3�
2

W Œ1;3� W Œ2;3� W Œ3;3�

Y
Œ2�
2

W Œ1;2� W Œ2;2� W Œ3;2�

Y2 W Œ1;1� W Œ2;1� W Œ3;1�

X Y1 Y
Œ2�
1

Y
Œ3�
1

where the left column and bottom row are the standard simplicial spaces as in (1) and
the interior spaces are given inductively by

(4) W Œm;n�
DW Œm;1�

�
Y

Œn�

1

� � � � �
Y

Œn�

1

W Œm;1�
ŠW Œ1;n�

�
Y

Œm�

2

� � � � �
Y

Œm�

2

W Œ1;n�:

The result is a commutative diagram in which all rows and columns are simplicial spaces.
There are then two commuting simplicial differentials, d1 and d2 , corresponding to
the horizontal and vertical maps, respectively.

Definition A bigerbe on the bisimplicial space (3) corresponding to a locally split
square (2) is specified by a (locally trivial) complex line bundle L over W Œ2;2� with
d1L and d2L, over W Œ3;2� and W Œ2;3� , respectively, having trivializing sections si

for i D 1; 2 such that dsi is the canonical trivialization of d2
i L and d2s1 D d1s2 .

As for bundle gerbes, there are straightforward notions of products, inverses, pullbacks
and morphisms of bigerbes, for which the characteristic 4–class defined below behaves
naturally.

As noted above, among the natural examples is the Brylinski–McLaughlin bigerbe.
Suppose that E!X is a principal G –bundle over a manifold with structure group a
compact, connected, simply connected, simple Lie group. Then

(5)
E PE

X PX

Algebraic & Geometric Topology, Volume 21 (2021)
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is a split square, where PX and PE are the respective (based) path spaces, the vertical
arrows are projections and the horizontal arrows are the endpoint maps. In the resulting
bisimplicial space W Œ2;1� D �E is the based loop space of E which is a principal
bundle with structure group the based loop group �G of G. The central extensions

(6) 1! U.1/!b�G!�G! 1

are classified by H 3.GIZ/DH 3
G
.GIZ/D Z, and the associated line bundle for such

a central extension pulls back over W Œ2;2� D�EŒ2� to a line bundle Q determining a
bigerbe. Here the triviality of d1Q is the multiplicativity of the central extension, as for
a lifting gerbe, whereas the (consistent) triviality of d2Q corresponds to the so-called
“fusion” property of the central extension with respect to certain configurations of loops
(see Stolz and Teichner [25], Waldorf [29] and Kottke and Melrose [11]) and which is
equivalent to the gerbe property with respect to the path fibration PEŒ2�!EŒ2� . Incor-
poration of an additional “figure-of-eight” condition as in Kottke and Melrose [11; 12] —
a condition related to the simplicial space of products of X discussed in Section 3 —
promotes this to a bigerbe involving free loops and paths, representing the obstruction
of the lift of LE!LX to a “loop-fusion” bLG –bundle, which is discussed further
below.

There are various 2–gerbe versions of this in the literature. In [5], Brylinski and
McLaughlin define a 2–gerbe in the sense of Breen by pulling back the canonical
gerbe on G (corresponding to the given class in H 3.GIZ/) to EŒ2� by the difference
map, particularly in the universal case where X D BG. Carey, Johnson, Murray,
Stevenson and Wang [6], and later Waldorf [28], used a similar construction to produce
a bundle 2–gerbe in the sense of Stevenson. Furthermore, in [5], the authors discuss a
correspondence between the 2–gerbe and the problem of extending the structure group
of the free loop space LX from LG to bLG. The bigerbe above demonstrates this
correspondence explicitly.

Returning to the simplicial space, (1), arising from any locally split map, the simplicial
differentials extend to the Čech cochain spaces over the Y Œk� . We pass to the direct
limits LC `.X IA/ D limU LC

`
U .X IA/ of Čech cochains with values in a topological

abelian group A, with respect to refinement of covers U, so eliminating covers from
the notation. Then the simplicial complex

(7) 0! LC `.X;A/ d
�! LC `.Y;A/ d

�! LC `.Y Œ2�;A/ d
�! � � �

Algebraic & Geometric Topology, Volume 21 (2021)
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is exact (see Proposition 2.3), with a homotopy inverse arising from local sections over
an open cover. The simplicial differential commutes with the Čech differential resulting
in a double complex.

For a bundle gerbe, the representative c.L/ of the Chern class of L can be chosen to be
a pure cocycle: ıc.L/D dc.L/D 0. From the exactness of the simplicial differential
this class descends:

(8) c.L/D�dˇ; ıˇ D d˛ for some ˇ 2 LC 1.Y IC�/; ˛ 2 LC 2.X IC�/;

and then DD.L/ 2 LH 3.X IZ/, the image of Œ˛� 2 LH 2.X IC�/ under the Bockstein
isomorphism, is the Dixmier–Douady class of the gerbe. This is not the original
definition of the Dixmier–Douady class of a bundle gerbe as in [16; 17]; we show that
it is equivalent below in Proposition 2.8 and use the simplicial characterization to prove
that a locally split map � W Y !X supports a bundle gerbe with a given 3–class on X

if and only if the class vanishes when pulled back to Y (Theorem 2.10), and also to
classify trivializations of bundle gerbes (in Proposition 2.11).

For a general bigerbe there is a similar Čech analysis in terms of the triple complex,
formed by the three commuting differentials ı , d1 and d2 , on the Čech spaces over
the bisimplicial space (3). Now the Chern class c.L/ 2 LC 1.W Œ2;2�IC�/ can again be
chosen to be a pure cocycle: ıc.L/ D d1c.L/ D d2c.L/ D 0. As a consequence it
descends to a cocycle on Y Œ2� :

(9)
c.L/D d2ˇ1; d1ˇ1 D 0; ˇ1 2

LC 1.W Œ2;1�
IC�/;

ıˇ1 D�d2�1; d1�1 D 0; �1 2
LC 2.Y

Œ2�
1
IC�/;

essentially as for the gerbe. Thus the image of Œ�1� in LH 3.Y Œ2�IZ/ (under the Bockstein
isomorphism) is the Dixmier–Douady class of L as a gerbe over Y

Œ2�
1

. Significantly,
however, �1 is naturally a simplicial cocycle — a pure cocycle in the .ı; d1/ complex —
and so d�1 D 0.

In view of this, the simplicial class further descends under d1 :

(10) �1 D�d1�1; ı�1 D d1
; ı
 D 0; �1 2
LC 2.Y1IC

�/; 
 2 LC 3.X IC�/:

The Bockstein image G.L/ 2 LH 4.X IZ/ of Œ
 � is the characteristic 4–class associated
to the bigerbe.

The symmetry of the bigerbe allows Y1 and Y2 to be interchanged, but this also reverses
the sign of G.L/.

Algebraic & Geometric Topology, Volume 21 (2021)
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Theorems 4.13 and 4.15 (i) The characteristic 4–class of a bigerbe is natural with
respect to pullbacks , morphisms , products and inverses. It vanishes if and only
if the bigerbe admits a trivialization , and two bigerbes have the same 4–class if
and only if they are stably isomorphic.

(ii) The bisimplicial space generated by a split square , as in (2), supports a bigerbe
for a given class in LH 4.X IZ/ if and only if this class lifts to the Yi to be trivial ,
with primitives which when pulled back to W have exact difference.

For the Brylinski–McLaughlin bigerbe Q associated to a principal bundle E ! X

with structure group a compact, connected, simply connected and simple Lie group G,
the 4–class G.Q/D Œ
 � is the transgression to X of the 3–class on G corresponding
to a central extension bLG of LG :

(11) X  E � EŒ2� q
�!G; ˛ 2H 3.GIZ/; q�˛ D d�; d
 D ı�:

Theorems 5.9 and 5.11 The Brylinski–McLaughlin bigerbe Q! LEŒ2� has char-
acteristic class G.Q/D p1.E/ 2 LH

4.X IZ/, the vanishing of which is equivalent to
the existence of a “loop-fusion” (meaning fusion and figure-of-eight; see Section 3)
bLG lift of the LG–bundle LE ! LX. Such lifts , which are equivalent to certain
trivializations of Q, are classified by LH 3.X IZ/.

In particular, this applies to the spin frame bundle of a spin manifold. There it represents
the obstruction to a lift of the principal loop spin bundle over the loop space to a loop-
fusion principal bundle for the basic central extension of the loop spin group. The
obstruction is then the Pontryagin class, usually denoted by 1

2
p1 because of its relation

to the Pontryagin class of the oriented orthogonal frame bundle, of the spin bundle
[29; 6; 11]. Such loop-fusion lifts are, by the above theorem, in bijection with so-called
“string structures” on the manifold (see Corollary 5.13).

In addition to the Brylinski–McLaughlin bigerbes, we provide other natural examples
of bigerbes representing “decomposable” 4–classes which are the cup product of either
2–classes or a 1–class and a 3–class (see Section 5.1). Moreover, we show that, for a
simply connected and locally contractible space X, every 4–class is represented by
a bigerbe with respect to the locally split square in which the Yi are the based path
spaces PX, and W D PPX is the based mapping space of the square into X (see
Section 5.5). In particular, K.Z; 4/ supports a universal bigerbe. Likewise, for X not
necessarily simply connected, we show that every 4–class is represented by a bigerbe
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using the free path spaces; in particular, W Œ2;2� DLLX is the double free loop space
in this case.

There is a direct extension of bigerbes to “multigerbes”, higher versions of (bi)gerbes
in which the locally split squares are replaced by n–cubes, where the line bundles
satisfy simplicial conditions with respect to n commuting differentials; these represent
cohomology classes of degree nC2. The symmetry of the (multi)simplicial conditions
replaces the ever higher and more complex “associativity” conditions associated to
higher gerbes. This extension is quite straightforward, and for this reason, and since
we are unaware of examples apart from decomposable and path multigerbes, we only
outline the theory briefly at the end of this paper.

In order to restrict attention to a simple category of topological spaces, and to avoid
expanding the paper further, we do not develop the theory of connections on bigerbes
here, though this will be done in future work. We also do not discuss here the bigerbe
analogue of bundle gerbe modules or the related theory of generalized morphisms due
to Waldorf [26].

Section 1 below contains a discussion of covers and locally split maps, which is the
context for the rest of the paper, and our notation for Čech theory is introduced in
Section 1.2.

Section 2 is a review of Murray’s theory of bundle gerbes (without connections), as
developed from the Čech-simplicial point of view, with the basic properties of bundle
gerbes over split maps recalled in Section 2.1. The extension of the Čech cohomology
complex to a bicomplex over the simplicial space of a split map in Section 2.2 leads to
an alternative definition of the Dixmier–Douady class for a bundle gerbe in Section 2.3,
the classification of gerbes over a given split map in Section 2.4, and the classification
of trivializations in Section 2.5. Examples of bundle gerbes are recalled in Section 2.6.

A “product-simplicial” condition, which we refer to as “doubling”, on bundle gerbes
is defined in Section 3.1 with particular application to the free loop space, and the
connection with results from [12] is described in Section 3.2.

In Section 4.1 the basic properties of locally split squares of maps are given, leading
to the definition of bigerbes in Section 4.2. The characteristic 4–class of a bigerbe is
obtained in Section 4.3 and, conversely, Section 4.4 contains a necessary and sufficient
condition for representability of a 4–class over a given locally split square.

Section 5 is devoted to examples, with explicit bigerbes corresponding to decomposable
classes constructed in Section 5.1, extending some of the results of Mathai, Melrose
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and Singer [14]. After a brief discussion of doubling for bigerbes in Section 5.2, our
main application of bigerbes — the Brylinski–McLaughlin lifting gerbe — is discussed
in Section 5.3 and its relation to string structures is discussed in Section 5.4. Further
examples of path bigerbes can be found in Section 5.5 and, finally, we end with a brief
account of multigerbes in Section 6.
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1 Čech theory

1.1 Covers and locally split maps

Since we will make substantial use of Čech theory, we start with some conventions on
spaces, open covers and maps. We work throughout in the standard topologist’s category
of compactly generated Hausdorff spaces and continuous maps, without additional
conditions unless explicitly noted.

An open cover of a topological space X is a collection of open sets, U, for which
X D

S
U2U U. Such a cover defines an étale space by taking the disjoint union

Et.U/D
G

U2U

U !X

with the map to X consisting of the inclusion map on each U.

Note that since the individual sets may not be connected, it is not generally possible to
recover the collection U from Et.U/ without specifying additional indexing information.
We regard X as its own minimal cover.

If U and V are covers of X and Y , then a map of covers is a continuous map g W Et.U/!
Et.V/, where each element U 2 U is mapped to a specific element V 2 V. In particular,
there is an underlying map of index sets.
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Definition 1.1 A continuous map � W Y ! X of topological spaces is locally split
if it admits continuous local sections; thus � is surjective and there exists a cover U
of X with respect to which the local sections constitute a continuous map of covers
s W Et.U/! Y such that � ı s W Et.U/!X is inclusion of the cover in X. In particular,
the inclusion map of covers Et.U/!X is itself locally split.

If U and V are covers of the same space X, then a map of covers such that

(1-1)
Et.V/ Et.U/

X

commutes makes V a refinement of U ; often in the literature the underlying map of
index sets is omitted but we always retain it, even if implicitly. In this way the covers
of X define a category with refinements as morphisms. Observe also that if V is a
cover of Et.U/ considered as a space, then V is a cover of X as well, the composite
map Et.V/!X is an inclusion map of covers, and V constitutes a refinement of U.

If f W Y !X is a continuous map then the pullback

(1-2) f �1U D ff �1.U / W U 2 Ug

is a cover of Y and f lifts to a well-defined map of covers

f W Et.f �1U/Š f �1Et.U/! Et.U/:

If U and V are both covers of X, then

(1-3) U \V D fU \V W U 2 U ; V 2 Vg

is a cover of X mutually refining U and V ; indeed, this is the same thing as pulling
back V to a cover of Et.U/ by the inclusion map to X or vice versa, and Et.U \V/Š
Et.U/�X Et.V/. Note that

U .`/ D U \ � � � \U„ ƒ‚ …
` times

gives the cover by `–fold intersections of sets in U (we refer to Et.U .`// as a Čech
space) and that there is a canonical identification

(1-4) f �1.U .`//Š .f �1U/.`/

of covers over Y whenever U is a cover of X and f W Y !X is continuous.

With these conventions, the collection of covers of X forms a directed category with
(reverse) order given by refinement and upper bounds given by mutual refinement (1-3).
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1.2 Čech cohomology

The standard definition of Čech cohomology proceeds by fixing an open cover U
of X and taking the homology LH �U .X IA/ of the cochain complex . LC �U .X IA/; ı/D
.�.U .�C1/IA/; ı/, where A is a sheaf of abelian groups on X, �.U .�C1/IA/ denotes
the group of local sections of A on the intersection cover U .�C1/ and ı W �.U .�/IA/!
�.U .�C1/IA/ is given by the alternating sum of the pullbacks by the various inclusion
maps U .�C1/! U .�/ . For our purposes, A will always be a fixed topological abelian
group such as C , C� , Z or U.1/ and we will work on the sheaf of continuous maps
to A, so that

LC �U .X IA/D C.Et.U .�C1//IA/

is a space of continuous maps to A from the étale space. The full Čech cohomology is
defined as the direct limit

(1-5) LH �.X IA/D lim
U
LH �U .X IA/

under refinement.

Direct limit being an exact functor, homology commutes with direct limits, so we will
use the equivalent definition of LH �.X IA/ as the homology of the direct limit of the
cochain complex

LC �.X IA/ WD lim
U
LC �U .X IA/:

This point of view will be convenient, as it allows us to suppress explicit notation for
covers at various points. We use the standard terminology of cochains, cocycles and
coboundaries for elements of LC �.X IA/, and also borrow the adjectives closed and
exact from de Rham theory for cocycles and coboundaries, respectively.

By taking the direct limit at the chain level, the pullback operation with respect to a
continuous map becomes well defined on chains:

Proposition 1.2 For a topological abelian group A, any continuous map f W Y !X

of topological spaces induces a chain map

f � W LC �.X IA/! LC �.Y IA/;

which descends to the pullback functor f � W LH �.X IA/! LH �.Y IA/ on cohomology.

Proof As noted above, given a cover U of X, f lifts to a map Et.f �1U/! Et.U/
of covers over Y and X, and using (1-4) there is a lift Et.f �1U .`//! Et.U .`// for
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each `. This is well defined with respect to refinement; specifically, if Et.U 0/! Et.U/
is a refinement then so is Et.f �1U 0.`//! Et.f �1U .`// and

Et.f �1U 0.`// Et.U 0.`//

Et.f �1U .`// Et.U .`//

f

f

commutes, so f � W LC �U .X IA/ !
LC �
f �1U .Y IA/ descends to the direct limit. Fur-

thermore, the natural maps Et.f �1U .`//! Et.U .`// commute with the inclusions
Et.U .`// ,�! Et.U .`�1// in each factor of the `–fold intersections into the original
covers, so f � commutes with the Čech differential ı and defines a chain morphism.

We proceed to define a more limited form of pullback on chains with respect to the
sections of a locally split map. This is essential to the exactness of the simplicial
complex (7) of Čech chains on the simplicial space induced from a locally split map
mentioned in the introduction and discussed in detail in Section 2.2.

Lemma 1.3 If s W Et.U/ ! Y is a collection of sections of a locally split map
� W Y ! X, then any cover V of Y induces canonical refinements U 0 D s�1V of
U and V 0 D ��1U 0 \ V of V such that s and � lift naturally to maps of covers
s W Et.U 0/ ! Et.V 0/ and � W Et.V 0/ ! Et.U 0/ with s� D Id W Et.U 0/ ! Et.U 0/; this
construction is natural under refinement of V.

Proof If V is any cover of Y and sU W U !Y is the section of � over U 2U, then the
sets s�1

U
V � U for V 2 V define a cover of U, and hence together a refinement of U

as a cover of X. This is the cover U 0D s�1V defined above. Then s lifts to a naturally
defined map of covers Et.U 0/! Et.V/ given by sU W s

�1
U

V ! V . Since it is natural,
we denote this lift simply as s . The pullback ��1U 0 of the new cover of X defines a
refinement V 0D��1U 0\V of V to which � lifts as a map of covers � W Et.V 0/!Et.U 0/.
Moreover, as a consequence of the fact that �sD Id on each element U 0 2U, it follows
that s lifts to a map of covers s W Et.U 0/! Et.V 0/, and s� D Id.

Proposition 1.4 Under the conditions of Lemma 1.3 the map of covers s W Et.U 0/!
Et.V 0/ induces a map of covers of Et.U 0.`// to Et.V 0.`// for each ` and a homomor-
phism

(1-6) s�` W
LC `.Y IA/! LC `.X IA/ satisfying s�`�

�
D Id;
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given by pullback under the map from the first factor

(1-7) s` W U
0
1\ � � � \U 0`! V 01\ � � � \V 0` ; x 7! sU 0

1
.x/:

Remark It is important that these s�
`

do not generally commute with the Čech dif-
ferential; in other words, we do not obtain a chain map, and, in particular, we do not
claim that s�

`
descends to cohomology. Indeed the lift, s` , of s in (1-7) corresponds

to an (arbitrary) preference for the map corresponding to the first factor, U 0
1

, in the
`–fold intersection.

Proof By definition, each U 0
1
D U1\ s�1

U1
.V / for some elements U1 2 U and V 2 V,

respectively. Then V 0
1
D V \ ��1.U 0

1
/ contains the image of U 0

1
under the lifted

section and the other elements V 0j D V \ ��1.U 0j / contain the image of U 0
1
\ U 0j

under sU 0
1

. Then certainly �s` D Id and �1 ı s` D s ı �1 , where �1 denotes the first
factor inclusion map. That this holds for �1 and not for �j for j ¤ 1 is ultimately the
reason the s�

`
constructed below do not commute with the Čech differential.

Omitting the abelian group A for notational convenience, the action, s�
`

, on Čech
cochains is defined by mapping Œ˛� 2 LC `.Y /, with representative ˛ 2 LC `

V .Y /, to the
image of ˛ in LC `

V0.Y / (which we continue to denote by ˛ ), then to s�
`C1

˛ 2 LC `
U 0.X /,

and finally to the image Œs�
`C1

˛� 2 LC `.X /.

That this is well defined is a consequence of naturality; it suffices to note that if
Et.W/! Et.V/ is a refinement, then s�1W and W 0 D ��1.s�1W/\W refine U 0

and V 0, respectively, and

Et.s�1W.`/
/ Et.W.`//

Et.U 0.`// Et.V 0.`//

s`

s`

commutes.

Remark It is worth highlighting the particular property of the cover V 0 of Y that was
essential to the previous proof. If � W Y ! X is locally split and s W Et.U/! Y is a
fixed section over a cover U of X, then we may say a cover V 0 of Y is admissible
with respect to s if there exists a refinement U 0 of U and

(i) a lift � W Et.V 0/! Et.U 0/ of � W Y !X ;
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(ii) for each ` � 1, a lift s` W Et.U 0.`// ! Et.V 0.`// of s W Et.U/ ! Y such that
�s` D 1 on Et.U 0.`// and

Et.U 0.`// Et.V 0.`//

Et.U 0/ Et.V 0/

s`

�1 �1

s1

commutes, where �1 is the first factor inclusion on `–fold intersections. (In fact,
once such a lift exists for `D 1; 2 it automatically exists for every `� 3.)

An admissible refinement of an admissible cover V 0 of Y is a refinement V 00 of V 0

which is itself admissible and for which the obvious diagrams intertwining the s`

commute.

Clearly the chain maps s�
`
W LC `

U 0.X IA/!
LC `
V0.Y IA/ are defined whenever V 0 is an

admissible cover of Y and they are natural with respect to admissible refinement. One
consequence of the proof above is that admissible covers (and admissible refinements)
are final in the directed set of all covers (ie any cover of Y has an admissible cover
which refines it); in particular, the direct limit LC `.Y IA/D limV LC

`
V .Y IA/ is equivalent

to the direct limit taken over admissible covers alone [13, Theorem 1, page 213]. The
reader who is uncomfortable with the rather large chain complexes given by the direct
limit over all covers may therefore wish to restrict attention to Čech cochains with
respect to some fixed admissible covers.

A limited form of naturality holds for the chain maps of Proposition 1.4. Indeed, we say
two locally split maps �i W Yi!Xi for i D 1; 2 are compatible if there exist continuous
maps f WX1!X2 and Qf W Y1! Y2 which intertwine the �i (so �2

Qf D f �1 ), and
in addition intertwine some local sections; more precisely, there are open covers Ui

of Xi for i D 1; 2 to which f lifts to a map of covers f W Et.U1/! Et.U2/, as well
as sections si W Et.Ui/! Yi for i D 1; 2 such that Qf s1 D s2f W Et.U1/! Y2 . This
condition arises in the context of bigerbes in Section 4.2, though it will not be used in
the interim.

Proposition 1.5 If �i W Yi!Xi are locally split maps compatible under Qf W Y1! Y2

and f WX1!X2 , then

LC `.Y2IA/ LC `.Y1IA/

LC `.X2IA/ LC `.X1IA/

Qf �

s2
`

�
s1

`

�

f �
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commutes for every `, where si
`

� are the maps derived from the compatible local
sections si of �i .

Proof Given any cover V2 of Y2 and proceeding as in the proof of Proposition 1.4,
there is an admissible cover V 0

2
of Y2 over a refinement U 0

2
of U2 on which �2 and

s2
`
W Et.U 0

2
.`/
/! Et.V 0

2
.`/
/ are defined.

It then follows by the commutativity hypotheses Qf ı s1 D s2 ıf and f ı�1 D �2 ı
Qf

that V 0
1
D Qf �1V 0

2
is an admissible cover of Y1 over the refinement U 0

1
D f �1U 0

2
of U1

(where f W Et.U1/! Et.U2/ is the given lift of f to the original covers), and

Et.V 0
1
.`/
/ Et.V 0

2
.`/
/

Et.U 0
1
.`/
/ Et.U 0

2
.`/
/

Qf

�1 �2

f

and

Et.V 0
1
.`/
/ Et.V 0

2
.`/
/

Et.U 0
1
.`/
/ Et.U 0

2
.`/
/

Qf

f

s1
`

s2
`

commute. Then
LC `
V 0

2

.Y2IA/ LC `
V 0

1

.Y1IA/

LC `
U 0

2

.X2IA/ LC `
U 0

1

.X1IA/

Qf �

s2
`

�
s1

`

�

f �

commutes, and the result follows by passage to the direct limit over all covers.

2 Bundle gerbes

2.1 Simplicial line bundles

We recall the notion of a bundle gerbe [16], which for our purposes is most efficiently
defined in terms of simplicial line bundles.

Denote by Y Œk� the k –fold fiber product Y �� � � � �� Y , with projection maps
�j W Y

Œk�! Y Œk�1� for j D 0; 1; : : : ; k � 1, where

�j .y0; : : : ;yk�1/D .y0; : : : ; yyj ; : : : ;yk�1/

omits the j th factor enumerated from 0. Then

(2-1) X  Y � Y Œ2� 
 
 Y Œ3� � � �
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is a simplicial space with face maps �j and degeneracy maps the fiber diagonal maps
Y Œk�1�! Y Œk� (of which we will not make use). More precisely, Y Œ�� is a simplicial
space over X , meaning that all maps commute with the projections � W Y Œk�!X, and
X itself may be regarded as an augmentation in (2-1). For notational convenience, we
set Y Œ1� D Y and Y Œ0� DX, with �0 D � W Y

Œ1�! Y Œ0� .

Remark Our enumeration (which is geometrically natural here) differs unfortunately
from the standard convention for simplicial spaces, under which one would typically
write Y0 D Y (as the image of the 0 simplex), Y1 D Y Œ2� (as the image of the
1–simplex), etc, augmented by Y�1 D X. For consistency we use this alternative
convention throughout, and beg the pardon of readers who would prefer to use the
standard one.

Given a complex line bundle L! Y Œk� , its differential is defined to be the line bundle

(2-2) dL WD

kO
iD0

��i L.�1/i
! Y ŒkC1�:

Using the commutation relations between the �j , it follows that d2L D d.dL/ is
canonically trivial over Y ŒkC2� .

Remark While we will mostly work with complex line bundles, we could equivalently
take L to be a principal C�– or U.1/–bundle. At times we will use these objects
interchangeably without further elaboration.

A bundle gerbe .L;Y;X / as defined by Murray is equivalent to a simplicial line bundle
on the simplicial space Y Œ�� in the sense of Brylinski and McLaughlin [5]; this consists
of a complex line bundle L! Y Œ2� along with a trivialization of the bundle

dLD ��0 L˝��1 L�1
˝��2 L

over Y Œ3� , which in turn induces the canonical trivialization of d2L when pulled back
over Y Œ4� . The trivialization of dL! Y Œ3� is equivalent to the “gerbe (or groupoid)
product” isomorphism

� W ��2 L˝��0 L Š�! ��1 L;

which multiplies (composes) pairs of respective elements in the fibers Ly0;y1
and Ly1;y2

to get elements in Ly0;y2
; the condition that the trivialization coincide with the canonical

one on d2L over Y Œ4� is equivalent to associativity of this product.
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A bundle gerbe .L;Y;X / is trivial if there exists a bundle L0!Y and an isomorphism
LŠ dL0 on Y Œ2� ; such an isomorphism is called a trivialization of L.

If .L;Y;X / is a bundle gerbe on X, then its pullback by a continuous map f WX 0!X

is the bundle gerbe . Qf �L; f �Y;X 0/; here we use the naturality f �.Y �X Y / Š

f �.Y /�X 0 f
�.Y / and denote the resulting map f �Y Œ2�! Y Œ2� by Qf . Likewise, the

product of two bundle gerbes .Li ;Yi ;X / for i D 1; 2 on X is given by

.L1˝L2;Y1 �X Y2;X /;

where L1˝L2 is shorthand for pr�
1

L1˝ pr�
2

L2 with pri W Y1 �X Y2! Yi denoting
the projections from the fiber product. It is straightforward to verify that this is a bundle
gerbe, which we denote for simplicity as L1˝L2 . The definitions of product and
pullback implicitly use the following standard result, which we record for later use:

Lemma 2.1 Pullbacks and fiber products of locally split maps are locally split.
More precisely, if � W Y ! X is locally split and f WX 0 ! X is continuous , then
f �Y ! X 0 is locally split , and if � 0 W Y 0 ! X is another locally split map , then
� �� 0 W Y �X Y 0!X is locally split.

More generally, a (strong) morphism .L0;Y 0;X 0/! .L;Y;X / of bundle gerbes con-
sists of a map Qf W Y 0! Y covering a map f WX 0! X (we do not require the local
splittings to be compatible in the sense of Section 1.2) along with an isomorphism
L Š L0 over Qf Œ2� W Y 0Œ2� ! Y Œ2� which intertwines the sections of dL and dL0 ;
a (strong) isomorphism is a morphism for which X D X 0 and f D Id. In par-
ticular, a morphism f W .L0;Y 0;X 0/ ! .L;Y;X / is equivalent to an isomorphism
.L0;Y 0;X 0/Š .f �L; f �Y;X 0/.

Finally, two gerbes .Li ;Yi ;X / for iD1; 2 are said to be stably isomorphic if L1˝L�1
2

is trivial, or, equivalently, there exist trivial gerbes .Ti ;Zi ;X / such that

L1˝T1 ŠL2˝T2;

in the sense of a strong isomorphism over a space ZŒ2� where Z!X admits maps to
Y1 , Y2 , Z1 and Z2 . This is strictly weaker than an isomorphism as defined above,
and was introduced in [17] in order to obtain a classification of bundle gerbes up to
stable isomorphism by their Dixmier–Douady class.

Remark There is a weaker notion of gerbe morphism due to Waldorf [26], which
naturally incorporates the theory of gerbe modules, and has the property that the
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invertible morphisms are precisely the stable isomorphisms; moreover, a trivialization
becomes the same thing as an isomorphism to a canonical trivial gerbe over X. Because
we leave the generalization to bigerbes of Waldorf’s morphisms to future work, we
will not pursue this further here.

2.2 Simplicial Čech theory

A primary motivation for the definition of gerbes is that they represent a class in
LH 3.X IZ/Š LH 2.X IC�/ — the Dixmier–Douady class; for a bundle gerbe .L;Y;X /

this will be denoted by DD.L/. This class is natural with respect to products, pullbacks
and inverses, and it determines .L;Y;X / up to stable isomorphism [17]. We give an
alternative (though not necessarily simpler) derivation of these facts based on a closer
study of simplicial spaces; this approach is used in the generalization to bigerbes below.
In doing so we identify the 3–classes on X which can be represented by a bundle
gerbe with respect to a given locally split map Y !X, and recover the classification
of the trivializations of a trivial bundle gerbe.

Consider the simplicial space, (2-1), consisting of the fiber products of a locally split
map � W Y ! X. Proposition 1.2 shows that the induced maps ��j W LC

�.Y Œk�IA/!
LC �.Y ŒkC1�IA/ are chain maps and the simplicial differential on Čech cochains is

defined by

d D

kX
jD0

.�1/j��j W
LC �.Y Œk�IA/! LC �.Y ŒkC1�

IA/;

so d2 D 0 and dı D ıd .

Thus, . LC �.Y Œ��IA/; d; ı/ forms a double complex

(2-3)

LC 0.Y Œ2�/ LC 1.Y Œ2�/ LC 2.Y Œ2�/

LC 0.Y / LC 1.Y / LC 2.Y /

LC 0.X / LC 1.X / LC 2.X /

0 0 0

ı

d

ı

d

ı

d

ı

d

ı

d

ı

d

ı

d

ı

d

ı

d

d d d
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where we have omitted the coefficient group from the notation. We take the row LC �.Y /
to have vertical degree 0 in (2-3) (corresponding to its true simplicial degree), so the row
LC �.X / has degree �1. This Čech-simplicial double complex appears more generally

in algebraic geometry [7], and is also discussed in [5] in the context of simplicial
gerbes.

Convention 2.2 Our convention for double (and higher) complexes is that the two
differentials commute, as above. This necessitates the introduction of a sign (depending
on an ordering of the differentials) in the total differential, which we take to be

D D ıC .�1/pd on LC p.Y Œq�IA/:

Another possible sign convention is given by changing the formal order of d and ı ,
namely D0 D d C .�1/qC1ı (recalling that Y Œq� has vertical degree q � 1). This is
intertwined with D via the automorphism .�1/p.qC1/ of the double complex.

In general, whenever we have a multicomplex C p1;:::;pk with k commuting differentials
d1; d2; : : : ; dk , the total differential will be defined inductively by

Dk DDk�1C .�1/p1C���Cpk�1dk

D d1C .�1/p1d2C .�1/p1Cp2d3C � � �C .�1/p1C���Cpk�1dk :

Switching the order of the indices requires composing with an automorphism given in
each degree by an appropriate power of �1 as above.

Proposition 2.3 The simplicial chain complex

(2-4) 0! LC `.X IA/ d
�! LC `.Y IA/ d

�! LC `.Y Œ2�IA/ d
�! � � �

is exact. In particular , a collection of local sections s W Et.U/! Y determines a chain
homotopy contraction via the maps in Proposition 1.4.

Compare the exactness of the de Rham complex in Section 8 of [16]. This may be
understood as a manifestation of the fact that the geometric realization of the simplicial
set Y Œ�� is known to be homotopy equivalent to X.

Proof The assumption that Y !X is locally split in particular implies that �0 W Y
Œk�!

Y Œk�1� is locally split for each k ; indeed, we may equip each Y Œk� with the cover
Uk WD �

�1U ! Y Œk� pulled back from the cover U of X and define s W Uk�1! Y Œk�

as s ı� � 1� � � � � 1:

(2-5) s��1U W �
�1U 3 .y0; : : : ;yk�2/ 7!

�
sU .�.y0//;y0; : : : ;yk�2

�
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for each ��1U 2 Uk�1 , which manifestly satisfies �0s D 1. In fact this lift of s is
a map of covers from Uk�1 over Y Œk�1� into Uk over Y Œk� , and a brief computation
using (2-5), shows that

(2-6) �jC1s D s�j W Uk ! Uk ; 1� j � k � 1;

as composed maps of covers on Uk for each k .

By Proposition 1.4, we obtain well-defined maps

s�` W
LC `.Y ŒkC1�

IA/! LC `.Y Œk�IA/

for all k and `, which satisfy the identity

(2-7) ��j s�` D

�
1 for j D 0,
s�
`
��

jC1
for j � 1,

in light of (2-6); indeed, this identity holds on LC `
Uk
.Y Œk�IA/ and, since all homomor-

phisms are well defined in the direct limit, the identity likewise descends.

The chain maps s�
`
W LC `.Y Œk�IA/! LC `.Y Œk�1�IA/ determine the desired chain homo-

topy contraction of (2-4) since it follows from (2-7) that ds�
`
C s�

`
d D 1:

2.3 Dixmier–Douady class of a gerbe

The setting for our analysis of the Čech cohomology of a bundle gerbe is the truncated
complex

(2-8)

0 0 0

LZ0.Y Œ2�IA/ LZ1.Y Œ2�IA/ LZ2.Y Œ2�IA/

LC 0.Y IA/ LC 1.Y IA/ LC 2.Y IA/

ı

d

ı

d

ı

d

ı

d

ı

d

ı

d

where we have omitted the bottom row of (2-3) and where

LZ`.Y Œ2�IA/ WD Kerfd W LC `.Y Œ2�IA/! LC `.Y Œ3�IA/g

D Imfd W LC `.Y IA/! LC `.Y Œ2�IA/g:

Denote by
LH �Z .Y

Œ2�
IA/ WDH �. LZ�.Y Œ2�IA/; ı/

the Čech cohomology of the simplicially trivial classes on Y Œ2� , or the horizontal
cohomology of the top row in (2-8). For later use we note the following result:
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Lemma 2.4 There is a natural Bockstein isomorphism

LH �Z .Y
Œ2�
IC�/Š LH �C1

Z
.Y Œ2�IZ/:

Proof Regarding the chain complexes LZ�.Y Œ2�IA/ for an abelian group A as the
image under d of LC �.Y IA/, it follows both that the coefficient sequence

(2-9) 0! LZ�.Y Œ2�IZ/! LZ�.Y Œ2�IC/
exp.2�i�/
������! LZ�.Y Œ2�IC�/! 0

is short exact and that LZ�.Y Œ2�IC/ is acyclic, from which the long exact sequence
for (2-9) degenerates to the Bockstein isomorphism.

Theorem 2.5 The total cohomology of the double complex (2-8) is isomorphic to
LH �.X IA/.

Proof Owing to exactness of the columns, the .d; ı/ spectral sequence of (2-8)
degenerates at the E1 page to

0 0 0

0 0 0

LC 0.X / LC 1.X / LC 2.X /
ı ı ı

and therefore stabilizes at E2 to the cohomology LH �.X IA/.

Next we will show that a bundle gerbe is represented by a pure cocycle in the double
complex (2-8) concentrated at LZ1.Y Œ2�IC�/, so with ıc.L/D 0 and dc.L/D 0, and
this descends to the Dixmier–Douady class.

Proposition 2.6 A bundle gerbe .L;Y;X / has Chern class represented by c.L/ 2
LZ1.Y Œ2�IC�/; in particular ,

(2-10) c.L/ 2 LH 1
Z .Y

Œ2�
IC�/Š LH 2

Z .Y
Œ2�
IZ/:

Conversely, any such class determines a bundle gerbe , and L admits a trivialization if
and only if Œc.L/� 2 d LH 1.Y IC�/.

Proof As a complex line bundle, L gives rise to a Chern cocycle c.L/2 LC 1.Y Œ2�;C�/,
and dc.L/2 LC 1.Y Œ3�;C�/ represents the bundle dL on Y Œ3� . The trivialization of dL

is encoded by 
 2 LC 0.Y Œ3�;C�/ such that ı
 D dc.L/, and the fact that this induces
the canonical trivialization of d2L on Y Œ4� means that d
 D 0. Thus, by exactness,
we can alter c.L/ by ı applied to a d –preimage of 
 to arrange that dc.L/D 0.
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Altering c.L/ 2 LZ1.Y Œ2�IC�/ by ıˇ for ˇ 2 LZ0.Y Œ2�IC�/ amounts to applying an
automorphism to L! Y Œ2� which does not change the trivialization of dL! Y Œ3� , so
the Chern class in LH 1

Z
.Y Œ2�IC�/ is well defined.

Conversely, given ˛ 2 LZ1
V.Y

Œ2�IC�/ representing a cocycle in LZ1.Y Œ2�IC�/ on some
fixed open cover V! Y Œ2� , the usual construction uses ˛ on V.2/ to assemble a line
bundle L! Y Œ2� out of trivial bundles on V. Then, since d˛D 0, it follows that dL is
assembled trivially out of trivial bundles on the open cover V 0D��1

0
V\��1

1
V\��1

2
V

of Y Œ3� , and hence is globally trivial (with the trivialization agreeing with the canonical
one on d2L).

Finally, L admits a trivialization LŠ dQ for some Q! Y , if and only if c.L/D

dc.Q/ 2 LH 1
Z
.Y Œ2�IC�/, where c.Q/ 2H 1.Y IC�/ is the Chern class of Q.

Definition 2.7 The Dixmier–Douady class of a bundle gerbe .L;Y;X / is the im-
age DD.L/ 2 LH 2.X IC�/ Š LH 3.X IZ/ of the hypercohomology class of c.L/ 2
LZ1.Y Œ2�IC�/ in the double complex (2-8) and is obtained explicitly by a zigzag

construction

(2-11)

0

c.L/ 0

ˇ ıˇ 0

DD.L/ 0

�d

ı

d

The sign in �dˇ D c.L/ arises from the fact that the total differential D involves the
term �d on that column according to Convention 2.2.

Note that if �i W Yi !Xi for i D 1; 2 are locally split maps which are intertwined by
f WX1!X2 and Qf W Y1!Y2 , even without requiring that the �i are compatible by f
and Qf as in Section 1.1, then the Čech cochain maps determined by Qf Œk� W Y Œk�

1
! Y

Œk�
2

as in Proposition 1.2 together form a morphism LC �.Y
Œ��
2
IA/! LC �.Y

Œ��
1
IA/ of double

complexes, in that the . Qf Œk�/� commute with ı and d .

Proposition 2.8 The Dixmier–Douady class as defined above coincides with the
definition given by Murray and is natural with respect to inverse , product and pullback ;
it vanishes if and only if the gerbe is trivial.
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Proof The (well-known) naturality properties follow directly from the preceding
remark. To see the coincidence of our definition with that of Murray given in [16], we
first recall the latter.

Suppose s W U ! Y is a set of local sections of the locally split map, and consider the
pullback L0 D .s2/�L to U .2/ of L via the map s2 W U .2/! Y Œ2� . Since L is locally
trivial, this cover can be refined so that L0 is trivial over each component, and so has a
nonvanishing section � W U .2/!L0. The trivialization of dL! Y Œ3� pulls back to give
a trivialization of ıL0 D .s3/�dL! U .3/ which allows g WD ı� to be regarded as a
cochain g W U .3/!C� and the associativity condition over Y Œ4� implies that g is closed,
hence Œg� 2 LH 2

U .X IC
�/ŠH 3.X IZ/ is defined to be the Dixmier–Douady class.

To see that this is equivalent to Definition 2.7, it suffices to show that Œg� represents the
image of c.L/ in the total cohomology of the double complex . LC �.Et.U .�//IC�/; ı; d/,
where we use Et.U/!X itself as the locally split map. For convenience we suppose
that U is a “good cover”, meaning that each element of U .`/ is contractible for each `.
Note that, by this contractibility, the Čech cohomology LH �.Et.U .`//IC�/ of the space
Et.U .`// is trivial except in degree 0, where

LH 0.Et.U .`//IC�/D �.U .`/IC�/D LC `�1
U .X IC�/:

Thus the .ı; d/ spectral sequence of the double complex

LC 0.Et.U .3/// LC 1.Et.U .3/// LC 2.Et.U .3///

LC 0.Et.U .2/// LC 1.Et.U .2/// LC 2.Et.U .2///

LC 0.Et.U// LC 1.Et.U// LC 2.Et.U//

d

ı

d

ı

d

ı

d

ı

d

ı

d

ı

d

ı

d

ı

d

ı

degenerates at the E1 page to

LH 0.Et.U .3///D LC 2
U .X / 0 0

LH 0.Et.U .2///D LC 1
U .X / 0 0

LH 0.Et.U//D LC 0
U .X / 0 0

dDı

dDı

dDı
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with the simplicial differential now identified with the Čech differential on LC �U .X /,
and then stabilizes at E2 to give LH �U .X IC

�/ Š H �C1.X IZ/. The image of ŒL0� 2
LC 1.Et.U .2//IC�/ in the total cohomology H 3.X IZ/ is therefore equivalently rep-

resented by its image in LH 0.U .3/IC�/ D LC 2
U .X IC

�/ on the E1 page above, and
Murray’s construction gives an explicit zigzag

0

g 0

� ŒL0� 0

realizing Œg� as DD.L/.

2.4 Representability of 3–classes

We proceed to give a characterization of the classes in H 3.X IZ/ which are represented
by bundle gerbes .L;Y;X / for a given locally split map Y ! X. Note that the
augmented double complex

(2-12)

0 0 0

LZ0.Y Œ2�/ LZ1.Y Œ2�/ LZ2.Y Œ2�/

LC 0.Y / LC 1.Y / LC 2.Y /

LC 0.X / LC 1.X / LC 2.X /

0 0 0

ı

d

ı

d

ı

d

ı

d

ı

d

ı

d

ı

d

ı

d

ı

d

has exact columns and therefore trivial total cohomology. Since the .ı; d/ spectral
sequence of this complex (beginning with the horizontal differential) must necessarily
stabilize at the E3 page (as there are only three rows), it follows that the E2 differentials
are necessarily isomorphisms, which we record in the following form:

Theorem 2.9 There are isomorphisms

(2-13) Kerf�� W LH kC1.X IA/! LH kC1.Y IA/g Š LH k
Z .Y

Œ2�
IA/= LH k.Y IA/

Algebraic & Geometric Topology, Volume 21 (2021)



3358 Chris Kottke and Richard Melrose

for each k 2N and coefficient group A; these isomorphisms are natural with respect
to pullback by maps

Y1 Y2

X1 X2

Qf

�1 �2

f

of locally split spaces , and also with respect to the Bockstein isomorphisms

LH kC1
Z

.Y Œ2�IZ/Š LH k
Z .Y

Œ2�
IC�/ and LH kC1.X IZ/Š LH k.X IC�/:

Remark It is reasonable to call the isomorphism (2-13) transgression from classes
on X to (equivalence classes of) classes on Y Œ2� ; the map is realized at the chain level
by the zigzag (2-11).

In particular, there is a natural isomorphism

(2-14) Kerf�� W LH 3.X IZ/! LH 3.Y IZ/g Š LH 2
Z .Y

Œ2�
IZ/= LH 2.Y IZ/

Š LH 1
Z .Y

Œ2�
IC�/= LH 1.Y IC�/

under which the Chern class c.L/ 2 LH 1
Z
.Y Œ2�IC�/=d LH 1.Y IC�/ is the image of

DD.L/ in LH 3.X IZ/. We see again that DD.L/D0 if and only if c.L/2d LH 1.Y IC�/,
which, by Proposition 2.6, holds precisely when L is trivial. In combination with
Proposition 2.6, this proves the following result:

Theorem 2.10 A class ˛ 2H 3.X IZ/ is represented by a bundle gerbe .L;Y;X / for
a given locally split map � W Y !X if and only if ��˛ D 0 2H 3.Y IZ/.

Remark Another direct (and more geometric) way to show Theorem 2.10 is to use
BPU.H / as a K.Z; 3/, where H is an infinite-dimensional separable Hilbert space.
Here PU.H / D U.H /=U.1/ denotes the projective unitary group and, by Kuiper’s
theorem, U.H / is contractible, making PU.H / a K.Z; 2/. Thus ˛ 2 H 3.X IZ/ is
classified by a map (up to homotopy) to BPU.H / and represented by a PU.H /–bundle
E!X. If ��˛ D 0 2H 3.Y IZ/, it follows that ��E! Y admits a global section
s W Y ! ��E. Then, on Y Œ2� , the shift map composed with sŒ2� determines a map
� W Y Œ2�! PU.H /, along which the universal line bundle can be pulled back to give a
simplicial bundle LD ��U.H /! Y Œ2� with DD.L/D ˛ .
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2.5 Classification of trivializations

Suppose .L;Y;X / is a trivial gerbe. There is an action on the set of trivializations of L

by H 2.X IZ/ (in the form of equivalence classes of line bundles) as follows. Given
a line bundle P ! Y trivializing L, so dP ŠL, and ˛ 2H 2.X IZ/ representing a
line bundle Q! X, the bundle P ˝��QD P ˝ dQ! Y is another trivialization
of L in light of the fact that d2Q is canonically trivial.

Proposition 2.11 Let .L;Y;X / be a trivial gerbe. Then the set of trivializations of L

is a torsor for the group Imf�� WH 2.X IZ/!H 2.Y IZ/g.

Proof Clearly the action of H 2.X IZ/ factors through its image in H 2.Y IZ/; to see
that this image acts transitively suppose P!Y and P 0!Y are two trivializations of L,
represented by classes ŒP �; ŒP 0� 2 LH 2.Y IZ/. Then d.ŒP �� ŒP 0�/D 0 2H 2

Z
.Y Œ2�IZ/,

and from the .ı; d/ spectral sequence for (2-12), the E2 term associated to LC 2.Y IZ/

of which must vanish identically, it follows that

(2-15) Kerfd W LH 2.Y IZ/! LH 2
Z .Y

Œ2�
IZ/g D Imf�� W LH 2.X IZ/! LH 2.Y IZ/g;

and hence ŒP �� ŒP 0�D ��ŒQ� for some ŒQ� 2 LH 2.X IZ/, represented by a line bundle
Q!X.

2.6 Decomposable and universal gerbes

One consequence of Theorem 2.10 is the existence of the decomposable gerbes of [14].
Given a 3–class on X which is the cup product ˛ [ ˇ of ˛ 2 H 2.X IZ/ and ˇ 2
H 1.X IZ/, we may take � W Y !X to be the circle bundle with Chern class c.Y /D˛ ,
and then, since Y is canonically trivial when pulled back to itself, it follows that
��.˛[ˇ/D 0[��ˇD 02H 3.Y IZ/, so by Theorem 2.10 the following is immediate:

Proposition 2.12 For every ˛ 2 H 2.X IZ/ and ˇ 2 H 1.X IZ/, the circle bundle
Y !X with c.Y /D ˛ supports a bundle gerbe .L;Y;X / with DD.L/D ˛[ˇ .

Remark In [14], the authors go further for X a smooth manifold by constructing a
connection on the gerbe from a connection on Y and a function u 2 C1.X IU.1//
representing ˇ .

In fact, the image of ˛ 2 H 2.X IZ/ in H 1
Z
.Y Œ2�IZ/=H 1.Y IZ/ with respect to the

isomorphism (2-14) has a geometric interpretation that will be of use in the construction
of decomposable bigerbes in Section 5.1.
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Lemma 2.13 Let � W Y ! X be a circle bundle with c.Y /D ˛ 2H 2.X IZ/. Then
the image of ˛ under the isomorphism (2-14) coincides with the pullback to Y Œ2� of
the generator of H 1.U.1/IZ/ by the shift map

(2-16) � W Y Œ2�! U.1/; y2 D �.y1;y2/y1 for .y1;y2/ 2 Y Œ2�:

Proof This is easiest to see with U.1/ coefficients. With respect to the isomorphism
H 1.U.1/IZ/ Š H 0.U.1/IU.1//, the generator corresponds to the identity map, so
it suffices to show that the image of c.Y / 2H 1.X IU.1// is represented by �, itself
regarded as a class in H 0.Y Œ2�IU.1//.

Let ˛ 2 LC 1.X IU.1// represent c.Y /; explicitly, we may take ˛ to be defined with
respect to a cover i W U!X with respect to which Y is (locally) trivialized by h W i�Y !

U �U.1/, and we may abuse notation to write ˛ D ıh, meaning ˛ W U .2/! U.1/ is
defined so that ıh D 1� ˛ W U .2/ �U.1/! U .2/ �U.1/. Now ��Y D Y Œ2�! Y is
globally trivialized by 1��, to which ��h may be compared to write ��hD 
� for

 2 LC 0

��1U .Y IU.1// and then

d˛ D ��˛ D ı��hD ı
 ı�D ı
 2 LC 1
��1U .Y IU.1//:

Finally, a straightforward computation shows that d
 D ��1 in LC 0
��1U .Y

Œ2�IU.1//,
and then the result follows in observance of Convention 2.2.

It also follows from Theorem 2.10 that for a connected, locally contractible space X,
a gerbe can be constructed representing any integral 3–class using the (based) path
fibration PX!X. Indeed, the hypotheses on X imply that the endpoint map PX!X

is locally split, and, since PX is contractible, any 3–class on X vanishes when lifted
to PX. The fiber product P Œ2�X may be identified with the based loop space �X, and
the isomorphism (2-14) takes the form

H 3.X IZ/Š LH 1
Z .�X IC�/;

from which we recover the following well-known result:

Theorem 2.14 For a connected , locally contractible space X, each ˛ 2 H 3.X IZ/,
corresponds to a unique bundle gerbe L!�X (up to simplicial isomorphisms of the
line bundle) with DD.L/D ˛ .

This “canonical gerbe” on the loop space goes back at least to Brylinski [4]. Murray
defines a bundle gerbe version in [16] under the assumption that X is 2–connected, a
hypothesis which is removed in [6].
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In particular, since K.Z; 3/ may be realized as a CW complex, its path space carries a
universal gerbe.

The simplicial structure on �X coming from P Œk�X is related to what has been called
the fusion product in the literature [25; 27; 29; 12]. A point 
 D .
0; 
1; 
2/ 2 P Œ3�X

consists of three paths with common endpoints and so defines three loops, `i D �i
 2

�X D P Œ2�X for i D 0; 1; 2, by the simplicial maps, and we say `1 D .
0; 
2/ is the
fusion product of `2 D .
0; 
1/ and `0 D .
1; 
2/.

A fusion structure on a line bundle L!�X is a collection of associative isomorphisms

L`1
ŠL`2

˝L`0

for all such triples, which is equivalent to a simplicial line bundle structure on L

with respect to P Œ��X. In this language, then, Theorem 2.14 shows that fusion line
bundles on �X, which are equivalent to bundle gerbes .L;PX;X /, are classified
by H 3.X IZ/ (see also Waldorf’s related results in [27]).

3 Doubling and the free loop space

3.1 Simplicial bundle gerbes and figure-of-eight

Replacing the simplicial line bundle in the definition of a bundle gerbe with a bundle
gerbe over X2 of a simplicial space X� leads to the notion of a simplicial bundle gerbe,
which has been defined by Stevenson [22] and is the setting for his definition of bundle
2–gerbes. Here we consider a more limited “product-simplicial” version, which we
call simply doubled, of this theory, not yet to obtain a version of 2–gerbes as we shall
do in Section 4 below, but rather to promote the examples of bundle gerbes involving
the based loop space �X to those involving the free (unbased) loop space LX by
satisfying an additional condition with respect to the simplicial space fX k W k 2Ng

of products, with face maps the projections; this space is often denoted by EX in the
literature.

While we specialize to this simplicial space of products below, we proceed for the
moment in some generality for an arbitrary simplicial space X� , where we continue to
use our unusual enumeration convention. Suppose then that .L;Y2;X2/ is a bundle
gerbe over X2 . Using products, inverses and pullbacks, we may define the gerbe

@L WD ��0 L˝��1 L�1
˝��2 L

over X3 , where �j WX3!X2 for j D 0; 1; 2 are the face maps of the simplicial space.
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Definition 3.1 A simplicial trivialization of a bundle gerbe L over X2 is a trivializa-
tion of the bundle gerbe @L over X3 . It follows by naturality that for such a gerbe the
Dixmier–Douady class DD.L/ 2H 3.X2IZ/ satisfies

(3-1) @DD.L/ WD
2X

jD0

.�1/j��j DD.L/D DD.@L/D 0 2H 3.X3IZ/:

Note that the gerbe @L is defined a priori with respect to the locally split map

(3-2) ��0 Y2 �X3
��1 Y2 �X3

��2 Y2!X3:

However, using the notion of gerbe morphism, we may specialize to the setting in
which there exists a locally split map Y3!X3 for some fixed space Y3 , along with
lifts z�j W Y3! Y2 of the �j WX3!X2 for j D 0; 1; 2. Indeed, it then follows that Y3

maps through the product space (3-2), and we may require that

(3-3) z��0 L˝ z��1 L�1
˝ z��2 L! Y

Œ2�
3

is trivial as a bundle gerbe over X3 , where we continue to denote the extensions of z�j

as maps from Y
Œ2�
3

to Y
Œ2�
2

by the same notation. When such data is available, we will
abuse notation by referring to (3-3) itself as @L (as these are (strongly) isomorphic
as bundle gerbes over X3 ) and a trivialization of (3-3) as a simplicial trivialization
of L. Explicitly, this then is the data of a line bundle S ! Y3 such that dS Š @L, as
summarized in the diagram

(3-4)

L Y
Œ2�
2

Y
Œ2�
3

@LŠ dS

Y2 Y3 S

X1 X2 X3

By naturality of the Dixmier–Douady class, the conclusion (3-1) remains valid.

Remark We do not require that the split maps Y�!X� be compatible by the �j in
the sense of Section 1.2. We also do not require that Y� extend to form (part of) a
simplicial space over X� , as indeed our example of interest will not. By contrast, in
the setting of the bigerbes defined in Section 4 below, we will employ a bisimplicial
space of compatible locally split maps.

We now specialize to the case in which X�DX � consists of products of a fixed space X.
As a special case of the fiber product construction over the unique map � WX ! �
to a 1–point space, this map is globally split, with section s W � 7! x� 2 X for any
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choice of x� 2X. The Čech theory constructions of Sections 1.1 and 2.2 give a map
s� W LC �.X k IA/ ! LC �.X k�1IA/, which in this case does commute with the Čech
differential (since s is global), and hence descends to a chain homotopy contraction
for each ` of the cohomology complex

(3-5) 0! LH `.X IA/ @
�! LH `.X 2

IA/ @
�! LH `.X 3

IA/ @
�! � � � ;

which is therefore exact. (This is a reflection of the well-known fact that the geometric
realization jEX j of the simplicial set EX is contractible.) Indeed, denoting by
s D s � 1 � � � � � 1 WX k ! X kC1 the map .x0; : : : ;xk�1/ 7! .x�;x0; : : : ;xk�1/,
it follows that s�@C @s� D 1 on LH �.X k IA/. Note that throughout this section and
below, we denote this product simplicial differential by @ D

Pk�1
jD0.�1/j��j rather

than d to avoid confusion whenever both appear together.

As a consequence of (3-5) and (3-1), we have the following result:

Proposition 3.2 For a gerbe .L;Y2;X
2/ with simplicial trivialization over X 3 , the

Dixmier–Douady class of L descends from X 2 to X itself , so

DD.L/ 2H 3.X IZ/

is well defined.

We refer to such a gerbe as a doubled gerbe.

Remark When X� DX Œ�� is a more general simplicial space of fiber products of a
locally split map X DX1!X0 , Stevenson in [22] defines additional conditions for
a simplicial gerbe, including higher associativity conditions over X4 and X5 under
which the class of a bundle gerbe further descends to a degree four cohomology class
on X0 and such an object is defined to be a bundle 2–gerbe on X0 . Here we only use
the simplicial condition to descend the 3–class from X2 DX 2 to X1 DX, and will
not make use of these additional conditions.

The locally split map of present interest consists of the free (unbased) path space

IX D C.Œ0; 1�IX /!X 2; 
 7! .
 .0/; 
 .1//;

mapping to X 2 by the evaluation map on both endpoints. Instead of the fiber products
of the pullbacks of IX to X 3 we will take Y3 D IX also, with evaluation map

IX !X 3; 
 7!
�

 .0/; 


�
1
2

�
; 
 .1/

�
;

mapping to the midpoint as well as the endpoints. For disambiguation, we will often
distinguish these two incarnations of the free path space by writing them as I2X
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and I3X, respectively. The three liftings z�i of the projection maps �j WX
3 ! X 2

taking 
 2 I3X to I2X are obtained by reparametrizing to obtain the three paths

z�1
 .t/D 
 .t/; z�2
 .t/D 
 .
1
2
t/ and z�0
 .t/D 


�
1
2
.1C t/

�
:

Remark While it is possible to continue to the right, with Yn D InX mapping to X n

by evaluating along n points, the need to reparametrize paths to define the lifts z�i

means that these do not satisfy the simplicial relations, so we do not in fact obtain
simplicial spaces Y Œk�

�
over X� . In particular, the associated maps @ on line bundles

do not form a complex, ie @2L is not canonically trivial, except at the bottom level.

Observe that Y
Œ2�
2
D I

Œ2�
2

X may be naturally identified with the free loop space,
LX D C.R=2�ZIX /, while the space Y

Œ2�
3
D I

Œ2�
3

X consists of pairs of paths which
coincide at their midpoint in addition to their endpoints. The latter may be identified
with those loops ` in LX for which `

�
1
2
�
�
D `

�
3
2
�
�
, which we call figure-of-eight

loops, and we accordingly denote the figure-of-eight loop (sub)space by

L8X Š I
Œ2�
3

X:

In fact, in this case the product doubling condition for a gerbe over X 2 can be strength-
ened.

Lemma 3.3 A gerbe .L; IX;X 2/ or .L; IX;X 3/ is trivial if and only if L! LX

(resp. L! L8X ) is trivial as a line bundle. In particular , a gerbe .L; IX;X 2/ is
doubled if and only if @L!L8X is a trivial line bundle.

Proof Retraction of paths onto their initial points determines a deformation retract
of IkX onto X, with respect to which the two simplicial maps

I
Œ2�

k
X � IkX

both become identified with the evaluation map I
Œ2�

k
X ! X at a single parameter

value. Thus every line bundle P ! IkX is isomorphic to a bundle Q pulled back
from X, and then dP ŠQ˝Q�1! I

Œ2�

k
X is isomorphic to a trivial bundle. This

result is independent of k .

Alternatively, we may use the equality (2-15) proved in Proposition 2.11, which here
takes the form

Kerfd WH 2.IkX IZ/ŠH 2.X IZ/!H 2
Z .I

Œ2�

k
X IZ/g

D Imf�� Š�� WH 2.X k
IZ/!H 2.X IZ/ŠH 2.IkX IZ/g

DH 2.X IZ/;
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since, with respect to the retraction IX 'X, the map � W IkX !X k is identified with
the diagonal map � WX !X k . Since �� is surjective on cohomology, it follows that
d � 0 WH 2.IkX IZ/!H 2

Z
.I
Œ2�

k
IZ/, so every trivial gerbe is in fact trivial as a line

bundle.

Remark In other words, there are no “nontrivial trivial gerbes” with respect to the path
spaces. This seems at first confusing in light of Proposition 2.11, since the classifying
set Imf�� WH 2.X 2IZ/!H 2.IX IZ/g ŠH 2.X IZ/ of gerbe trivializtions may well
be nontrivial, yet these facts are not inconsistent. Indeed, while the only trivial gerbe
with respect to IX ! X 2 is the equivalence class of the trivial line bundle on LX,
the set of gerbe trivializations of this trivial gerbe may itself be nontrivial.

On the other hand, we could restrict consideration to doubled trivializations, meaning
line bundles P ! I2X with dP DL such that @P ! I3X is a trivial bundle. The set
of these doubled trivializations is indeed trivial, since, under the retractions IkX 'X,
the reparametrization maps z�j W I3X ! I2X become the identity, and the operator
@Š Id�� Id�C Id� likewise becomes the identity, so triviality of @P implies triviality
of P itself.

The extension of this notion of doubling will be important in the setting of the Brylinski–
McLaughlin bigerbe in Section 5.3.

From the point of view of fusion line bundles on loop space, the doubling property
corresponds to the “figure-of-eight” condition, as defined in [12; 11]. The following
definition is therefore just a repackaging of the above in a different language:

Definition 3.4 A loop-fusion structure on a line bundle L!LX is a fusion structure,
meaning a trivialization of dL! I

Œ3�
2

X inducing the canonical trivialization of d2L!

I
Œ4�
2

X, along with the figure-of-eight condition that @L!L8X Š I
Œ2�
3

X is trivial as a
line bundle. An isomorphism of loop-fusion line bundles is a line bundle isomorphism
which intertwines the fusion structures.

Theorem 3.5 The following are naturally in bijection:

(i) The set of doubled gerbes .L; IX;X 2/ up to strong isomorphism.

(ii) The set of loop-fusion line bundles on LX up to isomorphism.

(iii) H 3.X IZ/.
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Proof Equivalence of the first two is a consequence of Lemma 3.3 and Definition 3.4.
Doubled gerbes .L; IX;X 2/ are classified by their Dixmier–Douady class, which
descends to X, as was noted above, and that every element in H 3.X IZ/ is represented
by a doubled gerbe (equivalently, loop-fusion line bundle) L! LX follows from
Theorem 3.6 below.

Remark The figure-of-eight structure is weaker than other conditions that have been
considered in the literature, such as thin homotopy equivariance in [27], or reparametriza-
tion equivariance in [11], which likewise identify categories of fusion line bundles
on LX with gerbes on X.

3.2 Loop-fusion cohomology

In fact, applying the above considerations to Čech theory in place of line bundles leads
to a general result, which recovers the main theorem in our previous paper [12]. There
we defined loop-fusion cohomology on LX, which in the present language is equivalent
to the group

LH `
lf .LX IA/D Kerf@ W LH `

Z .LX IA/! LH `
Z .L8X IA/g:

In particular, the set LH 2
lf .LX IZ/ classifies loop-fusion line bundles up to isomorphism.

Theorem 3.6 [12] For each ` 2 N and topological abelian group A, there is an
isomorphism

LH `.X IA/Š LH `�1
lf .LX IA/:

It is additionally shown in [12] that the isomorphism descends via the forgetful
map LH �lf.LX IA/! LH �.LX IA/ to the transgression homomorphism LH `.X IA/!
LH `�1.LX IA/; recall that the latter is defined by composing the pullback along the eval-

uation map S1�LX!X with the pushforward along the projection S1�LX!LX

(given by cap product with the fundamental class of S1 ).

Proof The result follows from naturality of the isomorphism (2-13), and exactness
of (3-5). Applied to the three maps from I

Œk�
3

X to I
Œk�
2

X this yields an isomorphism
(omitting the coefficient group for brevity)

(3-6) Ker @\Ker��

� LH `.X 2/

Š Kerf@ W LH `�1
Z .I

Œ2�
2

X /=d LH `�1.I2X /! LH `�1
Z .I

Œ2�
3

X /=d LH `�1.I3X /g:
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However, as noted in the proof of Lemma 3.3, the deformation retraction of the free
path spaces IkX onto X implies that d W LH `�1.IkX IA/! LH `�1.I

Œ2�

k
X IA/ is trivial,

so the quotients in (3-6) disappear. Moreover, by exactness of (3-5), the kernel of @
in LH `.X 2IA/ is the image of LH `.X IA/ and this is automatically in the kernel of
�� W LH `.X 2IA/! LH `.I2X IA/ under the retraction I2X 'X, so (3-6) simplifies to

LH `.X IA/Š Kerf@ W LH `�1
Z .I

Œ2�
2

X IA/! LH `�1
Z .I

Œ2�
3

X IA/g D LH `�1
lf .LX IA/;

as claimed.

4 Bundle bigerbes

4.1 Locally split squares

Bigerbes as introduced below are based on the following notion.

Definition 4.1 A commutative diagram

(4-1)
Y2 W

X Y1

�2

�1

is a locally split square if Yi!X for i D 1; 2 and the induced map W ! Y1 �X Y2

are locally split.

There is manifest symmetry in the definition.

Lemma 4.2 If .W;Y2;Y1;X / is a locally split square , then the fiber projections
Y1 �X Y2! Yi for i D 1; 2, and hence all four maps in (4-1), are locally split , and
the horizontal maps are compatible with respect to the vertical ones in the sense of
Section 1.2.

Proof Let s1 W Et.UX /! Y1 be a collection of sections of �1 over a cover UX of X.
Then U2 D �

�1
2

UX is a cover of Y2 and s1 � Id W Et.U2/! Y1 �X Y2 is a collection
of sections of the projection Y1 �X Y2! Y2 , which is therefore locally split.

From the definition, there is a cover V of Y1 �X Y2 and a section t W Et.V/!W of
the induced map p WW ! Y1 �X Y2 . Passing to the refinement V \��1

2
U2 we may
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arrange that �2 is a map of covers from Et.V/ to Et.U2/. Passing to the refinement
U 0

2
D U2\ .s

1� Id/�1V of U2 , on which Qs1 D t ı .s1� Id/ determines a local section
of the composition W ! Y2 , it follows that the latter is locally split.

Moreover, it follows from the fact that p ı t coincides with the map of covers V !
Y1 �X Y2 that the diagram

Et.U 0
2
/ W

Et.UX / Y1

Qs1Dtı.s1�1/

s1

commutes, so the horizontal locally split maps are compatible with respect to the
vertical ones.

As in Section 2.1, let Y
Œk�
i be the k –fold fiber product Yi �X � � � �X Yi for i D 1; 2.

Then Y
Œ��
1

and Y
Œ��
2

each form simplicial spaces over X, giving the bounding column
and row in (4-2) below.

Setting W Œ1;1� DW and

W Œ1;k�
DW �Y1

� � � �Y1
W and W Œk;1�

DW �Y2
� � � �Y2

W

with projection maps W Œ1;k�! W Œ1;k�1� and W Œk;1�! W Œk�1;1� gives simplicial
spaces over Y1 and Y2 extending above and to the right of W Œ1;1� in (4-2).

That the rest of the quadrant can then be filled out unambiguously by fiber products is
a consequence of the following result:

Proposition 4.3 For each n and m, there is a natural isomorphism

W Œm;n�
WD

n times‚ …„ ƒ
W Œm;1�

�
Y

Œm�

1

� � � �
Y

Œm�

1

W Œm;1�
Š

m times‚ …„ ƒ
W Œ1;n�

�
Y

Œn�

2

� � � �
Y

Œn�

2

W Œ1;n� :

Proof Both sides may be identified with the set of tuples .wi;j W1� i �m; 1�j �n/2

W mn such that for each i , .wi;1; : : : ; wi;n/ all map to a fixed y1;i 2Y1 and, for each j,
.w1;j ; : : : ; wm;j / all map to a fixed y2;j 2 Y2 , and where every y1;i and y2;j sit over
a fixed x 2X.
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The spaces W Œ�;�� in the resulting diagram

(4-2)

Y
Œ3�
2

W Œ1;3� W Œ2;3� W Œ3;3�

Y
Œ2�
2

W Œ1;2� W Œ2;2� W Œ3;2�

Y2 W Œ1;1� W Œ2;1� W Œ3;1�

X Y1 Y
Œ2�
1

Y
Œ3�
1

form a bisimplicial space over X, meaning a functor �op��op! Top=X, where � is
the simplex category. In particular, W Œm;�� and W Œ�;n� are simplicial spaces over Y

Œm�
1

and Y
Œn�
2

, respectively, and the squares commute for consistent choices of maps. For
notational convenience, we also set W Œk;0� D Y

Œk�
1

, W Œ0;k� D Y
Œk�
2

and W Œ0;0� DX.

4.2 Bigerbes

If L!W Œm;n� is a line bundle over one of the spaces in (4-2) then its two simplicial
differentials are

d1LD

mO
iD0

.�1
i /
�L.�1/i

!W ŒmC1;n�; d2LD

nO
iD0

.�2
i /
�L.�1/i

!W Œm;nC1�;

where �1
j WW

ŒmC1;n� ! W Œm;n� for 0 � j � m and �2
j WW

Œm;nC1� ! W Œm;n� for
0 � j � n denote the fiber projection maps. The bundles d1d1L and d2d2L are
canonically trivial, and there is a natural isomorphism d1d2LŠ d2d1L.

Definition 4.4 A bigerbe consists of a locally split square .W;Y2;Y1;X /, a line
bundle L ! W Œ2;2� and trivializations of d1L and d2L, which induce the same
trivialization of d1d2L and which induce the canonical trivializations of d2

1
L and d2

2
L.

We denote the bigerbe by .L;W;Y2;Y1;X / or simply L.

For reasons that will become clear below, the order of the spaces Y1 and Y2 , or
equivalently the orientation of the square (4-1), is part of the data of the bigerbe.

Definition 4.5 If Q1!W Œ1;2� and Q2!W Œ2;1� are line bundles which are simplicial
with respect to d2 and d1 , respectively — so d2Q1 over W Œ1;3� is equipped with a
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trivialization inducing the canonical trivialization of d2
2

Q1 and similarly for Q2 —
then d1Q1 ˝ d2Q�1

2
has a canonical bigerbe structure. A bigerbe L is said to be

trivial if
LŠ d1Q1˝ d2Q�1

2

for Q1 and Q2 as above, with the isomorphism identifying the bigerbe structure on L

with the canonical one on d1Q1˝ d2Q�1
2

; such an isomorphism is referred to as a
trivialization of L.

In particular, L is trivial if either

(i) L Š d1P, where P ! W Œ1;2� is a line bundle with trivialization d2P Š C

inducing the canonical trivialization of d2
2

P, or

(ii) L Š d2Q, where Q! W Œ2;1� is a line bundle with trivialization d1Q Š C

inducing the canonical trivialization of d2
1

Q,

as in either case we can take the trivial bundle on the other factor.

As for ordinary bundle gerbes, we proceed to define pullbacks and products of bigerbes.

Lemma 4.6 If .W;Y2;Y1;X / and .W 0;Y 0
2
;Y 0

1
;X / are locally split squares over X

and f WX 0!X is a continuous map , then

(i) .f �.W /; f �.Y2/; f
�.Y1/;X

0/ is a locally split square over X 0, and

(ii) .W �X W 0;Y2 �X Y 0
2
;Y1 �X Y 0

1
;X / is a locally split square over X.

Proof By hypothesis there are covers Ui ! X admitting sections si W Ui ! Yi of
�i W Yi!X and a cover V! Y1�X Y2 admitting a section t W V!W of the universal
map p WW ! Y1 �X Y2 .

Pullback of these by f gives covers f �1Ui!X 0 and sections f �si W f �1Ui! f �Yi ,
with f �si D 1� si ıf W f �1Ui!X 0 �X Yi D f

�Yi , where the section is composed
with the lift f W f �1Ui! Ui and 1 denotes the inclusion map f �1Ui!X 0 of covers.
Similarly, if Qf W f �.Y1 �X Y2/ ! Y1 �X Y2 denotes the natural lift over f , then
Qf �1V! f �.Y1�X Y2/ supports the section Qf �t W Qf �1V! f �W of the natural map
f �W ! f �.Y1 �X Y2/Š .f

�Y1/�X 0 .f
�Y2/, proving (i).

For the fiber product, the cover Ui \U 0i !X admits sections si � .s0/i of Yi �X Y 0i ,
and then .Y1 �X Y 0

1
/�X .Y2 �X Y 0

2
/Š .Y1 �X Y2/�X .Y 0

1
�X Y 0

2
/ may be equipped

with the cover V �X V 0, which admits the section t � t 0 to W �X W 0, proving (ii).
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Definition 4.7 If L! W Œ2;2� is a bigerbe with respect to the locally split square
.W;Y2;Y1;X / and f WX 0! X is a continuous map, then the pullback of L is the
bigerbe Qf �L! f �.W Œ2;2�/ with respect to the locally split square

.f �.W /; f �.Y2/; f
�.Y1/;X

0/:

If LD .L;W;Y2;Y1;X / and L0 D .L0;W 0;Y 0
2
;Y 0

1
;X / are bigerbes on X, then the

product of L and L0 is the bigerbe

.L˝L0;W �X W 0;Y2 �X Y 02;Y1 �X Y 01;X /:

Next we define (strong) morphisms and stable isomorphisms for bigerbes. A morphism
of locally split squares .W 0;Y 0

2
;Y 0

1
;X 0/! .W;Y2;Y1;X / is a collection of maps

from each space in the first square to the corresponding space in the second, with
each of the relevant squares commuting. As for bundle gerbes we do not require
compatibility in the sense of Section 1.2 of the locally split maps of the first square
with those of the second. By naturality of fiber products, these maps extend to maps
W 0

Œm;n�
!W Œm;n� for each .m; n/ 2N2

0
commuting with the various fiber projections

in both directions. By abuse of notation we will denote all such maps by a single letter,
say f WW 0Œm;n�!W Œm;n� .

Definition 4.8 If .L;W;Y2;Y1;X / and .L0;W 0;Y 0
2
;Y 0

1
;X 0/ are bigerbes over X

and X 0, respectively, then a (strong) morphism from L0 to L consists of a morphism
f W .W 0;Y 0

2
;Y 0

1
;X 0/! .W;Y2;Y1;X / and an isomorphism L0 Š f �L over W 0

Œ2;2�

which intertwines the sections of diL and dif
�L for i D 1; 2. A (strong) isomorphism

is a morphism for which X DX 0 and f D Id WX !X 0.

Finally, a stable isomorphism of bigerbes L and L0 over X is a (strong) isomorphism

L˝T ŠL0˝T;

where T and T 0 are trivial bigerbes.

4.3 The 4–class of a bigerbe

The abelian groups of Čech cochains LC `.W Œj ;k�IA/D limU LC
`
U .W

Œj ;k�IA/ are defined
for each `, j and k 2N0 , by passage to the direct limit over covers of W Œj ;k� . Using
Proposition 1.2 we may define

d1 D

mX
jD0

.�1/j .�1
j /
�
W LC `.W Œm;n�

IA/! LC `.W ŒmC1;n�
IA/;
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d2 D

nX
jD0

.�1/j .�2
j /
�
W LC `.W Œm;n�

IA/! LC `.W Œm;nC1�
IA/;

which are differentials commuting with one another and with the Čech differential ı .
Thus . LC �.W Œ�;��IA/; ı; d1; d2/ forms a triple complex, and combining Proposition 1.4
and Lemma 4.2 leads to the following result:

Proposition 4.9 Compatible sections of Yi !X and W ! Yi determine homotopy
contractions for the di which commute with the other simplicial differential and for
each fixed ` and k , the subcomplex

.Kerfd1 W
LC `.W Œk;��/! LC `.W ŒkC1;��/g; d2/

is exact , and similarly with indices reversed.

Proof It follows from the fact that W Œj ;k� is naturally isomorphic to the j –fold
fiber product of W Œ1;k� over W Œ0;k� as well as to the k –fold fiber product of W Œj ;1�

over W Œj ;0� that the local sections s1 and s2 of Lemma 4.2 induce, as in the proof of
Proposition 2.3, compatible sections of the projections � i

0
(denoted by dashed arrows

to avoid writing covers), such that

W Œj ;kC1� W ŒjC1;kC1�

W Œj ;k� W ŒjC1;k�

s1

�2
0

�2
0

s1

W Œj ;kC1� W ŒjC1;kC1�

W Œj ;k� W ŒjC1;k�

�1
0

s2 s2

�1
0

commute.

The claim then follows if we define chain homotopy contractions by si
`

� for the di

directions of the triple complex, respectively.

Just as a bundle gerbe has a Dixmier–Douady class in H 3.X IZ/, a bigerbe determines
a characteristic class in H 4.X IZ/. To see this, consider the truncation of the triple
complex . LC �.W Œ�;��IA/; ı; d1; d2/, which we denote by . LZ�.W Œ�;��IA/; ı; d1; d2/,
where

LZ`.W Œj ;k�
IA/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

LC `.W Œj ;k�IA/; if Œj ; k�D Œ1; 1�;
Ker d1 �

LC `.W Œ2;1�IA/ if Œj ; k�D Œ2; 1�;
Ker d2 �

LC `.W Œ1;2�IA/ if Œj ; k�D Œ1; 2�;
Ker d1\Ker d2 �

LC `.W Œ2;2�IA/ if Œj ; k�D Œ2; 2�;
0 otherwise.
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Suppressing the Čech direction, we may depict the truncated complex as

(4-3)

0 0

LZ�.W Œ1;2�IA/ LZ�.W Œ2;2�IA/ 0

LC �.W Œ1;1�IA/ LZ�.W Œ2;1�IA/ 0

d2

d1

d2

d1

d2

d1

d2

d1

In particular, the leftmost column and bottom row of (4-3) are taken to have di –degree 0.
Then, following Convention 2.2, the total differential on (4-3) is

(4-4) D D ıC .�1/`d1C .�1/`CmC1d2 on LZ`.W Œm;n�
IA/

since LC �.W Œm;n�/ occupies the .m� 1; n� 1/ coordinate in the .d1; d2/ plane.

Employing a spectral sequence argument twice immediately yields the following result:

Proposition 4.10 The triple complex . LZ�.W Œ�;��IA/; ı; d1; d2/ has total cohomology
isomorphic to the ordinary cohomology LH �.X IA/ of X.

Proof The total differential (4-4) of the .ı; d1; d2/ triple complex can be written as
D DD1C .�1/`CmC1d2 on LC `.W Œm;n�IA/, where D1 D ıC .�1/`d1 is the total
differential of the .ı; d1/ double complex. By exactness of d2 , the total cohomology
of the .D1; d2/ double complex is isomorphic to the cohomology of the D1 (double)
complex LC �.Y Œ��

1
IA/, which in turn is isomorphic to LH �.X IA/ as in Theorem 2.5.

Lemma 4.11 The line bundle L! W Œ2;2� of a bigerbe determines a pure cocycle
c.L/ 2 LZ1.W Œ2;2�IC�/ in the triple complex (4-3), and conversely any line bundle
with c.L/2 LZ1.W Œ2;2�IC�/ determines a bigerbe. Moreover , the pure cocycle c.L/2
LZ1.W Œ2;2�IC�/ is a coboundary if and only if L admits a trivialization.

Proof The line bundle L is represented on some cover by its “transition” Chern class
and hence by an element c.L/ 2 LC 1.W Œ2;2�IC�/ such that ıc.L/D 0. The simplicial
trivializations of diL for i D 1; 2 are represented by elements ˛1 2

LC 0.W Œ3;2�/

and ˛2 2
LC 0.W Œ2;3�/ such that di˛i D 0, ı˛i D dic.L/ and @.d2˛1 � d1˛2/ D 0.

In other words, the triple .c.L/;�˛1; ˛2/ forms a cocycle in the triple complex
. LC �.W Œ�;��IC�/; ı; d1; d2/. Now, by exactness, we may obtain di –preimages ˇi

of the ˛i , and then c.L/ can be altered by the image under ı of the ˇi to obtain a
pure cocycle, which we again denote by c.L/ 2 LZ1.W Œ2;2�IC�/.
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A coboundary for c.L/ in the triple complex consists of a triple .˛; ˇ; 
 /, where
˛ 2 LZ0.W Œ2;2�/, ˇ 2 LZ1.W Œ1;2�/ and 
 2 LZ1.W Œ2;1�/ such that ıˇD 0 and ı
 D 0,
and

(4-5) D.˛; ˇ; 
 /D ı˛� d1ˇC d2
 D c.L/:

But this amounts precisely to saying that ˇ and 
 determine d1 and d2 simplicial line
bundles Q!W Œ2;1� , and P !W Œ1;2� , such that L is isomorphic (with isomorphism
determined by ˛ ) to d1P ˝ d2Q�1 , ie L is trivial. Conversely, a trivialization of the
bigerbe L determines such a coboundary (4-5).

Definition 4.12 Let .L;W;Y2;Y1;X / be a bigerbe over X. The characteristic 4–
class of L is the image G.L/ 2 H 4.X IZ/Š H 3.X IC�/ of the hypercohomology
class of c.L/ 2 LZ1.W Œ2;2�IC�/ in the triple complex (4-3).

For an explicit zigzag construction of G.L/ from c.L/, see (4-8) and (4-9) in the proof
of Theorem 4.15 below.

Because of the need to introduce signs in the .ı; d1; d2/ total complex following
Convention 2.2, the sign of the class G.L/ 2H 4.X IZ/ depends on the order of Y1

and Y2 , which is to say the orientation of the locally split square. In particular, reversing
the roles of Y1 and Y2 while keeping the bundle L!W Œ2;2� fixed determines a bundle
gerbe L0 with class G.L0/D�G.L/. Indeed, this follows from the fact that the total
differential D0 D ıC .�1/`d2C .�1/`CnC1d1 on LC `.W Œm;n�/, where we have inter-
changed the roles of d1 and d2 , is intertwined with DD ıC.�1/`d2C.�1/`CmC1d2

by the automorphism .�1/.mC1/.nC1/ of the triple complex. In particular, this amounts
to multiplication by �1 on LZ�.W Œ2;2�/, exchanging c.L/ and �c.L/.

Alternatively, from the explicit zigzag (4-8) and (4-9) it follows that c.L/ is the double
transgression of G.L/ 2H 4.X IZ/ (in the sense of the isomorphism (2-13)) first to
H 3

Z
.Y
Œ2�
1
IZ/ and then to H 2

Z
.W Œ2;2�IZ/. The transgression the other way, first to Y

Œ2�
2

and then to W Œ2;2� , has the opposite image �c.L/.

Theorem 4.13 The characteristic 4–class G.L/ vanishes if and only if L is trivial as
a bigerbe , and is natural with respect to pullback , product and inverses in that

G.f �L/D f �G.L/; G.L1˝L2/DG.L1/CG.L2/; G.L�1/D�G.L/:

A morphism f W .L0;W 0;Y 0
2
;Y 0

1
;X 0/ ! .L;W;Y2;Y1;X / of bigerbes induces an

equality f �G.L/DG.L0/, and two bigerbes L and L0 over X satisfy G.L/DG.L0/

if and only if they are stably isomorphic.
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Proof That G.L/D 0 if and only if L admits a trivialization was proved in Lemma
4.11. The pullback of a locally split square over X by a continuous map f WX 0!X

induces natural maps f �W Œm;n� ! W Œm;n� commuting with each � i
j , and thus a

map f � LC �.W Œ�;��/! LC �.f �W Œ�;��/ of triple complexes. The naturality of G with
respect to pullbacks and morphisms is then a consequence of the naturality of the
spectral sequences which identify the total cohomology of the triple complex with the
cohomology of X and X 0, respectively. Naturality with respect to products and inverses
is a direct consequence of the fact that we can take ŒL�1�D�c.L/ and ŒL1˝L2�D

Œpr�
1

L1�C Œpr�
2

L2� as representatives. Finally, if L and L0 are stably isomorphic,
then G.L/ D G.L0/ by triviality and products, and, conversely, if G.L/ D G.L0/,
then L�1˝L0 D T is trivial, from which a stable isomorphism L˝T ŠL0 may be
constructed.

4.4 Representability of 4–classes

To characterize those 4–classes which are represented by bigerbes over a given locally
split square, we follow a similar argument to that in Section 2.4, though it is necessary
in this case to go further in a spectral sequence for the triple complex. Consider the
augmented triple complex

(4-6)

0 0 0

LZ�.Y
Œ2�
2
/ LZ�.W Œ1;2�/ LZ�.W Œ2;2�/ 0

LC �.Y2/ LC �.W Œ1;1�/ LZ�.W Œ2;1�/ 0

LC �.X / LC �.Y1/ LZ�.Y
Œ2�
1
/ 0

d1

d2 d2

d1

d2

d1

d1

d2 d2

d1

d2

d1

d1

d2 d2

d1

d2

d1

with the leftmost column and bottom row considered as degree �1 for d1 and d2 ,
respectively.

Lemma 4.14 Fix ` � 1 and an abelian group A. Suppose Œ˛� 2H `.X IA/ satisfies
��i Œ˛�D 0 2 LH `.Yi IA/ for i D 1; 2. Then there is a well-defined transgression class
defined by

(4-7) TrŒ˛�D Œd1ˇ2� d2ˇ1� 2 LH
`�1.W IA/=.H `�1.Y1IA/˚H `�1.Y2IA//;
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where ˇi 2
LC `�1.Yi IA/ are any elements satisfying ıˇi D �

�
i ˛ 2

LC `.Yi IA/ for a
representative ˛ 2 LC `.X IA/.

Remark This transgression can be understood as the W Œ1;1� component of the E2

page differential of the .ı;D12/ spectral sequence of . LC �.W Œ�;��/; ı;D12/ applied
to Œ˛�, where we have rolled up d1 and d2 into a total differential D12 D d1˙ d2 .

In fact, to observe the sign convention discussed in Convention 2.2, we should properly
define TrŒ˛� as the class Œ.�1/`C1d2ˇ1 C .�1/`C1d1ˇ2�, where ıˇ1 D .�1/`d1˛

and ıˇ2 D .�1/`C1d2˛ , but then cancellation of the two factors of .�1/`C1 and
exchanging ˇ1 with �ˇ1 makes this equivalent to the definition given above.

Proof With ˛ , ˇ1 and ˇ2 as above, it follows that d1ˇ2� d2ˇ1 is a cocycle since

ı.d1ˇ2� d2ˇ1/D d1�
�
2˛� d2�

�
1˛ D d1d2˛� d2d1˛ D 0:

Another choice of representative ˛0D ˛C ı
 can be incorporated as a different choice
ˇ0i D ˇi C di
 of the ˇi ; moreover, if ˇ0i 2 LC

`�1.Yi/ are another choice of bounding
chains for �i˛ , then ı.ˇi �ˇ

0
i/D 0 and

.d1ˇ2� d2ˇ1/� .d1ˇ
0
2� d2ˇ

0
1/D d1.ˇ2�ˇ

0
2/C d2.ˇ

0
1�ˇ1/

is in the image under
�
d2 d1

�
of LH `�1.Y1/˚H `�1.Y2/.

Theorem 4.15 A locally split square .W;Y2;Y1;X / supports a bigerbe with a given
class Œ˛� 2H 4.X IZ/ if and only if

(i) ��i Œ˛�D 0 2H 4.Yi ;Z/ for i D 1; 2, and

(ii) TrŒ˛�D 0 2H 3.W IZ/=.H 3.Y1IZ/˚H 3.Y2IZ//.

Proof By naturality of the Bockstein isomorphism, it suffices to work one degree
lower with C� coefficients. Thus suppose ˛ 2 LC 3.X IC�/ represents Œ˛�. Since
by hypothesis TrŒ˛� vanishes, there exist representatives ˇi 2

LC 2.Yi IC�/ such that
Œd1ˇ2�d2ˇ1�D 02 LH 2.W IC�/; thus d1ˇ2�d2ˇ1D ı
 for 
 2 LC 1.W IC�/. Then
we claim d1d2
 D d2d1
 2 LZ

1.W Œ2;2�IC�/ is a pure cocycle and that a bigerbe
L!W Œ2;2� with

c.L/D�d1d2


satisfies G.L/D Œ˛�. Indeed, it is obvious that di.d1d2
 /D 0 for i D 1; 2; moreover,
ıd1d2
 D d1d2ı
 D d1d2.d1ˇ2� d2ˇ1/D 0 as well, so, by Lemma 4.11, d1d2
 D

�c.L/ 2 LZ1.W Œ2;2�IC�/ for a bigerbe L!W Œ2;2� .
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To see that G.L/D ˛ , we follow the proof of Proposition 4.10, carefully observing
the sign convention (4-4) and observe that

(4-8)

c.L/

�d1
 .d2d1ˇ1; 0/

.�d1ˇ1; 0/

d2

D1Dı�d1

�d2

is a zigzag which identifies �d1ˇ1 2
LZ2.Y

Œ2�
1
IC�/ as a pure cocycle representing

the image of c.L/ in the E1 page of the .d2;D1 D ı˙ d1/ spectral sequence of the
triple complex (4-3) which collapses to the D1 cohomology of LZ�.Y Œ��

1
IC�/. Then,

as in (2-11),

(4-9)

�d1ˇ1

�ˇ1 �d1˛

˛

d1

ı

�d1

is a further zigzag which identifies ˛2 LC 3.X IC�/ as the image of c.L/ in the E1 page
of the .d1; ı/ spectral sequence of LZ�.Y Œ��

1
IC�/ representing the class G.L/D Œ˛�.

Conversely, to show necessity of this condition, suppose that L!W Œ2;2� is a bigerbe.
As shown in Lemma 4.11, this generates a Čech cocycle, �D c.L/ 2 LZ1.W Œ2;2�IC�/,
with values in C� , which is a pure cocycle in the triple complex:

(4-10) ı�D d1�D d2�D 0:

Using the exactness of the simplicial complexes we may pull this back under the two
homotopy contractions .s1

1
/� and .s2

2
/� , giving

(4-11) 
 2 LC 1.W IC�/; d1d2
 D d2d1
 D �:

Consider the Čech differential ı
 2 LC 2.W IC�/. The images of this,

d1ı
 D ıd1
 2 LC
2.W Œ2;1�;C�/ and d2ı
 2 LC

2.W Œ1;2�
IC�/;

are pure cocycles in the triple complex, since � is closed. Thus d2ı
 descends to
a uniquely defined Čech cocycle �2 2

LC 2.Y
Œ2�
2
;C�/ with d1�2 D d2ı
 . Note that

ı�2 D 0 by injectivity of d1 at the bottom level. Under .s2
2
/� , this in turn pulls back
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to ˇ2 2
LC 2.Y2IC

�/ with d2ˇ2 D �2 . Now d2.ı
 � d1ˇ2/D 0 by construction, so
there is a unique ˇ1 2

LC 2.Y1IC
�/ such that

(4-12) �d2ˇ1 D ı
 � d1ˇ2:

It follows that �1 D d1ˇ1 satisfies d1�1 D 0 and ı�1 D 0 (by injectivity of d2 on
LC 2.Y

Œ2�
1
IC�/ and the fact that ıd2�1 D ıd2d1ˇ1 D�ı

2d1
 D 0).

Thus ıˇ2 and ıˇ1 descend, from Y2 and Y1 , respectively, to define cocycles in
LC 3.X IC�/; moreover, these must be the same cocycle ˛ 2 LC 3.X IC�/ by injectivity

of d1 and d2 and the fact that d1ıˇ2 D d2ıˇ1 , so this represents the 4–class of the
bigerbe. This shows that the difference d1ˇ2�d2ˇ1 is exact and the criterion therefore
holds.

There is an analogue of Proposition 2.11 classifying trivializations of bundle gerbes.

Proposition 4.16 The trivializations of a bundle bigerbe .L;W;Y2;Y1;X / form a
torsor for the group

(4-13) Imfd2 W
LH 2
Z .Y

Œ2�
1
IZ/! LH 2

Z .W
Œ2;1�
IZ/g

˚ Imfd1 W
LH 2
Z .Y

Œ2�
2
IZ/! LH 2

Z .W
Œ1;2�
IZ/g;

where LH �
Z

denotes the ı cohomology of the associated space in the diagram (4-6).

In specific cases, as for the Brylinski–McLaughlin bigerbe in Section 5.3, this may be
simplified further.

Proof If .Q1;Q2/ and .Q0
1
;Q0

2
/ are two trivializations of a bigerbe L, then P1 D

Q0
1
˝Q�1

1
!W Œ1;2� and P2 DQ0

2
˝Q�1

2
!W Œ2;1� are line bundles represented by

Čech cocycles ˛i D c.Pi/ satisfying d1˛i D d2˛i D ı˛i D 0 for i D 1; 2. Exactness
of the rows and columns of (4-3) gives the existence of ˇ1 2

LZ1.Y
Œ2�
2
IC�/ and

ˇ2 2
LZ1.Y

Œ2�
1
IC�/ satisfying d2ˇ1D˛1 and d1ˇ2D˛2 , diˇiD 0 and (by injectivity)

ıˇi D 0. It is straightforward to see that

Œ˛1� 2 Imfd1 W
LH 1
Z .Y

Œ2�
2
IC�/! LH 1

Z .W
Œ1;2�
IC�/g

is well defined independent of choices, and similarly for Œ˛2�. Conversely, given
elements in (4-13) corresponding to line bundles on W Œ1;2� and W Œ2;1� coming from
simplicial line bundles Y

Œ2�
2

and Y
Œ2�
1

, respectively, a trivialization .Q1;Q2/ may be
altered to give a different trivialization of the same bigerbe.

Algebraic & Geometric Topology, Volume 21 (2021)



Bigerbes 3379

5 Examples of bigerbes

5.1 Decomposable bigerbes

As for the decomposable bundle gerbes discussed in Section 5.1, we consider the special
classes of bigerbes corresponding to decomposable classes in H 4.X IZ/. These are
either of the form ˛1 [ ˛2 with the ˛i 2 H 2.X IZ/ or of the form � [ ˛ with
�2H 1.X IZ/ and ˛ 2H 3.X IZ/. Stuart Johnson, in his PhD thesis [9], makes related
constructions in the setting of 2–gerbes.

From Theorem 4.15 it follows that if, for i D 1; 2, ˛i 2H 2.X IZ/ and �i W Yi ! X

are locally split maps such that ��i ˛i D 0 2H 2.Yi IZ/, then the cup product ˛1[˛2

is represented by a bigerbe over the locally split square .Y1�X Y2;Y2;Y1;X /. Indeed,
in Čech theory, if �i 2

LC 1.Yi IZ/ are primitives for the ��i ˛i then �1[˛2 and ˛1[�2

are primitives for ˛1[˛2 on Y1 and Y2 , respectively, and, pulled back to Y1 �X Y2 ,
their difference ˛1[ �2� �1[˛2 has primitive �1[ �2 .

If the spaces Yi are the total spaces of circle bundles representing the 2–classes, the
bigerbe is given quite explicitly in terms of the classifying line bundle for decomposed
2–forms over the torus.

Lemma 5.1 The fundamental line bundle on T2 (with Chern class that generates
H 2.T2IZ/ D Z) has a “bimultiplicative” representative S ! T2 , meaning there
are natural isomorphisms between fibers S�1C�2;� Š S�1;� ˝ S�2;� and S�;�1C�2

Š

S�;�1
˝S�;�1

such that

(5-1)

S�1C�2;�1C�2
S�1;�1C�2

˝S�2;�1C�2

S�1C�2;�1
˝S�1C�2;�2

S�1;�1
˝S�2;�1

˝S�1;�2
˝S�2;�2

commutes.

Proof Line bundles over T2ŠR2=Z2 are naturally identified with Z2 –invariant line
bundles over the universal cover, R2 . We equip the trivial bundle R2 �C with the
R2 –action covering translation via

.s; t/ � .x;y; z/D .xC s;yC t; e2� i.sCt/z/; .s; t/ 2R2; .x;y; z/ 2R2
�C;

and it is clear that the restricted Z2 �R2 –action is trivial, so this descends to a line
bundle S ! T2 .
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The bimultiplicative property follows from the natural identifications

(5-2) S�;� 3 Œ.�; �; z/�D Œ.0; 0; e
�2�i.�C�/z/� 2 S0;0 for every .�; �/ 2 T2

coming from the R2 –action upstairs. Moreover, the identification (5-2) is equivalent
to parallel transport in S along the linear path from .0; 0/ to .�; �/ with respect to the
connection 1–form 2� i.�d� C �d�/, the curvature of which is the fundamental class
in H 2.T2IZ/.

Proposition 5.2 For a decomposed 4–class ˛1 [ ˛2 2 H 4.X IZ/, with the ˛i 2

H 2.X IZ/ represented by circle bundles Yi ! X, the pullback under the product of
the difference maps �i W Y

Œ2�
i D Yi ˝Yi! U.1/,

LD .�1 ��2/
�S !W Œ2;2�

D Y
Œ2�
1
�X Y

Œ2�
2
;

defines a bigerbe .L;Y1 �X Y2;Y2;Y1;X / with characteristic class G.L/D ˛1[˛2 .

Proof The bimultiplicative relations of Lemma 5.1 correspond under pullback by
�1��2 to the bisimplicial conditions for L, and that G.L/D˛1[˛2 is a consequence
of Lemma 2.13.

Similarly, if � 2 H 1.X IZ/ and ˛ 2 H 3.X IZ/, the representability condition is
satisfied by the fiber product square given by any locally split maps �i W Yi!X for
i D 1; 2 such that ��

1
�D 0 2H 1.Y1IZ/ and ��

2
˛ D 0 2H 3.Y2IZ/.

Taking the “logarithmic” covering zX !X corresponding to � , meaning the pullback
of the universal cover of U.1/ by a homotopy class of maps X !U.1/ representing �
and a bundle gerbe .L;Y;X / with DD.L/D ˛ 2H 3.X IZ/, there is again a direct
construction of a bigerbe for the fiber product square.

Proposition 5.3 If .L;Y;X / is a bundle gerbe with Dixmier–Douady class ˛ 2
H 3.X IZ/ and zX ! X is the logarithmic cover corresponding to a class Œ�� 2
H 1.X IZ/ represented by � WX ! U.1/, then the line bundle

L�! zX Œ2�
�X Y Œ2�;

where � W zX �X
zX ! Z is the fiber-shift map , defines a bigerbe

.L�; zX �X Y;Y; zX ;X / with G.L�/D �[˛ 2H 4.X IZ/:

Algebraic & Geometric Topology, Volume 21 (2021)



Bigerbes 3381

Proof We view the covering space zX ! X as a principal Z–bundle, and then the
shift map

� W zX Œ2�
! Z

defines the collective bundle L� on zX Œ2� �X Y Œ2� given by the tensor product Ln

over ��1.n/.

The bisimplicial space is
W Œm;n�

D zX Œm�
�X Y Œn�:

and the line bundle L� is simplicial in the d2 direction, with trivializing section of
d2.L

�/D .d2L/� over W Œ2;3� given by s� , and the d1 differential of L� is given by

d1.L
�/DLd1� DL0

so is canonically trivial. Thus this is indeed a bigerbe.

To see that G.L�/D �[˛ , observe that representative cocycles c.L/ 2 LC 2.Y Œ2�IZ/

and �2 LC 0. zX Œ2�IZ/ pull back to LC �. zX Œ2��X Y Œ2�IZ/ by the fiber product projections,
and their cup product �[ c.L/ 2 LC 2. zX Œ2� �X Y Œ2�IZ/ represents the transgression
image of �[˛ from X. Then �[c.L/Dnc.L/D ŒLn� locally on components ��1.n/,
so the result follows.

5.2 Doubling for bigerbes

As in Section 3, we may incorporate an additional simplicial structure with respect to
the space of products EX� DX � in order to promote examples of bigerbes involving
based loop spaces to examples involving free loop spaces.

Definition 5.4 A bigerbe L on X 2 will be said to be double if the bigerbe

@LD ��0 L˝��1 L�1
˝��2 L

is trivial on X 3 with respect to the three projection maps �i WX
3!X 2 . In the absence

of additional data, @L is defined with respect to the bisimplicial space over X 3 obtained
by the fiber products of the three pullbacks of the bisimplicial space W

Œ�;��
2

over X 2 .
However, as for gerbes above, it will typically be the case that X 3 carries a natural
split square and induced bisimplicial space W

Œ�;��
3

along with maps W
Œ�;��

3
!
!
!W

Œ�;��
2

over the projections X 3!
!
!X 2. In this case, it suffices that @L!W

Œ2;2�
3

, defined by
pulling back along the three maps W

Œ2;2�
3
!W

Œ2;2�
2

and taking the alternating product,
admits a bigerbe trivialization.
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As a special case relevant in our primary example, a bigerbe is a double if @L is
itself trivial as a line bundle over W

Œ2;2�
3

. Naturality of the bigerbe characteristic
class and exactness of the sequence (3-5) together lead to the following analogue of
Proposition 3.2:

Proposition 5.5 The characteristic 4–class , G.L/, of a double bigerbe L on X 2 ,
descends from H 4.X 2IZ/ to H 4.X IZ/.

In Section 5.5 we will also consider a similar condition with respect to the bisimplicial
space of products X m;nDX mn , with the two sets of projections �1

j WX
m;n!X m�1;n

and �2
j WX

m;n!X m;n�1 . A bigerbe L over X 4DX 2;2 is quadruple if @1L and @2L

are respectively trivial over X 1;2 DX 2 and X 2;1 DX 2 . The natural differentials @1

and @2 , defined on cohomology LH `.X �;�;A/, commute, and from exactness of these
we obtain the following result:

Proposition 5.6 For a quadruple bigerbe L on X 4 , the characteristic 4–class G.L/

descends from H 4.X 4IZ/ to H 4.X IZ/.

5.3 Brylinski–McLaughlin bigerbes

Next we turn to our main application. The loop space of a principal G –bundle over a
manifold is a principal bundle over the loop space with structure group the loop group
of G. The Brylinski–McLaughlin bigerbe captures the obstruction to lifting this bundle
to a (loop-fusion) principal bundle for a central extension of the loop group. While the
version involving based path and loop spaces is simpler, we focus from the beginning
on the doubled version involving free path and loop spaces, as this gives the results of
primary interest. Note that this theory most naturally involves U.1/ principal bundles
in place of line bundles, which we shall use for the remainder of the section without
further comment.

Let G be a compact, simple, connected and simply connected group. As is well known
(see for instance [19]), there is a classification of U.1/ central extensions

(5-3) 1! U.1/! cLG!LG! 1

of the loop group LG by H 3.GIZ/ŠH 3
G
.GIZ/Š Z. These extensions descend to

the quotient LG=G Š�G and so the classification of central extensions of the based
loop group �G is equivalent.
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Forgetting the group structure for the moment, such a central extension may be viewed
as a circle bundle over LG Š I Œ2�G, the Chern class c.bLG / 2H 2.LGIZ/ of which
is the transgression of the defining class in H 3.GIZ/. As such, it follows from
Theorem 3.6 that c.bLG / has a loop-fusion refinement. In the equivalent language of
the loop-fusion structures of Definition 3.4, we may restate this as follows:

Theorem 5.7 As a U.1/–bundle , bLG !LG has a canonical loop-fusion structure ,
meaning a trivialization of d bLG ! I Œ3�G inducing the canonical trivialization of
d2 bLG ! I Œ4�G and a trivialization of @bLG !L8G.

Remark In fact, the additional structure that promotes a general U.1/–principal
bundle over LG to a central extension is also a simplicial one. Indeed, as noted
by Brylinski and McLaughlin in [5] and attributed to Grothendieck, a U.1/ central
extension of any group H is equivalent to a simplicial circle bundle with respect to
the simplicial space BH� defined by BHk DH k�1 with the face maps H kC1!H k

given by

�i W .h0; h1; : : : ; hk/ 7!

8<:
.h1; : : : ; hk/ if i D 0;

.h0; : : : ; hi�1hi ; hiC1; : : : ; hk/ if 1� i � k;

.h0; : : : ; hk�1/ if i D k:

Thus, given a circle bundle Q!H D BH2 , a trivialization of

@QD ��0 Q˝��1 Q�1
˝��2 Q

inducing the canonical trivialization of d2Q!H 3 equips Q with the (associative)
multiplicative structure of a U.1/ central extension of H and vice versa.

For the groups under consideration, we believe it can be shown that the classes in
H 3

G
.GIZ/DH 4.jBGjIZ/ are represented by cohomology classes

˛ 2H 3.G D BG2IZ/

satisfying @˛D 02H 3.G2DBG3IZ/, and that the corresponding gerbe .W;PG;G/,
with circle bundle W !�G, admits a simplicial structure with respect to B�G� , and
thus a central extension of �G. Further considering a doubled structure with respect
to G� DG� gives rise to the central extensions of LG. For reasons of space, and since
the theory of central extensions of LG is already well known, we will not elaborate
further on this point.

To define the Brylinski–McLaughlin bigerbe, let X be a connected manifold with
principal G –bundle E!X. One case of particular interest is the spin frame bundle
over a spin manifold of dimension � 5.
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Lemma 5.8 With vertical maps projections and evaluation at end- and midpoints in
the horizontal directions , the diagrams

(5-4)
Ek IkE

X k IkX

�

�

for k � 2 are locally split squares.

Proof The maps are locally trivial fiber bundles, so all maps are locally split, and
IkE is likewise a fiber bundle over the fiber product IkX �X k Ek , which is the space
of paths in X along with prescribed points in E over the endpoints (for k D 2) and
midpoint (for kD 3) of the path. A connection on E gives a horizontal lift of each path
segment in X given an initial point in E, and from the connectedness of G this can
be concatenated with a path in the fiber from the endpoint of the lifted path segment to
any other prescribed point in the same fiber; this can be done for each segment defined
between the k marked points of the path on X. This construction can be carried out
locally continuously, so giving a local section of IkE over Ek �X k IkX.

In the resulting bisimplicial diagrams we may write IEŒ2� , etc, without risk of confusion
in light of the canonical isomorphisms

.IE/Œ2� D IE �IX IE Š I.EŒ2�/D I.E �X E/;

.LE/Œ2� DLE �LX LE ŠL.EŒ2�/DL.E �X E/;

etc. Filling out the bisimplicial space for k D 2 by fiber products leads to the diagram

(5-5)

.EŒ3�/2 IEŒ3� LEŒ3� I Œ3�EŒ3�

.EŒ2�/2 IEŒ2� LEŒ2� I Œ3�EŒ2�

E2 IE LE I Œ3�E

X 2 IX LX I Œ3�X

The third column of (5-5) is the simplicial space generated by the fibration LE!LX,
itself a principal bundle with structure group LG, and thus supports a lifting bundle
gerbe

QD �� cLG!LEŒ2�;

Algebraic & Geometric Topology, Volume 21 (2021)



Bigerbes 3385

where
� WLEŒ2�LG; .l1.�/; l2.�// 7! `.�/; l2.�/D `.�/l1.�/;

is the shift map of the principal bundle, and we consider bLG !LG as a U.1/–bundle.
The other columns are likewise the simplicial spaces of principal bundles, with structure
groups G and I Œk�G for k � 1, and we denote their associated shift maps by the same
letter.

Theorem 5.9 Given a central extension (5-3) of level ` 2 ZDH 3
G
.GIZ/, the lifting

bundle gerbe Q!LEŒ2� is the double bigerbe .Q; IE;E2; IX;X 2/ with character-
istic class

(5-6) G.Q/D `p1.E/ 2H 4.X IZ/;

where p1.E/ is the first Pontryagin class of E.

The bigerbe .Q; IE;E2; IX;X 2/ will be called the Brylinski–McLaughlin bigerbe.

Proof It follows immediately from the lifting gerbe construction that Q is vertically
simplicial, and the simplicial condition in the horizontal direction follows from naturality
of the shift map and Theorem 5.7.

Indeed, unwinding the definitions reveals that d1�
�bLG D ��d bLG, which admits the

trivialization noted in Theorem 5.7 inducing the canonical trivialization of ��d2 bLG D

d2
1
��bLG.

For doubling, we define @Q with respect to the locally split square (5-4) for k D 3,
the induced bisimplicial space of which sits in the diagram

(5-7)

.EŒ3�/3 IEŒ3� L8EŒ3� I Œ3�EŒ3�

.EŒ2�/3 IEŒ2� L8EŒ2� I Œ3�EŒ2�

E3 IE L8E I Œ3�E

X 3 IX L8X I Œ3�X

with the obvious maps to (5-5), and where we have omitted the subscript 3 on the
path spaces and made the identification L8X Š I

Œ2�
3

X, etc. Once again, it follows
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that @QD @��bLG D ��@bLG with respect to the shift map for the principal L8G–
bundle L8E!L8X, which admits a trivialization in light of Theorem 5.7. Thus Q

is product simplicial in the sense of Definition 5.4 and its characteristic class descends
to H 4.X IZ/.

Observe that this characteristic class can be obtained in two steps, first by regressing
the Chern class c.Q/ from H 2

Z
.LEŒ2�IZ/ to H 3

Z
.LX IZ/ and then to H 4.X IZ/.

The image of c.Q/ in H 3
Z
.LX IZ/ is, essentially by definition, the Dixmier–Douady

class of the lifting bundle gerbe (or more precisely, its loop-fusion refinement), and it
is well known that this class is the transgression of the Pontryagin class of E on X

(multiplied by ` in the case of higher levels), so from Theorem 3.6 we obtain (5-6).

Without the vertical simplicial condition, the gerbe .Q;LEŒ2�;LX / represents the
obstruction to lifting the LG–bundle LE ! LX to an bLG –bundle bLE ! LX.
The enhancement of this data to a bigerbe carries additional information, which is
formalized in the following definition:

Definition 5.10 Let E ! X be a principal G–bundle for G a simple, connected
and simply connected Lie group, and fix a central extension (5-3) of LG of level
` 2 ZDH 3

G
.GIZ/. A loop-fusion bLG lift of LE!LX is a principal bLG –bundle

bLE !LX lifting LE with the property that bLE !LE is loop-fusion as a U.1/–
bundle; in other words, d bLE ! I Œ3�E has a trivialization inducing the canonical
trivialization of d2 bLE ! I Œ4�E and @bLE !L8E admits a trivialization.

Without the additional figure-of-eight structure, such fusion lifts have been considered
by Waldorf in [29], and with stronger conditions (high regularity and equivariance with
respect to diffeomorphisms of S1 ) by the authors in [11].

Theorem 5.11 Loop fusion bLG lifts of LE ! LX are in bijection with doubled
trivializations of the Brylinski–McLaughlin bigerbe; they exist if and only if p1.E/

vanishes , and then form a torsor for H 3.X IZ/.

Proof Here by a doubled trivialization we mean a trivialization .P1;P2/ in the sense
of Definition 4.5 with the additional property that @Pi is trivial on the bisimplicial
space (5-7). As argued in the proof of Lemma 3.3, the retractions for any space Y

of IkY onto Y itself for each k give a homotopy with respect to which @D Id as an
operator from line bundles on I2Y to those I3Y ; in particular, the condition that @P1

Algebraic & Geometric Topology, Volume 21 (2021)



Bigerbes 3387

is trivial for P1! I3EŒ2� means that P1 itself is trivial. Thus doubled trivializations
for the bigerbe in question are reduced to loop-fusion line bundles P !LE satisfying
d2P ŠQ. On the one hand, these are clearly equivalent to loop-fusion bLG lifts of
LE!LX, and on the other, they are classified by those classes in LH 2

lf .LEIZ/ with
image c.Q/ under d2 .

By Lemma 5.12 below, the difference of any two such classes descends to a class in
LH 2

lf .LX IZ/, and so doubled trivializations form a torsor for the image of LH 2
lf .LX IZ/

in LH 2
lf .LEIZ/, which by Theorem 3.6 is equivalent to the image of H 3.X IZ/ in

H 3.EIZ/. Finally, given the conditions on G, it follows by the Serre spectral sequence
for E ! X that H 3.X IZ/ ! H 3.EIZ/ is an isomorphism in this case, so the
trivializations are classified simply by H 3.X IZ/.

It remains to show that the exactness of d2 in the Čech-simplicial double complex is
consistent with @, which is a consequence of the following.

Lemma 5.12 The homotopy chain contraction for d2 in the triple complex

. LZ�.W Œ�;��/; ı; d1; d2/

for the locally split squares .IkE;Ek ; IkX;X k/ commutes with the product simplicial
operator @.

Proof This follows ultimately from the existence of local sections of Ek ! X k

(resp. IE ! IX ) which are compatible with respect to the three projection maps
E3!E2 and X 3! X 2 (resp. I3E! I2E and I3X ! I2X ), which we proceed
to demonstrate. In the first case, we may fix an admissible pair of covers .V;U/ for
.E;X / and then equip Ek and X k with the covers Vk and Uk along with the induced
sections Et.Uk/! Et.Vk/, which are then automatically compatible by the projection
maps.

For the path spaces, we begin with the fact that .IE; IX;E3;X 3/ is a locally split
square, so I3E and I3X admit covers W and Y and sections Et.Y/! Et.W/ lying
over the sections Et.U3/!Et.V3/. In general, the reparametrization maps I3Y !

!
! I2Y

are open, so we may equip I2E and I2X with the union of the three image covers
W 0 D z�0.W/[ z�1.W/[ z�2.W/ and Y 0 D z�0.Y/[ z�1.Y/[ z�2.Y/, along with the
induced section

Qs0 W Et.Y 0/! Et.W 0/;

giving a set of local sections of I2E ! I2X which is compatible with the three
reparametrization maps z�i , and which covers the local sections of E2!X 2 .
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There is a simpler version of this bigerbe using based path and loop spaces, starting with
the locally split square .PE;E;PX;X /, pulling back a central extension b�G !�G

to �EŒ2� , and omitting the doubling conditions. We leave the details as an exercise to
the reader.

5.4 Loop spin structures

There is a well-known relationship between string structures on a spin manifold X of
dimension 2n> 4, and (loop) spin structures on its loop space LX.

Here, a string structure is a lift of the principal Spin.2n/–bundle E!X to a principal
bundle with structure group String.2n/, a 3–connected topological group covering
Spin.2n/ in the sequence of ever more connected groups that form the Whitehead
tower for O.2n/; see for instance [23]. The string group cannot be a finite-dimensional
Lie group (having a subgroup with the topology of K.Z; 2/), though there are various
realizations as a 2–group [2; 21]. The obstruction to lifting the structure group is
1
2
p1.X / 2 H 4.X IZ/ (the Pontryagin class of the Spin–bundle being a refinement

of the Pontryagin class of the oriented frame bundle), and, if unobstructed, string
structures are classified by H 3.X IZ/ [24].

As originally defined by Killingback in [10] and further developed by McLaughlin [15],
a spin structure on LX is a lift of the LSpin–bundle LE ! LX to the structure
group 1LSpin , the fundamental U.1/ central extension of LSpin. (By analogy, as
originally suggested by Atiyah in [1], an orientation on LX is a refinement of the
LSO.2n/–bundle LESO!LX to have structure group the connected component of the
identity, LCSO.2n/ŠLSpin.2n/, and therefore is typically related to a spin structure
on X.) The obstruction to this lift is the 3–class on LX obtained by transgression of
1
2
p1.X / 2H 4.X IZ/.

As defined, string structures on X and spin structures on LX are not necessarily in
bijection [18]. In fact, it was Stolz and Teichner in [25] who first noted the impor-
tance of the fusion structure on LX and showed that string structures on X were in
correspondence with what they called “stringor bundles” on (the piecewise smooth
loop space) LX, essentially bundles associated to a lift bLE along with a fusion
condition. It was further proved by the authors in [11] that string structures in the sense
of Redden [20] correspond with spin structures on the smooth loop space LX which are
both fusion and equivariant for the group DiffC.S1/ of oriented diffeomorphisms of the
loop parameter, and it was independently proved by Waldorf in [29] that string structures
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on X exist if and only if fusion spin structures on (piecewise smooth) LX exist, using a
transgression theory relating the 2–gerbe obstructing string structures of [6] and fusion
gerbes on loop space. Waldorf did not obtain a complete correspondence between string
structures and fusion loop spin structures, noting that this would necessitate additional
conditions such as equivariance with respect to thin homotopy; in the version considered
here, it is the figure-of-eight (ie doubling) condition that provides the remedy.

In any case, the bigerbe formulation here leads to the following result:

Corollary 5.13 There are natural bijections between the following sets:

(i) The set of string structures on a spin manifold X of dimension 2n> 4.

(ii) The set of loop-fusion spin structures on LX, meaning lifts of LE! LX to
the structure group 1LSpin such that the resultant U.1/–bundle bLE !LE is a
loop-fusion bundle according to Definition 3.4.

(iii) The set of doubled trivializations of the Brylinski–McLaughlin bigerbe

.Q; IE;E2; IX;X 2/:

The sets are empty unless 1
2
p1.E/ D 0 2 H 4.X IZ/ and otherwise are torsors for

H 3.X IZ/.

5.5 Path bigerbes

If X is a path-connected and simply connected space with basepoint b , from the based
double path space

(5-8) QX D PPX D fu W Œ0; 1�2!X W ujf0g�Œ0;1� D ujŒ0;1��f0g D bg

there are two surjective restriction maps

(5-9) fi WQX ! PX; f1uD ujŒ0;1��f1g and f2uD ujf1g�Œ0;1�:

Theorem 5.14 On a connected , simply connected and locally contractible space the
endpoint maps and restriction maps in (5-9) form a locally split square

(5-10)
PX QX

X PX

f1

f2

and any class 
 2H 4.X;Z/ arises from a bigerbe corresponding to (5-10).
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Proof The fiber product of the two copies of PX is the based loop space of X. The
simple-connectedness of X implies the fiber product of the two fi is surjective and,
from local contractibility, it is locally split. Since PX and QX are both contractible,
Theorem 4.15 applies to any 4–class on X.

Since the Eilenberg–Mac Lane spaces can be represented by CW complexes, Theorem
5.14 applies in particular to K.Z; 4/.

Theorem 5.15 There exists a universal bigerbe over K.Z; 4/ with respect to the
locally split square (5-10) with X DK.Z; 4/.

Note the structure of the bisimplicial space in this case, in which � represents a
contractible space:

K.Z; 3/ � K.Z; 2/

� � �

K.Z; 4/ � K.Z; 3/

Finally, incorporation of a product-bisimplicial condition allows any 4–class to be
represented as a bigerbe on any connected, locally contractible space X, whether simply
connected or not. Indeed, consider the locally split square .IIX; IX 2; IX 2;X 4/,
where IIX D fu W Œ0; 1�2!X g is the free double path space and the projection maps
are given by evaluation at both endpoints of a given path factor. The induced bisimplicial
space becomes

(5-11)
LX 2 ILX LLX

IX 2 IIX LIX

X 4 IX 2 LX 2

and, in particular, W Œ2;2� DLLX is the double free loop space of X. We may view
X 4 at the bottom as the factor X 2;2 in the bisimplicial space X m;nDX mn of products
as discussed in Section 5.2. Over X 3;2 consider the locally split square and induced
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bisimplicial space

(5-12)

LX 3 I3LX L8LX

I2X 3 I3I2X L8I2X

X 3;2 I3X 2 L8X 2

and likewise for X 2;3 with factors reversed. The bisimplicial spaces (5-12) map
to (5-11) over the product maps X 3;2 !

!
! X 2;2 and X 2;3 !

!
! X 2;2, and there are

associated operators @1 and @2 on line bundles.

Theorem 5.16 For a connected , locally contractible space X, every class in H 4.X IZ/

is represented by a product-bisimplicial bigerbe with respect to (5-11), that is , a
bigerbe .L; IIX; IX 2; IX 2;X 4/ having in addition trivializations of the line bundles
@1L!L8LX and @2L!LL8X.

Proof Such a bigerbe has characteristic class G.L/ 2H 4.X 2;2IZ/ satisfying

@1G.L/D 0 2H 4.X 3;2
IZ/ and @2G.L/D 0 2H 4.X 2;3

IZ/;

hence by Proposition 5.6 this descends to a well-defined class

G.L/ 2H 4.X IZ/:

Conversely, given any ˛ 2H 4.X IZ/, let ˇ D @1@2˛ 2H 4.X 2;2IZ/. This evidently
satisfies @iˇD0 for iD1; 2, and moreover, denoting by �i WX

2 ,�!X 2;2 for iD1; 2

the diagonal inclusions, satisfies ��i ˇ D 0 2 H 4.X 2IZ/. Under the deformation
retractions IX 2'X 2 , the evaluation maps IX 2!X 2;2 become identified with these
diagonal inclusions, so it follows that ˇ lifts to vanish in H 4.IX 2IZ/. Then, since
IIX ' � is contractible, Theorem 4.15 applies and it follows that ˇ is represented by
a bigerbe .L; IIX; IX 2; IX 2;X 4/ such that @iL is trivial (as a bigerbe) for i D 1; 2.
As a consequence of Lemma 3.3, which applies to both horizontal and vertical directions
in the diagram (5-12), bigerbe triviality of @iL is equivalent to triviality of @iL as a
line bundle.

6 Multigerbes

We end by sketching out the theory of multigerbes, the higher degree generalization
of bigerbes. By contrast to bundle gerbes, this generalization to higher degree is
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straightforward, with symmetry of the simplicial conditions replacing the need for
higher and ever more complicated associativity conditions.

Fix a degree n 2N , where nD 1 and nD 2 correspond to bundle gerbes and bigerbes,
respectively. To establish notation, let ej D .0; : : : ; 1; : : : ; 0/ denote the j th standard
basis vector, and for each integer k let k D .k; : : : ; k/ denote the vector with constant
entries. For a multiindex ˛ 2Nn we let j˛j D ˛1C � � �C˛n 2N , and we distinguish
the sets of natural numbers starting at 1 and 0, respectively, by N0 and N1 .

Definition 6.1 By a locally split n–cube we mean a set of spaces X˛ indexed by
˛ D .˛1; : : : ; ˛n/ 2 f0; 1g

n along with continuous maps

X˛!X˛�ej
whenever j̨ D 1

such that each diagram
X˛�ej

X˛

X˛�ej�ek
X˛�ek

is a locally split square in the sense of Definition 4.1.

In particular, a locally split 1–cube is just a locally split map X1!X0 and a locally
split 2–cube is a locally split square.

Lemma 6.2 A locally split n–cube extends naturally by taking fiber products to a set
of spaces fX˛ W ˛ 2Nn

0
g such that X��1D fX

˛ W ˛ 2Nn
1
g is an n–fold multisimplicial

space over X WD X0 ; in particular , for each fixed ˛ D .˛1; : : : ; 0; : : : ; ˛n/ with
vanishing j th coordinate , the sequence

X˛ X˛Cej
� X˛C2ej

 
 
 X˛C3ej

� � �

is the simplicial space of fiber products of the map X˛Cej
!X˛ .

Proof The proof is by induction on n, the case n D 2 having been proved as
Proposition 4.3. Assuming therefore that the result holds for n�1, the “hypersurfaces”
fX˛ W j̨ � 0g are well defined for 1 � j � n, and for general ˛ 2 Nn

1
define

X˛ as a subspace of X
˛1���˛n

1
as follows. For each j, there are j̨ projection maps

X
˛1���˛n

1
!X

˛1���y̨j ���˛n

1
, where the caret denotes omission, and these may be composed

with the structure map
X
˛1���y̨j ���˛n

1
!X

˛1���y̨j ���˛n

1�ej
:
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Introducing the notation ˛.j / to mean the multiindex obtained from ˛ by setting

j̨ D 0, we may view X˛.j/ as a subspace of X
˛1���y̨k ���˛n

1�ej
, and then X˛ is well

defined as the subspace of X
˛1���˛n

1
in the mutual preimage of X˛.j/ under the j̨

maps X
˛1���˛n

1
!X

˛1���y̨j ���˛n

1�ej
for each j.

We denote the face maps of the multisimplicial space by �j
�

for 1� j � n. Then, for
each ˛ 2Nn

0
, there are n simplicial differentials defined on a line bundle L!X˛ by

dj LD

j̨O
kD0

.�
j

k
/�L.�1/k

!X˛Cej
; 1� j � n;

with the property that d2
j L!X˛C2ej

is canonically trivial.

Definition 6.3 A bundle n–multigerbe, or simply multigerbe, defined with respect to
a locally split n–cube X˛ is a multisimplicial line bundle L!X2 , meaning dj L is
given a trivializing section sj inducing the canonical trivialization of d2

j L for each j,
and the induced trivializations of dj dkLŠ dkdj L are consistent for each pair j ¤ k .

A set .P1; : : : ;Pn/ of line bundles Pj !X2�ej
such that each Pj is multisimplicial

with respect to di for i¤j determines a multisimplicial line bundle
Nn

jD1 dj P
.�1/j

j !

X2 in the obvious way, and a trivialization of an n–multigerbe L consists of a set
.P1; : : : ;Pn/ as above along with an isomorphism

LŠ

nO
jD1

dj P
.�1/j

j

intertwining the multisimplicial structures of both sides.

Pullbacks, products and morphisms of multigerbes are defined by generalizing in the
obvious way those same operations for bigerbes, and making use of the following
result, which follows immediately from Lemma 4.6:

Lemma 6.4 The pullback by a continuous map X 0!X0 of a locally split n–cube X˛

is a locally split n–cube over X 0. Likewise , if X˛ and X 0˛ are locally split n–cubes
over the same base X WDX0 DX 0

0
, then the fiber products X˛ �X X 0˛ form a locally

split n–cube.

The characteristic class is defined as before in terms of the total cohomology of a
Čech-simplicial multicomplex.
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Lemma 6.5 The simplicial differentials

dj D

j̨X
kD0

.�1/k.�j /�k W
LC `.X˛IA/! LC `.X˛Cej

IA/

on Čech cochains form , along with the Čech differential ı , an .nC1/–multicomplex
. LC �.X�IA/; ı; d1; : : : ; dn/ with the following properties:

(i) For each j, fixing all other indices , the complex . LC `.X�j IA/; dj / is exact , and ,
for each k ¤ j, admits a homotopy chain contraction commuting with dk .

(ii) The total cohomology of

. LC �.X��1IA/; ı; d1; : : : ; dn/

is isomorphic to LH �.X IA/, where X DX0 .

(iii) The Chern class of the line bundle L!X2 of a multigerbe is represented by a
cocycle c.L/ 2 LC 1.X2IC

�/ with dj c.L/D 0 for each j, and such a multigerbe
is trivial if and only if c.L/ is a coboundary in the total .ı; d1; : : : ; dn/ complex.

Proof Here (i) is a consequence of Proposition 4.9, since, for each pair j ¤ k , the
bisimplicial space obtained from X˛ by freezing all but the j th and k th indices is
equivalent to the one obtained from a locally split square.

Part (ii) follows by induction, rolling up the .nC1/–multicomplex into the dou-
ble complex .dn;Dn�1/, where Dn�1 denotes the total differential associated to
.ı; d1; : : : ; dn�1/. By exactness of dn , this total cohomology is isomorphic to the total
Dn�1 cohomology of the complex LC �.X�.n/�1.n/IA/, where again ˛.n/ denotes the
index obtained from ˛ by setting ˛n D 0.

Finally, (iii) is proved by a straightforward generalization of the proof of Lemma 4.11.

Definition 6.6 The characteristic class of a multigerbe .L;X˛/ is the class

G.L/ 2H nC3.X IZ/; X DX0;

given by the Bockstein image of Œc.L/� 2 H nC2. LC �.X��1IC
�/; ı; d1; : : : ; dn/ in

LH nC2.X IC�/ with respect to the isomorphism of Lemma 6.5(ii).

Proposition 6.7 The characteristic class is natural with respect to pullback , product
and inverse operations on multigerbes , and a morphism of multigerbes induces an
equality of the (pulled back ) characteristic classes on the base spaces. It vanishes if and
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only if the multigerbe admits a trivialization. Moreover , G.L/ transforms according to
the sign representation of the symmetric group †n acting by permutation of the indices
of the locally split n–cube X˛ .

Proof sketch As for (bi)gerbes, the naturality of the characteristic class is a con-
sequence of the naturality of the multicomplex . LC �.X�IA/; ı; d1; : : : ; dn/ and the
naturality of the Chern class of the line bundle L!X2 , and the equivalence between
vanishing of G.L/ and multigerbe triviality of L follows from Lemma 6.5(iii). Finally,
that G.L/ is odd with respect to permutations of the n–cube is a consequence of the
sign convention, Convention 2.2, since changing the order of the differentials in the
multicomplex by a permutation � involves multiplying the complex by powers of �1,
and, in particular, the sign .�1/sgn.�/ on the term LC 1.X2IC

�/.

The question of representability of a given .nC2/–class by a multigerbe supported
by a given locally split n–cube can be addressed along similar lines as for bigerbes
in Section 4.4. Consider the multicomplex . LC �.X�IZ/; ı; d1; : : : ; dn/ truncated to
involve only the spaces in the n–cube, so the X˛ with ˛ 2 f0; 1gn . The .ı;D1;:::;n/

spectral sequence of this complex (with the di rolled up into a single differential) has
E1 page consisting of the cohomology complexes

H k.X IZ/
D1;:::;n
�����!

M
j˛jD1

H k.X˛IZ/
D1;:::;n
�����!

M
j˛jD2

H k.X˛IZ/
D1;:::;n
�����! � � �

for each k 2N . At the bottom level, the D1;:::;n differential of a class in H nC2.X IZ/ is
just the sum of the pullbacks along the n–cube face maps to

L
j˛jD1 H nC2.X˛IZ/, and

if this vanishes, then we say the class survives to the E2 page. In this case the E2 differ-
ential maps the class into the quotient

L
j˛jD2 H nC1.X˛IZ/=

L
j˛jD1 H nC1.X˛IZ/

(the cohomology of the E1 page), and we say the class survives to the E3 page if this
E2 differential vanishes and so on. Provided the class survives to the En page, the
associated differential maps it into the quotient of

L
j˛jDn H 2.X˛IZ/DH 2.X1IZ/

by some complicated subgroup, and this is the last nontrivial differential of the spectral
sequence, which therefore stabilizes at EnC1DE1 . We say the class survives to E1 ,
or simply stabilizes, if it survives to En and has vanishing En differential.

Proposition 6.8 A given locally split n–cube X˛ supports an n–multigerbe represent-
ing a given class ˛ 2H nC2.X IZ/ if and only if ˛ stabilizes in the above sense.

We leave the details of the proof, which we claim is a relatively straightforward
generalization of the proof of Theorem 4.15, as an exercise.
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6.1 Examples

We end with some simple examples of multigerbes which are straightforward general-
izations of the .3C1/–decomposable bigerbes of Section 5.1 and the path bigerbes of
Section 5.5.

First, suppose .L;X˛/ is an n–multigerbe over X D X0 with characteristic class
˛DG.L/2H nC2.X IZ/, and let Œ��2H 1.X IZ/Š LH 0.X IU.1// be a given 1–class
represented by a homotopy class of maps � WX ! U.1/. We proceed to construct a
“decomposable” .nC1/–multigerbe representing the class Œ��[G.L/. With zX !X

the “logarithmic” Z–covering of X associated to � as in Section 5.1, define the
.nC1/–cube zXˇ by

zX.˛;0/ DX˛; zX.˛;1/ D zX �X X˛:

Then, in the induced multisimplicial simplicial space, zX2D
zX Œ2��X X2 and we define

the line bundle by
L� D .pr2

�L/˝pr�
1
�
! zX Œ2�

�X X2;

where � W zX Œ2� ! Z is the fiber shift map with zX ! X thought of as a principal
Z–bundle.

Proposition 6.9 With notation as above , .L�; zXˇ/ is an .nC1/–multigerbe with
characteristic class

G.L�/D Œ��[G.L/ 2H nC3.X IZ/:

For the generalization of the path bigerbes of Section 5.5, let X be connected, simply
connected and locally contractible with a chosen basepoint. Then, with notation
P1Y D PY and P0Y D Y , the iterated (based) path spaces

X˛ D P˛1 � � �P˛nX D P j˛jX

with evaluation maps X˛ ! X˛�ej
form a locally split n–cube over X. Indeed,

the only obstruction to the locally split condition occurs at the bottom level, with
PPX ! PX �X PX Š�X surjective by the simple-connectedness of X ; all other
split squares have the form .PPY;PY;PY;Y / with Y D Pk>0X contractible. Since
in this case all the X˛ in the n–cube for ˛ ¤ 0 are contractible spaces, every class
in H nC2.X IZ/ survives to the E1 page in the .ı;D1;:::;n/ spectral sequence of the
n–cube, so, in light of Proposition 6.8, we conclude the following:
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Proposition 6.10 For X connected , simply connected and locally contractible , every
class in H nC2.X IZ/ is represented by an n–multigerbe supported on the iterated path
n–cube X˛ D P j˛jX ; in particular , the multisimplicial line bundle of the multigerbe
lives on the iterated loop space X2 D�

nX.

Finally, as in Section 5.5 there is a free path/loop version of this multigerbe obtained at
the cost of imposing product-multisimplicial conditions. Indeed, the set

fX m1;:::;mn DX m1���mn W .m1; : : : ;mn/ 2Nn
g

of n–fold iterated products of X along with projections forms a multisimplicial space,
with induced “differentials” @1; : : : ; @n defined on functions, line bundles, gerbes, multi-
gerbes, etc. A product-multisimplicial multigerbe is a multigerbe L over X 2;:::;2DX 2n

such that @iL is a trivial multigerbe for 1 � i � n, and then its characteristic class
descends from H nC2.X 2n

IZ/ to H nC2.X IZ/. Again leaving the details of the
generalization of Theorem 5.16 as an exercise, we claim the following result:

Proposition 6.11 If X is connected and locally contractible , then every class in
H nC2.X IZ/ is represented by a product-multisimplicial n–multigerbe supported by
the iterated free path n–cube X˛ D I j˛jX .2�j˛j/n with X0 D X 2;:::;2 D X 2n

; in
particular , the line bundle of the multigerbe lives on the free loop space LnX, where it
satisfies an n–fold fusion condition as well as the multi-figure-of-eight condition that
@iL!L � � �L8 � � �LX are trivial for each i .
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