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Abstract: For certain Dirac operators 04 associated to a fibered boundary metric gg,
we provide a pseudodifferential characterization of the limiting behavior of (9 + ky)~!
as k N\, 0, where y is a self-adjoint operator anti-commuting with dg4 and whose square
is the identity. This yields in particular a pseudodifferential characterization of the low
energy limit of the resolvent of 37, generalizing a result of Guillarmou and Sher about
the low energy limit of the resolvent of the Hodge Laplacian of an asymptotically conical
metric. As an application, we use our result to give a pseudodifferential characterization
of the inverse of some suspended version of the operator ds. One important ingredient
in the proof of our main theorem is that the Dirac operator dy is Fredholm when acting
on suitable weighted Sobolev spaces. This result has been known to experts for some
time and we take this as an occasion to provide a complete explicit proof.
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1. Introduction

An important class of complete non-compact Riemannian metrics with bounded geom-
etry is the one of asymptotically conical metrics (AC-metrics). Those consist in met-
rics asymptotically modelled on the infinite end of a Riemannian cone (C, g¢), where
C = (0, 00) x Y with (Y, gy) a closed Riemannian manifold and

gc = dr* + rlgy.

When Y = S" and gy is the standard metric gg», we get the more restricted class of
asymptotically Euclidean metrics (AE-metrics). If Y = S§"/T' forI' C O(n +1,R) a
finite subgroup and gy is the quotient of the standard metric gs», this corresponds to the
slightly larger subclass of asymptotically locally Euclidean metrics (ALE-metrics). In
general relativity, AE-metrics play an important role in the formulation of the positive
mass theorem, while many important examples of gravitational instantons are ALE-
metrics [31]. More generally, there are many examples of asymptotically conical Calabi—
Yau metrics [8,9,17,27,43,46].

In terms of scattering theory and spectral theory, AC-metrics constitute a natural
generalization of the Euclidean space. In that respect and compared to other types of
geometries like asymptotically hyperbolic metrics [34], meromorphic continuations of
the resolvent of the Laplacian are hard to obtain. For instance, the meromorphic contin-
uation of the resolvent obtained by Wunsch—Zworski [47] is in a conic neighborhood
of the continuous spectrum, which as expected from [38, § 6.10], does not include an
open neighborhood of 0. It is possible however to give a description of the asymptotic
behavior of the resolvent (A —2)~! of the Laplacian A of an AC-metric when A = ik is
in the imaginary axis and k N\ 0. Since k2 has the interpretation of an energy in quantum
mechanics, this asymptotic behavior is often referred to as a low energy limit and is in
some sense the opposite of the semiclassical limit, which consists instead to study what
happens when k2 tends to infinity.

More precisely, developing and using a pseudodifferential calculus initially consid-
ered by Melrose and Sa Barreto, Guillarmou and Hassell, in a series of two papers
[21,22], provided a fine pseudodifferential characterization of the low energy limit

lim (A +4k%)~!
kgIOl+( )

of the resolvent of the Laplacian of an AC-metric and used it to obtain results about the
boundedness of the Riesz transform. In [41,42], Sher used instead this description of
the low energy limit to give a precise description of the long time asymptotic to the heat
kernel of an AC-metric and to study the behavior of the regularized determinant of the
Laplacian under conic degenerations. All these results were subsequently generalized
by Guillarmou—Sher [23] to the setting where the scalar Laplacian is replaced by the
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Hodge Laplacian, allowing them in particular to describe the limiting behavior of analytic
torsion under conic degenerations.

A somewhat related setting where the pseudodifferential characterization of the low
energy limit of the resolvent is used is in the Cheeger—Miiller theorem for wedge metrics
obtained in [1]. Indeed, the overall strategy of [1] was to describe the limiting behavior
of analytic torsion for a family of closed Riemannian metrics degenerating to a wedge
metric. In particular, this required a uniform description of the resolvent of the Hodge
Laplacian under such a degeneration, which in turn could be obtained provided one
could invert a model operator of the form

PZAAc+AE (1)

with Aac the Hodge Laplacian of an AC-metric and Ag the Euclidean Laplacian on
R?. But taking the Fourier transform of (1) in the Euclidean factor yields

Aac + £, 2)

whose inverse, setting k := |£[, can be described all the way down to || = O thanks to the
results of [21-23]. This is precisely what was needed to take the inverse Fourier transform
of (2) and obtained a pseudodifferential characterization of the inverse (Aac + A £)}
fitting exactly where it should in the wedge-surgery double space of [1].

Another setting where the model operator (1) naturally arises is in the study of the
Hodge Laplacian of a quasi-asymptotically conical metric (QAC-metric). This type
of metrics was introduced by Degeratu—Mazzeo [12] as a generalization of the quasi-
asymptotically locally Euclidean metrics (QALE-metrics) of Joyce [27]. Without enter-
ing in the fine details of the definition of such metrics, let us say that one of the simplest
non-trivial example of such metric is a Cartesian product of two AC-metrics, so that (1)
can be seen indeed as a Hodge Laplacian associated to a QAC-metric.

Having in mind this sort of application, the purpose of this paper is to generalize the
pseudodifferential characterization of the low energy limit of the resolvent of [21-23]
in two different directions:

(i) Characterize the limit as kK N\ O when (A + K~ lis replaced by
@+ky)~
where 0 is a Dirac operator and y is a self-adjoint operator of order 0 such that
y>=1d, yd+0y =0;

(i1) Do it not only for asymptotically conical metrics, but also for the more general class
of fibered boundary metrics of [25,33].

One motivation for (i) is to characterize the inverse of an operator of the form
D =0+0g 3)

with D a Dirac operator on X x R?, 0 a Dirac operator on X (associated to an AC-metric
or more generally a fibered boundary metric) and 0 a Euclidean Dirac operator on RY.
Indeed, in this case, taking the Fourier transform of (3) in the R?-factor yields

D=0+icl(), &ecR, 4)
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where cl(£) denotes Clifford multiplication by & . Restricting (4) to the half-line generated
by n € S9! C RY, that is, setting £ = kn with k € [0, c0), we obtain precisely

O+ky with y =icl(n). (5)

Hence, understanding (0 + ky)’1 in the limit £k N\ O will allow, as n € S7 ~1 varies,
to understand (O +i cl(& N1 as & — 0. Concerning (ii), let us for the moment remind
the reader that fibered boundary metrics are a natural generalization of the class of AC-
metrics modelled at infinity by a fiber bundle over a Riemannian cone (at least when
they are product-type at infinity up to some order). More precisely, if M is a compact
manifold with boundary d M, one starts with a fiber bundle ¢ : M — Y whose base
and fibers are closed manifolds and considers metrics gy and gy = ¢*gy +k on Y
and 9 M making ¢ a Riemannian submersion. The modelled at infinity is then (Cy, gc,)
with Cy = (0, 00) x M and

gc, = dr’ +r’¢*gy +«, 6)

so that ¢ extends to a fiber bundle Cy — C over the cone C = (0, o0) x Y which is a
Riemannian submersion with respect to the metrics g¢, and g¢ = dr*+r2gy on Cy and
C. In dimension 4, an important class of examples is the one given by asymptotically
locally flat gravitational instantons (ALF-gravitational instantons), in which case the
Riemannian cone (C, g¢) has cross-section a quotient of the 2-sphere with its standard
metric and the fiber bundle ¢ is a circle bundle. Those include in particular the natural
hyperKihler metric on the universal cover of the reduced moduli space of centered
SU(2)-monopoles of magnetic charge 2. Another important class of examples is given
by the asymptotically locally conical metrics (ALC-metrics) with G,-holonomy of [5,
14,15], in which case ¢ is a circle bundle over a 5-dimensional base.

To formulate the main result of this paper, let g4 be a fibered boundary metric which
is product-type to order 2 (in the sense of Definition 2.1 below) on the interior of the
manifold with boundary M. In particular, at infinity, g4 is modelled by a metric of the
form (6). Let E — M be a Clifford module for the associated Clifford bundle and let
04 be the Dirac operator associated to a choice of Clifford connection. As explained in
§ 3, the operator Oy naturally restricts to an elliptic family of fiberwise operators D,, on
the fibers of ¢. We suppose that the nullspaces of the members of the family have all the
same dimension and hence form a vector bundle ker D,, — Y over Y. For instance, by
Hodge theory, this is always the case when 9 is the Hodge—deRham operator associated
to the metric gy. In any case, as shown in Definition 3.4 and Lemma 3.5 below, given
such a vector bundle ker D, — Y, there is a well-defined holomorphic family

A > I(Dp, 2

of elliptic first order operators on Y acting on sections of ker D,. This family, called
the indicial family of 0y, is invertible except for a discrete set of values that are called
indicial roots. For our result to hold, we need to assume that

ReX € [-1,0] = I(Dp, A) isinvertible. @)
Finally, let y € C®°(M; End(E)) be a self-adjoint operator such that

y?=1dg and yd4+0dsy =0. (8)
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Theorem 1. If there is a well-defined kernel bundle ker D,, — Y such that (7) and (8)
hold, then (Oy + ky)~V is an element of the pseudodifferential calculus vy ¢(M; E) of
low energy fibered boundary operators introduced in (4.24) below.

We refer to Theorem 8.4 below for a more precise statement of the result. Even if we
are not given y as in (8), we can use Theorem 1 to obtain a corresponding result for the
square of Jgp.

Corollary 2. If there is a well-defined kernel bundle ker D, — Y such that (7) holds,
then (E‘% +k5 7 s an element of the pseudodifferential calculus ‘-IJ;(I)(M; E).

We refer to Corollary 8.13 for a detailed statement of the result. One advantage of
using Dirac operators to derive Corollary 2 is that this requires slightly less control on
the metric at infinity, see in particular the discussion at the end of § 8 below. The fact
that the Dirac operator is of order 1 instead of order 2 also yields simplifications in the
construction of the parametrix.

When 9 is the Hodge—deRham operator of g4, we can give an alternative formulation
to (7). In this case, ker D, — Y essentially corresponds to the vector bundle of fiberwise
harmonic forms, and as such is naturally a flat vector bundle. There is in particular an
associated Hodge—deRham operator

o =skrPv L gkerDo acting on (Y ker D), 9)

where d¥T v ig the exterior differential associated to ker D, and 8% Pv is its formal
adjoint.

Corollary 3. Let Oy be the Hodge—deRham operator of g4. Suppose that

h—1 h h+1
Hq Yvk D = O ) s~ T A~ I
(Y; ker Dy) = {0}, q €{ R
3
Spec(dker Dy gker Dy | sker D,,dker Dv)% . Z’ (10)

Spec(dker Dvaker DU)% - 1,

where h = dim Y, H1(Y; ker Dy) is the de Rham cohomology group of degree q associ-
ated to the flat vector bundle ker D, and Spec(A), denotes the part of the spectrum of A
coming from forms of degree q. Then the conclusion of Corollary 2 holds for (535 +k%)~ L
Moreover, zf1 there is y such that (8) holds, then the conclusion of Theorem 1 holds for
(5¢ +ky) .

Remark. The authors wish to acknowledge that in a parallel work by Grieser, Talebi and
Vertman [20], a result similar to the first part of Corollary 3 was obtained independently
and simultaneously using partly different methods, in particular working directly with
the Hodge Laplacian, and relying on a split-pseudodifferential calculus with parameter,
which specifies the asymptotics of the Schwartz kernel with respect to a splitting of
differential forms into fiberwise harmonic forms and their orthogonal complement.

When Y = dM and ¢ is the identity map, so that g4 is in fact an AC-metric, the part of
Corollary 3 involving (83> +k?)~! corresponds to [23, Theorem 1], though, as discussed
just after Corollary 8.15 below, our assumption (10) may be slightly less restrictive then
those of [23] when % is odd. Notice also that restricting Corollary 3 to forms of degree
0 gives a corresponding statement for the low energy limit of the resolvent of the scalar
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Laplacian, though in this case our assumption (10) is probably not optimal and could
possibly be improved by working directly with the scalar Laplacian.

As suggested above, Theorem 1 can be used to characterize the inverse of the Dirac
operator (3) with = 0y, that is, the inverse of

Osus =6¢+8E- (11)
Indeed, in terms of its Fourier transform
Ogus(€) = B +i cl(€), (12)

its inverse is given by

(Boae) " /R ¢VE @ +icl(E))

~ @)y

and a closer analysis of the description of (9 +i cl (£))~! provided by Theorem 1 yields
the following result.

Corollary 4. If dim Y > 1, the inverse of Ogys is a conormal distribution on a certain
manifold with corners described in (9.6) below.

Referring to Theorem 9.1 below for more details, let us point out that, in agreement
with the fact that Ogys is not fully elliptic, the inverse (Dsus) ™! is not quite a suspended
operator, though it can be understood as an element of an enlarged pseudodifferential
suspended ¢-calculus.

Our main motivation for proving Corollary 4 is to study Dirac operators associ-
ated to yet another class metrics, namely the class of quasi-fibered boundary metrics
(QFB-metrics) introduced in [10]. Indeed, in the companion paper [29], we construct a
parametrix for the Hodge—deRham operator of a QFB-metric and one of the key steps
is to use Corollary 4 to invert a model precisely of the form (11). As the name suggests,
QFB-metrics are to fibered boundary metrics what QAC-metrics are to AC-metrics. Ac-
cording to [16], an important example of QFB-metrics is given by the hyperKihler metric
on the reduced moduli space of SU(2)-monopoles of charge k on R3. We know also from
[6] that the Nakajima metric on the Hilbert scheme of n points on C? is an example of
QALE metric. In fact, building on these results, we use the parametrix construction of
[29] to make progress in [28] on the Sen conjecture [40] and the Vafa—Witten conjecture
[44], which are conjectures from string theory and S-duality making predictions about
the reduced L>-cohomology of such moduli spaces.

To prove our main result, the strategy, asin [21], is to introduce a suitable double space,
M ,3 » that is, a suitable manifold with corners M ,3 o Oon which the Schwartz kernel of

(0g + ky)~! will admit a description as a conormal distributions with polyhomogeneous
expansion at the various boundary hypersurfaces of the double space. Compared to the
double space in [21], the main difference is that there is one more boundary hypersurface
and that one other boundary hypersurface, corresponding to sc in [21], is slightly different
in nature. Given such a double space and the corresponding calculus of pseudodifferential
operators, one important step in the construction of the inverse of (94 +ky ) is to show that
0¢ is Fredholm when acting on suitable weighted Sobolev spaces. Thanks to the thesis
of Vaillant [45], which among other things derived a corresponding Fredholm result for
the related geometry of fibered cusp metrics, it has been known for some time by experts
that such Fredholm result holds. In particular, a precise statement is provided in [25,
Proposition 16] when 0 is the Hodge—deRham operator. Assuming some conditions on
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the metric, such result follows from a general Fredholm criterion obtained by Grieser
and Hunsicker in [19, Theorem 13].

However, since this result is central in proving our main result, we take the opportunity
to provide a complete explicit proof for Dirac operators which gives a prelude of the
techniques used later in the paper. First, to extend the statement of [25, Proposition 16] to
a Dirac operator 0y with well-defined bundle ker D, — Y, let IT;, denote the fiberwise
Ij—projection from fiberwise L2-sections of E — 9 M onto sections of ker D, — Y. Let
I1;, denote a smooth extension of I, first to a collar neighborhood of d M, and then to
all of M using cut-off functions. Let Lé (M; E) and Hqﬁ (M; E) be the Lz-space and the

L?-Sobolev space of order 1 associated to the fibered boundary metric g4 and a choice
of bundle metric and connection for E — M. Let H, bl (M; E) be the L2-Sobolev space
of order 1 associated to a choice of b-metric in the sense of [37]. Finally, let x € C*°(M)
be a boundary defining function, which, near d M, corresponds to % in terms of the model

metric (6). Notice that Lé (M;E)=x e lej (M; E), but that such a simple relation does

not hold for H(; (M; E) and Hb1 (M; E). Then [25, Proposition 16] admits the following
generalization (see also Corollaries 3.17 and 3.18 below for alternative formulations).

Theorem 5. If § € R is not a critical weight of the indicial family I (Dy, 1) of Oy, then
0y induces Fredholm operators

By : x° (ﬁhx%H,} (M; E) +x(Id —T1,) Hy (M E)) — X LI(ME)  (13)
and
3y 1 x° (ﬁhx"%'H,} (M; E) + (d —T1) H) (M; E))

X0 (xﬁhLé(M; E)+ (1d —T1,) L3 (M; E)). (14)

To prove this result, our strategy, as in the thesis of Vaillant [45] for fibered cusp
Dirac operators, consists in constructing a sufficiently good parametrix for dg within
the large ¢-calculus of [33], see Theorem 3.9 below for the precise statement. Besides
establishing Theorem 5, our parametrix is used in Corollary 3.16 to show that elements
in the kernel of 0y are smooth sections admitting a polyhomogeneous expansion at
infinity. More importantly, for our main result, our parametrix in Corollary 3.20 is used
to show that the inverse of (13) defined on the complements of the cokernel of 9y is a
pseudodifferential operator of order —1 in the large ¢-calculus. In particular, this inverse
fits nicely on one of the boundary hypersurfaces of the double space M ,f e allowing us
to construct a good approximate inverse to (Jg + ky) within klllf’ ¢(M V E).

The paper is organized as follows. In § 2, we make a quick review of the ¢-calculus of
Mazzeo and Melrose. This is used in § 3 to construct a parametrix for fibered boundary
Dirac operators and derive few consequences, for instance Theorem 5. We introduce
our calculus of low energy fibered boundary pseudodifferential operators in § 4. After
constructing a suitable triple space for our calculus in § 5, we can describe how operators
compose in § 6. After introducing a few symbol maps in § 7, we can finally provide the
desired pseudodifferential characterization of the inverses of (3 +ky ) and (63) +k2). This
isused in § 9 to give a pseudodifferential characterization of the inverse of the suspended
operator Jgys in (11). In Appendix A.1, we establish a result about the commutativity of
certain blow-ups of p-submanifolds that turns out to be useful in § 4 in providing two
different points of view on the double space M ,? &
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2. Fibered Boundary Pseudodifferential Operators

In this section, we will review briefly the definitions and main properties of the ¢-calculus
of Mazzeo—Melrose [33]. Here and throughout the paper, we will in particular assume
that the reader has some familiarity with manifolds with corners as presented in [35].
What we will need can be found for instance in [18, Chapter 2] or[24, § 2].

Let M be a compact manifold with boundary dM equipped with a fiber bundle
¢ : 9IM — Y over a closed manifold Y. Let also x € C*°(M) be a boundary defining
function, thatis, x > O on M \ dM, x = 0 on IM and dx is nowhere zero on dM. In
terms of this data, the space of ¢-vector fields is given by

V(M) = (€ € V(M) | $u(Elam) =0, &x € X’CZ(M))}, 2.1)

where Vj, (M), the algebra of b-vector fields of [37], consists of smooth vector fields
tangent to the boundary of M. The definition of V4 (M) depends obviously on ¢, but
it also depends on the choice of boundary defining function x. Two boundary defining
functions x; and x» will give the same Lie algebra of ¢-vector fields if and only if

the function fc—; ) is constant on the fibers of ¢ : M — Y. In local coordinates
oM

(X, Y1y-++ Yh,21,-.-2yp) Near 0M with (yq, ..., y,) coordinates on Y such that ¢ is
locally given by

Ot Vi 21 - o o5 20) > (V1,205 d), (22
the space of ¢-vector fields is locally spanned by

, 0 a a 0 a
X X X—, — . —. (2.3)
dx  dy; ayp 071 0Zy

By the Serre-Swan theorem, there is a corresponding vector bundle TM — M, the
¢-tangent bundle, and a map of vector bundles

ap :°TM — TM (2.4)
inducing a natural identification
C®(M;°TM) = Vy(M). (2.5)

In other words, ?TM — M is a Lie algebroid with anchor map ag. The anchor map
ay is neither injective nor surjective when restricted to the boundary d M. The kernel of

agplym is in fact a vector bundle PNOIM — M ondM inducing the short exact sequence
of vector bundles

0— = ONOM —= T Mgy —2 = T(OM]Y) — 0, (2.6)

where T(0M/Y) is the vertical tangent bundle of the fiber bundle ¢ : oM — Y. In

terms of (2.3), xza%, xaiyl, e xa}% are local sections of ? N9 M. As explained in [33,

(7], there is in fact a canonical isomorphism
PNOIM = ¢*(*NY) (2.7

for some natural vector bundle ?’NY — Y on Y.
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The anchor map a4 induces however an isomorphism on the interior of M. In the
terminology of [3], this means that (M, V,; (M)) is a Lie structure at infinity. In particular,
if g4 is a choice of bundle metric on ?TM — M, then it induces a Riemannian metric
on M \ M, also denoted g4, via the isomorphism

ag T M\yom — T(M\ IM). (2.8)

We refer to such a Riemannian metric as a fibered boundary metric or a ¢-metric.
By the discussion in [3], such a metric is complete, of infinite volume and of bounded
geometry.

Ifc: 0M x[0, §) — M isacollar neighborhood of d M compatible with the boundary
defining function x in the sense that ¢*x = pr, : dM x [0, §) — [0, §) is the projection
on the second factor, then a natural example of ¢-metric is given by one such that

dx?  ¢*gy
oy = — +
86 = "3 22

+k, (2.9)

where gy is a Riemannian metric on ¥ and x € C®(dM; S>(T*(3M)) is a symmetric
2-tensor such that ¢*gy + k is a Riemannian metric on M making ¢ : oM — Y a
Riemannian submersion with respect to ¢*gy + « and gy.

Definition 2.1. A product-type ¢-metric is a ¢-metric g4 taking the form (2.9) in some
collar neighborhood ¢ : dM x [0,8) — M compatible with the boundary defining
function x. More generally, a ¢-metric is said to be product-type up to order k € N if
it is a product-type metric up to a term in x¥\C°(M; S>(?T*M)).

In this paper, we will exclusively work with ¢-metrics which are product-type up
to order 2. An important class metrics conformally related to ¢-metrics is the class of
fibered cusp metrics.

Definition 2.2. A fibered cusp metric is a Riemannian metric gf. on M \ dM such that

gre = X284

for some ¢-metric. Such a metric is said to be of product-type (respectively product-
type up to order k) if the conformally related ¢-metric g4 is product-type (respectively
product-type up to order k).

Like a ¢-metric, a fibered cusp metric is complete. However, if the fibers of ¢ are not
0-dimensional, its volume is finite and it has zero injectivity radius. Moreover, except in
special cases, its curvature is not bounded.

Within the classes of ¢-metrics and fibered cusp metrics, there are special subclasses
corresponding to specific choices of fiber bundles ¢ : 9M — Y. One can consider for
instance the case where Y is a point, in which case product-type ¢-metrics correspond to
metrics with infinite cylindrical ends, while product-type fibred cusp metrics corresponds
to metrics with cusp ends. The other extreme is to take Y = d M and ¢ to be the identity
map, in which case the ¢-vector fields correspond to the scattering vector fields of
[38], a product-type ¢-metric correspond to a metric with an infinite conical end and a
product-type fibered cusp metric corresponds to a metric with infinite cylindrical end.

The differential operators geometrically constructed from a ¢-metric, like the Hodge
Laplacian or a Dirac operator, fit in the more general class of differential ¢-operators.
The space Diff’q;(M ) of differential ¢-operators of order k corresponds to differential
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M2 M?

bf
rb

Fig. 1. The b-double space

operators generated by multiplication by an element of C° (M) and the composition of
up to k ¢-vector fields. In other words, Diff(’; (M) is the universal enveloping algebra
of Vg (M) with respect to C*°(M). As explained in [3,33], given vector bundles E and
F over M, one can more generally define the space Difff; (M; E, F) of differential
¢-operators of order k acting from sections of E to sections of F.

To construct good parametrices for differential ¢-operators, Mazzeo and Melrose
introduced the notion of pseudodifferential ¢-operators. This is done by defining their
Schwartz kernels on a suitable double space, namely the ¢-double space. To define it, one
starts with the manifold with corners M?> = M x M. Denote by x and x’ the boundary
defining functions of the boundary hypersurfaces dM x M and M x dM obtained by
lifting x € C°°(M) via the projections on the left and right factors. Blowing up the
corner dM x dM gives the b-double space

M} =[M?; M x 9M] with blow-down map g : M} — M>.  (2.10)

The manifold with corners Mg has now three boundary hypersurfaces, namely the
lift If and rf of the old boundary hypersurfaces dM x M and M x d M, as well as a new
boundary hypersurfaces bf created by the blow-up of dM x d M (Fig. 1). The boundary
hypersurface is naturally diffeomorphic to

M x OM x [0, %] 2.11)

where the coordinate in the factor [0, %] can be taken to be § = arctan ()%) With respect
to this identification, we can consider the p-submanifold

® = {(p.q.0) € 0M x 3M x [0, %1 1 6(p) = ¢(q). 6 = %}. (2.12)

The ¢-double space is then the manifold with corners obtained from Mg by blowing up
the p-submanifold @,

M¢2) = [M}; ®] with blow-down map Sy : qu, - M. (2.13)

On Mq% we denote again by 1If and rf the boundary hypersurfaces corresponding to

the lifts of If and rf from M} to M. We also denote by ¢bf the lift of bf to M and by
ff the new boundary hypersurface created by the blow-up of ® (Fig. 2).

Let Ay be the lift of the diagonal A C M x M to M, 2 As shown in [33], one of the
main features of the ¢-double space is that the lift from the left or from the right of ¢-
vector fields are transverse to Ag. This suggests to define pseudodifferential ¢p-operators

as conormal distributions with respect to Ay on M;‘;. Let

PQ(M) = |ASM@THpp)) (2.14)
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Fig. 2. The ¢-double space

be the bundle of ¢-densities on M. If mg = prpofy and 7 = pr; ofy with prp :
M xM — M andpr; : M x M — M the projections on the right and left factor, then
on Mé we can consider the bundle of right ¢-densities

PQr(M) = np(*QM)), (2.15)
as well as the homomorphism bundle
Homy(E, F) =n[E @ nxF* (2.16)
for E and F vector bundles over M.

Definition 2.3. Let £ and F' be vector bundles on M. The small calculus of pseudod-
ifferential ¢-operators acting from sections of E to sections of F is the union over
m € R of the spaces

Wi (M E, F) = {k € I"(Mj, Ay; Homy (E, F) ® *Qr(M))|x = 0 at dM; \ ff},

(2.17)
where 1™ (M42), Ag; Homy(E, F) ® ?Qr(M)) is, in the sense of [26, Definition 18.2.6],
the space of conormal distributions of order m with respect to Ay taking value in the
vector bundle Homy (E, F) ® PQr(M) and k = 0 at aMé \ ff means that the Taylor
series of « is trivial at all boundary hypersurfaces of Mq% except possibly at ff.

As shown in [33], an operator P € \I/;” (M; E, F) induces an operator
P:C®(M;E)— C®(M;F).
The calculus is also closed under composition in that
WI(M: F,G) oWy (M; E, F) C W™ (M E, G).

Furthermore, simple criteria are provided in [33] to determine when an operator is
bounded, compact or Fredholm when acting on weighted L2-Sobolev spaces associated
to a ¢-metric. For instance, we know from [33, Lemma 12] that a ¢-operator K of negative
order is compact when acting on the L2-space of a ¢-metric provided its normal operator
N (K), that is, its restriction to ff, vanishes.

As for the b-calculus however, some parametrix constructions require a larger calcu-
lus. If £ is, in the sense of [36, § 4], an index family for the boundary hypersurfaces of
Mq%, one can more generally consider the spaces

U B F) = Ay (M Hom . ) & #2400

¢ ’ ’ - ¢ ’ ) ¢) ) s s m e ,
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where .Aghg(Mz; Homy(E, F) ® ?Qr(M)) denotes the space of polyhomogeneous

sections of Homy, (E, F) ®%QRr(M) with polyhomogenous expansions compatible with
the index family £ in the sense of [36, (23)]. Using the pushforward theorem of [36], one
canshow asin [45, (26)] or [2, Theorem 3.3] that these operators act on polyhomogeneous
sections as follows.

Proposition 2.4. Let A € \Ilg’g(M; E,F)and o € -A;])i—lg(M; E) with index family £
and index set F such that

Re(Elis +F) > h+1,

where h = dim Y is the dimension of the base of the fiber bundle ¢ : dM — Y. Then the
action of A on o is well-defined, giving a polyhomogeneous section Ao € AY(M; F)
with index set G given by

G = ENfU(Els + FH)U(Elgbs + F —h — 1),

where h is the dimension of the base Y and U denotes the extended union of index sets
of [36, (43)].

Similarly, the ¢-triple space of [33] and the pushforward theorem of [36] can be used
to show as in [45, Theorem 2.11] or [2, Theorem 3.4] that this larger class of ¢-operators
behaves well under composition.

Proposition 2.5. Let £ and F be index families for the boundary hypersurfaces of Md%
such that

Re(Elir) + Re(Flir) > h + 1.

where h = dimY as in Proposition 2.4. Then given A € \Il;':’g(M; F,G)and B €
\IJ;"/’}—(M; E, F), their composition is well defined with

AoB e w;’j*’"“g(M; E,G),

where G is the index family given by

Ghit = (EDU(E ot + Flir — b+ DUE s + Flir),
Glit = (FLi)U(Eet + Flgot —h — DUE |t + Flr),
Globt = (Elit + Flep)U(E |gbt + Flgbt — h — DUE |gvt + Flip)U(E s + Flgbt)s
Glir = g + Fle)U(E bt + Flgbr — h — DUE g + Flir)-
(2.19)
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3. Fredholm Fibered Boundary Dirac Operators

Let M be a compact manifold with boundary d M equipped with a fiber bundle ¢ :
dM — Y over a closed manifold Y. Fix a boundary defining function x € C*(M)
and let g4 be a product-type fibered boundary metric up to order 2. Let E — M be a
Hermitian vector bundle and consider an elliptic formally self-adjoint first order fibered
boundary operator 0y € Diffé,(M ; E). An example to keep in mind is the situation
where E is a Clifford module for the Clifford bundle of the ¢-tangent bundle and T is
the Dirac operator associated to a choice of Clifford connection.

Instead of O acting formally on Lé (M; E), it is convenient to consider equivalently
the fibered boundary operator

h+l

Dy =x" "3 0px't acting formally on L}(M; E) =x~ 3 LY(M; E),  (3.1)

where 4 := dim Y. In this way, one important model operator, the indicial family of
Definition 3.4 below, can be defined essentially by Mellin transform of a restriction
to ¢bf, in direct analogy with the indicial family of [37] for b-operator. This will in
particular ease the use of results from [37] for the construction of the parametrix.
Since 0y is formally self-adjoint with respect to Lé (M; E),notice that Dy is formally

self-adjoint with respect to Li(M  E).

Definition 3.1. The vertical family is the family of vertical operators D, € Diff!' (3 M/
Y; E) obtained by restricting the action of Dy to the boundary d M.

The vertical family is closely related to the normal operator N (Dy) of Dy obtained
by restricting Dy to ff as a conormal distribution. As described in [33, § 4], the normal
operator is a family of suspended operators in the fibers of ¢ : M — Y. A direct
computation shows that

Y 5 p> Nig(Dg)p = Dyly-1(,) + On(p), (3.2)

where p + 0;,(p) is a family of fiberwise translation invariant elliptic first order dif-
ferential operators associated to the vector bundle *NIM — dM of (2.6) restricted to
¢~ '(p). We will assume that 3y, is in fact a family of Euclidean Dirac operators anti-
commuting with D,. As the next lemma shows, this condition is automatically satisfied
if 94 is a Dirac operator, for instance if it is the Hodge—deRham operator of the metric

8¢-

Lemma 3.2. If Oy is a Dirac operator, then Oy, is a family of Euclidean Dirac operators
anti-commuting with D,,.

Proof. Let p € Y be given. Since g4 is product-type up to order 2, notice that under the
identification

ONOIM|g-1(,) = ¢~ (p) x ?NpY (3.3)

coming form (2.7), the metric induced by g4 corresponds to a Cartesian product. On
the other hand, the Clifford module E used to define d induces one on this Cartesian
product that we will denote by E,. This bundle E), is in fact naturally the pullback
of E|4-1(,) via the bundle projection ¢N8M|¢71(p) — ¢ (p). Similarly, there is an
induced Clifford connection VE» which is just the pull-back of the Clifford connection
of E| o—1(p)- With respect to this data, the normal operator N (D) restricted to (3.3)
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is just the corresponding Dirac operator with Dy|4-1(,,) the part acting on the fibers of
¢_1 (p) x ¢NPY — ¢NpY (the operator is the same for each fiber) and 3y (p) is the

part acting on the fibers of ¢N8M|¢71([,) — ¢ 1(p). In particular, 9, (p) is a family
of Euclidean Dirac operators. To see that D, | o—1(p) and 0y (p) anti-commute, it suffices

to check that c(e 1)V§” and c(ez)Vi” anti-commute, where e and e; are vector fields
on qb_l (p) and ON pY lifted to the Cartesian product (3.3) and c(e;) denotes Clifford
multiplication by e;.

But in this case, V., e2 = V,e1 = 0, so using that VEr is a Clifford connection, we
compute that

E, E, E E, Ep
ceNVe c(e)Ve) = c(en)[Ve”, c(e)IVe) +clen)e(e2) Ve, VE

= c(en)e(Ve ) VE +clen)c(en) Ve VE (3.4)
E

= c(el)c(ez)VeIPVf;.

Similarly,
E E E
c(e2)Ve, c(e1) Ve, = cler)c(en)Ve," VL. (3.5)
Now, the curvature of (E),, VEr) is just the pull-back of the curvature of E| o—1(p) which
implies that [V..”, VL] = 0. Since c(e1)c(ez) = —c(ez)c(er), we thus deduce from
(3.4) and (3.5) that c(el)VeEl” and c(eg)Veb;" anti-commute as claimed. O
To be able to construct a good parametrix, we will make the following assumption.

Assumption 3.3. The nullspaces of the various fiberwise operators of the family D,
form a vector bundle

ker D, — Y.

Using the restriction of the metric g4 to the fibers of ¢ : 9M — Y and the Hermitian
metric of E, we can define a family of L?-projections
), : C°(Y; L2 (AM/Y; E)) — C*®(Y; ker Dy) (3.6)

onto ker D,,, where L*(dM /Y; E) — Y is the infinite rank vector bundle with fiber
above y € Y given by L*(¢p~(y); E). This can be used to define a natural indicial
family.

Definition 3.4. The indicial family C > A — I(Dp, 1) € Diff L(Y; ker D,) associated
to Dy is defined by

1(Dy, Wu =TI, ((x—*(x—lDd))x”zz) |3M) . ueC®(Y:ker Dy),

where ' € C°°(M; E) is such that #|3) = u. As the notation suggests, the indicial
family I (Dp, A) is the Mellin transform of the operator

Bl bl
Dy = cxa— + Dy, with c¢:= 8_AI(Db’ L) and Dy :=I1(Dp,0). (3.7)
x

=0
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The interested reader may look at [25, § 5.2] for nice intuitive explanations motivating
Definition 3.4.

Lemma 3.5. The indicial family I(Dyp, A) is well-defined, namely I(Dy, )) does not
depend on the choice of extension U.

Proof. Essentially by definition of the Lie algebra of fibered boundary vector fields,
notice first that

[Dg, x] € x>C*°(M; End(E)).

Moreover, if ] and i, are two choices of extensions of u, then %] — ii» = xw for some
w € C®(M; E), so that
(T Dy)x (@ — ) lam = (7 Dgxt T w) ym
— (xf)\fl(x)ri-l D¢ + [D¢, x)\+]]))w
= (Dgw +x 1L+ DxM Dy, xTw)|am
= (Dpw)lam = Dy(wlam).

(3.8)

Now, we see from (3.2) that the formal self-adjointness of Dy on Li(M ; E) implies
the formal self-adjointness of D,. This implies in particular that the image of D, is
orthogonal to its kernel, hence that

I (7 (e D) (@ — 2))am) = Tu(Dy(wlan)) = 0,

showing that I (Dp, A)u does not depend on the choice of smooth extension # as claimed.
O

We will now give a more detailed description of the indicial family when 0y is a
Dirac operator, see (3.23) below. This is important for two reasons:

(1) it will then be easier to determine for which weights Theorem 5 in the introduction
will apply;

(2) suchadetailed description will play a crucial role in the proof of the pseudodifferential
characterization of the low energy limit, notably through the proof of Lemma 8.9
below.

To give this more detailed description of the indicial family, recall first that by assump-
tion, g4 is modelled at infinity by the metric

dx* gy
8¢, = x_4+ﬁ+lc 3.9)

on (0, co) x 9 M withthemapId x¢ : (0, 00) xdM — (0, ¢) x Y inducing a Riemannian
submersion onto the Riemannian cone ( (0, 00) x Y, ‘%2 + i—g . On the other hand,

ker D, is naturally a Clifford module for the tangent bundle 7Y — Y via the natural
map

TY — *TM|yy

. (3.10)
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By [4, Proposition 10.12, Lemma 10.13], the Dirac operator corresponding to the model
metric gc, is

dc, = Dy +0c (3.11)

where 50 is the horizontal Dirac operator induced by the connection of ¢ : OM — Y
and the Clifford connection

vE 4+ %C(a)), (3.12)
where  is the A2T*(dM)-valued 1-form on dM of [4, Definition 10.5] defined by
oX)Y,2)=SX,2)Y)—-SX,Y)(2)+ %(Q(X, 2),Y)
—%(Q(X, Y),Z2)+ %(Q(Y, Z), X)

with S and €2 the second fundamental form and curvature of the Riemannian submersion
¢ : dM — Y, while c(w) is defined in [4, Proposition 10.12(2)] by

) = 3 Y wlenen, e’ ® e )e(e)

abc

with e, a local frame for T (d M) and e“ its dual frame.
Using the projection IT;, on Cy, this yields a corresponding Dirac operator 0¢ =

l'[;ﬁc I;, on ker D, with Clifford connection

,(VE + @

M. (3.13)

As described above, the term c(w) involves the second fundamental form and the
curvature of ¢ : dIM — Y. Those depend only on the fiberwise metric, so really are
pull-back of forms on dM via the projection (0, c0) x dM — oM. However, when
measured with respect to the metric g¢ » that is, in terms of the ¢-tangent bundle, the

part involving the curvature is O(x?) when x \ 0, so does not contribute to the indicial
family 7 (Dp, 1). However, the part coming from the second fundamental form is O(x),
so does contribute to the indicial family.

To describe this more explicitly, suppose first that C = (0, 0o) x Y is spin and consider
the Dirac operator 5‘69 associated to the cone metric

dx? L&

(3.14)

and acting on the sections of the spinor bundle S over C. If v is a section of S|{1xy,

let ¥ € C*®(C; S) be the section obtained by parallel transport of ¥ along geodesics
emanating from the tip of the cone. This induces a decomposition

C®(C; 8) = C((0, 00)C™(Y; Slp1yxv)- (3.15)

By [7, Proposition 2.5], the Dirac operator takes the form

d ch
2 S
cXxX X <5y ) ( )
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in terms of this decomposition, where 4 = dim Y, c is Clifford multiplication by xQ%

(which corresponds to the ¢ of (3.7)) and 5‘; is the Dirac operator on (Y, gy) acting on
sections of S|{11xy. If we twist the spinor bundle by a Euclidean vector bundle WV with

orthogonal connection, there is a corresponding twisted Dirac operator 5g®w. We will
suppose that W is constructed geometrically from (C, g¢) and the spin structure, or else
that it is the pull-back of a Euclidean vector bundle with orthogonal connection on Y.

Again, parallel transport along geodesics emanating from the tip of the cone induces
a decomposition

C™(C; 8) = C™((0, 00)® C=(Y; (S & W)l (1jxy) (3.17)
in terms of which (3.16) is replaced by
e L4y (6§®W + NSEW _ %) : (3.18)
ax 2

where now 5‘§®W is the Dirac operator on (Y, gy) acting on sections of (S ® W)|(1yxy
and N°®W isa self-adjoint operator of order zero acting on sections of S ® ¥V which
anti-commutes with c. For instance, if W is the pull-back of an Euclidean bundle with
orthogonal connection on Y, then NS®W = 0. Since the computations considered were
local on Y and since a spin structure always exists at least locally on Y, we see that (3.18)
extends to Dirac operators by [4, Proposition 3.40]. Thus, if £ is a Clifford module with
Clifford connection on (C, g¢) and 9 is the corresponding Dirac operator, then in terms
of the decomposition

C®(C; &) = C®((0, 00)® C®(Y; Elf1yxy), (3.19)

we have that
£ 2 9 &, nE_ Ch
0 =cx a—+x 6Y+N —7 (320)
X

with 5§ the Dirac operator of £|{1}xy on Y and N €isa self-adjoint term of order zero
anti-commuting with c. N
We would like to apply (3.20) to the operator 8c = I1,0¢1I1;,. However, we must be
careful because of the extra term % cl(w). First, because the form w is a pull-back of a
form on d M, parallel transport along geodesics emanating from the tip of the cone is
the same whether we use I1;, VETI}, or (3.13). This yields again a decomposition
C%(Cs ker Dy) = C*((0, 00)® C¥(Y; ker Dy l{1yxy)

in terms of which we have
0 h
Be = ex®— 4 x [0y — ) +x2Vq, (3.21)
0x 2
where 0y = 5;7 + N with 6)/ the Dirac operator induced by the connection
m,(vE + %)nh (3.22)

with @ the part of w involving the second fundamental form of ¢ : M — Y, N €
C*>(Y; End(ker Dy)) is a self-adjoint operator of order O anti-commuting with ¢ and
x2Vq is the part of th(z—w)l'[h coming from the curvature of ¢ : dM — Y. Hence, in
terms of this description, the operator x (cx % + Dy) in (3.7) is obtained from (3.21) by

suppressing the curvature termx? Vg,
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0 _htl 5 0 ch bl
xDp=x|cx—+Dy)=x"2 {ecx"—+x |0y —— | | x 2
dx 0x 2
d c
2
—ex? > +x (0 +-). 3.23
cx 0x X<Y 2 ( )

Since N is self-adjoint and anti-commutes with ¢, the operator Jy is also self-adjoint
and anti-commutes with ¢, a fact that will be useful in the proof of Lemma 8.9 below.

Among Dirac operators, our main motivating example is the Hodge—deRham operator
acting on forms with values in a flat vector bundle. In this case, the bundle ker D,
corresponds to the bundle of fiberwise harmonic forms. By [25, Proposition 15], this is
a flat vector bundle with respect to the connection (3.13). Now, if 7 is a ker D, -valued
k-form on C obtained by parallel transport of its restriction 7 to {1} x ¥ along geodesics
emanating from the tip of the cone, then there is a decomposition

=z_ B

__dx - _ o«
N=a+—5AB, n=a+dxAp, a=—, =—=
X X

for some ker D,-valued forms & and § on Y. In terms of this decomposition, we know
from [25, Proposition 15] that the operator Oy = Jy + N in (3.23) is such that

& 00
Oy = (0 —D) (3.24)
with 0 the Hodge—deRham operator acting on Q*(Y; ker D,), while
0 4-MNy 0-1
— 2 —
N_<%—./\/y 0 ) and c_<10> (3.25)

with Ay the number operator acting on a form in Q*(Y; ker D,) (of pure degree) by
multiplying it by its degree. The indicial family is therefore given in that case by

0 —k+%—/\/y>

3.26
)»+h—J2rl — Ny —0 ( )

I(Db,k)=<

Keeping these examples in mind, let us come back to the indicial family 7 (D, A)
and recall the following standard definition.

Definition 3.6. An indicial root of the indicial family 7 (Dy, A) is a complex number ¢
such that

I(Dy, 7) : L3(Y; ker D) — L2(Y, ker D,)

is not invertible, where L%(Y; ker D,) is the natural L2-Sobolev space of order 1 of
sections of ker D, — Y with respect to gy. A critical weight of the indicial family
1(Dp, )) is a real number § such that § + iv is an indicial root for some v € R. In other
words, § is a critical weight if it is the real part of some indicial root. We will denote by
Crit(Dyp) the set of critical weights of the indicial family 7 (Dy, A).

Remark 3.7. Since x~2 D¢x_% _ (x~! D¢,)x_% is formally self-adjoint, notice that
the indicial roots are real and that X is an indicial root of I (Dp, A) if and only if —1 — A
is an indicial root.
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For instance, the indicial roots of the Hodge—deRham operator can be described in
terms of the eigenvalues of 9 = d@*°" Pv + sk Dv a5 the next lemma shows.

Lemma 3.8. The indicial roots of the indicial family (3.26) are given by

h+1 h—
(q — +) (q——) if HI(Y:ker D) # (0},

{ ¢+(q— | £e(=1,0}, ¢ eSpec(d"rPrdrerPuy,\ {0}}

{ +./C+(@q— —)2, ZekLm,ge%mwmmﬁquHM}

(3.27)

In particular, in agreement with Remark 3.7, A is an indicial root if and only if —1 — A
is an indicial root.

Proof. This is a standard computation. We can proceed for instance as in the proof of
[1, Proposition 2.3]. In fact, the indicial family of [1, Proposition 2.3], after suitable
identifications, corresponds to I(Dp, —A), since it is the indicial family of the same
operator, but considered at the opposite end of the cone. Hence, (3.27) follows by flipping
the sign of the indicial roots in [1, Proposition 2.3]. O

Theorem 3.9. Suppose that the operator Dy satisfies Assumption 3.3 and that § €
R is not a critical weight of the indicial family I(Dp, ). Let w > 0 be such that

(6—p, §+p1)NCrit(Dy) = @. Then, in the notation of § 2, there exists Q € \IJ(;LQ(M; E)
and R € \IJ(ZOO’R(M; E) such that

(x°Dyx’)Q =1d —R,
where Q is an index family such that
inf Re(Qir) > p, infRe(Qlyr) = h+p, infRe(Qlgbf) > h, infRe(Qlg) >0,

and 'R is an index family giving the empty set at all boundary hypersurfaces except at
if, where we have instead

inf Re(Rli) > h + .

Moreover, the term A of order h at ¢bf of Q is such that A = T1,Ally. Here, an
inequality of the form inf Re(£) > a for € an index set and a € R means, in the equality
case, that if (a +iv, k) € £ withv € R, then k = v = 0. Finally, each term r of order
h + 1 or less in the asymptotic expansion of R at tf is such that bT1, = b.

The construction of the parametrix Q will involve few steps and is closely related to
the resolvent construction of Vaillant [45, § 3] for fibered cusp Dirac operators.
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Step 0: Symbolic inversion. We can first use ellipticity to do a symbolic inversion.

Proposition 3.10. There exist Q¢ € \IJ(; ! (M; E) and Ry € \IJ(;OO(M ; E) such that

(x " Dyx®) Qo = Id —Ryo.

Proof. The operator x % D¢x‘S is elliptic with principal symbol
P01(x ™ Dyx®) = P01(Dy) = $01(3p),
so we can find Q;, € \I'(;l (M; E) with principal symbol

Yo 1(00) = Po1(0g) "
so that
(x°Dyx’)Qf =1d —R{, forsome R} € \llqjl(M; E).

Proceeding inductively, we then define more generally Q(()k) = Q()R(()k_l) IS \Ifdjk (M; E)

and R(()k) € ‘-Ildjk (M; E) such that

k
_ j k
@ Dex®) | - 0f) | =1d—RP.
j=1

Taking an asymptotic sum over the Q(()k) then gives the desired operator Qp. O

Step 1: Removing the error term at ff. In this step, we improve the parametrix so that
the error term vanishes at the front face ff.

Proposition 3.11. There exist Q| € \Il(;l’Ql(M; E)and R, € \IJ(;OO’Rl (M; E) such
that

(x " Dpx’)Q1 =1d—Ry,

where the index families Q| and R are the empty set at tf and If and given otherwise
by

Oileg =No, Qilgor =No+h, Rilg =No+1, Rilgpt =No+h+1.
(3.28)

Moreover, the leading term A of Q1 at ¢bf is such that A = T1;, AT1y,.
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Proof. We need to find Q) such that
Nir(x~*Dyx’ @}) = Nir(Ro), (3.29)

for then it suffices to take Q1 = Qo + Q. To solve (3.29), we can decompose N (Ro)
using the fiberwise projection [T, onto the bundle ker D,,

Nt (Ro) = I Nig(Ro) + (Id —TI1) Nge (Ro),

where the right hand side makes sense since I1;, can be regarded as an element of
\Ilgus @NY) (dM/Y; E), the space of ? NY-suspended families of pseudodifferential op-
erators of order O of [33]. Now, recall from (3.2) that

Nit(x 2 Dyx®) = Nir(Dy) = Dy + 0y, (3.30)

where 3, is a family of Euclidean Dirac operators in the fibers of ’N9M — 9 M anti-
commuting with D,. In particular, 0, commutes with ITj. On the range of Id —ITj, the
operator D, + 0y, is on each fiber an invertible suspended operator in the sense of [33],
so has an inverse (D, + 5;,)11 € ‘I’s;i@/vy)(aM/Y; E). On the range of I1j, we can
apply instead [2, Corollary A.4] to invert 0y, as a weighted b-operator. Thus, it suffices
to take Q' such that

Nie(Q)) = (B) ' T (Nee (Ro)) + (Dy +3p) 7' (1d —TT4) N (Ro).  (3.31)

The price to pay is that by [2, Corollary A.4], the image of (3;)~! has an expansion
at infinity with index set Jj4+1 such that inf Re(J,+1) = k. This expansion corresponds
to a non-trivial expansion of Q at ¢bf, so that Q1 = Qo+ Q] € \IJ(;LQ‘ (M; E) with
Q) as in the statement of the proposition. Since Q is O(xgbf) at ¢bf, the same is true
for Ry. Moreover, at ff, we must have

Nir(x"° Dyx®)Nig(Q1) = 1d
which means that

Ni(Q1) = T1,0, Ty + (Dy +3p) '

Thus, the top order term A at ¢bf of Q1 comes from the expansion of 1, 3;1 I1,, which
is just a family of Green functions of Euclidean Dirac operators, those being of the form

\?41|(hu+)1 in terms of the Euclidean variable u and Clifford multiplication. In particular, the

index set of Q1 at ¢bf is just No + &. Hence, choosing suitably the definition of Q' on
¢bf, we can assume that A = I1; AITj,. Since by definition D, acts trivially on such an
operator, this implies that x ~ Dx® Q1 vanishes instead at order & + 1 at ¢bf so that R;
must also be (’)(xggfl) at ¢bf, thatis, Ri|gbf = No+h+1. O
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Step 2: preliminary step to remove the error term at ¢bf. Since Rp has a term of order

h + 1 at ¢bf, it cannot be compact as an operator acting on Li(M ; E). This is because
being O(xg;fl) in terms of right ¢-densities corresponds to being O(1) in terms of right
b-densities. To get rid of the term of order 22+ 1 at ¢bf, we can first remove the expansion

of this term at ff N¢bf, in fact just the expansion of this term lying in the range of IT,.

Proposition 3.12. There exist Q; € \I!(z:l’g2 (M; E) and Ry € \IJQZOO’R2 (M; E) such
that

(x 7 Dyx’) Q2 = 1d — Ry,
where Qp and R are index families given by the empty set at If and rf and such that
Dl =No, Dolgbr =No+h, Ralg =No+1, infRe(Ralgpr) = h+ 1.

Moreover, the term A of order h at ¢bf of Q2 is such that A = T1;, ATy, while R; is
such that its term B of order h + 1 at ¢bf is such that 11, B = T, BI1y has a trivial
expansion at ff NGbf.

Proof. Writing Q2 = Q1 + éz, we need to find QZ such that the term B at order & + 1
of

(x78D¢x5)§2 - R

at ¢bf is such that I, B vanishes to infinite order at ff N¢bf. Let r{ denote the part
of the restriction at order & + 1 to ¢bf of Ry whose image is in the range of I1,. By
step 1, r{ = I(Dp, 8)Ay where Ay is the term of order i of Q| at ¢bf. In particular,
r{ = I,r{I;,. Now, we need to find ¢§ such that

1(Dp,8)(g3) —r{

vanishes to infinite order at ff N@bf. To construct such a term g5, which can be achieved
working locally near ff N¢bf, the idea is to use [37, Lemma 5.44]. We refer to [2, Propo-
sition 4.14 and Proposition A.7] or [45, Proposition 3.17] for further details. Extending
qg smoothly off ¢bf, thinking of it as a term of order & there, we obtain Q; as desired.
Clearly, g5 = g5, so that the terms of order & of Q at ¢bf and the term of order
h + 1 of R, at ¢bf are as claimed. O

Step 3: Removing the error term at ¢bf.

Proposition 3.13. There exist Q3 € \11;1’93 (M; E) and R3 € \II(ZOO’R"* (M; E) such
that

(x°Dyx’) Q3 =1d —R3,
where Q3 and Rz are index families such that

inf Re(Q3lif) >, infRe(Qsli) =h+u, Qslg =No, Qslgbt = No +4,
inf Re(R3lif) > w, infRe(R3lif) > h+p, Rsalg =No+1, Rzlgor = No+h+2.
(3.32)

Moreover, the term A of order h at ¢bf of Q3 is such that A = T1, A1y, while any term
r in the expansion of R3 at tf is such that rI1, =r.
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Proof. Let B be the term of order 2 + 1 of Ry at ¢bf and write
B=0b°+b", b°=T,B=10,BM,, b-=dd-I,)B.

By Proposition 3.12, b° can be thought of as a smooth kernel on the interior of the b-front
face Y2 x (0, 00), of the b-double space of Y x [0, 1)y, where s = x/x’ is the usual
coordinate. Hence, since § is not a critical weight, this suggests to consider

0 1 i€logs csn—170
45(s) = —/ FE08S [(Dy 5 +i8) B0 (£)dE,
2]‘[ R

where
Z;O(E) — /OO e—if lOng(J(s)ﬂ
0 N

is the Mellin transform of b°(s). Since I (Djp, A) has no critical weightin (§ — u, § + ),
notice that in the strip § — u < ReX < § + u, 1(Dp, k)’l has at most simple poles
on the lines Re A = § &= p, which means by the integral contour argument of [37] that
el10es1g2(s) is bounded. In this case, if QF is a smooth extension of g{x~!, seen as a
term of order & at ¢bf in terms of ¢-densities, we have that

(x°Dyx®) Q% = b°

at order h + 1 at ¢bf. We can also assume that each term a in the expansion of Qg at rf
is such that aIT, = a. Moreover, the boundedness of eX!1085 |q§’ (s) ensures that QF has
leading terms at least of order x{é and xﬁf“ at If and rf respectively. Since the term of
order  of g5 Ngs) is killed by x ¢ D¢x3, we can assume the same is true for Q%. Hence,

considering Q3 = Q> + 03, we see that
(x P Dyx®) 03 =1d —R;
with §3 similar to Ry, but with term B of order 1 + 1 at ¢bf such that
n,B=0

and with leading terms at If and rf at least of order xl‘lfw and xrhf+” for some v > 0.
Moreover, each term r in the expansion of Rj at rf is such that rI1; = r. To get rid of
B, it suffices then to consider

93 =D, 'B
and a smooth extension Qﬁ- having q3L as a term of order & + 1 at ¢bf. By construction,
x~? D(I,x‘s Q%‘ has term of order & + 1 at ¢bf precisely given by B. Hence it suffices to
take Q3 = QO3 + Q3L. Since ¢§ = I1,¢5I1j, notice that term of order & at ¢bf of O3

is as claimed. By our choice of O3, notice that R3 has no term of order u at If and the
expansion at rf is as claimed. O
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Step 4: Removing the expansion at If.

Proposition 3.14. There exist Q4 € \Il(;l‘Q“(M; E) and Ry € \D(;OO’R“(M; E) such
that

(x "’ Dyx’) Q4 =1d —Ry,
where Qu and R4 are index families such that

inf Re(Q4lif) > u, infRe(Qqlrr) = h+p, Q4lir =No, Qalgvr = No+4h,
Ralif =0, infRe(Ralif) > h+u, Ralgg =No+1, Ralgpr =No+h+2.
(3.33)

Moreover, the term A of order h of Q4 at ¢bf is such that A = 1, ATl

Proof. Proceeding as in the proof of [37, Lemma 5.44], we can find Q4 defined near If
such that (x~ 5D¢x‘3)Q4 has the same expansion as R3 at If. Indeed, if R3 has a term
x%ry of order « in its expansion at If, then we can first look at I1;r, and look for g,
such that

I1(Dp,§+a — 1)gy = Mjry.
This is possible provided 7 (Dy, § + @ — 1) is invertible, in which case we have that
(x75D¢x8)x°‘71qa = XOTlpry + X975 + O,
where rj- is such that I'IhraL = 0 by Lemma 3.5. Hence, picking qj such that
Dugy = (ra = Myra —rg),
we see that
(x_8D¢x5)(x“_lqa +X qJ‘) = x%y + O,

so that we found a way to remove the term x“ry. If instead 7(Dp, 8 + o — 1) is not
invertible, we can remove ITj7, by replacing x*~ !¢, by a term of the form

xo! (Ga + o1 log x),

and then proceeding as before Similarly, for a term of order x“(log x)k Tk, We have
more generally to replace x* g, by x*~!(log ¥) (g« + go.1 log x). In any case, we can
in this manner recursively remove all the terms in the expansion of Rj at If, sot that Q4
can be obtained by taking a Borel sum. Hence, setting Q4 = Q3 + Q4 gives the desired
operator. 0O
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Step 5: Proof of Theorem 3.9.

Proof of Theorem 3.9. To prove the theorem, we can remove the expansions of the error
term at ¢bf and ff by using a Neumann series argument. First, choose S5 to be an
asymptotic sum

o0
S5 ~ Z Ri
i=1

at ¢bf and ff. This is possible since from the composition rules of fibered boundary
operators (see for instance [45, Theorem 2.11]), the index family of (R4) iterates away
at ¢bf and ff while it is stabilizing at rf. Taking O = Q4(Id +S5) then gives the desired
operator. 0O

The parametrix of Theorem 3.9 has various implications.

Corollary 3.15. If o € x"H, *°(M; E) with @ € R is such that f := Dyo € AL,

(M; E) for some index set F, then o € .Aghg(M ; E) for some index set £ depending on
F and o such that inf Re £ > «.

Proof. Take 8 > —a large enough so that x’~!1 f e L%(M; E) and § — 1 is not a
critical weight of I (Djp, A). By Theorem 3.9, there exist Q € \IJQZI’Q(M; E)and R €
\I!(;OO’R(M; E) such that

(1P Dyx®HQ =1d —R.

Conjugating by x, this gives the following parametrix for the corresponding fibered cusp
operator,

x_l(xl_‘SD¢x6_1)Qx =1d—x"'Rx.
Taking the adjoint and using that Dy is formally self-adjoint, we find that
xQ* x ' (® Dyx %) = 1d —xR*x . (3.34)
Applying both side of this equation to x°c € H, ®°(M; E) yields
o =x0*x 1 f+ xR*x Hxlo. (3.35)

Now, (xRx~1)*x%c is well-defined since x R*x~! vanishes rapidly at rf, ff and ¢bf
and (xR*x Hx%c € Aﬁ‘g‘f_h (M; E). On the other hand, since by our assumption
on §, infRe(Qlif + F +§ — 1) > 0, we can apply Proposition 2.4 to conclude that
xQ*x3-1f e Aghg(M; E) with

G = (Qlt —WUQlsr + F + ) U(Qlgvr + F +8 —h — 1).

Hence, we see from (3.35) that o is polyhomogeneous, from which the result follows.
O

The particular case where f = 0 yields the following.
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Corollary 3.16. For each o € R, the kernel of Dy in x”‘Li(M ; E) is finite dimensional
and its elements are polyhomogeneous. Moreover, if for some ;@ > 0, (@ — p, o + ) N
Crit(Dp) = W, then elements of that kernel have their leading term at least of order x***
in their polyhomogeneous expansion at 9 M.

Proof. Polyhomogeneity is a consequence Corollary 3.15 with f = 0. With§ > —« as
in the proof of Corollary 3.15, the finite dimension of the kernel follows from the fact
that x° kerxaLi Dy C kerLi (x5D¢,x_5) and that by (3.35), xR*x~!, whichisa compact

operator when acting on Li(M ; E), restricts to be the identity on this subspace.
Now, if (¢ — @, @ + ) N Crit(Dp) = @, then by Remark 3.7 we can take § = —a,
so that

erf_h

s xo—1\.8
x%0c = (xR*x )xoeAphg

with inf Re R|;s > h + u, so that o has leading term of order at least xTHHH =yt gy
its polyhomogeneous expansion at 0M. 0O

The parametrix of Theorem 3.9 can also be used to obtain a Fredholm criterion. Let
Ds—1 be the minimal domain of the fibered cusp operator x99 (! D¢)x3’1 acting on
Li(M . E). Since the fibered cusp metric gg. := x?2 8¢ 1s complete, recall that a standard
argument shows that there is in fact only one closed extension since the maximal domain
is equal to the minimal domain. Let 1, be a smooth extension of ITj, first to a collar
neighborhood of 9 M and then to all of M using a cut-off function. Then one can readily
check that

Ds_y = [, H} (M; E)+x(Id—ﬁh)x_%H¢£(M; E). (3.36)

Corollary 3.17. If § — 1 is not a critical weight of I (Dy, A), then
Dy : x*"'Ds_y — x°LI(M; E)
is a Fredholm operator; that is, the operator
s—1 Il 872
Op:x°'x 2 Ds_1 = x Ly(M; E)

h+l

is Fredholm, where x‘sfleD(;_l is a domain in x‘S*lLé (M; E).
Proof. We need to construct a parametrix for x ! Dy acting formally on x81 Li (M; E),

that is, we need a parametrix for x!'—° ()c_lD(;))x‘S_1 acting formally on Li(M; E).
First, since § — 1 is not a critical weight, we know by Theorem 3.9 that there exist

Qs5_1 € ‘~II(;1’Q§_l (M; E)and Rs_; € \II(ZOO’R‘S_I (M; E) such that
(' (Dg)x*"H Q51 = 1d —Rs-1.
Conjugating by x then gives

T DTN (Qs—1x) = 1d —x 'Ry x. (3.37)
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Similarly, by Remark 3.7, —4§ is not a critical weight, so we see from Theorem 3.9 that
there exist Q_; € \IJ;LQ*‘S (M:E)and R_; € W;OO’R*S (M; E) such that
(x°Dyx*)Q_s =1d —R_3.

Taking the adjoint and using that Dy is formally self-adjoint, we thus see, after conju-
gating by x, that

xQ* )x' P TIDy )T = 1d —x R* gx 71 (3.38)

Since the terms A;_; and A* of order & of Q51 and Q¥ ; are such that A5 =
I, As_1I1, and A* ; = I1, A* (T1j, we see that Q51 and Q* ; induce bounded opera-
tors

Qs—1x : Ly(M: E) — Ds_1, xQ*;: Ly(M; E) — D;s_.

Hence, since both x ! Rs_x and fo(sx_l act as compact operators on Li(M; E)
and Ds_1, we deduce from (3.37) and (3.38) that

xl_‘s()c_qu;)x‘s_1 :Ds—1 — le,(M; E)
is Fredholm, from which the result follows. 0O

Corollary 3.18. If § is not a critical weight, then
Dy : x*TI, H(M; E) + x°(1d —fipx Hj(M: E)
— X1, L2(M; E) +x*(1d —T1,) L2(M; E)
is a Fredholm operator.

Proof. We need to show that
X7 Dyx® : T, HYE (M E) + (1d —TT)x "5 HY(M; E)
— x[,L2(M; E) + (Id —T1,) L3 (M; E) (3.39)

is a Fredholm operator. By Remark 3.7, we know that both § and —1 — § are not critical
weights. Hence, applying Theorem 3.9 gives operators Os, Rs, Q_1—s and R_j_s such
that

(x°Dyx®) Qs = 1d —Rs, (3.40)
(x Q% |_sx H(x P Dyx®) =1d —xR* | _sx . (3.41)

Thanks to the fact that each term r of order /4 + 1 or less in the expansion of Rs is such
that rIT;, = r, we see that Rs is a compact operator when acting on

xT, L3 (M; E) + (Id =T1,)L3(M; E) C L3(M; E).

Hence, we see from (3.40) that Qs is a right inverse modulo compact operators. On the
other hand, since XRil— (Syc_1 is a compact operator when acting on

T, H(M; E) + (1d —fix Hy(M:; E) C Ly(M: E),

we see from (3.41) that x Q* | _ Sx_l is a left inverse modulo compact operators. Hence,
we see that (3.39) is invertible modulo compact operators and must therefore be Fred-
holm. O
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Remark 3.19. When 0y is the Hodge—deRham operator of g4, Corollaries 3.15, 3.16,
3.17 and 3.18 correspond to [25, Proposition 16].

Finally, we can use Theorem 3.9 to give a pseudodifferential description of the inverse
of Dy when itis inverted as a Fredholm operator. More precisely, for 6 — 1 not a critical
weight, consider the Fredholm operator

(I DR D5y — LI(M; E) (3.42)

of Corollary 3.17. Let u > 0 be such that the interval (6 — 1 — u, § — 1 + ) contains
no critical weight of the indicial family 7 (D, 1). By Remark 3.7, the interval (—§ —
n, —8+ ) is a also free of critical weights of the indicial family 7 (Dp, A). Let P; be the
orthogonal projection in Li(M ; E) onto the kernel of (3.42). By Corollary 3.16, P €

P—00.& (M; E) is a very residual operator in the sense of [32], where £ = (&, &f) is an
index family with inf Re & > u and inf Re & > . Similarly, let P, be the orthogonal
projection onto the orthogonal complement of the range of (3.42) in Li (M; E).From the
formal self-adjointness of Dy, on can check that the orthogonal complement of the range

of (3.42) is given by ker L2 (x? D¢x_5). By Corollary 3.16, this space is finite dimensional

and its elements are polyhomogeneous. Hence, we also have that P, € w—F (M E)
is very residual with F = (Fjr, Fi) an index family such that inf Re Fif > p and
inf Re Fi¢ > .

Now, by Corollary 3.17, there is a bounded operator Gs_1 : Li(M; E) — Ds_4
such that

Gs—1(x" P (x7 ' Dy)x* N =1d - Py, (3.43)
!PT I DTG = 1d —P. (3.44)

Corollary 3.20. Suppose § — 1 is not a critical weight of the indicial family I (Dp, A).
Let n > 0 be such that (§ — 1 — , § — 1+ u) N Crit(Dp) = . Then the inverse Gs—1

is an element of \l’qjl’g(M; E) with index family G such that

inf Re(Glif) = w, infRe(Glif) = h+1+pun, infRe(Glgpr) = h+1, infRe(Glg) = 1.

Moreover, the term A of order h + 1 at ¢bf of Gs—1 is such that A = T1, ATy,
Proof. We follow the approach of [32, Theorem 4.20]. Using (3.37), we have that

Gyt = Go11d = Gyt [0 Dy)x ™) (Q5-1) + xRy 1]

(3.45)
= (Id—P))Qs_1x + Gs_1(x ' Rs_1x).
Using instead (3.38), we have that
Go1 =1 Gsot =[O D D xR Gt

= (xQ*)(d —P2) + xR*5x~'G5y.

Thus, inserting (3.46) into (3.45), we find that
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sc
tf
zf

Fig. 3. The transition single space M;

Gs—1 = Qs_1x — P1(Qs-1%) +x Q% sx ' Rs_1x — (xQ* 5) Pa(x ' Rs_1x)
+XR* sx ' Gy (x ' Ry 1 x). (3.47)

Since xR* ax_l and x_lR,g,lx are very residual and Gs_1 is a bounded operator on

Li(M ; E), we see by the semi-ideal property of very residual operators that the last
term in (3.47) is very residual. Hence, the result follows from (3.47) and the result about
composition of fibered boundary operators. O

4. The Low Energy Fibered Boundary Operators

In this section, we will introduce the natural calculus of pseudodifferential operators
associated to the low energy limit of Dirac fibered boundary operators. First, on the
manifold M x [0, co)i, we consider the lift of fibered boundary vector fields

Vig (M x [0, 00)) = {§ € V(M x [0,00)) | (pra)«§ =0,
Elmxix) € Vg(M) Vk € [0, 00)}, (4.1)

where pry : M x [0, 00)r — [0, 00) is the projection on the second factor. We can also
consider this lift on the transition single space of [30]

M, = [M x [0, c0); oM x {0}], 4.2)

where we denote by sc, zf and tf the boundary hypersurfaces of the lifts of d M x [0, co)y,
M x {0} and dM x {0} (Fig. 3).

Definition 4.1. The Lie algebra of k, ¢-vector fields is the Lie algebra of vector fields
on M; generated over C*° (M, ) by the lift of vector fields in Vy 4 (M x [0, 00)x) to M;. The
space of differential k, ¢-operators is the universal enveloping algebra over C*°(M,)
of Vk,¢(M;). In other words, the space Diff Z’ " (M) of differential k, ¢-operators of order

m is generated by multiplication by elements of C°°(M;) and up to m vector fields in
Vi, (My).

If E and F are vector bundles on M, one can consider more generally the space

Diff}! , (My; E, F) := Diff] ;(My) ®cou,) C°(My: E* ® F). 4.3)

Using the Serre—Swan theorem, there is in fact a vector bundle kéT M ; — M;, the
k, ¢-tangent bundle, inducing the natural identification

Vig(My) = C®(My; 0T My). (4.4)
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This identification is induced by an anchor map a : **TM, — T M, giving ©*T M, a
Lie algebroid structure. By construction, on zf, T M, is just the ¢-tangent bundle of
Mazzeo—Melrose [33],

kST M, |, =°TM. (4.5)

On the other hand, on sc and tf, let ©? N and ¥*¢ Nys be the kernels of the anchor map,
so that there are the short exact sequences of vector bundles

0 k’(pNsc k’¢TMt lsc L k'(stc —0,

(4.6)
0 L0 Ny COT Myl ——= "9 Vig — 0,

where ©? V. and ©-¢ V¢ are the vertical tangent bundles associated to the fiber bundles

b4
@sc = ¢ x Id[p,00);, :5¢ = ¥ x [0,00)k, ¢f :=¢ X Id[o’%]g tf - Y x [0, 5]9,
4.7)

induced by the ¢ and the natural identifications sc = oM x [0, c0); and tf = IM x
[0, %]9, the function 6 = arctan ’E‘ being the natural angular coordinate on tf. Using the
coordinates (2.3), we can consider the coordinates

X
X=%’k,)’l,---,Yh,Zla-uva

near sc on M;, in terms of which ©9 T M; is locally spanned by

d 0 d d d
KX?— kX — kX — — ., —,
0X v ayp 071 02y

so that ©¢ N, and ©¢ Ny; are locally spanned by

5 0 0 0
kX — kX—, ... kX—
X ay1 ayn
on sc and tf respectively.

The vector bundles ©¢ Ny. and ¥? Ny are in fact pull-backs of vector bundles with
respect to ¢ and ¢yr. To see this, notice that the fiber bundles ¢ and ¢y induce as well
the short exact sequences

k’¢ k!d) ((pSC)* % k’¢
0—— Ve —— TMt|sc4>¢sc( NgY) ——0,

(4.8)

0 —— £V —— KT M, g —22 G559 Ny ) — 0,

with B Ny ¥ = pri NY and ©9 Ny Y = priNY, where NY = ST (Y x [0, 1)|yxoy =
TY x R is the restriction of the scattering tangent bundle on Y x [0, 1) to the boundary
Y x {0} and pr}, pr; denote the projections onto Y in the Cartesian product ¥ x [0, co)
and Y x [0, Z]y respectively. In particular, the inclusions ©¢ Ve — *®T M| and

k® Ve — ©9T M, |+ induce splitting for the short exact sequences in (4.6),

ROT Mylse = *PNee @59Vie, 0T M, = 9Ny @ 5PV, (4.9)
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M2 x {0}

Fig. 4. The space M(% % [0, co)k

Hence, we see from (4.8) and (4.9) that

k’(pNsc = (¢sc)*k’¢TMt|sc = (b:c(k’quch),

(4.10)
KO Ng = ()T My i = ¢ (P Ny Y),

If ¢ : 0M — Y is the identity map with ¥ = M, V(M) corresponds to the Lie
algebra of scattering vector fields V¢ (M). In this case, we denote Vi ¢ (M;) by Vi sc (M;).
One can check that the vector fields of this Lie algebra, as elements of V(M;), vanish to
order one at the boundary hypersurface tf corresponding to the blow-up of aM x {0}.

Definition 4.2. [30] In the case M = Y and ¢ = Id, the Lie algebra of transition
vector fields on M, is given by

1
Vi(M;) = _Vk,SC(Mf)v
Xif

where X is a choice of boundary defining function for tf. The space of differential
transition operators is the universal enveloping algebra over C*° (M;) of the Lie algebra
of transition vector fields. Thus, the space Diff}" (M) of differential transition operators
of order m is generated by multiplication by elements of C°°(M;) and up to m transition
vector fields. For E and F vector bundles on M;, we define more generally the space of
differential transition operators of order m acting from sections of E to sections of F'
by

Diff! (M;; E, F) := Diff! (M;) ®coo () C°(My; E* ® F).

To define the associated space of pseudodifferential operators, we need first to intro-
duce a double space (Fig. 4).

Definition 4.3. The k, ¢-double space associated to (M, ¢) and a choice of boundary
defining function x € C*°(M) is the manifold with corners

M} , = [Mj x [0, 00)i: ¢bf x {0}, If x {0}, rf x {0}, ff x{0}] 4.11)
with blow-down map

Brg : M{ 5 — M* x [0, o).
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zf

Fig. 5. The k, ¢-double space M,? P

On M,g’qb, the lifts of M? x {0}, If x[0, 0o)x, 1f x[0, c0)x, ff x[0, c0)x and
¢bf x[0, co); will be denoted by zf, If, rf, ff and ¢bf, while the new boundary hy-
persurfaces created by the blow-ups of ¢bf x{0}, ff x{0}, If x{0} and rf x{0} will be
denoted by ¢bf, ffy, Ifg and rfy (Fig. 5).

When ¢ is the identity map, the space M ,f o =M ,3 1q 18 intimately related to the b-sc

transition double space M, tz of [30] (denoted M,i o in [21]),
M? := [M} x [0, 00)i; bf x {0}, Ap Nbf x[0, 00)g, If x {0}, rf x{0}]  (4.12)
with blow-down map
B : M} — M? x [0, 0o,

where A, C M 13 is the lifted diagonal, bf C M 5 is the b-front face and If and rf are
the lifts of 9M x M and M x dM to M7. If bfy C M? denotes the face created by the
blow-up of bf x{0}, then the relation between M,f’ld and M,2 is given by

M g = [M7: bfo NAk ], (4.13)

where Ay g 18 the lift of the diagonal Ay x [0, co)x C M? x [0, co)x to Mtz. Indeed,
using the commutativity of blow-ups of Lemma A.1 below, one can check that in this
setting, M,f 1q €an alternatively be defined by

M2 1q = [M? x [0, 00); bf x {0}, Ap Nbf x[0, 00)k, Ap N bE x{0}, If x {0}, rf x{0}].
(4.14)

More precisely, Lemma A.1 is used to see that the blow-ups of bf x{0} and A, N
bf x[0, oo0); commute provided we subsequently blow-up the lift of their intersection
Ap Nbf x{0}. As we will see, these two different, but nevertheless equivalent ways of
constructing Mt2 will be quite important for the construction of parametrices.

This can also be used to give the following alternative definition of M ,3 - Tosee this,
consider the k, b-double space

Mg, = [Mj x [0, 00); bf x {0}, If x {0}, rf x{0}]. (4.15)
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Fig. 6. Alternative picture of the k, ¢-double space Mlg_ P from the point of view of Lemma 4.4

Lemma 4.4. The k, ¢-double space can alternatively be defined by

M; 5 =M} ,; @, Do), (4.16)
where @ is the lift of ® x [0, 00)x C Mg x [0, 00)k defined in (2.12) to M,g’b and
is the lift of ® x {0} 1o M} .

Proof. By Lemma A.1, we can commute the blow-ups of ¢bf x {0} and ® x [0, co) in
Definition 4.3, yielding

M , = [M} x [0, 00)i; bf x{0}, @ x [0, o),  x {0}, If x{0}, rf x{0}].

Since If x{0} and rf x{0} do not intersect the lifts of ® x [0, c0); and ® x {0} when
bf x{0} is first blown up, their blow-ups commute with those of & x {0} and ® x [0, 00),

so that
Mg , = [Mj x [0, 00)i: bf x{0}, If x {0}, rf x{0}, ® x [0, 00}z, ® x {0}] @1
= [M},; @y, Do '

as claimed (Fig. 6). O

Lemma 4.5. The projections pr; x Id[o,o0), : M? x [0, o0)r — M x [0, 00); and
prg < Idjo,00); : M2 %[0, 00)y — M x [0, 00)k lift to b-fibrations 7wy ¢, 1. : M,?’d) — M,
and g ¢ R : Mlid) — M,, where we recall that pr; : M*> — M and prg : M> — M
denote the projections on the left and on the right factors.

Proof. By symmetry, it suffices to prove the result for pr; x Idjg o), . First, by [33], this
projection lifts to a b-fibration

e, 1 % Idjo,00) : Mq% X [0, 00)r — M x [0, 00)f.
Applying [24, Lemma 2.5], this lifts to a b-fibration
[Mé x [0, 00)k; ¢bf x{0}, ff x{0}, If x{0}].
Finally, by [24, Lemma 2.7], this further lifts to a b-fibration
Tk, L - M42) — M,

as desired. O
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Similarly, we know from [30] that pr; x[0, co)x and prp %[0, 0o) lift to b-fibrations
L Mt2 — M;, mR: Mt2 — M;.
Let Ay be the lift of Ay x [0,00)x C M? x [0, 00) to M}, where Ay is the
diagonal in M x M.

Lemma 4.6. The lifts of Vi.¢(M) via the maps my .1 and w4 g are transversal to
Ap,g-

Proof. By symmetry, it suffices to consider the lift by 7z ¢ ;. Moreover, since it is a
local statement near the lifted diagonal, it suffices to consider the blow-up of ff x{0}.
Now, by [33, Lemma 5], we know that the lift of V ¢ (M x [0, 00)) to Mdz) x [0, 00) is

transversal to the lifted diagonal. In fact, if y = (y] e, yh) denotes coordinates on the
base of the fiber bundle ¢ : oM — Y and z = (z!, ..., z") coordinates on the fibers,
then
o1 y=y" .,
S = = Y = = xL vz, 7k (4.18)

are coordinates near the intersection of the lifted diagonal with ff x[0, c0)x in Mq% X

[0, 00)k. In these coordinates, the lifted diagonal corresponds to S = Y = 0,z = 7/,
while the lift from the left of Vi 4 (M x [0, 00)y) is spanned by

(1+x'S)? 9 (1+x'S) 9 9 (4.19)
0S’ aYi’ 9z’ ’
Now, blowing-up ff x{0} corresponds to replace the coordinates (4.18) by
!/
S, Y.y, 2,7, r=v@&)+k2, 6= arctan(%). (4.20)

In these new coordinates, the lift from the left of Vi (M,) is still spanned by (4.19),
that is, by

0 0 0
fgos 2 7 !t ha v
(1+7(sinh)S) 35’ (1+r (sm@)S)aYi, P
Since the lifted diagonal still corresponds to § = Y = 0, z = 7/, transversality follows.
O

Similarly, let A, the lifted diagonal in M,Z.

Lemma 4.7. The lift of V;(M;) via the maps n; |, and 7; g are transversal to the lifted
diagonal A;.

Proof. By symmetry, we only need to prove the result for m; ;. Moreover, since the
statement is local near the lifted diagonal, the relevant blow-ups in (4.14) are those of
bf x{0} and A, Nbf x[0, 00). Now, on M ,3 x [0, 00)x, one can consider the coordinates
s = %,x",y, ', knear bf x[0, 00), where y = (', ..., y""1) represents coordinates
on dM. In these coordinates, the lift from the left of Vi (M x [0, 00);) is spanned by
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/o2 0

/o 0
X's75o,x's

dy!
Blowing up bf x{0} corresponds to introducing the coordinates

and there is a lack of transversality at x” = 0, that is, at bf x[0, 00)y.

!

sy, v, P =v@)ErkE, 6= arctan(%).

In these new coordinates, the lift of Vi sc(M;) is spanned by

0 d

' (sin@)s>—, r'(sinf) —.

as ayt
Since ¥ = +/x2 +k? is boundary defining function for tf, this means that the lift of
V,(M;) is spanned by

(sin6)s? 9 sin @ 9
Vs2sin260 +cos20 05 /ssin26 +cos26 0V

There is still a lack of transversality at sinf = 0, that is, at the lift of bf x[0, co).

However, blowing up the lift of A, Nbf x[0, co), corresponds to introducing the coor-
dinates

S= . 9 Y = . 1r/’07
sin & sin 6

in terms of which the lift from the left of V;(M;) is locally spanned by
52 B 1 B
VsZsin20 +cos26 05 /ssin26 +cos20 0y

This is clearly transverse to the lifted diagonal given by ¥ = 0, S = 0 in those coordi-
nates. 0O

These transversality results allow us to give a simple description of the Schwartz
kernels of differential k, ¢-operators and transition differential operators. Starting with
the former, consider the coordinates (4.20). In these coordinates, the Schwartz kernel of
the identity operator takes the form

kia = 8(=5)8(=Y)8(z' — DB 4 (Prg x 1d[0,00),)" PIT Vg,

where pry : M x [0,00); — M is the projection on the first factor and vy is some
non-vanishing ¢-density. Hence,

ria € DO (Arg) - v,
with
Vs = Bio(Prg x 1d[0,00),)* Pri v (4.21)

a lift from the right of a non-vanishing &, ¢-density and DO(Ak,(p) is the space of smooth
delta distributions on Ay 4. More generally, by the transversality of Lemma 4.6, the
Schwartz kernel of an operator P € Diff;:f ¢(M ;) is of the form

kp =7 4 1 P g € D" (Akg) g

where D" (A ) = Diff™ (M ,% 5 -DY(Ag,¢) is the space of smooth delta distributions of
order m on Ay 4. In fact, the transversality of Lemma 4.6 ensures that there is a bijection
between Diffo(b(M,) and D" (Ag,) - v,§¢. This suggests the following definition.
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Definition 4.8. Let E and F be vector bundles on transition single space M;. The small
calculus of pseudodifferential k, ¢p-operators acting from sections of E to section of F
is the union over all m € R of the spaces

W' (M5 E, F) = {ic € 1" (M} 5. Ay Homg g (E. F) ® “YQr(M) | i
= 0at M 4\ ff g}, (4.22)

where ff} o is the union of the boundary hypersurfaces of M ,3 o intersecting the lifted
diagonal Ay ¢, Homy ¢(E, F) = 771?,4,,LF ® n,f’(/)’RE* and F2Qpr(M) = ,B,’:’(z)(er X
1d[0,00),)* Pri Y Q(M).

More generally, for £ an index family of the boundary hypersurfaces of M ,3 o We
can consider the spaces

U (ML E, F) = A, (M Homy o(E, F) @ “9Qp(M)),  (423)

WS (ML E F) =W (M E, F)+ W S (M E.F), meR. (4.24)

Recall from [21,30] that for ¢ = Id on d M, the calculus of b-sc transition pseudod-
ifferential operators admits a similar definition. Let 77, ;, = (pr; X Id[o,c0),) © B; and
7, R = (prp x Idjo,00),) 0 B; be the analog of 7y ¢ 1 and 7y ¢ g and let xgc be a boundary
defining function for the boundary hypersurface sc in M12~ Then the small calculus of
b-sc transition pseudodifferential operators acting from sections of E to sections of F'
is defined as the union over m € R of

WM E, F) = {k € I""5 (M2, A;; Homy (E, F) @ 'Qr(M) | k = 0 at dM? \ ff,},
(4.25)

where ff; is the union of boundary hypersurfaces of Ml2 intersecting the lifted diagonal,
Homy(E, F) = n;‘fLF ® nt’fRE* and 'Qr(M) = xi "B} (prg x Idjo,00),)* pry bQ (M)
with Q2 (M) the bundle of b-densities on M in the sense of [37]. If £ is an index family
for the boundary hypersurfaces of M,Z, we can consider more generally the spaces

W (M; E, F) i= A§, (M7 Hom, (E, F) ® 'Qp). 4.26)
WS M E, F) = W' (M3 E, F) + W% (M E,F), meR, |

5. The Triple Space of Low Energy Fibered Boundary Operators

To obtain nice composition results for k, ¢-operators, we can follow the approach of
Melrose and use a suitable triple space and apply the pushforward theorem of [36,
Theorem 5]. To construct such a k, ¢-triple space, we can start with the Cartesian product
M3 %[0, 00); and consider the projections 77 , ¢, wg : M3 %[0, 00)r — M?x [0, o)k
given by

arm,m',m" k) = (m,m' k), mc(m,m',m" k)= (m,m", k),
ar(m,m',m" k) = @m',m", k).
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As in [21], let us use the 4-digit binary codes for the faces of M 3 % [0, 00)i, where
Hpooo represent (BM)3 x {0}, Hip10 stands for M x aM x M x {0}, Hoo11 stands for
(BM)2 x M x [0, o0)g, and so on. In this notation, recall from [21,30] that

Mlib = [M? x [0, 00)x; Hoooo, Hi000, Ho100, Hoo10, Hooot ,
Hi100, Hio10, Hioo1, Ho110, Hoto1, Hoo1] (5.1)

is obtained by blowing up all the corners of M3 x [0, c0); in order of decreasing
codimension.

Lemma 5.1. Foro € {L, C, R}, m, lift to a b-fibration

Mot MLy — ME,.

o

Proof. By symmetry, it suffices to consider the case o = L. By [24, Lemma 2.5], the
projection 7y, first lifts to a b-fibration

[M? x [0, 00)k: Hoooo, Hooto] = [M? x [0, 00); 9M x dM x {0}].
Applying [24, Lemma 2.5] three more times, this lifts to a b-fibration

[M? x [0, 00)i; Hoooo, Hoo10, Ho100» Ho110, Hio00, Hio10» Hooot, Hoo111 — M,?,;,.
(5.2)

Now, after the blow-up of Hpogo, the lift of the corner Hy1g is disjoint from those of
Hiopoo and Hogo1, while the lift of Hygjo is disjoint from the one of Hyyo1. Hence, their
blow-ups commute in (5.2), which can be rewritten

[M? x [0, 00)x: Hoooo. Hooto. Hoto0. H1000, Hooot. Hotro, Hioto. Hoo1l = Mg .
(5.3)

Hence, by [24, Lemma 2.7], the b-fibration (5.3) lifts to a b-fibration

3 )
[M~ x [0, 00)k; Hoooo, Hoo10, Ho100, H1000, Hooot, Ho11o,
2
Hio10, Hoot1, Hii00, Hioot, Hoto1] = My .

The result then follows by the commutativity of the blow-ups of non-intersecting p-
submanifolds. O

Let Hl tm

Hijom. Since M ) is constructed from M,? » by blowing up the p-submanifolds ®, and
®( defined in Lemma 4.4, this suggests to look at the lifts of &, and & with respect
to mp, for o € {L, C, R} to construct the triple space of M,g, - For &, this gives

be the boundary hypersurface of M} 3 i corresponding to the blow-up of

the p-submanifolds G; contained in Hé)om for each 0 € {L, C, R}, as well a the p-

submanifolds J; contained in Hé’ou, J¢ contained in Hé’ml and J§ contained in H 1[,001'
The p-submanifold G}, G{. and G} have a non-zero intersection. To describe it, notice
that there is a natural diffeomorphism

Hlyoy = 0M? x Ly

where L, is the face corresponding to Hgom inside [0, l)i’ »+ We have further that L, =
Gy x [0, 00)k, where Gy, is the front face of the b-triple space [0, 1)2.
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Lemma 5.2. The intersection of any pair of G7, G and G in Ml?,b is the p-submanifold

K*=G] NGENGy.

Proof. Let x, x" and x” denote the boundary defining functions for each factor of M>.
let pp € G be the unique point of G, contained in the lifted diagonal on [0, 1)137. Then

under the identification Hé’om = IM3 x Gy x [0, 00), we have that

Gt = {(m,m',m", q,k) € IM> x G x [0, 00)x | p(m) = dp(m'), x(q) = x'(q)}

and there are similar descriptions for G7. and G. From those descriptions, we see that
the intersection of any pair in G}, G{. and G} is given by

K* = {(m.m',m",q.k) € IM> x G, x [0, 00); | ¢(m) = ¢p(m) = ¢p(m"), q = pp},
which is clearly a p-submanifold of H(?OOl' O

Similarly, the lifts of &g € M,f_y » With respect to 7713, I Jrlic and 7713, r gives p-
submanifolds G, G¢ and G inside Hé’ooo as well as the p-submanifolds Jz, J¢ and
Jg inside Hé’o 100 H(?IOO and H 1’7000. Again G, G¢ and G g have a non-trivial intersection.

Lemma 5.3. The intersection for any pair of G, G¢ and GR is the p-submanifold

K =G NGe NGg.

Proof. For the boundary hypersurface Hgooo’ there is a natural diffeomorphism
Hppp = M x Dy, (5.4)

where Dy, is the corresponding face Hgooo in[O0, 1),3“ - Let Ep C Dy be the p-submanifold
given by the intersection of Dj, with the lift of the diagonal

{(x, x,x,k) € M® x [0,00); | x €0, 1),k € [0, 00)} C [0, 1)? x [0, 00)x

to [0, 1),3(, 5+ Then, under the identification (5.4), the intersection of any pair of G, G¢
and G is given by the p-submanifold

K = A} x Ej, C dM> x Dy = Hyyy.
where
AL ={m,m' . m") € IM> | p(m) = p(m') = ¢(m")}

is the triple fibered diagonal in dM3. O
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This suggests to define the k, ¢-triple space by
M}y =M K*, G}, GE, GR JE JE Tk K. GL, Ge, Gr, Ji, Je, Jr] (5.5)
with blow-down map

Bl g MLy — M x [0, 00). (5.6)

Proposition 5.4. For each o € {L, C, R}, the b-fibration ”g,o : M,ib — M,?b lifts to a
b-fibration

3 . 3 2
Tiego - Mk,¢ — Mk,¢-

Proof. By symmetry, it suffices to check the result for o = L. We can then essentially
proceed as in the proof of [33, Proposition 6]. First, by [24, Lemma 2.5], the map ng, I
lifts to a b-fibration

[M{,: Gy, I — [M{,, @41
By [24, Lemma 2.7], this further lift to a b-fibration
(M}, Gy JF K GEL Gl JE TR — [ME,: @41,

Using the commutativity of nested blow-ups and of blow-ups of non-intersecting p-
submanifolds, this corresponds to a b-fibration

[M{ ; K*, G}, Ge, G Jf, JE TR — (MR, @)
Repeating this argument, but with ®,, K*, G} and J; replaced by ®g, K, G, and J,,
we can check that this lifts further to a b-fibration
Togr P MLy — [M,: @y, @0l = ME
as claimed. 0O
As in [33], the b-fibrations nk3¢,0 for o € {L, C, R} behave well with respect to the
lifted diagonals. More precisely, for o € {L, C, R}, set A13<,¢,o = ﬂ;Z(;),O(AM,k) where

A =1{(m,m, k) € M? x [0,00) | m € M, k € [0, 00)}
is the diagonal. These are clearly p-submanifolds. Moreover, for o # o/, the intersection
AI3<,¢,0 N Ai’d),o, is the p-submanifold A?w),T in M,iqb given by the lift of the triple
diagonal

Ayx = {m,m,m k) e M*> x [0,00) | m € M, k € [0, 00)}.

’ . 3 . 3 .
Lemma 5.5. For o # o, the b-fibration T g0 B transversal to Ak,¢,0’ and induces a

~

diffeomorphism A13< b0 = 13¢ sending A13< .7 Onto App C M,3¢.
Proof. By symmetry, we can assume o = L and o’ = C. Now, one can check that the
corresponding statement for M ,3 » holds. Doing the blow-ups in the order used to show

that n,? 6L is a b-fibration, we can check step by step that transversality is preserved.
The diffeomorphism is then a direct consequence of the transversality statement. O
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6. Composition of Low Energy Fibered Boundary Operators

We can use the triple space of the previous section to describe the composition of k, ¢-
pseudodifferential operators. Let us denote by Hi];’;fn the boundary hypersurface of M ,g @

corresponding to the lift of Hjj;p, in M?3 %[0, 00). Letus denote by ff?., ff7 7. fop, 57,
ff] , ff{. and ff}, the boundary hypersurfaces corresponding to the blow-ups of K*, G7,
G&, Gk, Jf. JE and J} respectively, while let ff9., f9 ., ff.,, %, 9 ff% and ff$
denote the boundary hypersurfaces of M ,? @ corresponding to the liftsof K, G, G¢, Gg,
Jr, Jc and Jg. Using this notation, let us describe how the boundary hypersurfaces
behave with respect to the three b-fibrations of Proposition 5.4. For the b-fibration

n,i 6L it sends H 1k igl surjectively onto M,i # and otherwise is such that

_ . .
(T g.) " (@) = Hiito U HYh.

_ k

(7 4.0) " (Ifo) = Hy

_ k. k.
(¢ g.0) " (o) = Hygho U Highy U %,

¢ k.¢ 0
110 Y Hojoo U ft e,

_ k. k,
(”1?,¢.L) Laf) = H01(f1 U ngl Uffe,

_ k, k,
(7TI<3,¢,L) ') = Hl()?l U Hl()gl Uffg.

(7} 1) () = F9 U D, U Y,

- k, k,
(3 .1)” " (¢bfo) = Hygy U2y UGy UHGT,,
(3 .0) 7~ (f) = USF} - UFET,

_ k, k,
(77 p.1) " (¢bf) = Hogoy U ey Uty UHR!.

6.1)

For the b-fibration n,fy 6.0 it sends surjectively Hlk(’)‘fl onto M,f’ e and otherwise is such

that

(R g.0) (@) = Hii%o U Hyglo.

(0 g.c) " (Uf0) = Hyfy U Hygl U Y,
(7 .0) " (o) = Hi60 U Higho U %,
(1 g.) " (1) = Hoy) U Hoghy UF],

- k, k,
(7 p.0) ™" () = HIj, U Hyghy UtER

(1} g.0) " " (ff0) = £ UL UTEY.,

_ k, k.
(7 5.0) " (@bfo) = Hyglo U F 7 Uty UHg .
(7 g.0) "~ (f) = fF} UTTE, USFE,

_ k k
(”liqb,c) '(gbf) = Hoogl Uff 7 Uffrr UHOlgl’

6.2)

Finally, the b-fibration n,i 6.R sends H§ 1’?1 surjectively onto M,?’ e and otherwise is such

that

(7713,¢,R)71(Zf) = Hlki(f)o U Hgl’(f)o’

(7 .00 ™" (f0) = Highy U Hogfy U9,
(2 g 0) o) = HYiho U Hijty U2,
() 5.0) (D) = Higf, U Hoghy U,

(”13,¢.R)_l(rf) = Hlkigl U H(])(i?)bl UG .

(1 . 0) " (fF0) = ) UFfG UFFG,

- k. k,
(T[]?,d),R) 1(¢bf0) = Hoogo U ff(l)fl" Uff%r UHIOgO’
(2 5. 0) "N (H) = 15 Uff gy U,

_ k, k,
(7 5. 1)” " (¢bf) = Hoghy UtfE 7 UtfEy UHGH .

(6.3)

To see what happens to the lift of densities, the following lemma due to Melrose will

be useful.
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Lemma 6.1 (Melrose). Let Y be a p-submanifold of a manifold with corners. Let w be
the codimension of Y within the smallest boundary face of X containing Y. Let B be the
blow-down map from [ X; Y] to X. If py € C*°([X; Y1) is a boundary defining function
for the new boundary hypersurface created by the blow-up of Y, then

BQ(X) = (p¥)’Q([X; Y]).

Indeed, using this lemma, we see that
(BLp) QM x [0, 00))

h+1
2 2 b 3
= (ﬂff(% Pies Pi50., PEY., PiY, PITLy PITEy iy Pi) P0. PeS, PIET PIE Pi, ) CRM ),
(6.4)

where py denotes a boundary defining function for the boundary hypersurface H. We
also compute that

T . R(X) = Prto Pet PgbEo Pgbe Pt PFE (6.5)
so that combining with Lemma 6.1, we see that
(Brp)* [ ory % 110,00 CRM x [0, 50))) - (pry X 1dpo,000)" pri QM) ]
= (0rfo Orf Ppbto Ppbf) )R .
(brto it Pgbio Pebr) " CQME ) (6.6)
Pulling back (6.5) to M,id, via T[/itf),L and ”l?,d),R gives
(7Tk3,¢,L)*(7TJf,¢,R(x)) = P1010P1000P¢9, P1011£1001 Pitt, F0000 P50, P, 0010
“Pig0. P PrQ PIES. A, PEE; PO001 PIEE, Pitt, POOLTS (6.7)
and

3 k%
3 v X) = o o N
(g, R)” (T 9, RX) = P1100£010050, P110100101 Pt L0050 Pet0. L1000
Pt PIE R Pff9, Pifs PitT, - PiET, L0001 PfeT . PiE, L1001 (6.8)

where p;j, stands for p ke . Hence, in terms of the ¢-density bundle ?Q (M) =
ijlm
(x~"=1HPQ (M) and

P} (ME ) = (4 ) (Brg)” [(prL x 1d[0,00)* QM x [0, oo)))] :

we see that

"M 4) - (T 4 1) Bi g [(Pri X 1d[0,00)* pri ?Q(M))]
(1} 5 ) Bie [ (Prr x 1d[0,00)* pri ?Q(M))] (6.9)

corresponds to (,oa)b QM ,g’ ¢) with multiweight a such that
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a_ 2 2 2 2
p= (Pffgr Pte). . PetY,, PEtT 1 Pit e Pty Pt PfEE, £0000£1000£0001£1001

£1010P1011£00100001121100001002110100101) "~ L. (6.10)

Hence, if k4 and xp denote the Schwartz kernels of operators A € \IJ,; ;O'E(M )

and B € \I/,;;o’]:(M) and if ®v} is a nonvanishing section of *Q3 (M,i(p), the above
discussion and a careful computation shows that

vl (T g ) KA - (T g R) KB € Aghg(M,iqb; "Qm ) (6.11)

with index family G given by

Glyko = Elgoto + Flovty — 2(h+ 1), Gl = Elir + Flar.

|H1kdgo = Elitg + Flgvry —2(h+ 1), Glgy, = & + Flgbt — (R + 1),
nggigO = Elirg + Fifg — (A + 1), Glerr., = Elgbr + Flgpr — (R + 1),

QIHk,abO = Elgoty + Fhito — (h+ 1), Glge = Elgvr + Flig — (A + 1),
Glyke = Elgbt + Foot —2(h+ 1), Glgr = Elgg + Fliss
Glyko = Elat + Flty — (R +1), Gleer. = Ep + Frts

Glpyo = Elio + Fitg — (h+ 1), Gl = Elg + Flig — (R + 1),
Glyke = Elir+ Floot =200+ 1), Glyy = Elro + Fliro. (6.12)
Ilpgse, = Elito + Flar, Glgn = Eliy + Flgbry — (h+1).
Glyke = Ei+ Flt = (2 + 1), Glio, = Elgbig + Flgbty — (h+ 1),
Glyke = Elgor + Flie — i+ 1), Glgg = Elgbr + Fliwo — (h+ 1),
|H{(i‘f0 =&l + Flar, g'ff‘z = Elity + Fhifos
Glyge = Fle = (4 1), Gl = Eity + Flrto,
g, = Elit + Flie = (R4 1), Glio = Elito + Flirg — (h+ 1),
g|Hk-¢ = 5|1f.

0111
This yields the following composition result.

Theorem 6.2. Let E, F and G be vector bundles over the transition single space M;.
Suppose that € and F are index families associated to M,? ® such that

inf Re & +inf Fip > h + 1.

Then given A € \IJ,Z”(PE (M; F,G)and B € \IJ,':(;;]:(M; E, F), their composition is well-
defined with

AoBew ™ MM E, G),
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where IC is the index family such that

Kl = (Elzt + Flap)U(Eltg + Fligg —h =1,

Khto = €ty + Flzt)U(Elgbto + Flitg —h — DIU(Eltro + Flity),

Ky = (Elat + Flitg)U(E lrto + Flgory —h — DUty + Flity),

Khe = ElUCElgbt + Flhir —h — DUEli + Fhir),

Kl = (FIUE it + Flgor — b — DUE L + Flir), (6.13)
Klito = (Eliry + Flit))U(Elgoto + Flgvto —h — DUCEt + Flety),

Klgoty = (Elgbty + Flgbty —h — DUENtry + Flobto)U(Elgbty + Flitg)U(Elgy + Fleto)s
Klg =l + Fli)U(Egot + Flgor —h — DUEe + Flee),

Klgot = (Elgot + Flgbt —h — DU(E g + Flpbr)U(E gt + Fle)U(E e + Flif).

Proof. For operators of order —oo, it suffices to apply the pushforward theorem of [36,
Theorem 5] using (6.12). When the operators are of order m and m’, we need to combine
the pushforward theorem with Lemma 5.5 to see that the composed operator is of the
given order, cf. [13, Proposition B7.20]. 0O

Remark 6.3. For k > 0, that is, for the boundary hypersurfaces If, tf, ¢bf and ff, we
recover as expected from (6.13) the composition result of (2.19) for ¢-operators.

Corollary 6.4. If E, F and G are vector bundles over M;, then

W (M F,G) oW (M: E, F) C W™ (M E, G).

Proof. It suffices to apply Theorem 6.2 with index families £ and F given by the empty
set except at ff, ffo and zf, where it is given by Ng. O

Similarly, the triple space of [21,30] gives the following composition result for the
b-sc transition calculus.

Theorem 6.5. [21,30] Let A € \Il;"’g(M; E.G) and B € V"7 (M; E, F) be b-sc
transition pseudodifferential operators with index families £ and F given by the empty
set at bf, If and rf and such that

inf Re £]sc > 0, inf Re Fg > 0.
In this case, Ao B € \I',"Hm/’g(M; E, G) with index family G given by

g|sc = 5|sc +f|SC7 _ g|zf = (Ezf +‘7:Zf)G(E’J[‘f() +f|lf0)7
g'bfo = (ghfo +f|rf0)_U(5|bfo +~/T|bf0)a g'lfo = (€|lf0 +f|zf)U(5|bfo +f|lf0)a
Glitg = (Elut + Flitg)U(E sty + Floty)s Glor = Ghe = Gler = 0.

(6.14)
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7. Symbol Maps

To define the principal symbol of an operator A € W, kb (M E, F), it suffices to notice
that its Schwartz kernel k4 has conormal singularities at the lifted diagonal A ¢, so has
a principal symbol

om(kca) € S"(N* A 4; End(E, F)).

We define the principal symbol of A, denoted kés, (A), to be oy (k4). By Lemma 4.6,
there is a natural identification N*Ay 4 = %¢T*M,, so that ©?o,,(A) can be seen as
an element of S (*¢T*M,: End(E, F)). As for other pseudodifferential calculi, the
principal symbol induces a short exact sequence

0 —— W S (M B F) —— WE(M; E, F) — > $"|(*$T*M,; End(E, F)) — 0.
(7.1)

For the construction of good parametrices, we will however need other symbols capturing
the asymptotic behavior of k, ¢p-operators. More precisely, for the boundary hypersur-

faces zf, ffo and ff of M f.g» We can define the normal operators of A € U}" ¢g (M, E,F),

for £ an index family such that inf Re £|,s > 0, inf Re €|, > 0 and inf Re Elg > 0, by
restriction of the Schwartz kernel k4 of A to zf, ffy and ff,

Nz (A) = kalzt, Nigy(A) = kalty, Nie(A) = kals. (7.2)

Since the boundary hypersurface zf in M </> « 1s naturally identified with the ¢-double

space M 2 of Mazzeo—Melrose [33], the normal operator Nf(A) can be seen as a ¢-
operator. In particular, in terms of the small calculus, there is a short exact sequence

0 —— x,0}" ¢(M E, F)—>\If,’(”¢(M E, F)—— \IJ’”(M E, F)——0,
(7.3)
where x,s € C°(M ,3 ¢) is a boundary defining function for zf.
m',F

Proposition 7.1. For A € \IJZ’(’pg (M; F,G)and B € V;_; ¢ (M; E, F) with index fami-
lies £ and F such that

inf €|, >0, inf Fly >0, infRe(&|i+Flif) > h+1 and
Re(&lity + Flity) > h +1,

we have that
Nz£(A o B) = Nzf(A) o Nos(B) (7.4)
with the composition on the right as ¢-operators.

Proof. By Theorem 6.2, the composition A o B makes sense and its Schwartz kernel can
be restricted to zf. This restriction comes in fact from the pushforward of the restriction

of (6.11)to Hlkl"lpo. In other words, Nzt (A o B) is given by the composition of N,t(A) and
Ny (B) induced by H lkl"lbo seen as triple space for zf. Since H 1k1 ?0 is naturally identified

with the ¢-triple space of [33], the result follows.
]
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Similarly, in terms of the vector bundle k& N¢ Y of (4.10), the boundary hypersurface
ffoin M ,3 o is naturally the double space for ©® Nys Y -suspended operators for the fiber
bundle ¢ : tf — Y x [0, %]9. Hence, the normal operator Nf,,(A) can be seen as a
k¢ Nt Y -suspended operator. In terms of the small calculus, this induces the short exact
sequence

Nity
00— xffo\lllt,’fd)(M; E,F) —— \I/,Z’(b(M; E,F) —— \Ij;ﬁs(WN[fY)—(p‘f(tf; E,F) ——0,

(7.5)

where xf,, € COO(M,f’ ¢) is a boundary defining function for ffy.

Proposition 7.2. For A € \I/,’{"q;g (M; F,G)and B € \I/,':(;;}-(M; E, F) with index fami-
lies £ and F such that

inf Re &g, > 0, infRe Flgr, > 0, inf Re(Elgbry + Flpbfy) > h+1,

7.6
inf Re(Eliry + Flify) > 0 and inf Re(Elgr + Flir) > h+ 1, (7.6)

we have that
Nity (A o B) = Nty (A) o Niry (B) (7.7)

where the composition on the right is as ©*% N Y -suspended operators.

Proof. From Theorem 6.2, we see that the composition A o B makes sense as a k, ¢-
pseudodifferential operators and the restriction of its Schwartz kernel to ff, is well-
defined. Moreover, this restriction comes from the pushforward of the restriction of
(6.11) to ff‘}. Thus the composition on the right of (7.7) is the one induced by ff(} seen
as a triple space for ff(, which is precisely composition as ©¢ Nis Y -suspended operators.

0

Finally, in terms of the vector bundle k"”NSCY of (4.10), the face ff does not quite
correspond to the double space of ©% Ny Y -suspended operators with respect to the fiber
bundle ¢ : sc — Y x [0, c0),. Instead, because of the blow-up of ®g in (4.17), it
is an adiabatic version of this suspended calculus, namely it is semi-classical in the
suspension parameters with k playing the role of the semi-classical parameter. However,
since suspended operators are already ‘classical’ in the suspension parameter, insisting
on having rapid decay at ff N¢bf and ff N@bf, the boundary hypersurface ff can be seen
as a double space for (k~1)%% Ny Y -suspended operators. That is, in terms of suspended
operators, the effect of blowing up ®¢ in (4.17) amounts to rescaling the suspension
parameters by k1. Notice that such an observation was implicitly used in [39] to avoid
introducing an extra blow-up. In particular, the normal operator map Ny induces the
short exact sequence

Nj
0 —— xip W) (M; E, F) — W' (M E, F) ——> W . (sc; E, F) — 0,
(7.8)

where xg € C“(M,id,) is a boundary defining function for ff and V := (k=) ? Ny V.
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Proposition 7.3. For A € \IJ,Tf(M; F,G)and B € lIJ,Z'_";)’]:(M; E, F) with index fami-
lies £ and F such that

infRe&lg >0, infRe Flg > 0, infRe(5|¢bf +]:|¢bf) > h+1,

7.9
inf Re(€|f + Flif) > h+1 and inf Re(E|jf +inf Re Fli¢) > 0, (7.9)

we have that
Nig(A o B) = N (A) o Nge(B) (7.10)

with composition on the right induced by the boundary hypersurface ff%. seen as a triple
space for ft. Furthermore, if £|gvr, = Elgvr = ¥, then the composition on the right is
as (k= Hk-® Ny Y -suspended operators.

Proof. By Theorem 6.2, the composition A o B is a k, ¢-pseudodifferential operator
whose restriction to ff makes sense. Furthermore, by the pushforward theorem, this
restriction comes from the pushforward of the restriction of (6.11) to ff*., hence (7.10)
holds with the composition on the right induced by ff}. seen as a triple space for ff.
By the discussion above, this corresponds to composition as (k~')*® Ny ¥ -suspended
operators when E|gvfy = Elgpr =P. O

8. Low Energy Limit of the Resolvent of Dirac Fibered Boundary Operators

Let 0y € Diffé(M ; E) be the elliptic formally self-adjoint first order fibered boundary
operator of § 3. Suppose that Assumption 3.3 holds and that Jy is a Dirac operator
associated to a fibered boundary metric g4 and a structure of Clifford module on E
with respect to the Clifford bundle of the ¢-tangent bundle. In particular, 9j in (3.2) is
a family of Euclidean Dirac operators. Let y € C°°(M; End(E)) be self-adjoint as an
operator in \Ilg(M ; E) and suppose that

y?=1dg, Jgy +yds =0, (8.1)

In terms of (3.2) and (3.23), suppose also that y anti-commutes with D,, 9, ¢ and Oy.
In this section, we will consider the first order k, ¢-operator

6k,¢ = 6¢ + k]/. (8.2)
By (8.1), notice that
0f =05+ Kk 1dg . (8.3)

In particular, for £ > 0, 5,% ¢ has positive spectrum and is invertible. Essentially for
the same reason, its normal operator is invertible, which means by [33] that 8,% @ is

invertible in the small ¢-calculus for k > 0. Since 5,:(11) = Ok, (3£’¢)_1 , we see that Oy ¢
is invertible as well in the small ¢-calculus for £ > 0. On the other hand, when k = 0,
0y is typically not invertible in W} (M; E), but as shown in § 3, it is at least Fredholm
when acting on suitable Sobolev spaces with an inverse modulo compact operators in the
large ¢-calculus. This and the invertibility for £ > 0 can be combined to invert Jy 4 as a
k, ¢-operator as we will now explain. In order to do this, we need to make the following
hypothesis.
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Assumption 8.1. There exists € > 0 such that the interval (—1—e¢, €) contains no critical
weight of the indicial family 7 (Dp, 1) of Definition 3.4. There is also € < € such that
each element  of the kernel of Dy in Li(M ; E) is such that x ~€!4 is bounded.

Remark 8.2. By Corollary 3.16, we can take €] = €. However, there are situations where
we can take €] > € as the next example shows, yielding better control on the inverse of
(8.3).

Example 8.3. If 04 is the Hodge—deRham operator acting on forms valued in a flat vector
bundle, then by Lemma 3.8, provided the de Rham cohomology group

h—1 h h+1
HY(Y; ker D,) = {0} fi - -, —
(Y; ker Dy) = {0} for g € { 3 3

Assumption 8.1 will be satisfied for g4 with metric gy sufficiently scaled (so that the
positive spectrum of d? is sufficiently large). Moreover, if also

h—2 h+ 2} (8.5)
2 K 2 K .

then we can also assume that €] + € > 2¢ > 1, again provided the metric gy arising
in the asymptotic behavior of g4 is sufficiently small. Finally, if (8.4) holds, but not
(8.5), in which case & is necessarily even, then we can still ensure that €] + € > 1 by

requiring that the L?-kernel of 0y is trivial, in fact requiring to be trivial only in degree

q € {%, %, %, %} in the scattering case (when Y = d M and ¢ is the identity map).

Indeed, in this case, again assuming gy is sufficiently small, we can take €; > 1, since by

}s (8.4)

HI(Y;ker Dy) = {0} for ¢ €{

Lemma 3.8 the indicial root A = % coming from the non-triviality of H = (Y; ker Dy)

does not show up in the polyhomogeneous expansion of elements of the L2-kernel. In
general, with 4 odd or even, we can ensure that €] > 1 by scaling gy provided either

h+?
H%(Y;ker D,) = {0} for g = — L e{0,1,2,3}, (8.6)
or that we know that (8.4) holds and that the L>-kernel of 0y is trivial, in fact only in
degree g = ’# with £ € {1, 2, 3, 4, 5} in the scattering case.

As in § 3, it will be convenient, instead of . ¢, to work with the conjugated operator

h+1

Digi=x" T Oppx' T = Dy+ky (8.7)

acting formally on L% (M; E).Interms of this conjugated operator, we have the following
characterization of the inverse.

Theorem 8.4. There exists Gy ¢ € \I/,: ;)’g(M 3 E) such that
Di.¢Gig =1d, Gr¢Drg =1d,
where G is an index family given by the empty set at If, rf and ¢bf, while

infRe Gl > —1, infReG|gby > h, Gl = No, infReGlg, > 0,
and infReGlir, > v, infReGli, >h+1+v with v:=min{e, e — 1}.
(8.8)

Furthermore, ife+€| > 1fore and ey in Assumption 8.1, theninfact G|, = (Ng—1)UN
with N an index set with inf Re N > 0.
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Remark 8.5. Coming back to 0y ¢ = Oy + ky, we see that X Gk)¢x_h%l is such that

h+l _ h+l h+l _ h+l
5](,4,()6 2Grex 2)=(x 2 Grgex 2 )5k,¢ =1d.

To prove Theorem 8.4, we will closely follow the approach of Guillarmou and Hassell
[21,22], but relying on the k, ¢-calculus described in § 4. Roughly, the strategy will
consist in constructing a parametrix with error term vanishing to some positive order
in k as k N\ 0 when it is described in terms of the lift from the right of a b-density.
Thus in terms of the density bundle ©? Qg (M), this will correspond to decay of order
strictly bigger than £ + 1 at rf and ¢bf and decay of positive order at the other boundary
hypersurfaces where k = 0 in M,i e Once we get such a good parametrix, we can
construct the actual inverse from the parametrix by using a Neumann series argument.
The construction of the parametrix and the proof of Theorem 8.4 will involve a few
steps, namely, we will need to invert Dy ¢ at zf, ffo, ¢bf and ff making sure along the
way the error term decays suitably elsewhere.

Step 0: Inversion at zf and ffy. Consider then the fibered cusp operator
Die = x " 2Dyx" 2. (8.9)

This operator is formally self-adjoint on Li(M ; E). By Assumption 8.1, we can take
s = % and u = % + € in Corollary 3.20 to obtain an inverse G_% : L%(M; E)—> D_
such that

=

G_%ch =1d —TII, DfCG_% =1d —TII, (8.10)

where I1 is the orthogonal projection in LIZJ(M ; E) onto the finite dimensional kernel of
Dscand D 1 C Li(M; E) is the minimal domain of Dg.. If IT = 0, then as in [21], one

—t

can take x‘in%x_% to invert Dy ¢ = Dy + ky at zf, for

Dyx 2G_1x 2 =x2DpG_ix 2 =x21dx 2 =1Id. 8.11)

S
<
=
N}'—‘
Q
R‘
D=
Il
[e-—
[oN
|
=
D=
|
R\
D=

1 (8.12)
2
and we can proceed as in [22] to remove the error term. More precisely, let {¢;} fz | be

an orthonormal basis of the kernel of Dy in le; (M; E), so that

J
M= "(pr} 9;) pri(p;vp)
j=1
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for the b-density v, = x/*1d g4 with respect to which Dy is formally self-adjoint. By

Assumption 8.1, ¢; = O(x %“1) near d M. In particular, {x_%(pj} is a basis of the kernel
of Dy in L3 (M; E). If {1/fj}l].:1 is a choice of orthonormal basis of ker; 2 Dy, then

J 1
Vi = Zaijx_7¢j
j=1

for some «;; and

J
Mier, Dy = > " or} ¥ priy () (8.13)
j=1

is the orthogonal projection onto ker L2 Dy. If '/ denotes the inverse of the matrix o; s
then

J
Xl =Y ally;. (8.14)
j=1

In terms of the projection (8.13), we compute that

J J
Mier, D¢(x%§0j) => (/M l//kx%%‘vh) V=) (/M (Zakix_%(ﬂt) x;(ﬂth) Vi
k=1

k=1 i=1
J
=Y e (8.15)
k=1
This means that
Ui = xt) — e, p, (x7¢)) = OG) near IM. (8.16)
b

It also follows from (8.15) that

J
1 _1 i
> pri (Mer 5 0y (x29)) pr(x ™ 2pjvp) = Y axjord (pry ) prig (Wevs)
j=1 b kot
8.17
=Y s vopppy &1
k
= 1_IkerLg Dy -

Lemma 8.6. There exists xj such that Ds.xr = x_%l//,g‘. Moreover, i is smooth on
M \ 0 M with polyhomogeneous expansion at d M having leading term of order at least

I .
x""2 with v = min{e, € — 1}.
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Proof. By (8.14), x_%goi is orthogonal to w,j-, which implies that ¢; is orthogonal to
X"y, Thus, x~ 2y is orthogonal to Ker, > Dre. Hence, taking 8 = } in (3.44), this

means that x_% w,} is in the range of Id — P», so that
_1
X = G_ (2
is such that
_1 _1 _1 _1 _L
Dicxx = x 2Dgpx 2 xx =x 2Dgx 2G_%(x 2Yri)
= (1d—P)(x"2yd) (8.18)
= x_%w/ﬁ‘

as claimed. Moreover, by Assumption 8.1, Corollary 3.20 and Proposition 2.4, xj is
polyhomogeneous at d M with x; = O(x‘”%). ]

Using (8.17), we see that

J

_1

Dyx™2 [ G_y+ ) (prf x; Pry(@;v) +pry ¢ pra(xjve)) | x
j=1

D=

J
—1d—x2TIx" 2 + Zpr}: w;‘ pr}}(x_%gojvb)
j=1

| 1 1 (8.19)
=1d+ " (= pri (2 pri(r T ) + pr ¥ prie R m) )

To construct the inverse of Dy 4, this suggests to consider the approximate inverse
Q0 :=k7'yG ' +GY (8.20)
with
J
—1
Gl = 2P ¥ PR o) = i3y

= (8.21)

1
2 .

0 _1
sz =x 2 G77 +

J

(pr] xj pri(ejve) +pri @; prg(xve)) | x

J
=1

On Mé x [0, 00)g, it is such that

(Dy +yk)Qo = Id+Ry with Ry = ky GY. (8.22)
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When we lift this parametrix to M ,? > Wecan regard Qg as an element of \If,; ;5 < (M; E)
with index family Qp such that

Qolzf =Ng — 1, inf Re Qp|gbr = inf Re Qolgvr, =k, inf Re Qolsr, > 0,
inf Re Qplg > 0 and
inf Re Qohf = inf Re Q()hfo > v, infRe Q0|rf = inf Re Q()lrfo >h+1+v,
with v := min{e, €] — 1},

(8.23)

while the error term R has leading order 1 at zf and ff(, leading order O at ff, leading
order /i + 1 at ¢bfy, leading order % at ¢bf, leading order 1 + v at If, leading order v at
If, leading order & + 2 + v at rfo and leading order 2 + 1 + v at rf. This means that Q
also inverts Dy 4 at ffo. At ffq, the lift of Qg gives the expected model for the inverse

of Dy . In fact, since 4 and yi are of order x¢' and x%” at the boundary, notice that
k! G;fl is of order & + 2¢; in terms of (¢, k)-densities at {fy, while

_1
2

J

1

X2 E (pry xj pr(ejve) +pry @i prp(xve)) | x
=1

is of order 1 + 1 + v + €. Hence, the term of order O at ffo of Q¢ comes exclusively from
1 1.
theterm x " 2G_1x™ 2 in G‘Z)f.
2

Step 1: Cutting off to enforce rapdid decay at If, ¢bf and rf. At ¢bfy, the error term
R does not vanish at order & + 1. Moreover, the error term Ry does not vanish rapidly

at ¢bf, If and rf. This forces us to seek a better model to invert the operator at ¢bfy.

Looking at the behavior of Q¢ near ¢bf(, notice that k! G;fl is (’)(xg;fz(f‘ ), while Ggf

. . _1 _1 . . -
has main term of order & coming from x~2G_ 1 x™ 2 (in terms of right k, ¢-densities).
2

On the other hand, before performing the last blow-up in (4.16), we can consider the
coordinates

k !/ k / /
kik=—k=—=,5,¥,2,2 (8.24)
X X
in the interior of ¢bf(y, where y and z denote coordinates on the base and the fibers of
a local trivialization of ¢ : dM — Y. Recalling (3.7), we see that in terms of these
coordinates, the restriction of the operator Dy 4 to ¢bfy is given by

Diy = Dy +kDc with D¢ := —c% + %Dy +y. (8.25)
Here, the operator D¢ can be seen as an operator on the cone Y x [0, c0), with cone
metric dic? +x2 gy acting on the sections of ker D,,. Near the apex of the cone, that is, for
k < 1, the operator k D¢ can be treated as b-operator, while for « > 1, the operator D¢
can be seen as a scattering operator in the sense of [38]. This is consistent with the fact
that, when we forget about the fibers of ¢ : M — Y, the boundary hypersurface ¢bfy,
before performing the last blow up in (4.16), is just the double space for ¥ x [0, co]
corresponding to a b-double space near k = k¥’ = 0 an a scattering double space near
Kk =K' = oo.
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Ifo(Y)

bf(Y)

I‘fo (Y)

Fig. 7. The double space (¥ x [0, oo])%.sC

More precisely, this double space is given by
(Y x [0,00]); o = [¥* x [0, 00]% ¥? x {0}2, ¥? x {00}, Bee],  (8.26)

where By is the intersection of the lifted diagonal with the boundary hypersurface created
by the blow-up of Y2 x {o0}?.

Denote by bfp(Y), bf o(Y) and sc(Y) the boundary hypersurfaces created by these
three blow-ups and let Ifo(Y), rfo(Y), If 5o (Y) and rf 5 (Y) be the lifts of the boundary
hypersurfaces Y2 x {0} x [0, oo], Y% x [0, oo] x {0}, Y2 x {00} x [0, co] and ¥Y? x
[0, oo] x {oc}. In terms of the boundary hypersurface ¢bf(, notice that bfo(Y), bf 5o (Y)
and sc(Y) correspond to ¢pbfy N zf, pbfy Nepbf and ¢pbfy N {f, while If o (Y) and rf oo (Y)
correspond to ¢bfy N1f and ¢bfy Nrf. However, for Ifg(Y) and rfy(Y), there is a small
twist since they correspond respectively to ¢pbfy Nrf and ¢pbfy N1f instead of ¢pbfo N1f
and ¢bfy Nrf as one could have naively expected. This is consistent with the fact that,
for instance, Y2 N {0} x [0, co] intersects Y2 x [0, 0o] x {oo}, but not Y2 x {co} x [0, 0]
(Fig. 7).

Now, by construction, the term g of order /& of Q¢ at ¢bf is such that I, goI1;, = qo,
where ITj, is the projection of (3.6). To enforce rapid decay of the error term at ¢bf, If
and rf, we can take Q1 to be Qo smoothly cut-off near ¢bf, If and rf, but insisting that
01 = Qo away from a small neighborhood of ¢bf, If and rf, in particular near ffy and
zf. In this case, we will have that

Dy Q1 =1d—R; (8.27)

with R now having a term ry of order 2+ 1 at ¢bfy vanishing near ¢pbfy Npbf, pbfy N1f,
¢bfo Nrf and ¢bfy N {fy. Choosing our cut-off function to be constant in the fibers of
the lift of the fiber bundle

dxXPp:0MxIM—Y xY

to ¢bf, we can also ensure that the term g1 of order & of Q1 at ¢bf and the term r; of
order & + 1 of R at ¢pbf(y are such that

pq Iy =q1 and Tpr I, = Myry.

We need also to choose the cut-off function near If and rf in such a way that it does
not introduce more singular terms in the expansion of the error terms at If g and rf. Near

rf Nrfy, this can be done in terms of the right variable %, ensuring that the error terms
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vanishes to order & +2 + v at rfy. Indeed, the problematic term to cut-off is k! Gz}l , but

cutting off in this manner, that is using a cut-off function in %, we see that Dy applied
to the cut-off of this term still gives zero, so yields no singular term, while ky yields a
term of order /1 + 2 + v. Cutting off the term G(Z)f in the same manner also yields at term
of order 1 + 1 + €1 by (8.19). At If, we should instead cut off using a cut-off function
constant in the fibers of the lift of the fiber bundle ¢ x Id : M x M — Y x M on
Ifp. In terms of the decomposition (3.7), we thus see that Dy 4 applied to the cut-off of

k! Gz_fl gives a term of order € at Ify. From (8.19), we also see that the terms of order
v or less of Ggf at 1Ify are in ker D,, where v = min{e¢, € — 1}. Hence, we see from

Lemma 3.5 that cutting off Ggf near Ifg N1f yields an error term of order v + 1 at If.
To summarize, cutting off to get rapid decay at If, ¢bf and rf, we get O in (8.27)

where we can assume that the error term Ry isin W, (;’Rl (M; E) with index family R4
given by the empty set at If, ¢bf and rf and such that

infReRylgg > 0, infReRilgvry =h+1, infReRilg, > 1,

8.28
infReRiliy, > h+2+v, infReRilif, > 1+v, infReRil; > 1. ( )

Step 2: Inverting at ¢bfy. To get rid of r; at ¢bfy, this means that in terms of (8.25),
we should try to find g, such that

kDc(q2) = pry. (8.29)

To achieve this, we need to analyse the operator D¢ in terms of the double space (8.26).
More precisely, we will invert D¢ using the pseudodifferential operators defined by the
double space (8.26). To define this pseudodifferential calculus, let Ap ¢ be the lift of the
diagonal in (Y x [0, oo])? to (Y x [0, OO])zz;,sc- Let also 5°Q (Y x [0, oc]) be the density
bundle on Y x [0, oco] corresponding to a b-density bundle near k = 0 and to a sc-density
bundle near x = oo. If pr; and pry are the projections (¥ x [0, oo])? — Y x [0, co] on
the left and right factors respectively and if B ¢ : (¥ x [0, oo])[zLSC — (Y x [0, oo])2 is
the natural blow-down map, we can consider the lift from the right of the b, sc-density
bundle,

PQR(Y x [0, 00]) 1= B o Prig " SQUY x [0, 00]).
If F is a vector bundle on Y x [0, co], one can also consider the bundle
Homy sc(F, F) := B}, (o (pr} @ pry F*).

With this notation, the small calculus of b, sc-operators acting on sections of F' can be
defined as the union over all m € R of the spaces

Wy (Y5 F) = {k € I"((Y x [0, 00])] gor Apsc:
Homy, s (F, F) ® " Qr(Y x [0, 00))) |
Kk =0at (Y x [0,00])]  \ (bfo(Y) Usc(¥))}. (8.30)

If £ is an indicial family for (Y x [0, oo])% <> We can define more generally the spaces

W, (Y F) = ASL (Y % [0, 00D} s Homy, o (F, F) ® " Qr(Y x [0, 00])), (8.31)
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WA ) = (Vi F) + W, (Y F), meR. (8.32)

b,sc

By the discussion above, we could alternatively define the b, sc-calculus by restriction
of the b-sc transition calculus of ¥ x [0, oo] to the boundary hypersurface bfy. In
particular, restriction to bf of the composition result of Theorem 6.5 yields the following
composition result for the b, sc-calculus.

Theorem 8.7. Let A € lI/Zféf(Y; F)and B € \If’”/’}—(Y; F) be pseudodifferential b, sc-
operators with index families £ and F given by the empty set at If 5o(Y), 1tfoo(Y) and
bf oo (Y). Assume furthermore that

inf Re £seyy) = 0, infRe Fyeyy) =0 and inf Re(Eliy(yvy + Flity(r)) > 0.

In this case, Ao B € wa:c’"/’g(Y; F) with index family G given by
g|sc(Y) = g|sc(Y) +f|sc(Y)v _
Glotor) = (Ebtor) + Foro))U(Eitor) + Flrtor)),
Glitor)y = (Elbror) + Flitgr))U(Ego(v))- (8.33)
Glitory = (Elitor) + Flotor))U(F litor)),
Glofoe(v) = Glifae(v) = Glitoo(v) = 9.

Proof. Recall that in terms of the boundary hypersurface bfy in Theorem 6.5, the
boundary hypersurfaces bfy(Y), bfoo(Y) and sc(Y) correspond to bfg Nzf, bfy Nbf
and bf N sc, while If .o (Y) and 1f s (Y) correspond to bfy NIf and bfy Nrf. However,
forIfo(Y) and rfo(Y), there is a small twist since they correspond respectively to bfy N rf
and bfy N If. With this understood, it suffices to look at what happens to the term of order
zero at bfy in (6.14). In particular, the condition

inf Re(Elrty(v) + Flitor)) > 0

is there to ensure that in (6.14), there are no terms of negative order at bfy and that the
term of order zero comes exclusively from the terms of order zero at bf(y of the operators
that are composed. Thus, it suffices to replace the index sets at bfy by 0 and restrict
(6.14) to bf to obtain (8.33). O

Now that we have properly defined the pseudodifferential b, sc-operators, we can
come back to the question of inverting the operator D¢ in this calculus. First, as men-
tioned before, near bfy(Y), k D¢ is b-operator. From (3.7) and (8.25), we see that its
indicial family is given by

I(kD¢c, X)) = Dy — cA = I(Dp, —1)). (8.34)
We also know from the parametrix construction of § 3 that the term of order & of Q1 at
¢bfo N zf is precisely
1 [ . 1 dx’'
(5 [y =S win s ) oy
27 J_ o 2 x’

where s = § In terms of the coordinates (8.24), this becomes

/

1 o K 1 d
ki (E/ e’“’g(ﬂ)l(wc, 5 +i$)_1d§> (K’)%K—K/ (8.35)
—0Q
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This suggests that we should consider

_ ( 1 /°° &) 1 e pe. %us)-‘ds) o

2 k'’

SO

G

| I Lo
the inverse of x~2 (k D¢)k2 at bfo(Y) as a b-operator, since then KfGlf/ci gives a
corresponding inverse for D¢ at bfy(Y),

I _1 L 4 _1 1
Dek2Gpr? =k 2(kDe)k2Gje? =« 21de? =1d,

1
and (8.35) is precisely k=i G, K7 as expected.
At sc(Y), D¢ can instead be inverted as a scattering operator. From (8.25), we see
that its normal operator is
Nsc(D¢) =0 +y (8.36)

where 9), is the family of Euclidean Dirac operators of (3.2) on ?NY =
T (Y x [0, 00])|y x{oo}- Since by assumption y 0y, + 05y = 0, we see that

Nee(Dg)? =07 +1d (8.37)

isclearly invertible as a family of suspended operators in the sense of [33]. Thus, N (D¢)
itself is invertible as a family of suspended operators with inverse

Nge(De) ™' = Nee(De) (@7 +1d) 1. (8.38)

. . . .. _1 1
Hence, using this to invert D¢ at sc(Y'), while at bfy(Y) using instead « ~2 (k D¢)k 2, we
can construct a parametrix for D¢ as follows.

Lemma 8.8. There exists Qc € V), 3
that

C

C(Y;ker D,) and Re € W, o (Y: ker Dy) such

DcQc =1d —Rg, QZDC =Id—Ré, (8.39)
where Q is an index family which is trivial at bf oo (Y), If 5o (Y), 1 5o (Y), given by Ng at
sc(Y) and such that

inf Re Q|bf0(Y) > 1, infRe Qlfo(Y) > 1+4+¢€¢ and infRe Qrfo(Y) >1+e,

while R is an index family which is trivial at sc(Y), bf oo (Y), lf 5o (Y), 150 (Y), Ifo(Y),

bfo(Y) and such that inf Re Rlir,(yy = 1 + €. Moreover, at sc, the restriction of Q¢ is
1

given by Ngc(Qc) = Ny (Dc)_l, while at bfo(Y), the restriction OfK_% Qc/c_% is GZ.

Proof. Atthe end k = 0o, we can invert D¢ as a scattering operator as in [33] to obtain
Q¢ near sc(Y), bf oo (Y), If o(Y) and rfo(Y). At end k = 0, we can invert instead

K2 (kDc)x Jasa b-operator as in [37], yielding a parametrix Q such that
K2 (kkDe)? O = 1d —R,

where Q is a b-operator of order one with polyhomogeneous expansion at Ifp(Y) and
rfo(Y) having leading term of order % + € and smooth at bfy(Y) with restriction given
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1 ~
by Glf, while R is a b-operator of order —oo vanishing rapidly at If(Y) and bfo(Y) and
with polyhomogeneous expansion at 1f( (Y') having leading term of order % +e. Itsuffices
then to take Q¢ = K% @K% and Rp = K_%EK% near bfy(Y). This can be combined
with the construction near sc(Y) to give the parametrix Q¢ globally as claimed. O

In particular, if u is a boundary defining function for ¥ x {0} in ¥ x [0, oo], then
since

1
infRe’R|rfO(y) >1+e> E’

. . 1 1 . . _1
this parametrix shows that the operator u2 Dcu? has right and left parametrices u ™ 2

ch_% and u_% Q*Cu_% with compact error term,
(u? Deu?) ™2 Qcu™?) = 1d—(u? Reu™?),
(™2 Qbu~?)(u? Deu?) = 1d —(u™? Rju?),
implying that D¢ induces a Fredholm operator
De :u? Hy (Y x [0, 00]; ker D) — u™2 LAY x [0, 0c]; ker D,),  (8.40)
where
Hy (Y x [0, 00]; ker Dy) = {f € Li(Y x [0, oo]; ker D) |
&f € L%(Y x [0, oo]; ker Dy) Y& € Vp oo (Y x [0, 00]; ker Dy)} (8.41)

with Vp (Y X [0, oo]; ker D,) the Lie algebra of smooth vector fields on ¥ x [0, 00]
which are b-vector fields near Y x {0} and scattering vector fields near ¥ x {oo}. The
operator is also formally self-adjoint.

Lemma 8.9. The Fredholm operator of (8.40) is a bijection.

Proof. Since we assume that Oy is a Dirac operator, we know from (3.7) and (3.23) that
the operator D¢ takes the form

d 1 c
De=—-—c—+—-0Oy+2)+vy. (8.42)
ok K 2
Using that y anti-commutes with _Ca% + %(31/ +3), that ¢? = —1Id and that ¢ anti-
commutes with Jy, we compute that
3\’ 3 3
212 2 2
D:i=—|k— ) +2k— + (03 +cOy — =) +k~. 8.43
e (Kax> “oe T Oy Oy =) (8:43)
Hence, we see that
—1,,.212 9\’ 2 1 2
k™ (k" Do)k = — /ca— + ESY+cc>")y+L—1 +K“. (8.44)
K

Setting 5y := cOy, this becomes

2
Kk D2y = — (Kai) + (%ZY +0y + %) + 2 (8.45)

K
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Now, 5”{, = (cOy)* = —0yc = cOy = 5)/, SO 5y is formally self-adjoint. Moreover,
~ 1
I(Dp, 2) = c(h — Oy + 5), (8.46)

so Assumption 8.1 implies that 51/ has no eigenvalue in the range [—%, %]. Now, if A is
an eigenvalue of Oy with eigensection &, then & is an eigensection of 5%, +Jy + zlt with
eigenvalue (A + %)2. Since A ¢ [—%, %], we have in particular that (A + %)2 > (. Hence,

decomposing (8.45) in terms of the eigenspaces of 5)/, we obtain the modified Bessel
equation

3\? 1
(— <K8—) +o? +/<2) f=0, witha?=0+ E)2 > 0. (8.47)
K

A basis of solutions of this equation is given by the modified Bessel functions K, and
1. The function I, grows exponentially as k — oo and tends to zero as k N\ 0, while
K, blows up like 1%l as k N\, 0 and decays exponentially at infinity. Thus, except
for the trivial solution, no solution of (8.47) are in L2((0, c0), dT"). This means that the
operator k! (KzDé)K has a trivial kernel in L%(Y x [0, oo]; ker Dy), hence that D¢ has
a trivial kernel in KL]%(Y x [0, oo], ker Dy). A fortiori, D¢ thus has a trivial kernel in
uL?(Y x [0, col; ker Dy).

Now, if o € Li(Y x [0, oo], ker Dy) is such that Dgco = 0, then in fact o decays
rapidly as k — oo by [33] and has a polyhomogeneous expansion at k = 0 by [37].
Furthermore, Assumption 8.1 and the fact that /(x D¢, A) = I(Dp, —X) implies that
o = O@u'*€) near Y x {0}. This shows that the operator (8.40) is injective.

To show that it is surjective, notice the operator u%Dcu% is formally self-adjoint,
which forces in particular the operator (8.40) to be surjective since D¢ has a trivial kernel
in u%Li(Y x [0, co]; ker D) C lej(Y x [0, o0]; ker Dy). 0O

Let us denote by G¢ the inverse of the bijective operator in (8.40).
Lemma 8.10. The inverse G¢ is an element of \Ifl;slc’g(Y; ker Dy) with index family G
trivial at 1f 5o (Y), If 5o (Y) and bf 5o (Y), given by Ny at sc(Y) and such that

infRe(g|bf0(y)) > 1, infRe(g|rf0(y)) >1+e, infRe(gth(y)) >1+e. (8.48)

1 1 1
Moreover, the restriction of u=2Geu™2 at bfo(Y) is precisely G, while at sc(Y), we

have instead Ny (Gc) = N (Do)~ L.

Proof. Using the parametrix of (8.39) and proceeding as in the proof of Corollary 3.20,
we have that

Ge =Geld = Ge(DeQc + Re) = Qc + GeRe,

8.49
Ge =1dGe = (QpDc + R:)Ge = OF + R:Ge. ( )

Inserting the second equation in the first one thus yields
Ge=0Qc+GeRe=0Qc+ Qz'Rc + RéGcRc. (8.50)

Since R¢ and R are very residual operators in the sense of [32], we see by the semi-ideal
property of such operators that R;G¢ R is also semi-residual. Hence, the result follows
from (8.50), Lemma 8.8 and the composition formula of Theorem 8.7. O
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. 1 Lo
In fact, near bfy(Y), we can compare G¢ with k2G bz k2 as follows,

1 1

1 1 1
K2Glk? =K?Gik?DeGe = Ge +x2GiryGe, (8.51)

1 . 1 1
where we have used in the last step that G, is the inverse of ¥~ 2 (/c (—c% + %Dy)) K2,
Hence, from the composition formula of Theorem 8.7, we see that the leading order term

of G¢ at bfo(Y) is at order 1 with next term at least at order 2. That is,

1

Ge =k2Glic? + Ol i) (8.52)
This can be used to improve the parametrix Q1 in (8.27) by removing the term of order
h + 1 at ¢bfg of the error term.

Proposition 8.11. There exists Q; € \IJ,;;5 < (M; E) and Ry € \IJ,;;)’RZ(M; E) such
that

Dy, Q2 = 1d =Ry, (8.53)
where Qo and Ry are the empty set at ¢bf, If and tf, while

Dol = (Ng — 1) UN> with inf Re N3 > 0, inf Re Do lgbty = N,
inf Re O, > 0, infRe Qo >0 (8.54)
inf Re @i, > v, infRe Qa|ify > h+1+v with v:=minfe, e — 1}

and
inf Re Ro|, > 1, infReRalg, > 0,
inf Re Rolgr > 0, infReRaif, > 1+v, infReRalify, > h+1+€ (8.55)
and inf Re Ra|gvey > h + 1.

Proof. To solve (8.29), we can take ¢» = k! GTI1,ry seen as term of order £ at ¢pbfy.
Letting Q) be a smooth extension of ¢» off ¢bfo corresponding to a term of order &
there, we can consider

02 = Q1+ 0.

This ensures in particular that R, in (8.53) is such that its term r, or order 4 + 1 at ¢bfy
is such that ITr, = 0. But extending D, Iy, seen as at term of order h + 1, smoothly
off ¢bfy and adding it to Q», we can suppose that R, has no term order & + 1 at ¢bfy,
that is, inf Re Rz |gbr, > 7 + 1.

Clearly then, the term of order & at ¢pbfy of O, must be the inverse of D¢, namely it
is precisely G¢. Moreover, the property (8.52) ensures that the new error term R still
vanishes to order 1 at zf,

inf Re Ry |, > 1.

Finally, the extension of g, off ¢bf(y can be done using the ‘right” boundary defining
function ’% near 1fg. Since I1,g2 = ¢, this means that the part of the error term R;
coming from the extension of g will have leading order 1+€ atlf, so thatinf Re Ro|if, >
1+v as claimed. On the other hand, g has in principle aterm of order A+ 14+€ < h+2+v
at rfo, hence the slight lost of decay at rfg. O
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Step 3: Inversion at ff. The parametrix Q> inverts Dy 4 at all boundary hypersurfaces
of M ,% " except at ff. There, the model to invert is

Nit(Dy,¢) = Dy +0p + vk. (8.56)

Using that y anti-commutes with D, +0, and that 3 anti-commute with D,,, we compute
that

Nit(Dy g)* = Dy + 0 + k.
This is clearly invertible as a suspended operator for k > 0 with inverse given by
Nit(Di,g) ™" = (Dy + 8, + yh) (D2 + 07 + k571 (8.57)

To see that this matches our model as k£ ~\( 0, we should decompose the normal oper-
ator in terms of ker D, and its orthogonal complement (ker D,)L. First, on (ker D)+,
Nit (Dg,g) is still invertible as a suspended operator for k = 0. Lifting this inverse from
ff x{0} C Mé x [0, 00) to Mlid) through the blow-down map Mlid) — Mq% x [0, 00), this
clearly corresponds to the part of Q| acting on (ker D)1 on ffy, while it vanishes
rapidly at If, tf, ¢bfy, Ifg and rfy. Hence, when acting on (ker Dv)l, the operator Q>
can be naturally extended on ff by

((Nﬂ‘(Dk,¢)|ker DUL)

On the other hand, on ker D,, the matching of fo(Dk’(p)_l with O, is more in the
spirit of [21], so we shall take the point of view offered by Lemma 4.4 and work initially
with [M ,f »> ®+1. On this space, the face ff} ;. created by the blow-up of &, corresponds
to a blow-down version of ff in Ml%,d) = [M,ib; d,, Og]. Because of this missing final
blow-up, the model operator Ny, , (D, 4) acting on ker D, is not Op + Yk in the limit
k — 0+, but instead

k(@p +y).

This is because near k = 0, it is %, not x’, which can be used as a boundary defining
function for ff, .. The inverse is thus given by

@ +y) U = @+ )@ +1d) "k (8.58)

By (8.38), this is precisely matched by Q2 |gbr, acting on ker D,, the factor k~!in(8.58)
indicating that k=13, + y) ! yields a term of order / instead of & + 1 at ¢bf.

Now, the face ff( created by the blow-up of @ is not really needed to invert the part
of Dy 4 asymptotically acting on ker D,. Indeed, when we are considering the action on
ker D,, the operator Dy becomes a scattering operator, and we can simply use the b-sc
transition double space. The inverse can then be lifted to M, ,3 é via the blow-down map

M,§,¢ — [M},; ®4].

This means that after we blow up ®g on [M, ,3 »» @+], we still have that the limit of

fo(Dk’(p)_l acting on ker D, matches the term of order & of Q> at ¢bfy, but also
that it matches the part of Q»|¢r, acting on ker D,,. This yields the following improved
parametrix.
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Proposition 8.12. There exists Q3 € \If,;;5 % (M; E) and R3 € \I/,:(})R* (M; E) such
that

Dy Q3 =1d—R3 (8.59)

with Q3 = QO and R3 the same index family as R, except at ff where we have instead
that

inf Re R3 |ff > 0.

Proof. This follows from the previous discussion. O

Step 4: Inversion up to an error term of order —oo decaying rapidly as k 0. By the
composition rules of Theorem 6.2 and thanks to the decay rate of R3 at all boundary
hypersurfaces, notice that there exists 6 > 0 such that for H a boundary hypersurface
of M ,? ® distinct from zf,

Ry=0xt)yatH = R =00l™)at H Vk e No. (8.60)

When H = zf, then (8.60) holds provided € + €; > 1. However, for € + €] < 1, itis
not quite true at zf, since R3 = O(x,) there, but the lack of decay at 1fy and rfg only
ensures that R% = O(x;:' 1y at zf. Still, (8.60) still holds for H = zf provided we take
n = € instead of u = 1. Since R3 is a pseudodifferential operator of order —1, this
means we can make sense of the formal sum

o .
2R
j=1

as an asymptotic sum, both symbolically and in terms of polyhomogeneous expansions
at the various boundary hypersurfaces. If S is such an asymptotic sum,

o .
S~y R
j=1

then § € W, (})’S(M ; E) with S satisfying the same lower bounds as R3, except at zf
when € + €] < 1, where we have instead 0 < inf Re S|, < 1 in that case.
Then, by construction,

Ry :=1d —(Id —R3)(Id +5) € W °(M: E)

has Schwartz kernel decaying rapidly at all boundary hypersurfaces of M ,3 e Hence,
setting Q4 = Q3(Id+S), we have that

Dy 04 =1d —Ry (8.61)

with Q4 € \Il,; (;) Q4(M ; E), where Q4 is an index family having the same lower bound
as Q3, except at rfg where we have instead inf Re Q4lif, > h + €. Furthermore, by
Theorem 6.2, if € + € > 1, then infRe S|, > 1,infRe S|, > 1 +vand 1 +2v > 0,
50 Qs = (Ng — 1) U Ny with inf Re Ny > 0.

The error term R4 can be seen as a smooth family of operators R4 (k) € \iI_OO(M J E)
parametrized by k € [0, co) and approaching rapidly 0 as k \, 0. In particular, the
operator R4(k) has a small operator norm for k small.
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Step 5: Completion of the proof of Theorem 8.4.

Proof. Since the operator norm of R4 (k) tends to zero when k N\ 0, there exists § > 0
such that Id — R4 (k) is invertible with inverse given by Id +S4(k), where

Sa(k) = Ry(k)! fork €0, 8)
j=1

is a smooth family of operators in W' ~°°(M; E) decaying rapidly to zero when k \ 0.
Hence, for k € [0, §), we can finally find a right inverse

Gry = Qs(1d+Sy) = DiyGry=1d. (8.62)

For k > 8, we can invert Dy o simply in the small ¢-calculus as in [33], that is, with

inverse in ‘-Ifdjl (M; E).Hence, Gy 4 can be extended to k € [§, 00) to give arightinverse
forall k > 0.

By the composition rules of Theorem 6.5, Gy 4 is a k, ¢-operator and (8.8) holds, ex-
cept possibly atrfy and ff where we can only conclude for the moment that inf Re G|, >
h+e and inf Re G|gr > 0. Hence, it remains to prove that G ¢ Dy ¢ = Id and that in fact
inf Re G|, > h+ 1+ v and Gl = Ny. To see this, take the adjoint of Dy 4Gy ¢ = Id,

It suffices then to notice that
G;(p = G;:Jp(Dk,quk,d:) = Gp -

In particular, Gy ¢ is self-adjoint as expected and inf Re G|if, > v = inf Re G|if, >
h+1+v. On the other hand, for k > 0 we know from the parametrix construction of [33]
in the small ¢-calculus that the expansion at ff of G ¢ must be smooth. By continuity,
this means that this is still the case in the limit £ \ 0, so that G|¢ = Ng as claimed. 0O

Composing G ¢ with itself also gives a description of the inverse of D o = D2 +k2.

Corollary 8.13. Let 0,4 € Diff ! (M ; E) be a Dirac operator satisfying Assumption 8.1.
Then there exists an operator Gk ¢ € \I/ 2 9 (M; E) such that

(D + k)G 4, = Gi 4 (DG +k*) =1d,
where Gy is an index family given by the empty set at If, tf and ¢pbf, and such that

inf Re Gal,f > —2, infReGolppry, > h — 1, Galer = N,

) h>1,
1HfR6g2|ff0 = {(0 1), h=1, (8.63)

and infReGolir, = (v —1,1) € R x Ny,
infReGalefy > (h —1+v,1) € R x Np.
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Proof. Toapply Theorem 8.4, we need to find a self-adjoint operator y € C*°(M; End(E ))
asin (8.1). One way to proceed s to consider, instead of 9 the operator 5¢ € Diff} (M E®

E) given by

= 0y O
O =7 ) : (8.64)
’ ( 0 =0
since then one can consider the self-adjoint operator ¥ € C*°(M; End(E & E)) given
by
~ 0 —+/—1
V= ( 1 0 ) (8.65)

L

The operator ¥ is such that 7% = Idgg £ and5¢)7+)7§¢ = 0. Setting 5,;, =X %’5 2
we can thus apply Theorem 6.2 to find 6/(4, € ql,;;)’g(M; E @& E) such that

(Dy +k7)Grp = Grg(Dy +k7) = dpar

with index family G as in (8.8). Composing 6k ¢ with itself and applying Theorem 6.2
gives us an operator G2 ko € \JJ —2 gz(M E @ E) with index family G, as in (8.63) such
that

(D} +kHGp 4 = Gi 4 (D} + k) =g
If P1 E @ E — E is the bundle projection on the first factor, it suffices then to take
Gk 6= =P Gk ¢P1 O

. h+1 h+l
Remark 8.14. In terms of 5;, this means that x > G% d)x’% is such that

© +k2)(x%G£,¢x’%) = (x%Gi’q&x*%)((y)é +k%) =1d.

Thanks to Example 8.3, this can be applied in particular to Hodge Laplacian of a
fibered boundary metric.

Corollary 8.15. Let 04 be the Hodge—deRham operator associated to a fibered boundary
metric g4 product-type up to order 2. Suppose that the exterior differential d* P and

its formal adjoint 8 Pv acting on sections of the flat vector bundle ker D, — Y in
Lemma 3.8 are such that the de Rham cohomology groups

h—1 h h+1
H?(Y;ker Dy) = {0} for q € =" (8.66)
3
SpeC(dker Dv Sker Dv + 8ker Dv dker Dv)% > Z (867)
Spec(d¥er Pvgker Dv)hzi > 1. (8.68)

Then there exists an operator G ko € \1172 92 (M; A*(PT*M)) such that

(D + k)G 4, = Gi (DG +k*) =1d,
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where Gy is an index family given by the empty set at If, tf and ¢bf, and such that,

inf Re Galr > =2, infReGalgbry > h — 1, Galsr = No,

. 0, h>1,
inf Re G g, > {(0’ 0, h=1, (8.69)

and infReGolir, = (v —1,1) € R x Ny,
infReGalefy > (h —1+v,1) € R x N,
where v = min{e, €] — 1}.

Proof. We need to show that the indicial family /(Dp, A) has no indicial root in the
interval [—1, 0]. By Lemma 3.8, this will be the case provided the de Rham cohomology
groups

HY (Y ker Dy) = (0} for g€ {/— Z hzi}, (8.70)
(Specater Prgher Do . ghor Degler Dv) A (0)) > j , (8.71)
<Spec(dker DogherDiy 1 \ {0}) S, (8.72)
<Spec(5‘<er Dogher Doy, \ {0}) o1, (8.73)
(Spec(dker Drgher Do) {0}) > Z, (8.74)

3

(Spec(SkerD R VR {0}) > (8.75)

Clearly, (8.66) and (8.67) corresponds to (8.70) and (8.71). On the other hand, by the
symmetry of the positive spectrum of the Hodge Laplacian, (8.67) also implies (8.74)
and (8.75), while (8.68) implies (8.72) and (8.73). O

When Y = 0M and ¢ : 9M — Y is the identity, we see, taking into account the
different conventions for densities to define pseudodifferential operators, that Corol-
lary 8.15 gives back [23, Theorem 1], but on a double-space with with one extra face,
namely ffy. In our parametrix construction however, the face ff is not required when ¢
is the identity map, so our parametrix does indeed descend to the b-sc transition double
space of [21,30] as in [23].

On the other hand, with respect to [23, Theorem 1], our hypothesis is slightly less
restrictive. Indeed, first, in the terminology of [23], we are allowing an asymptotically
conic metric to order 2 instead of 3. Second, the assumption [23, (2)], namely

ker i Li(Dé) = ker LZ(D;) (8.76)
in our notation, implies in particular that
kerx,lLi Dy = kerlei Dy. (8.77)

By the relative index theorem of [37, Theorem 6.5] and the symmetry of the critical
weights of 1 (D, 1) around —%, we can infer from (8.77) that

(=1, 0) N Crit(Dp) = 0. (8.78)



294 C. Kottke, F. Rochon

By Lemma 3.8, the condition (8.78) implies (8.66), (8.67) and (8.68), but the last two
with only non-strict inequalities. However, using the symmetries of the positive spectrum
of the Hodge Laplacian, the first condition of [23, (4)], namely

h+1
2

1 h+1 : ker D, ¢ker D.
g-——|=5; = 1— —— 4 ¢ Spec(d“" v 5<T ),  (8.79)

in our notation, precisely rules out the equality case in the (8.67) and (8.68) with non-
strict inequalities. Thus, conditions [23, (2),(4)] implies our conditions (8.66), (8.67)
and (8.68). Conversely, if / is even, notice that (8.66) and (8.67) implies [23, (2),(4)]
by [23, Lemma 27]. If instead /4 is odd, then at least we see that (8.66) and the stronger
version of (8.68)

Spec(dker DU Sker DU + Sker DU dker DU ) el > 1
2

imply [23, (2),(4)] by [23, Remark 28].

9. The Inverse of a Non-fully Elliptic Supended Dirac ¢-Operator

In this final section, let us come back to our original motivation for studying the low
energy limit of the resolvent of a Dirac ¢-operator. Thus, on M x RY, let

5sus = 54& + 6]}@ 9.1)

be a R?-suspended Dirac ¢-operator, where d4 is a Dirac ¢-operator associated to a
fibered boundary metric g4 and a Clifford module E — M as in § 8, and where Oy is
a family of Euclidean Dirac operators on RY parametrized by M and anti-commuting
with 0¢. If {e1, ..., ey} is the canonical basis of R?, then

q
Ogs = Y _cl(e))Ve,
j=1
with V the pull-back of the Clifford connection of E to its pull-back on M x R? and
cl(e;) denotes Clifford multiplication by e ;. Thus, we suppose that the Clifford module

structure of E lifts to a Clifford module on its pull-back on M x R? for the Clifford
bundle associated to the product metric

8¢ T 8Ra

on M x RY, where gprq is the canonical Euclidean metric on R?. Taking the Fourier
transform in R?, we obtain a family of operators

Ogus () = Tp +icl(E), &eRY, 9.2)
As noted in the introduction, for & # 0, this can be rewritten
~ . i
Osus = 0g +ky withk =|§|, y = Elcl(é). 9.3)

Conjugating by x T, we get the corresponding operators

h+1 h+1

Dgus =X~ 2 DgusX 2 = Dy +0ps and Dgys(§) = Dy +i cl(§) (9.4)
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with £ € RY and Dy = x~ '3 9yx'% asin (3.1).

We will suppose that Assumption 8.1 holds for the operator dg. In this case, using
(9.4), we know by Theorem 8.4 that the inverse G¢ ¢ of the operator 5sus (¢) admits
a pseudodifferential description all the way down to £& = 0. Hence, taking the inverse
Fourier transform of the inverse G¢ 4 will give a corresponding inverse for Dygys. The
detailed description of G¢ ¢ in the limit £ — 0 will allow us to give a pseudifferential
characterization of the inverse of Dy,. First, recall for instance from [11, Lemma 6.2]
that the small calculus of R?-suspended ¢-operators acting on sections of E is the union
over m € R of the spaces

W2 sy (M E) = {c € I"(Mg x R, Ay x {0};
pri(Homy (E., E) ® *Qr(M))) - prs(Qpo) |
K =0at d(M; x R9) \ (ff xR7)}, 9.5)

where R is the radial compactification of RY, pr; : M; x RY — Mé and pry :
Mq% x R4 — Y are the projections on the first and second factors and Q¢ is the

density of the Euclidean metric on R?. However, because of the lack of decay and the
lack of smoothness, the inverse Fourier transform of G¢ ¢ will not quite be an element of

\D;ESUS(RL,) (M; E). We need in fact to slightly modify this space of operators if we want
to include the inverse Fourier transform of G¢ 4. To describe this space, let p be a total
boundary defining function for the b-double space MZ. LetV, = Mg x pR? denote the
vector bundle of rank g over le trivialized by the sections pey, ..., pe,. As sections of
V,, these sections are not vanishing on 0 M, 2 though of course they do vanish as sections

of M g xRY > M g Let Vp =M g x pR4 denote the fiberwise radial compactification
of the fiber bundle V,,. The double space needed to describe the Schwartz kernels of our

class of operators is obtained by blowing up the p-submanifold ® x {0} C M 5 x pRY,
that is, the zero section of V,|¢, where ® C Mg is the p-submanifold of (2.12),

M(%—sus(vp) = [Mlz x pRZ; ® x {0}]. (9.6)

Denote by ff the new boundary hypersurface created by this blow-up. Let us also denote
by S(V,), ¢bf, If and rf the boundary hypersurfaces of qus—sus(v,,) corresponding to

the lifts of Mg x d(pR7), bf x pRY, If xpR? and rf x pR?. Because of the blow-up of
@ x {0}, notice that the space of suspended operators (9.5) can alternatively be defined
by

Vo sus(ra) (M5 E)
= {ic € I" (M _usv,)> Do susi BT} (Homy(E, E) © B prg ?Q(M))) - B (p ™/ Qi) |
k=0 at a(A?;_S“S(VP)) \ ff}, 9.7)

where Ay g5 is the lift of A x {0} C le x pRY to with Aj, the b-diagonal

: 2
in M,

172
Mq)fsus(Vp)

~

.72 2 ~ 0 =7
pry : qu—sus(Vp) — My and pr,: Md)—sus(v,,) — pR¢



296 C. Kottke, F. Rochon

are the natural map induced by the blow-down map and the natural projections V_p — Mg
and Vp — pRY, while Q,rs = p?QRq is the natural Euclidean density on pIR? and

Homy(E, E) = B} (pr; E @ pry E¥)

withpr; : M> — M and pry : M? — M the projections on the left and right factors.
If £ is an index family associated to the manifold with corners M? $—sus(V,)> One can

more generally consider the spaces

8 L2 .
\IJ(Z) sus(Rq)(M E) - phg(M¢—sus(Vp)’

Pt} (Homy (E, E) ® By priz QM) - B3 (0~ Qpma)), (9.8)

£ £
xyg’ ws(rey(M: E) i= \1/ " sus(rey (M3 E) + Wy o‘SM(RC,)(M E), meR.

Theorem 9.1. Suppose that Assumption 8.1 holds for 04 and that h = dim Y > 1. Then
the inverse DSus of Dgys, for instance seen as acting from its minimal domain onto the
L2-space of sections of E with respect to the metric gp + gra With g, a b-metric on M,

is an element of \I—’q;_];gs(Rq) (M; E) for an index family G such that

infReGls(v,) > ¢ — 1, infReGlgor = h+q, infReGly >0, 09
infReGlif > v+gq, infReCGly >h+q+1+v, withv=nminfe, e —1}.

Furthermore, if € + € > 1 for € and €1 as in Assumption 8.1, then

Glsv,) = (g — 1+No) UV +¢q)
with N an index set such that Re N’ > 0.

Proof. Notice first that performing a standard symbolic inversion as in the proof of

Proposition 3.10, there exists Q € \IJ(]> sus(]R‘I)(M ; E) such that

DawsQ =1d+R, R €W, % 0, (M; E).

Hence, taking its Fourier transform Q(E ) in the factor RY gives for each n € S7~! an
operator Q(kn) in \I/,;;)(M; E) such that for y =i cl(n),

(Dg +ky)Q(kn) = 1d+R(kn), R(kn) € W, 3*(M; E).
In particular, this shows that

(Dg +ky) ™' = (Dg +ky) "' ((Dy + ky) O(kn) — R(kn))
= Q(kn) + (Dy + ky) "' R(kn).

Since the inverse Fourier transform of the first term on the right hand side is already
in the desired space, it suffices to concentrate on the second term. By Theorem 8.4 and
Theorem 6.2, notice that

Ra(kn) := (D +ky) "' Rkn) € W 59 (M; E).
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Now, near zf, but away from the other boundary hypersurfaces, the inverse Fourier trans-
form converts the polyhomogeneous expansion at zf into a polyhomogeneous expansion
at S(V,) with term of order kt = |& | at zf being converted into a term of order ,ooo at
S(V,), where p, denotes a boundary defining function for S(V,,). In particular, the term

of order —1 at zf corresponds to a term of order p?~! at S(V,) given by the pull-back
of

-1 _
GZf = errL% Dy

on M,f to S(V),). Near ¢bfg, Ify and rfp, but away from ff, we can take advantage of
the rapid decay of R, (kn) at ¢bf, If and rf to make the change of variable
3

E=2, Y=px (9.10)
yol

in the inverse Fourier transform of ﬁz (&), so that

1 o 1 L
<<2n)q/R eMRZ(S)dg) = <(27r)q / e R2(p~§)d$> d%
q p—1RY

with X the natural variable on the fibers of V, = M 2 % pRY (so that dX = Qpre). In
particular, the inverse Fourier transform will have the claimed behavior away from the

lift of V|¢ C V), on M¢ sus(V,)"

Hence, the only problematic region left to consider is near ffy and ff in Mé To
describe the inverse Fourier transform near this region, we will first provide more details
on the expansion of (Dgy + ky)™ Lat ff and ffy. Let ptr and pgr, be boundary defining
functions for the boundary hypersurfaces ff and ffy in M ,g e Then the expansion of

(Dy + ky)~! at ff in powers of pg makes in principle the Fourier transform hard to
compute, since in local coordinates, pg = %, yielding a singular expansion in k as

k ~\( 0. However, as we will now show, the expansion at ff of 1?2 (kn) is in powers of
Pt Pit,» that in powers of x’. Indeed, since

Ra(kn) = (Dg +ky)~' — Q(kn) (9.11)

and since Q(kn) is already a conormal distribution with smooth expansion at Mq% X

[0, 00k, it clearly suffices to show that the expansion of (Dg + ky)~! at ff is in powers
of prr prr, instead of just pfr, a result established in Lemma 9.2 below.

Knowing this, we can thus take the inverse Fourier transform in & of each term in
the expansion of Rz (&) at ff. Doing this, we are left with an error term with rapid decay
at ff. To take the inverse Fourier transform near ffy, we can thus make the change of
variable (9.10) again and invoke Lemma 9.3 below to show it is of the desired form.

Still, there could be a p\roblem while taking the inverse Fourier transform of each
term in the expansion of Ry (&) at ff. Indeed, in principle the expansion in |£| would
yield an expansion at the boundary hypersurface created by the blow-up of the lift of
® x pRY in 1\7{%_ sus(V)* The fact that we do not need to perform this blow-up to have a

polyhomogeneous conormal distribution comes from the fact that the expansion in |&|
is in fact smooth in £, so when we take the inverse Fourier transform, this ensures rapid
decay at this extra-blown-up face. To see this smoothness in the expansion at £ = 0,
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notice that by Lemma 9.4 below, each term in the expansion of (Dy + ky)~! at ff has

a smooth expansion in —£_ ot just LEL at ffo N 1f, so that by (9.11), the same holds

Pty __ Pavfg ’
for the terms in the expansion of R(§) atff. O
Lemma 9.2. The expansion of Gy ¢ = (D¢+ky)_1 atft in Theorem 8.4 can be described
in terms of powers of ptt ptt, Pybt, fOT ptt, Pty and pgwt, boundary defining functions for
ff, ffo and ¢bf.

Proof. According to (8.57), the top order term in the expansion of Gy 4 at ff is given
by

Nit(Dyp) ™" = (Dy +0p + yk) (D2 + 07 + k571 9.12)

It has a term of order A at ff Ngbf involving only the part (8.58) of the normal operator

acting on sections of ker D,. Hence, the model (9.12) can be extended smoothly off ff

to an operator Q¢ € W, | (; o (M; E), where for j € Ny, Q; corresponds to the index

family such that
Qilir = Qjltry = Qjlgpto —h =No+ j
with Q; given by the empty set elsewhere. This extension can be made in such a way

that its expansion at ff is in powers of pfr pgbr, Off,- Then we have that

Dy, Qo = 1d+Ry, (9.13)

and with R; € \Il,?’;zl (M; E) having also expansion at ff in powers of pgt ogbr, Otfy

where for j € N, R; corresponds to the index family such that
Rjlg =No+j, Rjligg — 1 =Rjlgpt, —h —1 =N,

and which is the empty set at all other boundary hypersurfaces of M,?y & Indeed, by
Theorem 6.2, the error term R; is of the claimed form. Since the expansion of R; at ff is
in power of ot pfr, Pgbt, > NOtice that Nie (R og 1) has index sets Ng + 1 and Ng + /2 + 2 at
ffp and ¢bfy. In fact, adding successively terms of order (,Oflf ,oflfo pz;f]o) for j € Nin the
expansion of Qg at the corner ff Ngbf and taking a Borel sum of those, we can require
as well that Nt (R oy 1) decays rapidly at this corner.

Now, replacing & and Flg by 0 in Theorem 6.2 yields a composition result for

Schwartz kernels on ff. This suggests to consider aterm Q| € \Ifk_ ;5 < (M; E) such that

Nir(Q105") = —Nir(Qo) Nir (Ri pgr )

and with expansion at ff in powers of st pguf, pff,. With this understood, we have that

Di,¢p(Qo+ Q1) =1d+R>

with Ry € \Il,?’;zz (M; E) having expansion at ff in powers of pgr orr, ofr, - In particular,

fo(Rzpf}z) has index set Nog + 2 and Ng + & + 3 at ffo N ff and ¢bfyN{f. Adding
successively terms of order (pfzfpfzfo pg;fl(;rj ) for j € N in the expansion of Qi at the

corner ¢bfo N{f and taking a Borel sum, we can also ensure that Nt (R2 o 2) vanishes
rapidly there. Clearly, this construction can be iterated, so that more generally, we can
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define recursively Q, € w1 (M; E) having expansion in powers of pff off, Ppbt, at
ff such that Nir(Qepi ") = —Nir(Qo) Nir(Rep ") and

14
Dig()_ Q) =1d+Rps

j=0

with Rpy1 € ‘l/k f“‘ (M; E) having expansion in powers of st pfr, pgbf, at ff with

fo(R[+],Off ) vanishing rapidly at ¢bfo Nff. If O € lll_l o (M; E) is a Borel sum
of the Q;, then its expansion at ff is in powers of o pgr, ,0¢be and

Dy Q =1d+R
for some R € \IJI?”Z}(M ; E) with R the index family such that
Rlttg — 1= Rlgbty —h — 1 =Ny
and with R given by the empty set elsewhere, in particular at ff. Since

D—;_DM(DMQ R) =0 - D—‘R

we see from Theorem 6.2 that Dk_; has the same expansion as the one of Q at ff, from
which the result follows. 0O

Lemma 9.3. The terms in the expansion of G ¢ at ffo can be decomposed into terms
coming from M¢2) x R? and terms coming from [M k ps P4l x S I

Proof. Using (8.52), we know how to invert Dg o at ¢bfg. This inverse makes sense
on [M,fb; ®,] x S?71, that is, before we blow up Py in (4.16) to obtain M,f x §4-1.
When lifted to M, B ko X x S?71 it induces on ffy the part of the inverse of Nty (Dg,¢)

in the range of ITj. The part of the inverse of Nr,(Dg o) off this range is a family of

suspended operators in the usual sense, so decaying rapidly on ¢bfy. Moreover, the

full inverse of N, (Dg 4) does not depend on f—c and descends to M(% x R7. Hence, let

Qo € ¥, 1 <o (M; E) be a parametrix of D¢ 4 obtained by extending the inverses at
¢bfy and ffo smoothly and by inverting symbolically, so that

D: Qo =1d —R} — R}, (9.14)

where R, € Vi o —oo.Ry (M; E) comes from a polyhomogeneous section on [, ,f » Pl X
S, R( € \Ilkﬁ ¢ (M: E) vanishes to order one at ffy and comes from a polyhomoge-
neous section on Mq% x R4, and where Qy is an index family such that

inf Re Qpl,s > 0, infRe Qolgr, > 0, infRe Qolgvr, > h, inf Re Qolig, > 0,
inf Re Qoli, > h +1,
olir = No,  Qolir = Qoler = Qolgbr =9
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while Ry is an index family such that
inf Re R |+ > 0, infReRyple, > 0, inf ReRlgbr, > h + 1,
inf Re Rylig, > 0, inf Re R, > 1+ 1,
Rolit = No,  Roht = Rolet = Rolgor = 9.

Essentially, the term Ry is the error term created by the inversion at ¢bfy and the
inversion on ff( in the range of ITj, while R{] is the error term created by the inversion
at ff) off the range of I1;, and the symbolic inversion. Extending smoothly

Nit, (Q1) := Nity (Q0) Niry (Rpy)

off ff x {0} in M(% x R?, we obtain an operator Q1 € \P,;;O(M; E) coming from a smooth
section on M? x [0, co) such that

D 4(Qo+ Q1) =1d —R| — R

with R} and R” satisfying respectively the same properties as those of R, and R, but
with R vanishing to order 2 at ff(. Proceeding recursively, we can more generally

construct Q; € V- Zo (M; E) coming from a smooth section on Mq% x RY such that

i
Deg | Y 0| =1d—R — R}
j=0

with R! and R/ satisfying the same properties as R, and R, but with R/ vanishing to
order j at ffy. Taking a Borel sum

at ffo gives a a parametrix Q € \Il,; 41, QO(M ; E) such that
De ¢ Qoo =1d —Roo

with Ry € lI!,;poo’Ro (M; E) satisfying the same properties as Ry. Proceeding as in the
proof of Proposition 8.11, we can also remove the expansion of Ry, at the boundary
hypersurface of [M,ib; @, ] that lifts to ¢bfg on M,g, ¢ to get a new parametrix Q €

v, ;;Q(M ; E) with Q satisfying the same properties as Qg and such that
D:yQ =1d—R 9.15)

for some R € W, ;O’R(M ; E) with R satisfying the same properties as Ry, but with
Rltty = Rlgbt, = ¥. In this construction, notice that we can write

Q — Q/ + Q//
with Q' coming from a conormal distribution on [M,f s Pl X S?=! and Q" coming
from a conormal distribution on Mé x RZ. On the other hand, by (9.15),

G:p = Geyp Id = G:p(DepQ+R) = 0 +GeyR.
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Since R decays rapidly on ¢bfy and ff, using the fact that in (6.13), the terms in the
expansion at ffo coming from (€|, + Flrf,) correspond to terms polyhomogeneous on
[M ,g » @41, we see that G¢ ¢ has the same expansion as Q at ffp modulo terms coming

from [M,g’ pi D] x SY =1 from which the result follows. O

Lemma 9.4. Suppose that h > 1. Then each term of the expansion of G¢ ¢ = (Dg +

i cl(&))~! at ff has a smooth expansion in powers oquﬁ% at ff N ffy, not just in powers
0
k_ _ _lg]
of Pbty  Pebfy
3

Pebiy
ff N ff(. For this purpose, we can decompose the action of fo(Dk,¢,)_l with respect to
the decomposition ker D, @ ker Dvl in the fibers of ¢ : aM — Y. Clearly, the part
acting on (ker D)1 is smooth in & and it even descends to ff ng in Mé X Rg.

For the part acting on ker D,, it is given by

Proof. Let us start by showing that fo(Dk,¢)_l has a smooth expansion in at

@ +iclE)™" = @ +icl@) @+ (9.16)

Now, 6% = |&|2A},, where A, can be seen as a family of Euclidean Laplacian on the

fibers of the vector bundle ©? N Y introduced in (4.8). Taking the Fourier transform in
the fibers of this vector bundles, the operator (5%) +|&12) thus becomes

EPAC 1, a,) + D

where ¢ denotes linear coordinates in the fibers of ©¢ NX ¥ with norm | - |4,(a,) induced
by the principal symbol of Aj. The inverse is clearly given by

E172¢ 15, + DN

Taking the inverse Fourier transform, we see that

1 . d
@+~ = (lél‘2 Gy /e*‘”ﬁ) d(kY),

o2(Ap)

where Y denotes linear coordinates in the fibers of V = (k= 1)K N Y in (7.8), so that kY
corresponds to linear coordinates in ¢ Ny Y. Since (1 + |¢ |§2 ( Ah))_l has an expansion

in even powers of [ |;21( Ap)? its inverse Fourier transform has an expansion of the form

1 olCkY 1 ad 2
dc ~ a; kY|
el 2 e 24k g,
Qmyr S (41815, ) kY 15,80 =0 o

at |kY |5, (a,) = 0, where we have used the fact that 2 > 1 to rule out the presence of
a logarithmic term in the expansion. Hence, taking into account the change of density
d(kY) = k"1dY, we see that at |kY|gya,) = O, the inverse (07 + |£*)~! has the
expansion

_ 1 — 12
@ +ED T~ [ == D@ lEIY A, | Y at KIYloya,) =0

| | o2 (Ap)
02(Ap) j=0
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Since |Y I;;( An) is a boundary defining function for ¢bfy, this expansion corresponds to

a smooth expansion in %% at ff N ffy. Since (O + i cl(&)) is already smooth in &, we
0

thus see that the composite (9.16) has a smooth expansion in powers of /’4:% at ff N ff.
0

Hence, letting Qo € ¥, —L QO(M E) and R; € \IIO R (M; E) be as in the proof of
é

Pt

g

Pebi()

Lemma 9.2, notice that Qg and R can be chosen to have a smooth expansion in at

€]

ffo. In fact, adding terms of order pgf ( ) for j € Nto Qg that are smooth in
bf(

and taking a Borel sum, we can further assume that Nt (R o 1) decays rapidly at ff as
well.
Letting Q; denote index family given by Q| = No + j, Q]|¢bf0 =No+h+1

and by the empty set elsewhere, we can thus take Q; € ‘~IJ_1 Q (M; E) with smooth

expansion in —5_ at ff such that
PN

Nir(Q1pg") = —Nir(Qo) Nit (Ri pg )

and
Dy¢(Qo+ Q1) =1d+R

for Ry € \IJO 72 (M; E) having smooth expansion in powers of %% at ffy, where R j
0
denotes the mdex family with

ﬁjlff =N+ /, 7~3j|ff0 Iﬁj|¢bfo —h=Ny+1

and with R j €lsewhere given by the empty set. In fact, since we are not insisting on
Q1 having rapid decay at ffy and ¢bf, we can assume that N (R; pf}z) decays rapidly

€]

J
at ffo Nff by considering appropriate terms of order pff ( smooth in ,q;,% for
0

J € Np in the expansion of Q at ffp N ff and taking a Borel sum of those. Similarly,
adding terms of order pgf (,0¢bf0)h+~’ for j € N through a Borel sum in the expansion of

Q1 at ff Ngbfy, we can assume as well that N (Ry ,0&2) vanishes rapidly at ff Ngbfy.
Clearly, this construction can be iterated, so that one can more generally construct

QjeVv, 1 9 (M; E) with smooth expansion in powers of %% at ffy such that
0

Nie(Q,p~7) = —Nit(Qo)Nit (R, o)

and
Di,¢(Qo+---+ Qj) =1d+Rj4

with Ry € \I/,?’f" + (M; E) having a smooth expansion in powers of ﬂzp% at ffy and
. _ o

such that fo(Rj+1pf;]_l) vanishes rapidly at ffy N ff and ¢bfy N ff. Taking Borel sum

of the Q;, we thus obtain an operator Q € \Il,; qlb < (M; E) such that Q has a smooth

expansion in powers of at ffp and

DiyQ =1d+R



Low Energy Limit for FB-Operators 303

with R € W,?”f(M; E), where R is the index family with
Rlty = Rlgvro —h = No+ 1
and with R given by the empty set elsewhere. Since
Diy = Dis(DrsQ — R) = Q — DiyR,

we see from Theorem 6.2 that Q and Dk_(}) have the same expansion at ff, from which
the result follows. O '
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Appendix A. Blow-ups in Manifolds with Corners

In this appendix, we will establish the commutativity of blow-ups of two p-submanifolds
used in Lemma 4.4 to show that our two ways of constructing the k, ¢-double space are
equivalent. Indeed, this result definitely requires a proof, especially since it does not
seem to follow from standard results like the commutativity of nested blow-ups or the
commutativity of blow-ups of transversal p-submanifolds.

Lemma A.1. Let W be a manifold with corners. Suppose that X and Y are two p-
submanifolds such that their intersection Z = X N'Y is also a p-submanifold with the
property that for every w € Z, there is a coordinate chart

g U — R x RZ x R x R (A.1)
sending w to the origin such that

eUNX) = {0} x {0} x RZ; X RZ:,
eUNY) = (0} x B2 x {0} x R, (A2)
eU N Z) = {0} x {0} x {0} x R,

Then the identity map in the interior extends to a diffeomorphism

[W; X, Y, Z] - [W; Y, X, Z]. (A.3)
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Proof. Since we blow up Z last, notice first that this result does not quite follows from
the commutativity of nested blow-ups. Now, clearly, away from Z, the blow-ups of X and
Y commute since they do not intersect. Thus, to establish (A.3), it suffices to establish
itnear Z. Let w € Z be given and consider a coordinate chart ({/, ¢) as in (A.2). Let
xX=01 .0 X)),y =01+, V)2 =(21,...,2p;) and w = (w1, ..., wy,) be the
canonical coordinates for the factors Ry, Ri>, Ri”> and R} respectively.

When we blow up X, this coordinate chart is replaced by the one induced by the coor-
dinates

Xy —1
— — 2 2 ny+ny n3 n4
(a)x,y—(;,;),r—,/|x| +y*lz,w) €Sy, X [0,00), x RS x Ry 7.

In this coordinate chart, the lifts of ¥ and Z corresponds to
({0} x ;271 x [0, 00), x {0} x R}
and
ST x {0} x {0} x R,
ni+ny—1

where {0} x S,';‘zr] C RZ: X RZ; is seen as a p-submanifold of Skl +k,  seenas the

unit sphere in RZI‘ X RZ; To blow up Y, this suggests to consider the smaller coordinate
chart induced by the coordinates

_ y ni np—1 n3 ng
x,wy =—,r,z,w) € Rkl X Skz x [0, 00), x R,q X ]Rk4

Iyl
in which the lift of ¥ corresponds to
{0} x S27" x [0, 00), x {0} x R}
and the lift of Z to
Ry x S;2 71 % {0} x {0} x Ry,

Hence, blowing up Y, we obtain a coordinate chart on [W; X, Y] by considering the one
induced by the coordinates

X Z _
(@re = (2 2, p = VIR + 2P 0y = -, r = JIx |2 + |y[2, w) € St
PP ] 1

x[0, 00), x SZT1 x [0, 00), X RZ;‘
in which the lift of Z corresponds to
S x {0]) x [0,00), x S;2 7" x {0} x Ry

with SZ}I_I x {0} C R} x R;? seen as a p-submanifold of SZ:ZS_I. To blow up Z, this

suggests to consider the coordinate charts induced by the coordinates

X —
(z, oy ,P=V|X|2+|Z|2,wv=ﬁ,r= X2 +1y2, w) € R x S;! !
Y=y V :

|x]

x[0,00), x S~ x [0, 00), x R}
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in which the lift of Z corresponds to
{0} x S x [0, 00), x S271 % {0} x Ry

Hence, blowing up the lift of Z, we see that [W; X, Y, Z] admits a coordinate chart
induced by the coordinates

zr X y
(o = (=, =) s =VI[zPP+r2 0y = —, 0y = —, p =/ Ix]2+[y]?, w)
s | x| [yl
€ i, x [0, 00)s x ST x ST x [0, 00),, x R (A.4)

In this chart, Z lifts to

S

np—1 ny—1 n
ka1 % {0} x Sk, xS x[0,00), x RY,

Y lifts to
S % [0, 00)s x S x §2 71 x {0} x Ry
and X lifts to

S % {0h) x [0, 00)s x S} x 55271 % [0, 00), x R,

where Szgf1 x {0} C RZ; x [0, 00), is seen as a p-submanifold of the unit sphere

SZ;H C RZ: x [0, 00);-.
Since we are interested in the commutativity of the blow-ups of X and Y when the blow-
up of Z is subsequently performed, we can consider instead a smaller coordinate chart

on [W; X, Y, Z] in a neighborhood of the lift of X which is induced by the coordinates

X y z /
(Wy = —, 0y ="—,w; = —,r = [x|2 +|y|3,
x| |yl |z]

p=VIXP+z7 s = \Ix2+1y2 + 122, w)

e S x 527w 2T % [0, 00), x [0, 00), x [0, 00)5 x R, (A.S)

This chart is defined near the intersection of the lifts of X, ¥ and Z, which corresponds
0 P x SET X ST x {0} x {0} x {0} x Ry

The definition of this system of coordinates is symmetric with respect to X and Y,
namely, considering instead [W; Y, X, Z], we would have obtain the same coordinate
system valid near the intersection of the lifts of X, Y and Z. This indicates that in this
region, the identity map in the interior naturally extends to a diffeomorphism. Since this
clear elsewhere, the result follows. 0O
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