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Abstract: For certain Dirac operators ðφ associated to a fibered boundary metric gφ ,
we provide a pseudodifferential characterization of the limiting behavior of (ðφ +kγ )−1

as k ↘ 0, where γ is a self-adjoint operator anti-commuting with ðφ and whose square
is the identity. This yields in particular a pseudodifferential characterization of the low
energy limit of the resolvent of ð2φ , generalizing a result of Guillarmou and Sher about
the low energy limit of the resolvent of the Hodge Laplacian of an asymptotically conical
metric. As an application, we use our result to give a pseudodifferential characterization
of the inverse of some suspended version of the operator ðφ . One important ingredient
in the proof of our main theorem is that the Dirac operator ðφ is Fredholm when acting
on suitable weighted Sobolev spaces. This result has been known to experts for some
time and we take this as an occasion to provide a complete explicit proof.
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1. Introduction

An important class of complete non-compact Riemannian metrics with bounded geom-
etry is the one of asymptotically conical metrics (AC-metrics). Those consist in met-
rics asymptotically modelled on the infinite end of a Riemannian cone (C, gC), where
C = (0,∞) × Y with (Y, gY ) a closed Riemannian manifold and

gC = dr2 + r2gY .

When Y = Sn and gY is the standard metric gSn , we get the more restricted class of
asymptotically Euclidean metrics (AE-metrics). If Y = Sn/� for � ⊂ O(n + 1,R) a
finite subgroup and gY is the quotient of the standard metric gSn , this corresponds to the
slightly larger subclass of asymptotically locally Euclidean metrics (ALE-metrics). In
general relativity, AE-metrics play an important role in the formulation of the positive
mass theorem, while many important examples of gravitational instantons are ALE-
metrics [31].More generally, there aremany examples of asymptotically conical Calabi–
Yau metrics [8,9,17,27,43,46].

In terms of scattering theory and spectral theory, AC-metrics constitute a natural
generalization of the Euclidean space. In that respect and compared to other types of
geometries like asymptotically hyperbolic metrics [34], meromorphic continuations of
the resolvent of the Laplacian are hard to obtain. For instance, the meromorphic contin-
uation of the resolvent obtained by Wunsch–Zworski [47] is in a conic neighborhood
of the continuous spectrum, which as expected from [38, § 6.10], does not include an
open neighborhood of 0. It is possible however to give a description of the asymptotic
behavior of the resolvent (�−λ2)−1 of the Laplacian� of an AC-metric when λ = ik is
in the imaginary axis and k ↘ 0. Since k2 has the interpretation of an energy in quantum
mechanics, this asymptotic behavior is often referred to as a low energy limit and is in
some sense the opposite of the semiclassical limit, which consists instead to study what
happens when k2 tends to infinity.

More precisely, developing and using a pseudodifferential calculus initially consid-
ered by Melrose and Sa Barreto, Guillarmou and Hassell, in a series of two papers
[21,22], provided a fine pseudodifferential characterization of the low energy limit

lim
k→0+

(� + k2)−1

of the resolvent of the Laplacian of an AC-metric and used it to obtain results about the
boundedness of the Riesz transform. In [41,42], Sher used instead this description of
the low energy limit to give a precise description of the long time asymptotic to the heat
kernel of an AC-metric and to study the behavior of the regularized determinant of the
Laplacian under conic degenerations. All these results were subsequently generalized
by Guillarmou–Sher [23] to the setting where the scalar Laplacian is replaced by the
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HodgeLaplacian, allowing them in particular to describe the limiting behavior of analytic
torsion under conic degenerations.

A somewhat related setting where the pseudodifferential characterization of the low
energy limit of the resolvent is used is in the Cheeger–Müller theorem for wedge metrics
obtained in [1]. Indeed, the overall strategy of [1] was to describe the limiting behavior
of analytic torsion for a family of closed Riemannian metrics degenerating to a wedge
metric. In particular, this required a uniform description of the resolvent of the Hodge
Laplacian under such a degeneration, which in turn could be obtained provided one
could invert a model operator of the form

P = �AC + �E (1)

with �AC the Hodge Laplacian of an AC-metric and �E the Euclidean Laplacian on
Rq . But taking the Fourier transform of (1) in the Euclidean factor yields

�AC + |ξ |2, (2)

whose inverse, setting k := |ξ |, can be described all theway down to |ξ | = 0 thanks to the
results of [21–23]. This is preciselywhatwas needed to take the inverse Fourier transform
of (2) and obtained a pseudodifferential characterization of the inverse (�AC + �E )−1

fitting exactly where it should in the wedge-surgery double space of [1].
Another setting where the model operator (1) naturally arises is in the study of the

Hodge Laplacian of a quasi-asymptotically conical metric (QAC-metric). This type
of metrics was introduced by Degeratu–Mazzeo [12] as a generalization of the quasi-
asymptotically locally Euclidean metrics (QALE-metrics) of Joyce [27]. Without enter-
ing in the fine details of the definition of such metrics, let us say that one of the simplest
non-trivial example of such metric is a Cartesian product of two AC-metrics, so that (1)
can be seen indeed as a Hodge Laplacian associated to a QAC-metric.

Having in mind this sort of application, the purpose of this paper is to generalize the
pseudodifferential characterization of the low energy limit of the resolvent of [21–23]
in two different directions:

(i) Characterize the limit as k ↘ 0 when (� + k2)−1 is replaced by

(ð + kγ )−1,

where ð is a Dirac operator and γ is a self-adjoint operator of order 0 such that

γ 2 = Id, γð + ðγ = 0;
(ii) Do it not only for asymptotically conical metrics, but also for the more general class

of fibered boundary metrics of [25,33].

One motivation for (i) is to characterize the inverse of an operator of the form

D = ð + ðE (3)

with D a Dirac operator on X ×Rq , ð a Dirac operator on X (associated to an AC-metric
or more generally a fibered boundary metric) and ðE a Euclidean Dirac operator on Rq .
Indeed, in this case, taking the Fourier transform of (3) in the Rq -factor yields

̂D = ð + i cl(ξ), ξ ∈ R
q , (4)
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where cl(ξ)denotesCliffordmultiplication by ξ . Restricting (4) to the half-line generated
by η ∈ Sq−1 ⊂ Rq , that is, setting ξ = kη with k ∈ [0,∞), we obtain precisely

ð + kγ with γ = i cl(η). (5)

Hence, understanding (ð + kγ )−1 in the limit k ↘ 0 will allow, as η ∈ Sq−1 varies,
to understand (ð + i cl(ξ))−1 as ξ → 0. Concerning (ii), let us for the moment remind
the reader that fibered boundary metrics are a natural generalization of the class of AC-
metrics modelled at infinity by a fiber bundle over a Riemannian cone (at least when
they are product-type at infinity up to some order). More precisely, if M is a compact
manifold with boundary ∂M , one starts with a fiber bundle φ : ∂M → Y whose base
and fibers are closed manifolds and considers metrics gY and g∂M = φ∗gY + κ on Y
and ∂M making φ a Riemannian submersion. The modelled at infinity is then (Cφ, gCφ

)

with Cφ = (0,∞) × ∂M and

gCφ
= dr2 + r2φ∗gY + κ, (6)

so that φ extends to a fiber bundle Cφ → C over the cone C = (0,∞) × Y which is a
Riemannian submersion with respect to the metrics gCφ

and gC = dr2 + r2gY on Cφ and
C. In dimension 4, an important class of examples is the one given by asymptotically
locally flat gravitational instantons (ALF-gravitational instantons), in which case the
Riemannian cone (C, gC) has cross-section a quotient of the 2-sphere with its standard
metric and the fiber bundle φ is a circle bundle. Those include in particular the natural
hyperKähler metric on the universal cover of the reduced moduli space of centered
SU(2)-monopoles of magnetic charge 2. Another important class of examples is given
by the asymptotically locally conical metrics (ALC-metrics) with G2-holonomy of [5,
14,15], in which case φ is a circle bundle over a 5-dimensional base.

To formulate the main result of this paper, let gφ be a fibered boundary metric which
is product-type to order 2 (in the sense of Definition 2.1 below) on the interior of the
manifold with boundary M . In particular, at infinity, gφ is modelled by a metric of the
form (6). Let E → M be a Clifford module for the associated Clifford bundle and let
ðφ be the Dirac operator associated to a choice of Clifford connection. As explained in
§ 3, the operator ðφ naturally restricts to an elliptic family of fiberwise operators Dv on
the fibers of φ. We suppose that the nullspaces of the members of the family have all the
same dimension and hence form a vector bundle ker Dv → Y over Y . For instance, by
Hodge theory, this is always the case when ðφ is the Hodge–deRham operator associated
to the metric gφ . In any case, as shown in Definition 3.4 and Lemma 3.5 below, given
such a vector bundle ker Dv → Y , there is a well-defined holomorphic family

λ �→ I (Db, λ)

of elliptic first order operators on Y acting on sections of ker Dv . This family, called
the indicial family of ðφ , is invertible except for a discrete set of values that are called
indicial roots. For our result to hold, we need to assume that

Re λ ∈ [−1, 0] 	⇒ I (Db, λ) is invertible. (7)

Finally, let γ ∈ C∞(M;End(E)) be a self-adjoint operator such that

γ 2 = IdE and γðφ + ðφγ = 0. (8)
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Theorem 1. If there is a well-defined kernel bundle ker Dv → Y such that (7) and (8)
hold, then (ðφ + kγ )−1 is an element of the pseudodifferential calculus �∗

k,φ(M; E) of
low energy fibered boundary operators introduced in (4.24) below.

We refer to Theorem 8.4 below for a more precise statement of the result. Even if we
are not given γ as in (8), we can use Theorem 1 to obtain a corresponding result for the
square of ðφ .

Corollary 2. If there is a well-defined kernel bundle ker Dv → Y such that (7) holds,
then (ð2φ + k2)−1 is an element of the pseudodifferential calculus �∗

k,φ(M; E).

We refer to Corollary 8.13 for a detailed statement of the result. One advantage of
using Dirac operators to derive Corollary 2 is that this requires slightly less control on
the metric at infinity, see in particular the discussion at the end of § 8 below. The fact
that the Dirac operator is of order 1 instead of order 2 also yields simplifications in the
construction of the parametrix.

Whenðφ is theHodge–deRhamoperator of gφ , we can give an alternative formulation
to (7). In this case, ker Dv → Y essentially corresponds to the vector bundle of fiberwise
harmonic forms, and as such is naturally a flat vector bundle. There is in particular an
associated Hodge–deRham operator

d = δker Dv + dker Dv acting on 
∗(Y ; ker Dv), (9)

where dker Dv is the exterior differential associated to ker Dv and δker Dv is its formal
adjoint.

Corollary 3. Let ðφ be the Hodge–deRham operator of gφ . Suppose that

Hq(Y ; ker Dv) = {0}, q ∈ {h − 1

2
,
h

2
,
h + 1

2
},

Spec(dker Dv δker Dv + δker Dvdker Dv ) h
2

>
3

4
,

Spec(dker Dv δker Dv ) h+1
2

> 1,

(10)

where h = dim Y , Hq(Y ; ker Dv) is the de Rham cohomology group of degree q associ-
ated to the flat vector bundle ker Dv and Spec(A)q denotes the part of the spectrum of A
coming from forms of degree q. Then the conclusion of Corollary 2 holds for (ð2φ +k

2)−1.
Moreover, if there is γ such that (8) holds, then the conclusion of Theorem 1 holds for
(ðφ + kγ )−1.

Remark. The authors wish to acknowledge that in a parallel work by Grieser, Talebi and
Vertman [20], a result similar to the first part of Corollary 3 was obtained independently
and simultaneously using partly different methods, in particular working directly with
the Hodge Laplacian, and relying on a split-pseudodifferential calculus with parameter,
which specifies the asymptotics of the Schwartz kernel with respect to a splitting of
differential forms into fiberwise harmonic forms and their orthogonal complement.

When Y = ∂M andφ is the identitymap, so that gφ is in fact anAC-metric, the part of
Corollary 3 involving (ð2φ + k

2)−1 corresponds to [23, Theorem 1], though, as discussed
just after Corollary 8.15 below, our assumption (10) may be slightly less restrictive then
those of [23] when h is odd. Notice also that restricting Corollary 3 to forms of degree
0 gives a corresponding statement for the low energy limit of the resolvent of the scalar
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Laplacian, though in this case our assumption (10) is probably not optimal and could
possibly be improved by working directly with the scalar Laplacian.

As suggested above, Theorem 1 can be used to characterize the inverse of the Dirac
operator (3) with ð = ðφ , that is, the inverse of

ðsus = ðφ + ðE . (11)

Indeed, in terms of its Fourier transform

̂ðsus(ξ) = ðφ + i cl(ξ), (12)

its inverse is given by

(ðsus)
−1 = 1

(2π)q

∫

Rq
eix ·ξ (ðφ + i cl(ξ))−1dξ

and a closer analysis of the description of (ðφ + i cl(ξ))−1 provided by Theorem 1 yields
the following result.

Corollary 4. If dim Y > 1, the inverse of ðsus is a conormal distribution on a certain
manifold with corners described in (9.6) below.

Referring to Theorem 9.1 below for more details, let us point out that, in agreement
with the fact that ðsus is not fully elliptic, the inverse (ðsus)

−1 is not quite a suspended
operator, though it can be understood as an element of an enlarged pseudodifferential
suspended φ-calculus.

Our main motivation for proving Corollary 4 is to study Dirac operators associ-
ated to yet another class metrics, namely the class of quasi-fibered boundary metrics
(QFB-metrics) introduced in [10]. Indeed, in the companion paper [29], we construct a
parametrix for the Hodge–deRham operator of a QFB-metric and one of the key steps
is to use Corollary 4 to invert a model precisely of the form (11). As the name suggests,
QFB-metrics are to fibered boundary metrics what QAC-metrics are to AC-metrics. Ac-
cording to [16], an important example ofQFB-metrics is given by the hyperKählermetric
on the reducedmoduli space of SU(2)-monopoles of charge k onR3.We know also from
[6] that the Nakajima metric on the Hilbert scheme of n points on C2 is an example of
QALE metric. In fact, building on these results, we use the parametrix construction of
[29] to make progress in [28] on the Sen conjecture [40] and the Vafa–Witten conjecture
[44], which are conjectures from string theory and S-duality making predictions about
the reduced L2-cohomology of such moduli spaces.

Toproveourmain result, the strategy, as in [21], is to introduce a suitable double space,
M2

k,φ , that is, a suitable manifold with corners M2
k,φ on which the Schwartz kernel of

(ðφ +kγ )−1 will admit a description as a conormal distributions with polyhomogeneous
expansion at the various boundary hypersurfaces of the double space. Compared to the
double space in [21], the main difference is that there is onemore boundary hypersurface
and that one other boundary hypersurface, corresponding to sc in [21], is slightly different
in nature.Given such a double space and the corresponding calculus of pseudodifferential
operators, one important step in the construction of the inverse of (ðφ+kγ ) is to show that
ðφ is Fredholm when acting on suitable weighted Sobolev spaces. Thanks to the thesis
of Vaillant [45], which among other things derived a corresponding Fredholm result for
the related geometry of fibered cusp metrics, it has been known for some time by experts
that such Fredholm result holds. In particular, a precise statement is provided in [25,
Proposition 16] when ðφ is the Hodge–deRham operator. Assuming some conditions on
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the metric, such result follows from a general Fredholm criterion obtained by Grieser
and Hunsicker in [19, Theorem 13].

However, since this result is central in proving ourmain result,we take the opportunity
to provide a complete explicit proof for Dirac operators which gives a prelude of the
techniques used later in the paper. First, to extend the statement of [25, Proposition 16] to
a Dirac operator ðφ with well-defined bundle ker Dv → Y , let �h denote the fiberwise
L2-projection fromfiberwise L2-sections of E → ∂M onto sections of ker Dv → Y . Let
˜�h denote a smooth extension of �h , first to a collar neighborhood of ∂M , and then to
all of M using cut-off functions. Let L2

φ(M; E) and H1
φ(M; E) be the L2-space and the

L2-Sobolev space of order 1 associated to the fibered boundary metric gφ and a choice
of bundle metric and connection for E → M . Let H1

b (M; E) be the L2-Sobolev space
of order 1 associated to a choice of b-metric in the sense of [37]. Finally, let x ∈ C∞(M)

be a boundary defining function, which, near ∂M , corresponds to 1
r in terms of themodel

metric (6). Notice that L2
φ(M; E) = x

h+1
2 L2

b(M; E), but that such a simple relation does

not hold for H1
φ(M; E) and H1

b (M; E). Then [25, Proposition 16] admits the following
generalization (see also Corollaries 3.17 and 3.18 below for alternative formulations).

Theorem 5. If δ ∈ R is not a critical weight of the indicial family I (Db, λ) of ðφ , then
ðφ induces Fredholm operators

ðφ : xδ
(

˜�hx
h+1
2 H1

b (M; E) + x(Id−˜�h)H
1
φ(M; E)

)

→ xδ+1L2
φ(M; E) (13)

and

ðφ : xδ
(

˜�hx
h+1
2 H1

b (M; E) + (Id−˜�h)H
1
φ(M; E)

)

→ xδ
(

x˜�h L
2
φ(M; E) + (Id−˜�h)L

2
φ(M; E)

)

. (14)

To prove this result, our strategy, as in the thesis of Vaillant [45] for fibered cusp
Dirac operators, consists in constructing a sufficiently good parametrix for ðφ within
the large φ-calculus of [33], see Theorem 3.9 below for the precise statement. Besides
establishing Theorem 5, our parametrix is used in Corollary 3.16 to show that elements
in the kernel of ðφ are smooth sections admitting a polyhomogeneous expansion at
infinity. More importantly, for our main result, our parametrix in Corollary 3.20 is used
to show that the inverse of (13) defined on the complements of the cokernel of ðφ is a
pseudodifferential operator of order−1 in the large φ-calculus. In particular, this inverse
fits nicely on one of the boundary hypersurfaces of the double space M2

k,φ , allowing us
to construct a good approximate inverse to (ðφ + kγ ) within �∗

k,φ(M; E).
The paper is organized as follows. In § 2, wemake a quick review of the φ-calculus of

Mazzeo and Melrose. This is used in § 3 to construct a parametrix for fibered boundary
Dirac operators and derive few consequences, for instance Theorem 5. We introduce
our calculus of low energy fibered boundary pseudodifferential operators in § 4. After
constructing a suitable triple space for our calculus in § 5, we can describe how operators
compose in § 6. After introducing a few symbol maps in § 7, we can finally provide the
desired pseudodifferential characterization of the inverses of (ðφ+kγ ) and (ð2φ+k

2). This
is used in § 9 to give a pseudodifferential characterization of the inverse of the suspended
operator ðsus in (11). In Appendix A.1, we establish a result about the commutativity of
certain blow-ups of p-submanifolds that turns out to be useful in § 4 in providing two
different points of view on the double space M2

k,φ .
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2. Fibered Boundary Pseudodifferential Operators

In this section,wewill reviewbriefly the definitions andmain properties of theφ-calculus
of Mazzeo–Melrose [33]. Here and throughout the paper, we will in particular assume
that the reader has some familiarity with manifolds with corners as presented in [35].
What we will need can be found for instance in [18, Chapter 2] or[24, § 2].

Let M be a compact manifold with boundary ∂M equipped with a fiber bundle
φ : ∂M → Y over a closed manifold Y . Let also x ∈ C∞(M) be a boundary defining
function, that is, x > 0 on M \ ∂M , x = 0 on ∂M and dx is nowhere zero on ∂M . In
terms of this data, the space of φ-vector fields is given by

Vφ(M) = {ξ ∈ Vb(M) | φ∗(ξ |∂M ) = 0, ξ x ∈ x2C∞(M)}, (2.1)

where Vb(M), the algebra of b-vector fields of [37], consists of smooth vector fields
tangent to the boundary of M . The definition of Vφ(M) depends obviously on φ, but
it also depends on the choice of boundary defining function x . Two boundary defining
functions x1 and x2 will give the same Lie algebra of φ-vector fields if and only if

the function x1
x2

∣

∣

∣

∂M
is constant on the fibers of φ : ∂M → Y . In local coordinates

(x, y1, . . . , yh, z1, . . . zv) near ∂M with (y1, . . . , yh) coordinates on Y such that φ is
locally given by

(y1, . . . , yh, z1, . . . , zv) �→ (y1, . . . , yh), (2.2)

the space of φ-vector fields is locally spanned by

x2
∂

∂x
, x

∂

∂y1
, . . . , x

∂

∂yh
,

∂

∂z1
, . . .

∂

∂zv
. (2.3)

By the Serre–Swan theorem, there is a corresponding vector bundle φT M → M , the
φ-tangent bundle, and a map of vector bundles

aφ : φT M → T M (2.4)

inducing a natural identification

C∞(M; φT M) = Vφ(M). (2.5)

In other words, φT M → M is a Lie algebroid with anchor map aφ . The anchor map
aφ is neither injective nor surjective when restricted to the boundary ∂M . The kernel of
aφ |∂M is in fact a vector bundle φN∂M → ∂M on ∂M inducing the short exact sequence
of vector bundles

0 �� φN∂M �� φT M |∂M
aφ �� T (∂M/Y ) �� 0, (2.6)

where T (∂M/Y ) is the vertical tangent bundle of the fiber bundle φ : ∂M → Y . In
terms of (2.3), x2 ∂

∂x , x ∂
∂y1

, . . . , x ∂
∂yh

are local sections of φN∂M . As explained in [33,
(7)], there is in fact a canonical isomorphism

φN∂M = φ∗(φNY ) (2.7)

for some natural vector bundle φNY → Y on Y .
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The anchor map aφ induces however an isomorphism on the interior of M . In the
terminology of [3], thismeans that (M,Vφ(M)) is a Lie structure at infinity. In particular,
if gφ is a choice of bundle metric on φT M → M , then it induces a Riemannian metric
on M \ ∂M , also denoted gφ , via the isomorphism

aφ : φT M |M\∂M → T (M \ ∂M). (2.8)

We refer to such a Riemannian metric as a fibered boundary metric or a φ-metric.
By the discussion in [3], such a metric is complete, of infinite volume and of bounded
geometry.

If c : ∂M×[0, δ) → M is a collar neighborhood of ∂M compatiblewith the boundary
defining function x in the sense that c∗x = pr2 : ∂M × [0, δ) → [0, δ) is the projection
on the second factor, then a natural example of φ-metric is given by one such that

c∗gφ = dx2

x4
+

φ∗gY
x2

+ κ, (2.9)

where gY is a Riemannian metric on Y and κ ∈ C∞(∂M; S2(T ∗(∂M)) is a symmetric
2-tensor such that φ∗gY + κ is a Riemannian metric on ∂M making φ : ∂M → Y a
Riemannian submersion with respect to φ∗gY + κ and gY .

Definition 2.1. A product-type φ-metric is a φ-metric gφ taking the form (2.9) in some
collar neighborhood c : ∂M × [0, δ) → M compatible with the boundary defining
function x . More generally, a φ-metric is said to be product-type up to order k ∈ N if
it is a product-type metric up to a term in xkC∞(M; S2(φT ∗M)).

In this paper, we will exclusively work with φ-metrics which are product-type up
to order 2. An important class metrics conformally related to φ-metrics is the class of
fibered cusp metrics.

Definition 2.2. A fibered cusp metric is a Riemannian metric gfc on M \ ∂M such that

gfc = x2gφ

for some φ-metric. Such a metric is said to be of product-type (respectively product-
type up to order k) if the conformally related φ-metric gφ is product-type (respectively
product-type up to order k).

Like a φ-metric, a fibered cusp metric is complete. However, if the fibers of φ are not
0-dimensional, its volume is finite and it has zero injectivity radius. Moreover, except in
special cases, its curvature is not bounded.

Within the classes of φ-metrics and fibered cusp metrics, there are special subclasses
corresponding to specific choices of fiber bundles φ : ∂M → Y . One can consider for
instance the case where Y is a point, in which case product-type φ-metrics correspond to
metricswith infinite cylindrical ends,while product-type fibred cuspmetrics corresponds
to metrics with cusp ends. The other extreme is to take Y = ∂M and φ to be the identity
map, in which case the φ-vector fields correspond to the scattering vector fields of
[38], a product-type φ-metric correspond to a metric with an infinite conical end and a
product-type fibered cusp metric corresponds to a metric with infinite cylindrical end.

The differential operators geometrically constructed from a φ-metric, like the Hodge
Laplacian or a Dirac operator, fit in the more general class of differential φ-operators.
The space Diffkφ(M) of differential φ-operators of order k corresponds to differential
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Fig. 1. The b-double space

operators generated by multiplication by an element of C∞(M) and the composition of
up to k φ-vector fields. In other words, Diff∗φ(M) is the universal enveloping algebra
of Vφ(M) with respect to C∞(M). As explained in [3,33], given vector bundles E and
F over M , one can more generally define the space Diffkφ(M; E, F) of differential
φ-operators of order k acting from sections of E to sections of F .

To construct good parametrices for differential φ-operators, Mazzeo and Melrose
introduced the notion of pseudodifferential φ-operators. This is done by defining their
Schwartz kernels on a suitable double space, namely theφ-double space. To define it, one
starts with the manifold with corners M2 = M × M . Denote by x and x ′ the boundary
defining functions of the boundary hypersurfaces ∂M × M and M × ∂M obtained by
lifting x ∈ C∞(M) via the projections on the left and right factors. Blowing up the
corner ∂M × ∂M gives the b-double space

M2
b = [M2; ∂M × ∂M] with blow-down map βb : M2

b → M2. (2.10)

The manifold with corners M2
b has now three boundary hypersurfaces, namely the

lift lf and rf of the old boundary hypersurfaces ∂M × M and M × ∂M , as well as a new
boundary hypersurfaces bf created by the blow-up of ∂M × ∂M (Fig. 1). The boundary
hypersurface is naturally diffeomorphic to

∂M × ∂M × [0, π

2
] (2.11)

where the coordinate in the factor [0, π
2 ] can be taken to be θ = arctan

( x
x ′

)

. With respect
to this identification, we can consider the p-submanifold

� = {(p, q, θ) ∈ ∂M × ∂M × [0, π

2
] | φ(p) = φ(q), θ = π

4
}. (2.12)

The φ-double space is then the manifold with corners obtained from M2
b by blowing up

the p-submanifold �,

M2
φ = [M2

b ;�] with blow-down map βφ : M2
φ → M2. (2.13)

On M2
φ we denote again by lf and rf the boundary hypersurfaces corresponding to

the lifts of lf and rf from M2
b to M2

φ . We also denote by φbf the lift of bf to M2
φ and by

ff the new boundary hypersurface created by the blow-up of � (Fig. 2).
Let �φ be the lift of the diagonal � ⊂ M × M to M2

φ . As shown in [33], one of the
main features of the φ-double space is that the lift from the left or from the right of φ-
vector fields are transverse to�φ . This suggests to define pseudodifferential φ-operators
as conormal distributions with respect to �φ on M2

φ . Let

φ
(M) = |�dim M (φT ∗M)| (2.14)
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be the bundle of φ-densities on M . If πR = prR ◦βφ and πL = prL ◦βφ with prR :
M × M → M and prL : M × M → M the projections on the right and left factor, then
on M2

φ we can consider the bundle of right φ-densities

φ
R(M) = π∗
R(φ
(M)), (2.15)

as well as the homomorphism bundle

Homφ(E, F) = π∗
L E ⊗ π∗

RF
∗ (2.16)

for E and F vector bundles over M .

Definition 2.3. Let E and F be vector bundles on M . The small calculus of pseudod-
ifferential φ-operators acting from sections of E to sections of F is the union over
m ∈ R of the spaces

�m
φ (M; E, F) = {κ ∈ Im(M2

φ,�φ;Homφ(E, F) ⊗ φ
R(M))|κ ≡ 0 at ∂M2
φ \ ff},

(2.17)

where Im(M2
φ,�φ;Homφ(E, F)⊗ φ
R(M)) is, in the sense of [26, Definition 18.2.6],

the space of conormal distributions of order m with respect to �φ taking value in the
vector bundle Homφ(E, F) ⊗ φ
R(M) and κ ≡ 0 at ∂M2

φ \ ff means that the Taylor

series of κ is trivial at all boundary hypersurfaces of M2
φ except possibly at ff.

As shown in [33], an operator P ∈ �m
φ (M; E, F) induces an operator

P : C∞(M; E) → C∞(M; F).

The calculus is also closed under composition in that

�m
φ (M; F,G) ◦ �m′

φ (M; E, F) ⊂ �m+m′
φ (M; E,G).

Furthermore, simple criteria are provided in [33] to determine when an operator is
bounded, compact or Fredholm when acting on weighted L2-Sobolev spaces associated
to aφ-metric. For instance,weknow from[33,Lemma12] that aφ-operator K of negative
order is compact when acting on the L2-space of a φ-metric provided its normal operator
Nff(K ), that is, its restriction to ff, vanishes.

As for the b-calculus however, some parametrix constructions require a larger calcu-
lus. If E is, in the sense of [36, § 4], an index family for the boundary hypersurfaces of
M2

φ , one can more generally consider the spaces

�
−∞,E
φ (M; E, F) = AE

phg(M
2
φ;Homφ(E, F) ⊗ φ
R(M)),

�
m,E
φ (M; E, F) = �m

φ (M; E, F) + �
−∞,E
φ (M; E, F), m ∈ R,

(2.18)
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where AE
phg(M

2
φ;Homφ(E, F) ⊗ φ
R(M)) denotes the space of polyhomogeneous

sections of Homφ(E, F)⊗φ
R(M)with polyhomogenous expansions compatible with
the index family E in the sense of [36, (23)]. Using the pushforward theorem of [36], one
can showas in [45, (26)] or [2, Theorem3.3] that these operators act onpolyhomogeneous
sections as follows.

Proposition 2.4. Let A ∈ �
m,E
φ (M; E, F) and σ ∈ AF

phg(M; E) with index family E
and index set F such that

Re(E |rf + F) > h + 1,

where h = dim Y is the dimension of the base of the fiber bundle φ : ∂M → Y . Then the
action of A on σ is well-defined, giving a polyhomogeneous section Aσ ∈ AG(M; F)

with index set G given by

G = E |lf∪(E |ff + F)∪(E |φbf + F − h − 1),

where h is the dimension of the base Y and ∪ denotes the extended union of index sets
of [36, (43)].

Similarly, the φ-triple space of [33] and the pushforward theorem of [36] can be used
to show as in [45, Theorem 2.11] or [2, Theorem 3.4] that this larger class of φ-operators
behaves well under composition.

Proposition 2.5. Let E and F be index families for the boundary hypersurfaces of M2
φ

such that

Re(E |rf) + Re(F |lf) > h + 1.

where h = dim Y as in Proposition 2.4. Then given A ∈ �
m,E
φ (M; F,G) and B ∈

�
m′,F
φ (M; E, F), their composition is well defined with

A ◦ B ∈ �
m+m′,G
φ (M; E,G),

where G is the index family given by

G|lf = (E |lf)∪(E |φbf + F |lf − h + 1)∪(E |ff + F |lf),
G|rf = (F |rf)∪(E |rf + F |φbf − h − 1)∪(E |rf + F |ff),

G|φbf = (E |lf + F |rf)∪(E |φbf + F |φbf − h − 1)∪(E |φbf + F |ff)∪(E |ff + F |φbf),
G|ff = (E |lf + F |rf)∪(E |φbf + F |φbf − h − 1)∪(E |ff + F |ff).

(2.19)
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3. Fredholm Fibered Boundary Dirac Operators

Let M be a compact manifold with boundary ∂M equipped with a fiber bundle φ :
∂M → Y over a closed manifold Y . Fix a boundary defining function x ∈ C∞(M)

and let gφ be a product-type fibered boundary metric up to order 2. Let E → M be a
Hermitian vector bundle and consider an elliptic formally self-adjoint first order fibered
boundary operator ðφ ∈ Diff1φ(M; E). An example to keep in mind is the situation
where E is a Clifford module for the Clifford bundle of the φ-tangent bundle and ðφ is
the Dirac operator associated to a choice of Clifford connection.

Instead of ðφ acting formally on L2
φ(M; E), it is convenient to consider equivalently

the fibered boundary operator

Dφ = x− h+1
2 ðφx

h+1
2 acting formally on L2

b(M; E) = x− h+1
2 L2

φ(M; E), (3.1)

where h := dim Y . In this way, one important model operator, the indicial family of
Definition 3.4 below, can be defined essentially by Mellin transform of a restriction
to φbf, in direct analogy with the indicial family of [37] for b-operator. This will in
particular ease the use of results from [37] for the construction of the parametrix.

Since ðφ is formally self-adjoint with respect to L2
φ(M; E), notice that Dφ is formally

self-adjoint with respect to L2
b(M; E).

Definition 3.1. The vertical family is the family of vertical operators Dv ∈ Diff1(∂M/

Y ; E) obtained by restricting the action of Dφ to the boundary ∂M .

The vertical family is closely related to the normal operator Nff(Dφ) of Dφ obtained
by restricting Dφ to ff as a conormal distribution. As described in [33, § 4], the normal
operator is a family of suspended operators in the fibers of φ : ∂M → Y . A direct
computation shows that

Y � p �→ Nff(Dφ)p = Dv|φ−1(p) + ðh(p), (3.2)

where p �→ ðh(p) is a family of fiberwise translation invariant elliptic first order dif-
ferential operators associated to the vector bundle φN∂M → ∂M of (2.6) restricted to
φ−1(p). We will assume that ðh is in fact a family of Euclidean Dirac operators anti-
commuting with Dv . As the next lemma shows, this condition is automatically satisfied
if ðφ is a Dirac operator, for instance if it is the Hodge–deRham operator of the metric
gφ .

Lemma 3.2. If ðφ is a Dirac operator, then ðh is a family of Euclidean Dirac operators
anti-commuting with Dv .

Proof. Let p ∈ Y be given. Since gφ is product-type up to order 2, notice that under the
identification

φN∂M |φ−1(p) = φ−1(p) × φNpY (3.3)

coming form (2.7), the metric induced by gφ corresponds to a Cartesian product. On
the other hand, the Clifford module E used to define ðφ induces one on this Cartesian
product that we will denote by Ep. This bundle Ep is in fact naturally the pullback
of E |φ−1(p) via the bundle projection

φN∂M |φ−1(p) → φ−1(p). Similarly, there is an
induced Clifford connection ∇Ep which is just the pull-back of the Clifford connection
of E |φ−1(p). With respect to this data, the normal operator Nff (Dφ) restricted to (3.3)
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is just the corresponding Dirac operator with Dv|φ−1(p) the part acting on the fibers of
φ−1(p) × φNpY → φNpY (the operator is the same for each fiber) and ðh(p) is the
part acting on the fibers of φN∂M |φ−1(p) → φ−1(p). In particular, ðh(p) is a family
of Euclidean Dirac operators. To see that Dv|φ−1(p) and ðh(p) anti-commute, it suffices

to check that c(e1)∇Ep
e1 and c(e2)∇Ep

e2 anti-commute, where e1 and e2 are vector fields
on φ−1(p) and φNpY lifted to the Cartesian product (3.3) and c(ei ) denotes Clifford
multiplication by ei .

But in this case, ∇e1e2 = ∇e2e1 = 0, so using that ∇Ep is a Clifford connection, we
compute that

c(e1)∇Ep
e1 c(e2)∇Ep

e2 = c(e1)[∇Ep
e1 , c(e2)]∇Ep

e2 + c(e1)c(e2)∇Ep
e1 ∇E

e2

= c(e1)c(∇e1e2)∇E
e2 + c(e1)c(e2)∇Ep

e1 ∇E
e2

= c(e1)c(e2)∇Ep
e1 ∇E

e2 .

(3.4)

Similarly,

c(e2)∇Ep
e2 c(e1)∇Ep

e1 = c(e2)c(e1)∇Ep
e2 ∇E

e1 . (3.5)

Now, the curvature of (Ep,∇Ep ) is just the pull-back of the curvature of E |φ−1(p), which

implies that [∇Ep
e1 ,∇Ep

e2 ] = 0. Since c(e1)c(e2) = −c(e2)c(e1), we thus deduce from

(3.4) and (3.5) that c(e1)∇Ep
e1 and c(e2)∇Ep

e2 anti-commute as claimed. ��
To be able to construct a good parametrix, we will make the following assumption.

Assumption 3.3. The nullspaces of the various fiberwise operators of the family Dv

form a vector bundle

ker Dv → Y.

Using the restriction of the metric gφ to the fibers of φ : ∂M → Y and the Hermitian
metric of E , we can define a family of L2-projections

�h : C∞(Y ; L2(∂M/Y ; E)) → C∞(Y ; ker Dv) (3.6)

onto ker Dv , where L2(∂M/Y ; E) → Y is the infinite rank vector bundle with fiber
above y ∈ Y given by L2(φ−1(y); E). This can be used to define a natural indicial
family.

Definition 3.4. The indicial family C � λ �→ I (Db, λ) ∈ Diff1(Y ; ker Dv) associated
to Dφ is defined by

I (Db, λ)u := �h

((

x−λ(x−1Dφ)xλũ
)

|∂M
)

, u ∈ C∞(Y ; ker Dv),

where ũ ∈ C∞(M; E) is such that ũ|∂M = u. As the notation suggests, the indicial
family I (Db, λ) is the Mellin transform of the operator

Db := cx
∂

∂x
+ DY , with c := ∂

∂λ
I (Db, λ)

∣

∣

∣

∣

λ=0
and DY := I (Db, 0). (3.7)
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The interested readermay look at [25, § 5.2] for nice intuitive explanationsmotivating
Definition 3.4.

Lemma 3.5. The indicial family I (Db, λ) is well-defined, namely I (Db, λ) does not
depend on the choice of extension ũ.

Proof. Essentially by definition of the Lie algebra of fibered boundary vector fields,
notice first that

[Dφ, x] ∈ x2C∞(M;End(E)).

Moreover, if ũ1 and ũ2 are two choices of extensions of u, then ũ1 − ũ2 = xw for some
w ∈ C∞(M; E), so that

(x−λ(x−1Dφ)xλ(̃u1 − ũ2))|∂M = (x−λ−1Dφx
λ+1w)|∂M

= (x−λ−1(xλ+1Dφ + [Dφ, xλ+1]))w
= (Dφw + x−λ−1(λ + 1)xλ[Dφ, x]w)|∂M
= (Dφw)|∂M = Dv(w|∂M ).

(3.8)

Now, we see from (3.2) that the formal self-adjointness of Dφ on L2
b(M; E) implies

the formal self-adjointness of Dv . This implies in particular that the image of Dv is
orthogonal to its kernel, hence that

�h((x
−λ(x−1Dφ)xλ(̃u1 − ũ2))|∂M ) = �h(Dv(w|∂M )) = 0,

showing that I (Db, λ)u does not depend on the choice of smooth extension ũ as claimed.
��

We will now give a more detailed description of the indicial family when ðφ is a
Dirac operator, see (3.23) below. This is important for two reasons:

(1) it will then be easier to determine for which weights Theorem 5 in the introduction
will apply;

(2) such a detailed descriptionwill play a crucial role in the proof of the pseudodifferential
characterization of the low energy limit, notably through the proof of Lemma 8.9
below.

To give this more detailed description of the indicial family, recall first that by assump-
tion, gφ is modelled at infinity by the metric

gCφ
= dx2

x4
+
gY
x2

+ κ (3.9)

on (0,∞)×∂M with themap Id×φ : (0,∞)×∂M → (0, φ)×Y inducing aRiemannian

submersion onto the Riemannian cone
(

(0,∞) × Y, dx2

x4
+ gY

x2

)

. On the other hand,

ker Dv is naturally a Clifford module for the tangent bundle TY → Y via the natural
map

TY → φT M |∂M
ξ �→ xξ.

(3.10)
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By [4, Proposition 10.12, Lemma 10.13], the Dirac operator corresponding to the model
metric gCφ

is

ðCφ
= Dv +˜ðC (3.11)

where˜ðC is the horizontal Dirac operator induced by the connection of φ : ∂M → Y
and the Clifford connection

∇E +
1

2
c(ω), (3.12)

where ω is the �2T ∗(∂M)-valued 1-form on ∂M of [4, Definition 10.5] defined by

ω(X)(Y, Z) = S(X, Z)(Y ) − S(X,Y )(Z) +
1

2
(
(X, Z),Y )

−1

2
(
(X,Y ), Z) +

1

2
(
(Y, Z), X)

with S and
 the second fundamental form and curvature of the Riemannian submersion
φ : ∂M → Y , while c(ω) is defined in [4, Proposition 10.12(2)] by

c(ω) = 1

2

∑

abc

ω(ea)(eb, ec)e
a ⊗ c(eb)c(ec)

with ea a local frame for T (∂M) and ea its dual frame.
Using the projection �h on Cφ , this yields a corresponding Dirac operator ðC =

�h˜ðC�h on ker Dv with Clifford connection

�h(∇E +
c(ω)

2
)�h . (3.13)

As described above, the term c(ω) involves the second fundamental form and the
curvature of φ : ∂M → Y . Those depend only on the fiberwise metric, so really are
pull-back of forms on ∂M via the projection (0,∞) × ∂M → ∂M . However, when
measured with respect to the metric gCφ

, that is, in terms of the φ-tangent bundle, the
part involving the curvature isO(x2) when x ↘ 0, so does not contribute to the indicial
family I (Db, λ). However, the part coming from the second fundamental form isO(x),
so does contribute to the indicial family.

To describe thismore explicitly, suppose first that C = (0,∞)×Y is spin and consider
the Dirac operator ðSC associated to the cone metric

gC = dx2

x4
+
gY
x2

(3.14)

and acting on the sections of the spinor bundle S over C. If ψ is a section of S|{1}×Y ,
let ψ ∈ C∞(C;S) be the section obtained by parallel transport of ψ along geodesics
emanating from the tip of the cone. This induces a decomposition

C∞(C;S) ∼= C∞((0,∞))̂⊗C∞(Y ;S|{1}×Y ). (3.15)

By [7, Proposition 2.5], the Dirac operator takes the form

cx2
∂

∂x
+ x

(

ð
S
Y − ch

2

)

(3.16)
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in terms of this decomposition, where h = dim Y , c is Clifford multiplication by x2 ∂
∂x

(which corresponds to the c of (3.7)) and ðSY is the Dirac operator on (Y, gY ) acting on
sections of S|{1}×Y . If we twist the spinor bundle by a Euclidean vector bundleW with
orthogonal connection, there is a corresponding twisted Dirac operator ðS⊗W

C . We will
suppose thatW is constructed geometrically from (C, gC) and the spin structure, or else
that it is the pull-back of a Euclidean vector bundle with orthogonal connection on Y .

Again, parallel transport along geodesics emanating from the tip of the cone induces
a decomposition

C∞(C;S) = C∞((0,∞))̂⊗ C∞(Y ; (S ⊗ W)|{1}×Y ) (3.17)

in terms of which (3.16) is replaced by

cx2
∂

∂x
+ x

(

ð
S⊗W
Y + NS⊗W − ch

2

)

, (3.18)

where now ð
S⊗W
Y is the Dirac operator on (Y, gY ) acting on sections of (S ⊗W)|{1}×Y

and NS⊗W is a self-adjoint operator of order zero acting on sections of S ⊗ W which
anti-commutes with c. For instance, if W is the pull-back of an Euclidean bundle with
orthogonal connection on Y , then NS⊗W = 0. Since the computations considered were
local on Y and since a spin structure always exists at least locally on Y , we see that (3.18)
extends to Dirac operators by [4, Proposition 3.40]. Thus, if E is a Clifford module with
Clifford connection on (C, gC) and ðE is the corresponding Dirac operator, then in terms
of the decomposition

C∞(C; E) ∼= C∞((0,∞))̂⊗ C∞(Y ; E |{1}×Y ), (3.19)

we have that

ð
E = cx2

∂

∂x
+ x

(

ð
E
Y + NE − ch

2

)

(3.20)

with ðEY the Dirac operator of E |{1}×Y on Y and NE is a self-adjoint term of order zero
anti-commuting with c.

We would like to apply (3.20) to the operator ðC = �h˜ðC�h . However, we must be
careful because of the extra term 1

2 cl(ω). First, because the form ω is a pull-back of a
form on ∂M , parallel transport along geodesics emanating from the tip of the cone is
the same whether we use �h∇E�h or (3.13). This yields again a decomposition

C∞(C; ker Dv) ∼= C∞((0,∞))̂⊗ C∞(Y ; ker Dv|{1}×Y )

in terms of which we have

ðC = cx2
∂

∂x
+ x

(

ðY − ch

2

)

+ x2V
, (3.21)

where ðY = ð̂Y + N with ð̂Y the Dirac operator induced by the connection

�h(∇E +
ω̂

2
)�h (3.22)

with ω̂ the part of ω involving the second fundamental form of φ : ∂M → Y , N ∈
C∞(Y ;End(ker Dv)) is a self-adjoint operator of order 0 anti-commuting with c and
x2V
 is the part of �h

cl(ω)
2 �h coming from the curvature of φ : ∂M → Y . Hence, in

terms of this description, the operator x
(

cx ∂
∂x + DY

)

in (3.7) is obtained from (3.21) by
suppressing the curvature termx2V
,
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xDb = x

(

cx
∂

∂x
+ DY

)

= x− h+1
2

(

cx2
∂

∂x
+ x

(

ðY − ch

2

))

x
h+1
2

= cx2
∂

∂x
+ x

(

ðY +
c

2

)

. (3.23)

Since N is self-adjoint and anti-commutes with c, the operator ðY is also self-adjoint
and anti-commutes with c, a fact that will be useful in the proof of Lemma 8.9 below.

AmongDirac operators, ourmainmotivating example is theHodge–deRhamoperator
acting on forms with values in a flat vector bundle. In this case, the bundle ker Dv

corresponds to the bundle of fiberwise harmonic forms. By [25, Proposition 15], this is
a flat vector bundle with respect to the connection (3.13). Now, if η is a ker Dv-valued
k-form on C obtained by parallel transport of its restriction η to {1}×Y along geodesics
emanating from the tip of the cone, then there is a decomposition

η = α +
dx

x2
∧ β, η = α + dx ∧ β, α = α

xk
, β = β

xk−1

for some ker Dv-valued forms α and β on Y . In terms of this decomposition, we know
from [25, Proposition 15] that the operator ðY = ð̂Y + N in (3.23) is such that

ð̂Y =
(

d 0
0 −d

)

(3.24)

with d the Hodge–deRham operator acting on 
∗(Y ; ker Dv), while

N =
(

0 h
2 − NY

h
2 − NY 0

)

and c =
(

0 −1
1 0

)

(3.25)

with NY the number operator acting on a form in 
∗(Y ; ker Dv) (of pure degree) by
multiplying it by its degree. The indicial family is therefore given in that case by

I (Db, λ) =
(

d −λ + h−1
2 − NY

λ + h+1
2 − NY −d

)

. (3.26)

Keeping these examples in mind, let us come back to the indicial family I (Db, λ)

and recall the following standard definition.

Definition 3.6. An indicial root of the indicial family I (Db, λ) is a complex number ζ

such that

I (Db, ζ ) : L2
1(Y ; ker Dv) → L2(Y, ker Dv)

is not invertible, where L2
1(Y ; ker Dv) is the natural L2-Sobolev space of order 1 of

sections of ker Dv → Y with respect to gY . A critical weight of the indicial family
I (Db, λ) is a real number δ such that δ + iν is an indicial root for some ν ∈ R. In other
words, δ is a critical weight if it is the real part of some indicial root. We will denote by
Crit(Db) the set of critical weights of the indicial family I (Db, λ).

Remark 3.7. Since x− 1
2 Dφx− 1

2 = x
1
2 (x−1Dφ)x− 1

2 is formally self-adjoint, notice that
the indicial roots are real and that λ is an indicial root of I (Db, λ) if and only if −1− λ

is an indicial root.
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For instance, the indicial roots of the Hodge–deRham operator can be described in
terms of the eigenvalues of d = dker Dv + δker Dv as the next lemma shows.

Lemma 3.8. The indicial roots of the indicial family (3.26) are given by

(q − h + 1

2
),−(q − h − 1

2
), if Hq(Y ; ker Dv) �= {0},

⋃

{

� ±
√

ζ + (q − h − 1

2
)2 | � ∈ {−1, 0}, ζ ∈ Spec(δker Dvdker Dv )q \ {0}

}

⋃

{

� ±
√

ζ + (q − h + 1

2
)2, | � ∈ {−1, 0}, ζ ∈ Spec(dker Dv δker Dv )q \ {0}

}

.

(3.27)

In particular, in agreement with Remark 3.7, λ is an indicial root if and only if −1 − λ

is an indicial root.

Proof. This is a standard computation. We can proceed for instance as in the proof of
[1, Proposition 2.3]. In fact, the indicial family of [1, Proposition 2.3], after suitable
identifications, corresponds to I (Db,−λ), since it is the indicial family of the same
operator, but considered at the opposite end of the cone. Hence, (3.27) follows by flipping
the sign of the indicial roots in [1, Proposition 2.3]. ��
Theorem 3.9. Suppose that the operator Dφ satisfies Assumption 3.3 and that δ ∈
R is not a critical weight of the indicial family I (Db, λ). Let μ > 0 be such that
(δ−μ, δ+μ)∩Crit(Db) = ∅. Then, in the notation of § 2, there exists Q ∈ �

−1,Q
φ (M; E)

and R ∈ �
−∞,R
φ (M; E) such that

(x−δDφx
δ)Q = Id−R,

where Q is an index family such that

inf Re(Q|lf) ≥ μ, inf Re(Q|rf) ≥ h + μ, inf Re(Q|φbf) ≥ h, inf Re(Q|ff) ≥ 0,

and R is an index family giving the empty set at all boundary hypersurfaces except at
rf , where we have instead

inf Re(R|rf) ≥ h + μ.

Moreover, the term A of order h at φbf of Q is such that A = �h A�h. Here, an
inequality of the form inf Re(E) ≥ a for E an index set and a ∈ Rmeans, in the equality
case, that if (a + iν, k) ∈ E with ν ∈ R, then k = ν = 0. Finally, each term r of order
h + 1 or less in the asymptotic expansion of R at rf is such that b�h = b.

The construction of the parametrix Q will involve few steps and is closely related to
the resolvent construction of Vaillant [45, § 3] for fibered cusp Dirac operators.
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Step 0: Symbolic inversion. We can first use ellipticity to do a symbolic inversion.

Proposition 3.10. There exist Q0 ∈ �−1
φ (M; E) and R0 ∈ �−∞

φ (M; E) such that

(x−δDφx
δ)Q0 = Id−R0.

Proof. The operator x−δDφxδ is elliptic with principal symbol

φσ1(x
−δDφx

δ) = φσ1(Dφ) = φσ1(ðφ),

so we can find Q′
0 ∈ �−1

φ (M; E) with principal symbol

φσ−1(Q
′
0) = (φσ1(ðφ))−1,

so that

(x−δDφx
δ)Q′

0 = Id−R′
0 for some R′

0 ∈ �−1
φ (M; E).

Proceeding inductively, we then definemore generally Q(k)
0 = Q′

0R
(k−1)
0 ∈ �−k

φ (M; E)

and R(k)
0 ∈ �−k

φ (M; E) such that

(x−δDφx
δ)

⎛

⎝

k
∑

j=1

Q( j)
0

⎞

⎠ = Id−R(k)
0 .

Taking an asymptotic sum over the Q(k)
0 then gives the desired operator Q0. ��

Step 1: Removing the error term at ff . In this step, we improve the parametrix so that
the error term vanishes at the front face ff.

Proposition 3.11. There exist Q1 ∈ �
−1,Q1
φ (M; E) and R1 ∈ �

−∞,R1
φ (M; E) such

that

(x−δDφx
δ)Q1 = Id−R1,

where the index families Q1 and R1 are the empty set at rf and lf and given otherwise
by

Q1|ff = N0, Q1|φbf = N0 + h, R1|ff = N0 + 1, R1|φbf = N0 + h + 1.

(3.28)

Moreover, the leading term A of Q1 at φbf is such that A = �h A�h.
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Proof. We need to find Q′
1 such that

Nff(x
−δDφx

δQ′
1) = Nff(R0), (3.29)

for then it suffices to take Q1 = Q0 + Q′
1. To solve (3.29), we can decompose Nff(R0)

using the fiberwise projection �h onto the bundle ker Dv ,

Nff(R0) = �h Nff(R0) + (Id−�h)Nff(R0),

where the right hand side makes sense since �h can be regarded as an element of
�0

sus(φNY )
(∂M/Y ; E), the space of φNY -suspended families of pseudodifferential op-

erators of order 0 of [33]. Now, recall from (3.2) that

Nff(x
−δDφx

δ) = Nff(Dφ) = Dv + ðh, (3.30)

where ðh is a family of Euclidean Dirac operators in the fibers of φN∂M → ∂M anti-
commuting with Dv . In particular, ðh commutes with �h . On the range of Id−�h , the
operator Dv + ðh is on each fiber an invertible suspended operator in the sense of [33],
so has an inverse (Dv + ðh)

−1
⊥ ∈ �−1

sus(φNY )
(∂M/Y ; E). On the range of �h , we can

apply instead [2, Corollary A.4] to invert ðh as a weighted b-operator. Thus, it suffices
to take Q′

1 such that

Nff(Q
′
1) = (ðh)

−1�h(Nff(R0)) + (Dv + ðh)
−1
⊥ (Id−�h)Nff(R0). (3.31)

The price to pay is that by [2, Corollary A.4], the image of (ðh)
−1 has an expansion

at infinity with index set Jh+1 such that inf Re(Jh+1) = h. This expansion corresponds
to a non-trivial expansion of Q′

1 at φbf, so that Q1 = Q0 + Q′
1 ∈ �

−1,Q1
φ (M; E) with

Q1 as in the statement of the proposition. Since Q1 is O(xhφbf) at φbf, the same is true
for R1. Moreover, at ff, we must have

Nff(x
−δDφx

δ)Nff(Q1) = Id

which means that

Nff(Q1) = �hð
−1
h �h + (Dv + ðh)

−1
⊥ .

Thus, the top order term A at φbf of Q1 comes from the expansion of �hð
−1
h �h , which

is just a family of Green functions of Euclidean Dirac operators, those being of the form
cl(u)

|u|h+1 in terms of the Euclidean variable u and Clifford multiplication. In particular, the

index set of Q1 at φbf is just N0 + h. Hence, choosing suitably the definition of Q′
1 on

φbf, we can assume that A = �h A�h . Since by definition Dv acts trivially on such an
operator, this implies that x−δDxδQ1 vanishes instead at order h + 1 at φbf so that R1
must also be O(xh+1φbf ) at φbf, that is,R1|φbf = N0 + h + 1. ��
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Step 2: preliminary step to remove the error term at φbf . Since R1 has a term of order
h + 1 at φbf, it cannot be compact as an operator acting on L2

b(M; E). This is because
beingO(xh+1φbf ) in terms of right φ-densities corresponds to beingO(1) in terms of right
b-densities. To get rid of the term of order h+1 at φbf, we can first remove the expansion
of this term at ff ∩φbf, in fact just the expansion of this term lying in the range of �h .

Proposition 3.12. There exist Q2 ∈ �
−1,Q2
φ (M; E) and R2 ∈ �

−∞,R2
φ (M; E) such

that

(x−δDφx
δ)Q2 = Id−R2,

where Q2 and R2 are index families given by the empty set at lf and rf and such that

Q2|ff = N0, Q2|φbf = N0 + h, R2|ff = N0 + 1, inf Re(R2|φbf) ≥ h + 1.

Moreover, the term A of order h at φbf of Q2 is such that A = �h A�h, while R2 is
such that its term B of order h + 1 at φbf is such that �h B = �h B�h has a trivial
expansion at ff ∩φbf .

Proof. Writing Q2 = Q1 + ˜Q2, we need to find ˜Q2 such that the term B at order h + 1
of

(x−δDφx
δ)˜Q2 − R1

at φbf is such that �h B vanishes to infinite order at ff ∩φbf. Let ro1 denote the part
of the restriction at order h + 1 to φbf of R1 whose image is in the range of �h . By
step 1, ro1 = I (Db, δ)A1 where A1 is the term of order h of Q1 at φbf. In particular,
ro1 = �hro1�h . Now, we need to find qo2 such that

I (Db, δ)(q
o
2 ) − ro1

vanishes to infinite order at ff ∩φbf. To construct such a term qo2 , which can be achieved
working locally near ff ∩φbf, the idea is to use [37, Lemma 5.44]. We refer to [2, Propo-
sition 4.14 and Proposition A.7] or [45, Proposition 3.17] for further details. Extending
qo2 smoothly off φbf, thinking of it as a term of order h there, we obtain ˜Q2 as desired.
Clearly, qo2 = �hqo2�h , so that the terms of order h of Q2 at φbf and the term of order
h + 1 of R2 at φbf are as claimed. ��

Step 3: Removing the error term at φbf .

Proposition 3.13. There exist Q3 ∈ �
−1,Q3
φ (M; E) and R3 ∈ �

−∞,R3
φ (M; E) such

that

(x−δDφx
δ)Q3 = Id−R3,

where Q3 and R3 are index families such that

inf Re(Q3|lf) ≥ μ, inf Re(Q3|rf) ≥ h + μ, Q3|ff = N0, Q3|φbf = N0 + h,

inf Re(R3|lf) > μ, inf Re(R3|rf) ≥ h + μ, R3|ff = N0 + 1, R3|φbf = N0 + h + 2.
(3.32)

Moreover, the term A of order h at φbf of Q3 is such that A = �h A�h, while any term
r in the expansion of R3 at rf is such that r�h = r .



Low Energy Limit for FB-Operators 253

Proof. Let B be the term of order h + 1 of R2 at φbf and write

B = bo + b⊥, bo = �h B = �h B�h, b⊥ = (Id−�h)B.

By Proposition 3.12, bo can be thought of as a smooth kernel on the interior of the b-front
face Y 2 × (0,∞)s of the b-double space of Y × [0, 1)x , where s = x/x ′ is the usual
coordinate. Hence, since δ is not a critical weight, this suggests to consider

qo3 (s) = 1

2π

∫

R

eiξ log s I (Db, δ + iξ)−1
̂bo(ξ)dξ,

where

̂bo(ξ) =
∫ ∞

0
e−iξ log sbo(s)

ds

s

is the Mellin transform of bo(s). Since I (Db, λ) has no critical weight in (δ −μ, δ +μ),
notice that in the strip δ − μ ≤ Re λ ≤ δ + μ, I (Db, λ)−1 has at most simple poles
on the lines Re λ = δ ± μ, which means by the integral contour argument of [37] that
eμ| log s|qo3 (s) is bounded. In this case, if Qo

3 is a smooth extension of qo3 x
−1, seen as a

term of order h at φbf in terms of φ-densities, we have that

(x−δDφx
δ)Qo

3 = bo

at order h + 1 at φbf. We can also assume that each term a in the expansion of Q0
3 at rf

is such that a�h = a. Moreover, the boundedness of eμ| log s|qo3 (s) ensures that Qo
3 has

leading terms at least of order xμ
lf and xh+μ

rf at lf and rf respectively. Since the term of
order μ of qo3 (s) is killed by x−δDφxδ , we can assume the same is true for Qo

3. Hence,
considering ˜Q3 = Q2 + Qo

3, we see that

(x−δDφx
δ)˜Q3 = Id−˜R3

with ˜R3 similar to R2, but with term ˜B of order h + 1 at φbf such that

�h˜B = 0

and with leading terms at lf and rf at least of order xμ+ν
lf and xh+μ

rf for some ν > 0.
Moreover, each term r in the expansion of ˜R3 at rf is such that r�h = r . To get rid of
˜B, it suffices then to consider

q⊥
3 := D−1

v
˜B

and a smooth extension Q⊥
3 having q⊥

3 as a term of order h + 1 at φbf. By construction,
x−δDφxδQ⊥

3 has term of order h + 1 at φbf precisely given by ˜B. Hence it suffices to
take Q3 = ˜Q3 + Q⊥

3 . Since q
o
3 = �hqo3�h , notice that term of order h at φbf of Q3

is as claimed. By our choice of Q3, notice that R3 has no term of order μ at lf and the
expansion at rf is as claimed. ��
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Step 4: Removing the expansion at lf .

Proposition 3.14. There exist Q4 ∈ �
−1,Q4
φ (M; E) and R4 ∈ �

−∞,R4
φ (M; E) such

that

(x−δDφx
δ)Q4 = Id−R4,

where Q4 and R4 are index families such that

inf Re(Q4|lf) ≥ μ, inf Re(Q4|rf) ≥ h + μ, Q4|ff = N0, Q4|φbf = N0 + h,

R4|lf = ∅, inf Re(R4|rf) ≥ h + μ, R4|ff = N0 + 1, R4|φbf = N0 + h + 2.

(3.33)

Moreover, the term A of order h of Q4 at φbf is such that A = �h A�h.

Proof. Proceeding as in the proof of [37, Lemma 5.44], we can find ˜Q4 defined near lf
such that (x−δDφxδ)˜Q4 has the same expansion as R3 at lf. Indeed, if R3 has a term
xαrα of order α in its expansion at lf, then we can first look at �hrα and look for qα

such that

I (Db, δ + α − 1)qα = �hrα.

This is possible provided I (Db, δ + α − 1) is invertible, in which case we have that

(x−δDφx
δ)xα−1qα = xα�hrα + xαr⊥

α +O(xα+1),

where r⊥
α is such that �hr⊥

α = 0 by Lemma 3.5. Hence, picking q⊥
α such that

Dvq
⊥
α = (rα − �hrα − r⊥

α ),

we see that

(x−δDφx
δ)(xα−1qα + xαq⊥

α ) = xαrα +O(xα+1),

so that we found a way to remove the term xαrα . If instead I (Db, δ + α − 1) is not
invertible, we can remove �hrα by replacing xα−1qα by a term of the form

xα−1(qα + qα,1 log x),

and then proceeding as before. Similarly, for a term of order xα(log x)krα,k , we have
more generally to replace xα−1qα by xα−1(log x)(qα + qα,1 log x). In any case, we can
in this manner recursively remove all the terms in the expansion of R3 at lf, sot that ˜Q4
can be obtained by taking a Borel sum. Hence, setting Q4 = Q3 + ˜Q4 gives the desired
operator. ��



Low Energy Limit for FB-Operators 255

Step 5: Proof of Theorem 3.9.

Proof of Theorem 3.9. To prove the theorem, we can remove the expansions of the error
term at φbf and ff by using a Neumann series argument. First, choose S5 to be an
asymptotic sum

S5 ∼
∞
∑

i=1

Ri
4

at φbf and ff. This is possible since from the composition rules of fibered boundary
operators (see for instance [45, Theorem 2.11]), the index family of (R4)

i iterates away
at φbf and ff while it is stabilizing at rf. Taking Q = Q4(Id +S5) then gives the desired
operator. ��

The parametrix of Theorem 3.9 has various implications.

Corollary 3.15. If σ ∈ xαH−∞
b (M; E) with α ∈ R is such that f := Dφσ ∈ AF

phg

(M; E) for some index set F , then σ ∈ AE
phg(M; E) for some index set E depending on

F and α such that inf Re E > α.

Proof. Take δ ≥ −α large enough so that xδ−1 f ∈ L2
b(M; E) and δ − 1 is not a

critical weight of I (Db, λ). By Theorem 3.9, there exist Q ∈ �
−1,Q
φ (M; E) and R ∈

�
−∞,R
φ (M; E) such that

(x1−δDφx
δ−1)Q = Id−R.

Conjugating by x , this gives the following parametrix for the corresponding fibered cusp
operator,

x−1(x1−δDφx
δ−1)Qx = Id−x−1Rx .

Taking the adjoint and using that Dφ is formally self-adjoint, we find that

xQ∗x−1(xδDφx
−δ) = Id−x R∗x−1. (3.34)

Applying both side of this equation to xδσ ∈ H−∞
b (M; E) yields

xδσ = xQ∗xδ−1 f + (x R∗x−1)xδσ. (3.35)

Now, (x Rx−1)∗xδσ is well-defined since x R∗x−1 vanishes rapidly at rf, ff and φbf
and (x R∗x−1)xδσ ∈ AR|rf−h

phg (M; E). On the other hand, since by our assumption
on δ, inf Re(Q|lf + F + δ − 1) > 0, we can apply Proposition 2.4 to conclude that
xQ∗xδ−1 f ∈ AG

phg(M; E) with

G = (Q|rf − h)∪(Q|ff + F + δ)∪(Q|φbf + F + δ − h − 1).

Hence, we see from (3.35) that σ is polyhomogeneous, from which the result follows.
��

The particular case where f = 0 yields the following.
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Corollary 3.16. For each α ∈ R, the kernel of Dφ in xαL2
b(M; E) is finite dimensional

and its elements are polyhomogeneous. Moreover, if for some μ > 0, (α − μ, α + μ) ∩
Crit(Db) = ∅, then elements of that kernel have their leading term at least of order xα+μ

in their polyhomogeneous expansion at ∂M.

Proof. Polyhomogeneity is a consequence Corollary 3.15 with f = 0. With δ ≥ −α as
in the proof of Corollary 3.15, the finite dimension of the kernel follows from the fact
that xδ kerxαL2

b
Dφ ⊂ kerL2

b
(xδDφx−δ) and that by (3.35), x R∗x−1, which is a compact

operator when acting on L2
b(M; E), restricts to be the identity on this subspace.

Now, if (α − μ, α + μ) ∩ Crit(Db) = ∅, then by Remark 3.7 we can take δ = −α,
so that

xδσ = (x R∗x−1)xδσ ∈ AR|rf−h
phg

with inf ReR|rf ≥ h + μ, so that σ has leading term of order at least x−δ+μ = xα+μ in
its polyhomogeneous expansion at ∂M . ��

The parametrix of Theorem 3.9 can also be used to obtain a Fredholm criterion. Let
Dδ−1 be the minimal domain of the fibered cusp operator x1−δ(x−1Dφ)xδ−1 acting on
L2
b(M; E). Since the fibered cusp metric gfc := x2gφ is complete, recall that a standard

argument shows that there is in fact only one closed extension since the maximal domain
is equal to the minimal domain. Let ˜�h be a smooth extension of �h , first to a collar
neighborhood of ∂M and then to all of M using a cut-off function. Then one can readily
check that

Dδ−1 = ˜�h H
1
b (M; E) + x(Id−˜�h)x

− h+1
2 H1

φ(M; E). (3.36)

Corollary 3.17. If δ − 1 is not a critical weight of I (Db, λ), then

Dφ : xδ−1Dδ−1 → xδL2
b(M; E)

is a Fredholm operator, that is, the operator

ðφ : xδ−1x
h+1
2 Dδ−1 → xδL2

φ(M; E)

is Fredholm, where xδ−1x
h+1
2 Dδ−1 is a domain in xδ−1L2

φ(M; E).

Proof. We need to construct a parametrix for x−1Dφ acting formally on xδ−1L2
b(M; E),

that is, we need a parametrix for x1−δ(x−1Dφ)xδ−1 acting formally on L2
b(M; E).

First, since δ − 1 is not a critical weight, we know by Theorem 3.9 that there exist

Qδ−1 ∈ �
−1,Qδ−1
φ (M; E) and Rδ−1 ∈ �

−∞,Rδ−1
φ (M; E) such that

(x1−δ(Dφ)xδ−1)Qδ−1 = Id−Rδ−1.

Conjugating by x then gives

(x1−δ(x−1Dφ)xδ−1)(Qδ−1x) = Id−x−1Rδ−1x . (3.37)
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Similarly, by Remark 3.7, −δ is not a critical weight, so we see from Theorem 3.9 that

there exist Q−δ ∈ �
−1,Q−δ

φ (M; E) and R−δ ∈ �
−∞,R−δ

φ (M; E) such that

(xδDφx
−δ)Q−δ = Id−R−δ.

Taking the adjoint and using that Dφ is formally self-adjoint, we thus see, after conju-
gating by x , that

(xQ∗−δ)x
1−δ(x−1Dφ)xδ−1 = Id−x R∗−δx

−1. (3.38)

Since the terms Aδ−1 and A∗−δ of order h of Qδ−1 and Q∗−δ are such that Aδ−1 =
�h Aδ−1�h and A∗−δ = �h A∗−δ�h , we see that Qδ−1 and Q∗−δ induce bounded opera-
tors

Qδ−1x : L2
b(M; E) → Dδ−1, xQ∗−δ : L2

b(M; E) → Dδ−1.

Hence, since both x−1Rδ−1x and x R∗−δx
−1 act as compact operators on L2

b(M; E)

and Dδ−1, we deduce from (3.37) and (3.38) that

x1−δ(x−1Dφ)xδ−1 : Dδ−1 → L2
b(M; E)

is Fredholm, from which the result follows. ��
Corollary 3.18. If δ is not a critical weight, then

Dφ : xδ
˜�h H

1
b (M; E) + xδ(Id−˜�h)x

− h+1
2 H1

φ(M; E)

−→ xδ+1
˜�h L

2
b(M; E) + xδ(Id−˜�h)L

2
b(M; E)

is a Fredholm operator.

Proof. We need to show that

x−δDφx
δ : ˜�h H

1
b (M; E) + (Id−˜�h)x

− h+1
2 H1

φ(M; E)

−→ x˜�h L
2
b(M; E) + (Id−˜�h)L

2
b(M; E) (3.39)

is a Fredholm operator. By Remark 3.7, we know that both δ and −1− δ are not critical
weights. Hence, applying Theorem 3.9 gives operators Qδ, Rδ, Q−1−δ and R−1−δ such
that

(x−δDφx
δ)Qδ = Id−Rδ, (3.40)

(xQ∗−1−δx
−1)(x−δDφx

δ) = Id−x R∗−1−δx
−1. (3.41)

Thanks to the fact that each term r of order h + 1 or less in the expansion of Rδ is such
that r�h = r , we see that Rδ is a compact operator when acting on

x˜�h L
2
b(M; E) + (Id−˜�h)L

2
b(M; E) ⊂ L2

b(M; E).

Hence, we see from (3.40) that Qδ is a right inverse modulo compact operators. On the
other hand, since x R∗−1−δx

−1 is a compact operator when acting on

˜�h H
1
b (M; E) + (Id−˜�h)x

− h+1
2 H1

φ(M; E) ⊂ L2
b(M; E),

we see from (3.41) that xQ∗−1−δx
−1 is a left inverse modulo compact operators. Hence,

we see that (3.39) is invertible modulo compact operators and must therefore be Fred-
holm. ��
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Remark 3.19. When ðφ is the Hodge–deRham operator of gφ , Corollaries 3.15, 3.16,
3.17 and 3.18 correspond to [25, Proposition 16].

Finally, we can use Theorem 3.9 to give a pseudodifferential description of the inverse
of Dφ when it is inverted as a Fredholm operator. More precisely, for δ − 1 not a critical
weight, consider the Fredholm operator

x1−δ(x−1Dφ)xδ−1 : Dδ−1 → L2
b(M; E) (3.42)

of Corollary 3.17. Let μ > 0 be such that the interval (δ − 1 − μ, δ − 1 + μ) contains
no critical weight of the indicial family I (Db, λ). By Remark 3.7, the interval (−δ −
μ,−δ +μ) is a also free of critical weights of the indicial family I (Db, λ). Let P1 be the
orthogonal projection in L2

b(M; E) onto the kernel of (3.42). By Corollary 3.16, P1 ∈
�−∞,E (M; E) is a very residual operator in the sense of [32], where E = (Elf , Erf) is an
index family with inf Re Elf ≥ μ and inf Re Erf ≥ μ. Similarly, let P2 be the orthogonal
projection onto the orthogonal complement of the range of (3.42) in L2

b(M; E). From the
formal self-adjointness of Dφ , on can check that the orthogonal complement of the range
of (3.42) is given by kerL2

b
(xδDφx−δ). By Corollary 3.16, this space is finite dimensional

and its elements are polyhomogeneous. Hence, we also have that P2 ∈ �−∞,F (M; E)

is very residual with F = (Flf ,Frf) an index family such that inf ReFlf ≥ μ and
inf ReFrf ≥ μ.

Now, by Corollary 3.17, there is a bounded operator Gδ−1 : L2
b(M; E) → Dδ−1

such that

Gδ−1(x
1−δ(x−1Dφ)xδ−1) = Id−P1, (3.43)

(x1−δ(x−1Dφ)xδ−1)Gδ−1 = Id−P2. (3.44)

Corollary 3.20. Suppose δ − 1 is not a critical weight of the indicial family I (Db, λ).
Let μ > 0 be such that (δ − 1 − μ, δ − 1 + μ) ∩ Crit(Db) = ∅. Then the inverse Gδ−1

is an element of �−1,G
φ (M; E) with index family G such that

inf Re(G|lf ) ≥ μ, inf Re(G|rf ) ≥ h + 1 + μ, inf Re(G|φbf ) ≥ h + 1, inf Re(G|ff ) ≥ 1.

Moreover, the term A of order h + 1 at φbf of Gδ−1 is such that A = �h A�h.

Proof. We follow the approach of [32, Theorem 4.20]. Using (3.37), we have that

Gδ−1 = Gδ−1 Id = Gδ−1

[

(x1−δ(x−1Dφ)xδ−1)(Qδ−1x) + x−1Rδ−1x
]

= (Id−P1)Qδ−1x + Gδ−1(x
−1Rδ−1x).

(3.45)

Using instead (3.38), we have that

Gδ−1 = IdGδ−1 =
[

(xQ∗−δ)(x
1−δ(x−1Dφ)xδ−1) + x R∗−δx

−1
]

Gδ−1

= (xQ∗−δ)(Id−P2) + x R∗−δx
−1Gδ−1.

(3.46)

Thus, inserting (3.46) into (3.45), we find that
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zf

sc

tf

Fig. 3. The transition single space Mt

Gδ−1 = Qδ−1x − P1(Qδ−1x) + xQ∗−δx
−1Rδ−1x − (xQ∗−δ)P2(x

−1Rδ−1x)

+x R∗−δx
−1Gδ−1(x

−1Rδ−1x). (3.47)

Since x R∗−δx
−1 and x−1Rδ−1x are very residual and Gδ−1 is a bounded operator on

L2
b(M; E), we see by the semi-ideal property of very residual operators that the last

term in (3.47) is very residual. Hence, the result follows from (3.47) and the result about
composition of fibered boundary operators. ��

4. The Low Energy Fibered Boundary Operators

In this section, we will introduce the natural calculus of pseudodifferential operators
associated to the low energy limit of Dirac fibered boundary operators. First, on the
manifold M × [0,∞)k , we consider the lift of fibered boundary vector fields

Vk,φ(M × [0,∞)k) = {ξ ∈ V(M × [0,∞)k) | (pr2)∗ξ = 0,

ξ |M×{k} ∈ Vφ(M) ∀k ∈ [0,∞)}, (4.1)

where pr2 : M ×[0,∞)k → [0,∞)k is the projection on the second factor. We can also
consider this lift on the transition single space of [30]

Mt = [M × [0,∞)k; ∂M × {0}], (4.2)

wherewe denote by sc, zf and tf the boundary hypersurfaces of the lifts of ∂M×[0,∞)k ,
M × {0} and ∂M × {0} (Fig. 3).
Definition 4.1. The Lie algebra of k, φ-vector fields is the Lie algebra of vector fields
onMt generated over C∞(Mt ) by the lift of vector fields inVk,φ(M×[0,∞)k) toMt . The
space of differential k, φ-operators is the universal enveloping algebra over C∞(Mt )

ofVk,φ(Mt ). In other words, the space Diffmk,φ(Mt ) of differential k, φ-operators of order
m is generated by multiplication by elements of C∞(Mt ) and up to m vector fields in
Vk,φ(Mt ).

If E and F are vector bundles on Mt , one can consider more generally the space

Diffmk,φ(Mt ; E, F) := Diffmk,φ(Mt ) ⊗C∞(Mt ) C∞(Mt ; E∗ ⊗ F). (4.3)

Using the Serre–Swan theorem, there is in fact a vector bundle k,φT Mt → Mt , the
k, φ-tangent bundle, inducing the natural identification

Vk,φ(Mt ) = C∞(Mt ; k,φT Mt ). (4.4)
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This identification is induced by an anchor map a : k,φT Mt → T Mt giving k,φT Mt a
Lie algebroid structure. By construction, on zf, k,φT Mt is just the φ-tangent bundle of
Mazzeo–Melrose [33],

k,φT Mt |zf ∼= φT M. (4.5)

On the other hand, on sc and tf, let k,φNsc and k,φNtf be the kernels of the anchor map,
so that there are the short exact sequences of vector bundles

0 �� k,φNsc �� k,φT Mt |sc a �� k,φVsc �� 0,

0 �� k,φNtf �� k,φT Mt |tf a �� k,φVtf �� 0,
(4.6)

where k,φVsc and k,φVtf are the vertical tangent bundles associated to the fiber bundles

φsc := φ × Id[0,∞)k : sc → Y × [0,∞)k, φtf := φ × Id[0, π
2 ]θ : tf → Y × [0, π

2
]θ ,
(4.7)

induced by the φ and the natural identifications sc ∼= ∂M × [0,∞)k and tf ∼= ∂M ×
[0, π

2 ]θ , the function θ = arctan x
k being the natural angular coordinate on tf. Using the

coordinates (2.3), we can consider the coordinates

X = x

k
, k, y1, . . . , yh, z1, . . . , zv

near sc on Mt , in terms of which k,φT Mt is locally spanned by

kX2 ∂

∂X
, kX

∂

∂y1
, . . . , kX

∂

∂yh
,

∂

∂z1
, . . . ,

∂

∂zv
,

so that k,φNsc and k,φNtf are locally spanned by

kX2 ∂

∂X
, kX

∂

∂y1
, . . . , kX

∂

∂yh

on sc and tf respectively.
The vector bundles k,φNsc and k,φNtf are in fact pull-backs of vector bundles with

respect to φsc and φtf . To see this, notice that the fiber bundles φsc and φtf induce as well
the short exact sequences

0 �� k,φVsc �� k,φT Mt |sc (φsc)∗�� φ∗
sc(

k,φNscY ) �� 0,

0 �� k,φVtf �� k,φT Mt |tf (φtf )∗ �� φ∗
tf(

k,φNtfY ) �� 0,

(4.8)

with k,φNscY = pr∗1 NY and k,φNtfY = p̃r∗1NY , where NY = scT (Y × [0, 1))|Y×{0} ∼=
TY ×R is the restriction of the scattering tangent bundle on Y × [0, 1) to the boundary
Y ×{0} and pr1, p̃r1 denote the projections onto Y in the Cartesian product Y ×[0,∞)k
and Y × [0, π

2 ]θ respectively. In particular, the inclusions k,φVsc → k,φT Mt |sc and
k,φVtf → k,φT Mt |tf induce splitting for the short exact sequences in (4.6),

k,φT Mt |sc = k,φNsc ⊕ k,φVsc,
k,φT Mt |tf = k,φNtf ⊕ k,φVtf . (4.9)
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M2
φ × {0}

lf ×[0, ∞ fr) ×[0, ∞)
ff ×[0, ∞)φbf×

[0, ∞)

φbf×
[0, ∞)

Fig. 4. The space M2
φ × [0, ∞)k

Hence, we see from (4.8) and (4.9) that

k,φNsc = (φsc)∗k,φT Mt |sc = φ∗
sc(

k,φNscY ),

k,φNtf = (φtf)∗k,φT Mt |tf = φ∗
tf(

k,φNtfY ),
(4.10)

If φ : ∂M → Y is the identity map with Y = ∂M , Vφ(M) corresponds to the Lie
algebra of scattering vector fieldsVsc(M). In this case, we denoteVk,φ(Mt ) byVk,sc(Mt ).
One can check that the vector fields of this Lie algebra, as elements of V(Mt ), vanish to
order one at the boundary hypersurface tf corresponding to the blow-up of ∂M × {0}.
Definition 4.2. [30] In the case ∂M = Y and φ = Id, the Lie algebra of transition
vector fields on Mt is given by

Vt (Mt ) := 1

xtf
Vk,sc(Mt ),

where xtf is a choice of boundary defining function for tf. The space of differential
transition operators is the universal enveloping algebra over C∞(Mt ) of the Lie algebra
of transition vector fields. Thus, the space Diffmt (Mt ) of differential transition operators
of order m is generated by multiplication by elements of C∞(Mt ) and up tom transition
vector fields. For E and F vector bundles on Mt , we define more generally the space of
differential transition operators of order m acting from sections of E to sections of F
by

Diffmt (Mt ; E, F) := Diffmt (Mt ) ⊗C∞(Mt ) C∞(Mt ; E∗ ⊗ F).

To define the associated space of pseudodifferential operators, we need first to intro-
duce a double space (Fig. 4).

Definition 4.3. The k, φ-double space associated to (M, φ) and a choice of boundary
defining function x ∈ C∞(M) is the manifold with corners

M2
k,φ = [M2

φ × [0,∞)k;φbf ×{0}, lf ×{0}, rf ×{0}, ff ×{0}] (4.11)

with blow-down map

βk,φ : M2
k,φ → M2 × [0,∞)k .



262 C. Kottke, F. Rochon

zf
lf0 rf0

lf rfffφbf φbf

φbf0 φbf0
ff0

Fig. 5. The k, φ-double space M2
k,φ

On M2
k,φ , the lifts of M2 × {0}, lf ×[0,∞)k , rf ×[0,∞)k , ff ×[0,∞)k and

φbf ×[0,∞)k will be denoted by zf, lf, rf, ff and φbf, while the new boundary hy-
persurfaces created by the blow-ups of φbf ×{0}, ff ×{0}, lf ×{0} and rf ×{0} will be
denoted by φbf0, ff0, lf0 and rf0 (Fig. 5).

When φ is the identity map, the space M2
k,φ = M2

k,Id is intimately related to the b-sc

transition double space M2
t of [30] (denoted M2

k,sc in [21]),

M2
t := [M2

b × [0,∞)k; bf ×{0},�b ∩ bf ×[0,∞)k, lf ×{0}, rf ×{0}] (4.12)

with blow-down map

βt : M2
t → M2 × [0,∞)k,

where �b ⊂ M2
b is the lifted diagonal, bf ⊂ M2

b is the b-front face and lf and rf are
the lifts of ∂M × M and M × ∂M to M2

b . If bf0 ⊂ M2
t denotes the face created by the

blow-up of bf ×{0}, then the relation between M2
k,Id and M2

t is given by

M2
k,Id = [M2

t ; bf0 ∩�k,sc], (4.13)

where �k,sc is the lift of the diagonal �M × [0,∞)k ⊂ M2 × [0,∞)k to M2
t . Indeed,

using the commutativity of blow-ups of Lemma A.1 below, one can check that in this
setting, M2

k,Id can alternatively be defined by

M2
k,Id = [M2

b × [0,∞)k; bf ×{0},�b ∩ bf ×[0,∞)k,�b ∩ bf ×{0}, lf ×{0}, rf ×{0}].
(4.14)

More precisely, Lemma A.1 is used to see that the blow-ups of bf ×{0} and �b ∩
bf ×[0,∞)k commute provided we subsequently blow-up the lift of their intersection
�b ∩ bf ×{0}. As we will see, these two different, but nevertheless equivalent ways of
constructing M2

t will be quite important for the construction of parametrices.
This can also be used to give the following alternative definition of M2

k,φ . To see this,
consider the k, b-double space

M2
k,b = [M2

b × [0,∞)k; bf ×{0}, lf ×{0}, rf ×{0}]. (4.15)
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zf
lf0 rf0

lf rf

ffφbf φbf

φbf0 φbf0ff0

Fig. 6. Alternative picture of the k, φ-double space M2
k,φ from the point of view of Lemma 4.4

Lemma 4.4. The k, φ-double space can alternatively be defined by

M2
k,φ = [M2

k,b;�+,�0], (4.16)

where �+ is the lift of � × [0,∞)k ⊂ M2
b × [0,∞)k defined in (2.12) to M2

k,b and �0

is the lift of � × {0} to M2
k,b.

Proof. By Lemma A.1, we can commute the blow-ups of φbf ×{0} and � × [0,∞)k in
Definition 4.3, yielding

M2
k,φ = [M2

b × [0,∞)k; bf ×{0},� × [0,∞)k,� × {0}, lf ×{0}, rf ×{0}].
Since lf ×{0} and rf ×{0} do not intersect the lifts of � × [0,∞)k and � × {0} when
bf ×{0} is first blown up, their blow-ups commute with those of�×{0} and�×[0,∞),
so that

M2
k,φ = [M2

b × [0,∞)k; bf ×{0}, lf ×{0}, rf ×{0},� × [0,∞)k,� × {0}]
= [M2

k,b;�+,�0]
(4.17)

as claimed (Fig. 6). ��
Lemma 4.5. The projections prL × Id[0,∞)k : M2 × [0,∞)k → M × [0,∞)k and
prR × Id[0,∞)k : M2×[0,∞)k → M×[0,∞)k lift to b-fibrations πk,φ,L : M2

k,φ → Mt

and πk,φ,R : M2
k,φ → Mt , where we recall that prL : M2 → M and prR : M2 → M

denote the projections on the left and on the right factors.

Proof. By symmetry, it suffices to prove the result for prL × Id[0,∞)k . First, by [33], this
projection lifts to a b-fibration

πφ,L × Id[0,∞) : M2
φ × [0,∞)k → M × [0,∞)k .

Applying [24, Lemma 2.5], this lifts to a b-fibration

[M2
φ × [0,∞)k;φbf ×{0}, ff ×{0}, lf ×{0}].

Finally, by [24, Lemma 2.7], this further lifts to a b-fibration

πk,φ,L : M2
φ → Mt

as desired. ��
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Similarly,we know from [30] that prL ×[0,∞)k and prR ×[0,∞)k lift to b-fibrations

πt,L : M2
t → Mt , πt,R : M2

t → Mt .

Let �k,φ be the lift of �M × [0,∞)k ⊂ M2 × [0,∞) to M2
k,φ , where �M is the

diagonal in M × M .

Lemma 4.6. The lifts of Vk,φ(M) via the maps πk,φ,L and πk,φ,R are transversal to
�k,φ .

Proof. By symmetry, it suffices to consider the lift by πk,φ,L . Moreover, since it is a
local statement near the lifted diagonal, it suffices to consider the blow-up of ff ×{0}.
Now, by [33, Lemma 5], we know that the lift of Vk,φ(M × [0,∞)) to M2

φ × [0,∞)k is

transversal to the lifted diagonal. In fact, if y = (y1, . . . , yh) denotes coordinates on the
base of the fiber bundle φ : ∂M → Y and z = (z1, . . . , zv) coordinates on the fibers,
then

S =
x
x ′ − 1

x ′ ,Y = y − y′

x ′ , x ′, y′, z, z′, k (4.18)

are coordinates near the intersection of the lifted diagonal with ff ×[0,∞)k in M2
φ ×

[0,∞)k . In these coordinates, the lifted diagonal corresponds to S = Y = 0, z = z′,
while the lift from the left of Vk,φ(M × [0,∞)k) is spanned by

(1 + x ′S)2
∂

∂S
, (1 + x ′S)

∂

∂Y i
,

∂

∂z j
. (4.19)

Now, blowing-up ff ×{0} corresponds to replace the coordinates (4.18) by

S,Y, y′, z, z′, r ′ =
√

(x ′)2 + k2, θ = arctan(
x ′

k
). (4.20)

In these new coordinates, the lift from the left of Vk,φ(Mt ) is still spanned by (4.19),
that is, by

(1 + r ′(sin θ)S)2
∂

∂S
, (1 + r ′(sin θ)S)

∂

∂Y i
,

∂

∂z j
.

Since the lifted diagonal still corresponds to S = Y = 0, z = z′, transversality follows.
��

Similarly, let �t the lifted diagonal in M2
t .

Lemma 4.7. The lift of Vt (Mt ) via the maps πt,L and πt,R are transversal to the lifted
diagonal �t .

Proof. By symmetry, we only need to prove the result for πt,L . Moreover, since the
statement is local near the lifted diagonal, the relevant blow-ups in (4.14) are those of
bf ×{0} and�b∩bf ×[0,∞)k . Now, onM2

b ×[0,∞)k , one can consider the coordinates
s = x

x ′ , x ′, y, y′, k near bf ×[0,∞)k , where y = (y1, . . . , yn−1) represents coordinates
on ∂M . In these coordinates, the lift from the left of Vk,sc(M × [0,∞)k) is spanned by
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x ′s2 ∂
∂s , x

′s ∂
∂yi

and there is a lack of transversality at x ′ = 0, that is, at bf ×[0,∞)k .
Blowing up bf ×{0} corresponds to introducing the coordinates

s, y, y′, r ′ =
√

(x ′)2 + k2, θ = arctan(
x ′

k
).

In these new coordinates, the lift of Vk,sc(Mt ) is spanned by

r ′(sin θ)s2
∂

∂s
, r ′(sin θ)

∂

∂yi
.

Since r = √
x2 + k2 is boundary defining function for tf, this means that the lift of

Vt (Mt ) is spanned by

(sin θ)s2√
s2 sin2 θ + cos2 θ

∂

∂s
,

sin θ√
s sin2 θ + cos2 θ

∂

∂yi
.

There is still a lack of transversality at sin θ = 0, that is, at the lift of bf ×[0,∞)k .
However, blowing up the lift of �b ∩ bf ×[0,∞)k corresponds to introducing the coor-
dinates

S = s − 1

sin θ
, Y = y − y′

sin θ
, r ′, θ,

in terms of which the lift from the left of Vt (Mt ) is locally spanned by

s2√
s2 sin2 θ + cos2 θ

∂

∂s
,

1√
s sin2 θ + cos2 θ

∂

∂yi
.

This is clearly transverse to the lifted diagonal given by Y = 0, S = 0 in those coordi-
nates. ��

These transversality results allow us to give a simple description of the Schwartz
kernels of differential k, φ-operators and transition differential operators. Starting with
the former, consider the coordinates (4.20). In these coordinates, the Schwartz kernel of
the identity operator takes the form

κId = δ(−S)δ(−Y )δ(z′ − z)β∗
k,φ(prR × Id[0,∞)k )

∗ pr∗1 νφ,

where pr1 : M × [0,∞)k → M is the projection on the first factor and νφ is some
non-vanishing φ-density. Hence,

κId ∈ D0(�k,φ) · νR
k,φ

with

νR
k,φ = β∗

k,φ(prR × Id[0,∞)k )
∗ pr∗1 νφ (4.21)

a lift from the right of a non-vanishing k, φ-density andD0(�k,φ) is the space of smooth
delta distributions on �k,φ . More generally, by the transversality of Lemma 4.6, the
Schwartz kernel of an operator P ∈ Diffmk,φ(Mt ) is of the form

κP = π∗
k,φ,L P · κId ∈ Dm(�k,φ) · νR

k,φ,

whereDm(�k,φ) = Diffm(M2
k,φ)·D0(�k,φ) is the space of smooth delta distributions of

orderm on�k,φ . In fact, the transversality of Lemma 4.6 ensures that there is a bijection
between Diffmk,φ(Mt ) and Dm(�k,φ) · νR

k,φ . This suggests the following definition.
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Definition 4.8. Let E and F be vector bundles on transition single space Mt . The small
calculus of pseudodifferential k, φ-operators acting from sections of E to section of F
is the union over all m ∈ R of the spaces

�m
k,φ(M; E, F) := {κ ∈ Im− 1

4 (M2
k,φ,�k,φ;Homk,φ(E, F) ⊗ k,φ
R(M) | κ

≡ 0 at ∂M2
k,φ \ ffk,φ}, (4.22)

where ffk,φ is the union of the boundary hypersurfaces of M2
k,φ intersecting the lifted

diagonal �k,φ , Homk,φ(E, F) = π∗
k,φ,L F ⊗ π∗

k,φ,RE
∗ and k,φ
R(M) := β∗

k,φ(prR ×
Id[0,∞)k )

∗ pr∗1 φ
(M).

More generally, for E an index family of the boundary hypersurfaces of M2
k,φ , we

can consider the spaces

�
−∞,E
k,φ (M; E, F) := AE

phg(M
2
k,φ;Homk,φ(E, F) ⊗ k,φ
R(M)), (4.23)

�
m,E
k,φ (M; E, F) := �m

k,φ(M; E, F) + �
−∞,E
k,φ (M; E, F), m ∈ R. (4.24)

Recall from [21,30] that for φ = Id on ∂M , the calculus of b-sc transition pseudod-
ifferential operators admits a similar definition. Let πt,L = (prL × Id[0,∞)k ) ◦ βt and
πt,R = (prR × Id[0,∞)k )◦βt be the analog of πk,φ,L and πk,φ,R and let xsc be a boundary
defining function for the boundary hypersurface sc in M2

t . Then the small calculus of
b-sc transition pseudodifferential operators acting from sections of E to sections of F
is defined as the union over m ∈ R of

�m
t (M; E, F) = {κ ∈ Im− 1

4 (M2
t ,�t ;Homt (E, F) ⊗ t
R(M) | κ ≡ 0 at ∂M2

t \ ff t },
(4.25)

where ff t is the union of boundary hypersurfaces of M2
t intersecting the lifted diagonal,

Homt (E, F) = π∗
t,L F ⊗ π∗

t,RE
∗ and t
R(M) = x−n

sc β∗
t (prR × Id[0,∞)k )

∗ pr∗1 b
(M)

with b
(M) the bundle of b-densities on M in the sense of [37]. If E is an index family
for the boundary hypersurfaces of M2

t , we can consider more generally the spaces

�
−∞,E
t (M; E, F) := AE

phg(M
2
t ;Homt (E, F) ⊗ t
R),

�
m,E
t (M; E, F) := �m

t (M; E, F) + �
−∞,E
t (M; E, F), m ∈ R.

(4.26)

5. The Triple Space of Low Energy Fibered Boundary Operators

To obtain nice composition results for k, φ-operators, we can follow the approach of
Melrose and use a suitable triple space and apply the pushforward theorem of [36,
Theorem 5]. To construct such a k, φ-triple space, we can start with the Cartesian product
M3×[0,∞)k and consider the projectionsπL , πC , πR : M3×[0,∞)k → M2×[0,∞)k
given by

πL(m,m′,m′′, k) = (m,m′, k), πC (m,m′,m′′, k) = (m,m′′, k),
πR(m,m′,m′′, k) = (m′,m′′, k).
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As in [21], let us use the 4-digit binary codes for the faces of M3 × [0,∞)k , where
H0000 represent (∂M)3 × {0}, H1010 stands for M × ∂M × M × {0}, H0011 stands for
(∂M)2 × M × [0,∞)k , and so on. In this notation, recall from [21,30] that

M3
k,b = [M3 × [0,∞)k; H0000, H1000, H0100, H0010, H0001,

H1100, H1010, H1001, H0110, H0101, H001] (5.1)

is obtained by blowing up all the corners of M3 × [0,∞)k in order of decreasing
codimension.

Lemma 5.1. For o ∈ {L ,C, R}, πo lift to a b-fibration

π3
b,o : M3

k,b → M2
k,b.

Proof. By symmetry, it suffices to consider the case o = L . By [24, Lemma 2.5], the
projection πL first lifts to a b-fibration

[M3 × [0,∞)k; H0000, H0010] → [M2 × [0,∞)k; ∂M × ∂M × {0}].
Applying [24, Lemma 2.5] three more times, this lifts to a b-fibration

[M3 × [0,∞)k; H0000, H0010, H0100, H0110, H1000, H1010, H0001, H0011] → M2
k,b.

(5.2)

Now, after the blow-up of H0000, the lift of the corner H0110 is disjoint from those of
H1000 and H0001, while the lift of H1010 is disjoint from the one of H0001. Hence, their
blow-ups commute in (5.2), which can be rewritten

[M3 × [0,∞)k; H0000, H0010, H0100, H1000, H0001, H0110, H1010, H0011] → M2
k,b.

(5.3)

Hence, by [24, Lemma 2.7], the b-fibration (5.3) lifts to a b-fibration

[M3 × [0,∞)k; H0000, H0010, H0100, H1000, H0001, H0110,

H1010, H0011, H1100, H1001, H0101] → M2
k,b.

The result then follows by the commutativity of the blow-ups of non-intersecting p-
submanifolds. ��

Let Hb
i j�m be the boundary hypersurface of M3

k,b corresponding to the blow-up of

Hi j�m . Since M2
k,φ is constructed from M2

k,b by blowing up the p-submanifolds �+ and
�0 defined in Lemma 4.4, this suggests to look at the lifts of �+ and �0 with respect
to πb,o for o ∈ {L ,C, R} to construct the triple space of M2

k,φ . For �+, this gives

the p-submanifolds G+
o contained in Hb

0001 for each o ∈ {L ,C, R}, as well a the p-
submanifolds J+L contained in Hb

0011, J
+
C contained in Hb

0101 and J+R contained in Hb
1001.

The p-submanifold G+
L , G

+
C and G+

R have a non-zero intersection. To describe it, notice
that there is a natural diffeomorphism

Hb
0001

∼= ∂M3 × Lb

where Lb is the face corresponding to Hb
0001 inside [0, 1)3k,b. We have further that Lb ∼=

Gb × [0,∞)k , where Gb is the front face of the b-triple space [0, 1)3b.
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Lemma 5.2. The intersectionof anypair ofG+
L , G

+
C andG+

R in M
3
k,b is the p-submanifold

K + = G+
L ∩ G+

C ∩ G+
R .

Proof. Let x, x ′ and x ′′ denote the boundary defining functions for each factor of M3.
let pb ∈ Gb be the unique point of Gb contained in the lifted diagonal on [0, 1)3b. Then
under the identification Hb

0001
∼= ∂M3 × Gb × [0,∞)k , we have that

G+
L

∼= {(m,m′,m′′, q, k) ∈ ∂M3 × Gb × [0,∞)k | φ(m) = φ(m′), x(q) = x ′(q)}
and there are similar descriptions for G+

C and G+
R . From those descriptions, we see that

the intersection of any pair in G+
L , G

+
C and G+

R is given by

K + = {(m,m′,m′′, q, k) ∈ ∂M3 × Gb × [0,∞)k | φ(m) = φ(m′) = φ(m′′), q = pb},
which is clearly a p-submanifold of Hb

0001. ��
Similarly, the lifts of �0 ∈ M2

k,b with respect to π3
b,L , π3

b,C and π3
b,R gives p-

submanifolds GL , GC and GR inside Hb
0000 as well as the p-submanifolds JL , JC and

JR inside Hb
0010, H

b
0100 and H

b
1000. AgainGL ,GC andGR have a non-trivial intersection.

Lemma 5.3. The intersection for any pair of GL, GC and GR is the p-submanifold

K = GL ∩ GC ∩ GR .

Proof. For the boundary hypersurface Hb
0000, there is a natural diffeomorphism

Hb
0000

∼= ∂M3 × Db, (5.4)

where Db is the corresponding face Hb
0000 in [0, 1)3k,b. Let Eb ⊂ Db be the p-submanifold

given by the intersection of Db with the lift of the diagonal

{(x, x, x, k) ∈ M3 × [0,∞)k | x ∈ [0, 1), k ∈ [0,∞)k} ⊂ [0, 1)3 × [0,∞)k

to [0, 1)3k,b. Then, under the identification (5.4), the intersection of any pair of GL , GC
and GR is given by the p-submanifold

K ∼= �3
φ × Eb ⊂ ∂M3 × Db ∼= Hb

0000,

where

�3
φ = {(m,m′,m′′) ∈ ∂M3 | φ(m) = φ(m′) = φ(m′′)}

is the triple fibered diagonal in ∂M3. ��
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This suggests to define the k, φ-triple space by

M3
k,φ = [M3

k,b; K +,G+
L ,G+

C ,G+
R, J+L , J+C , J+R, K ,GL ,GC ,GR, JL , JC , JR] (5.5)

with blow-down map

β3
k,φ : M3

k,φ → M3 × [0,∞). (5.6)

Proposition 5.4. For each o ∈ {L ,C, R}, the b-fibration π3
b,o : M3

k,b → M2
k,b lifts to a

b-fibration

π3
k,φ,o : M3

k,φ → M2
k,φ.

Proof. By symmetry, it suffices to check the result for o = L . We can then essentially
proceed as in the proof of [33, Proposition 6]. First, by [24, Lemma 2.5], the map π3

b,L
lifts to a b-fibration

[M3
k,b;G+

L , J+L ] → [M2
k,b,�+].

By [24, Lemma 2.7], this further lift to a b-fibration

[M3
k,b;G+

L , J+L , K +,G+
C ,G+

R, J+C , J+R] → [M2
k,b;�+].

Using the commutativity of nested blow-ups and of blow-ups of non-intersecting p-
submanifolds, this corresponds to a b-fibration

[M3
k,b; K +,G+

L ,G+
C ,G+

R, J+L , J+C , J+R] → [M2
k,b,�+].

Repeating this argument, but with �+, K +, G+
o and J+o replaced by �0, K , Go and Jo,

we can check that this lifts further to a b-fibration

π3
k,φ,L : M3

k,φ → [M2
k,b;�+,�0] = M2

k,φ

as claimed. ��
As in [33], the b-fibrations π3

k,φ,o for o ∈ {L ,C, R} behave well with respect to the

lifted diagonals. More precisely, for o ∈ {L ,C, R}, set �3
k,φ,o := π−1

k,φ,o(�M,k) where

�M,k = {(m,m, k) ∈ M2 × [0,∞) | m ∈ M, k ∈ [0,∞)}
is the diagonal. These are clearly p-submanifolds. Moreover, for o �= o′, the intersection
�3

k,φ,o ∩ �3
k,φ,o′ is the p-submanifold �3

k,φ,T in M3
k,φ given by the lift of the triple

diagonal

�3
M,k = {(m,m,m, k) ∈ M3 × [0,∞) | m ∈ M, k ∈ [0,∞)}.

Lemma 5.5. For o �= o′, the b-fibration π3
k,φ,o is transversal to �3

k,φ,o′ and induces a

diffeomorphism �3
k,φ,o′ ∼= M2

k,φ sending �3
k,φ,T onto �k,φ ⊂ M2

k,φ .

Proof. By symmetry, we can assume o = L and o′ = C . Now, one can check that the
corresponding statement for M3

k,b holds. Doing the blow-ups in the order used to show

that π3
k,φ,L is a b-fibration, we can check step by step that transversality is preserved.

The diffeomorphism is then a direct consequence of the transversality statement. ��
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6. Composition of Low Energy Fibered Boundary Operators

We can use the triple space of the previous section to describe the composition of k, φ-
pseudodifferential operators. Let us denote by Hk,φ

i jlm the boundary hypersurface of M3
k,φ

corresponding to the lift of Hi jlm inM3×[0,∞). Let us denote by ff+T , ff+LT , ff+CT , ff+RT ,

ff+L , ff+C and ff+R the boundary hypersurfaces corresponding to the blow-ups of K +,G+
L ,

G+
C ,G+

R, J+L , J+C and J+R respectively, while let ff0T , ff0LT , ff0CT , ff0RT , ff0L , ff0C and ff0R
denote the boundary hypersurfaces ofM3

k,φ corresponding to the lifts of K ,GL ,GC ,GR,

JL , JC and JR . Using this notation, let us describe how the boundary hypersurfaces
behave with respect to the three b-fibrations of Proposition 5.4. For the b-fibration
π3
k,φ,L , it sends H

k,φ
1101 surjectively onto M2

k,φ , and otherwise is such that

(π3
k,φ,L )−1(zf) = Hk,φ

1110 ∪ Hk,φ
1100, (π3

k,φ,L )−1(ff0) = ff0T ∪ ff0LT ∪ ff0L ,

(π3
k,φ,L )−1(lf0) = Hk,φ

0110 ∪ Hk,φ
0100 ∪ ff0C , (π3

k,φ,L )−1(φbf0) = Hk,φ
0000 ∪ ff0CT ∪ ff0RT ∪Hk,φ

0010,

(π3
k,φ,L )−1(rf0) = Hk,φ

1010 ∪ Hk,φ
1000 ∪ ff0R, (π3

k,φ,L )−1(ff) = ff+T ∪ ff+LT ∪ ff+L ,

(π3
k,φ,L )−1(lf) = Hk,φ

0111 ∪ Hk,φ
0101 ∪ ff+C , (π3

k,φ,L )−1(φbf) = Hk,φ
0001 ∪ ff+CT ∪ ff+RT ∪Hk,φ

0011,

(π3
k,φ,L )−1(rf) = Hk,φ

1011 ∪ Hk,φ
1001 ∪ ff+R .

(6.1)

For the b-fibration π3
k,φ,C , it sends surjectively Hk,φ

1011 onto M2
k,φ , and otherwise is such

that

(π3
k,φ,C )−1(zf) = Hk,φ

1110 ∪ Hk,φ
1010, (π3

k,φ,C )−1(ff0) = ff0T ∪ ff0CT ∪ ff0C ,

(π3
k,φ,C )−1(lf0) = Hk,φ

0110 ∪ Hk,φ
0010 ∪ ff0L , (π3

k,φ,C )−1(φbf0) = Hk,φ
0000 ∪ ff0LT ∪ ff0RT ∪Hk,φ

0100,

(π3
k,φ,C )−1(rf0) = Hk,φ

1100 ∪ Hk,φ
1000 ∪ ff0R, (π3

k,φ,C )−1(ff) = ff+T ∪ ff+CT ∪ ff+C ,

(π3
k,φ,C )−1(lf) = Hk,φ

0111 ∪ Hk,φ
0011 ∪ ff+L , (π3

k,φ,C )−1(φbf) = Hk,φ
0001 ∪ ff+LT ∪ ff+RT ∪Hk,φ

0101,

(π3
k,φ,C )−1(rf) = Hk,φ

1101 ∪ Hk,φ
1001 ∪ ff+R .

(6.2)

Finally, the b-fibration π3
k,φ,R sends Hk,φ

0111 surjectively onto M2
k,φ , and otherwise is such

that

(π3
k,φ,R)−1(zf) = Hk,φ

1110 ∪ Hk,φ
0110, (π3

k,φ,R)−1(ff0) = ff0T ∪ ff0RT ∪ ff0R,

(π3
k,φ,R)−1(lf0) = Hk,φ

1010 ∪ Hk,φ
0010 ∪ ff0L , (π3

k,φ,R)−1(φbf0) = Hk,φ
0000 ∪ ff0LT ∪ ff0CT ∪Hk,φ

1000,

(π3
k,φ,R)−1(rf0) = Hk,φ

1100 ∪ Hk,φ
0100 ∪ ff0C , (π3

k,φ,R)−1(ff) = ff+T ∪ ff+RT ∪ ff+R,

(π3
k,φ,R)−1(lf) = Hk,φ

1011 ∪ Hk,φ
0011 ∪ ff+L , (π3

k,φ,R)−1(φbf) = Hk,φ
0001 ∪ ff+LT ∪ ff+CT ∪Hk,φ

1001,

(π3
k,φ,R)−1(rf) = Hk,φ

1101 ∪ Hk,φ
0101 ∪ ff+C .

(6.3)

To see what happens to the lift of densities, the following lemma due to Melrose will
be useful.
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Lemma 6.1 (Melrose). Let Y be a p-submanifold of a manifold with corners. Let w be
the codimension of Y within the smallest boundary face of X containing Y . Let β be the
blow-down map from [X; Y ] to X. If ρY ∈ C∞([X; Y ]) is a boundary defining function
for the new boundary hypersurface created by the blow-up of Y , then

β∗b
(X) = (ρw
Y )b
([X; Y ]).

Indeed, using this lemma, we see that

(β3
k,φ)∗(b
(M3 × [0,∞))

=
(

ρ2
ff0T

ρ2
ff+T

ρff0LT
ρff0CT

ρff0RT
ρff+LT

ρff+CT
ρff+RT

ρff0L
ρff0C

ρff0R
ρff+L

ρff+C
ρff+R

)h+1
(b
(M3

k,φ)),

(6.4)

where ρH denotes a boundary defining function for the boundary hypersurface H . We
also compute that

π∗
k,φ,R(x) = ρrf0ρrfρφbf0ρφbfρff0ρff , (6.5)

so that combining with Lemma 6.1, we see that

(βk,φ)∗
[

(prL × Id[0,∞))
∗(b
(M × [0,∞))) · (prR × Id[0,∞))

∗ pr∗1 φ
(M)
]

= (ρrf0ρrfρφbf0ρφbf )
−h−1(b
(M2

k,φ)). (6.6)

Pulling back (6.5) to M3
k,φ via π3

k,φ,L and π3
k,φ,R gives

(π3
k,φ,L)∗(π∗

k,φ,R(x)) = ρ1010ρ1000ρff0R
ρ1011ρ1001ρff+R

ρ0000ρff0CT
ρff0RT

ρ0010

·ρff0T ρff0LT
ρff0L

ρff+T
ρff+LT

ρff+L
ρ0001ρff+CT

ρff+RT
ρ0011, (6.7)

and

(π3
k,φ,R)∗(π∗

k,φ,Rx) = ρ1100ρ0100ρff0C
ρ1101ρ0101ρff+C

ρ0000ρff0LT
ρff0CT

ρ1000

·ρff0T ρff RT ρff0R
ρff+T

ρff+RT
ρff+R

ρ0001ρff+LT
ρff+CT

ρ1001, (6.8)

where ρi jlm stands for ρ
Hk,φ
i jlm

. Hence, in terms of the φ-density bundle φ
(M) =
(x−h−1)b
(M) and

b
3
L(M3

k,φ) := (π3
k,φ,L)∗(βk,φ)∗

[

(prL × Id[0,∞))
∗(b
(M × [0,∞)))

]

,

we see that

b
3
L(M3

k,φ) · (π3
k,φ,L)∗β∗

k,φ

[

(prR × Id[0,∞))
∗ pr∗1 φ
(M))

]

·(π3
k,φ,R)∗β∗

k,φ

[

(prR × Id[0,∞))
∗ pr∗1 φ
(M))

]

(6.9)

corresponds to (ρa)b
(M3
k,φ) with multiweight a such that
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ρa =
(

ρff0LT
ρff0CT

ρff0RT
ρff+LT

ρff+CT
ρff+RT

ρff0R
ρff+R

ρ2
0000ρ

2
1000ρ

2
0001ρ

2
1001

ρ1010ρ1011ρ0010ρ0011ρ1100ρ0100ρ1101ρ0101)
−h−1 . (6.10)

Hence, if κA and κB denote the Schwartz kernels of operators A ∈ �
−∞,E
k,φ (M)

and B ∈ �
−∞,F
k,φ (M) and if bν3L is a nonvanishing section of b
3

L(M3
k,φ), the above

discussion and a careful computation shows that

bν3L · (π3
k,φ,L)∗κA · (π3

k,φ,R)∗κB ∈ AG
phg(M

3
k,φ; b
(M3

k,φ)) (6.11)

with index family G given by

G|
Hk,φ
0000

= E |φbf0 + F |φbf0 − 2(h + 1), G|ff+T = E |ff + F |ff ,
G|

Hk,φ
1000

= E |rf0 + F |φbf0 − 2(h + 1), G|ff+LT = Eff + F |φbf − (h + 1),

G|
Hk,φ
0100

= E |lf0 + Frf0 − (h + 1), G|ff+CT
= E |φbf + F |φbf − (h + 1),

G|
Hk,φ
0010

= E |φbf0 + F |lf0 − (h + 1), G|ff+RT = E |φbf + F |ff − (h + 1),

G|
Hk,φ
0001

= E |φbf + Fφbf − 2(h + 1), G|ff+L = E |ff + F |lf ,
G|

Hk,φ
1100

= E |zf + F |rf0 − (h + 1), G|ff+C = E |lf + Frf ,

G|
Hk,φ
1010

= E |rf0 + Flf0 − (h + 1), G|ff+R = E |rf + F |ff − (h + 1),

G|
Hk,φ
1001

= E |rf + F |φbf − 2(h + 1), G|ff0T = E |ff0 + F |ff0 ,
G|

Hk,φ
0110

= E |lf0 + F |zf , G|ff0LT = E |ff0 + F |φbf0 − (h + 1),

G|
Hk,φ
0101

= E |lf + F |rf − (h + 1), G|ff0CT
= E |φbf0 + F |φbf0 − (h + 1),

G|
Hk,φ
0011

= E |φbf + F |lf − (h + 1), G|ff0RT = E |φbf0 + F |ff0 − (h + 1),

G|
Hk,φ
1110

= E |zf + F |zf , G|ff0L = E |ff0 + F |lf0 ,
G|

Hk,φ
1101

= F |rf − (h + 1), G|ff0C = Elf0 + F |rf0 ,
G|

Hk,φ
1011

= E |rf + F |lf − (h + 1), G|ff0R = E |rf0 + F |ff0 − (h + 1),

G|
Hk,φ
0111

= E |lf .

(6.12)

This yields the following composition result.

Theorem 6.2. Let E, F and G be vector bundles over the transition single space Mt .
Suppose that E and F are index families associated to M2

k,φ such that

inf Re Erf + inf Flf > h + 1.

Then given A ∈ �
m,E
k,φ (M; F,G) and B ∈ �

m′,F
k,φ (M; E, F), their composition is well-

defined with

A ◦ B ∈ �
m+m′,K
k,φ (M; E,G),
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where K is the index family such that

K|zf = (E |zf + F |zf )∪(E |rf0 + F |lf0 − h − 1),
K|lf0 = (E |lf0 + F |zf )∪(E |φbf0 + F |lf0 − h − 1))∪(E |ff0 + F |lf0 ),
K|rf0 = (E |zf + F |rf0 )∪(E |rf0 + F |φbf0 − h − 1)∪(E |rf0 + F |ff0 ),
K|lf = E |lf∪(E |φbf + F |lf − h − 1)∪(E |ff + F |lf ),
K|rf = (F |rf )∪(E |rf + F |φbf − h − 1)∪(E |rf + F |ff ),
K|ff0 = (E |ff0 + F |ff0 )∪(E |φbf0 + F |φbf0 − h − 1)∪(E |lf0 + F |rf0 ),
K|φbf0 = (E |φbf0 + F |φbf0 − h − 1)∪(E |ff0 + F |φbf0 )∪(E |φbf0 + F |ff0 )∪(E |lf0 + F |rf0 ),
K|ff = (E |ff + F |ff )∪(E |φbf + F |φbf − h − 1)∪(E |lf + F |rf ),
K|φbf = (E |φbf + F |φbf − h − 1)∪(E |ff + F |φbf )∪(E |φbf + F |ff )∪(E |lf + F |rf ).

(6.13)

Proof. For operators of order −∞, it suffices to apply the pushforward theorem of [36,
Theorem 5] using (6.12). When the operators are of orderm andm′, we need to combine
the pushforward theorem with Lemma 5.5 to see that the composed operator is of the
given order, cf. [13, Proposition B7.20]. ��
Remark 6.3. For k > 0, that is, for the boundary hypersurfaces lf, rf, φbf and ff, we
recover as expected from (6.13) the composition result of (2.19) for φ-operators.

Corollary 6.4. If E, F and G are vector bundles over Mt , then

�m
k,φ(M; F,G) ◦ �m′

k,φ(M; E, F) ⊂ �m+m′
k,φ (M; E,G).

Proof. It suffices to apply Theorem 6.2 with index families E and F given by the empty
set except at ff, ff0 and zf, where it is given by N0. ��

Similarly, the triple space of [21,30] gives the following composition result for the
b-sc transition calculus.

Theorem 6.5. [21,30] Let A ∈ �
m,E
t (M; E,G) and B ∈ �m′,F (M; E, F) be b-sc

transition pseudodifferential operators with index families E and F given by the empty
set at bf , lf and rf and such that

inf Re E |sc ≥ 0, inf ReFsc ≥ 0.

In this case, A ◦ B ∈ �
m+m′,G
t (M; E,G) with index family G given by

G|sc = E |sc + F |sc, G|zf = (Ezf + Fzf)∪(E |rf0 + F |lf0),
G|bf0 = (E |lf0 + F |rf0)∪(E |bf0 + F |bf0), G|lf0 = (E |lf0 + F |zf)∪(E |bf0 + F |lf0),
G|rf0 = (E |zf + F |rf0)∪(E |rf0 + F |bf0), G|bf = G|lf = G|rf = ∅.

(6.14)
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7. Symbol Maps

To define the principal symbol of an operator A ∈ �
m,E
k,φ (M; E, F), it suffices to notice

that its Schwartz kernel κA has conormal singularities at the lifted diagonal �k,φ , so has
a principal symbol

σm(κA) ∈ S[m](N∗�k,φ;End(E, F)).

We define the principal symbol of A, denoted k,φσm(A), to be σm(κA). By Lemma 4.6,
there is a natural identification N∗�k,φ ∼= k,φT ∗Mt , so that k,φσm(A) can be seen as
an element of S[m](k,φT ∗Mt ;End(E, F)). As for other pseudodifferential calculi, the
principal symbol induces a short exact sequence

0 �� �m−1,E
k,φ (M; E, F) �� �m,E

k,φ (M; E, F)
k,φσm �� S[m](k,φT ∗Mt ;End(E, F)) �� 0.

(7.1)

For the construction of good parametrices,wewill however need other symbols capturing
the asymptotic behavior of k, φ-operators. More precisely, for the boundary hypersur-
faces zf, ff0 and ff of M2

k,φ , we can define the normal operators of A ∈ �
m,E
k,φ (M; E, F),

for E an index family such that inf Re E |zf ≥ 0, inf Re E |ff0 ≥ 0 and inf Re E |ff ≥ 0, by
restriction of the Schwartz kernel κA of A to zf, ff0 and ff,

Nzf(A) = κA|zf , Nff0(A) = κA|ff0 , Nff(A) = κA|ff . (7.2)

Since the boundary hypersurface zf in M2
φ,k is naturally identified with the φ-double

space M2
φ of Mazzeo–Melrose [33], the normal operator Nzf(A) can be seen as a φ-

operator. In particular, in terms of the small calculus, there is a short exact sequence

0 �� xzf�m
k,φ(M; E, F) �� �m

k,φ(M; E, F)
Nzf �� �m

φ (M; E, F) �� 0,

(7.3)

where xzf ∈ C∞(M2
k,φ) is a boundary defining function for zf.

Proposition 7.1. For A ∈ �
m,E
k,φ (M; F,G) and B ∈ �

m′,F
k,φ (M; E, F) with index fami-

lies E and F such that

inf E |zf ≥ 0, inf F |zf ≥ 0, inf Re(E |rf + F |lf) > h + 1 and

Re(E |rf0 + F |lf0) > h + 1,

we have that

Nzf(A ◦ B) = Nzf(A) ◦ Nzf(B) (7.4)

with the composition on the right as φ-operators.

Proof. By Theorem 6.2, the composition A◦ B makes sense and its Schwartz kernel can
be restricted to zf. This restriction comes in fact from the pushforward of the restriction
of (6.11) to Hk,φ

1110. In other words, Nzf(A◦B) is given by the composition of Nzf(A) and

Nzf(B) induced by Hk,φ
1110 seen as triple space for zf. Since Hk,φ

1110 is naturally identified
with the φ-triple space of [33], the result follows.

��
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Similarly, in terms of the vector bundle k,φNtfY of (4.10), the boundary hypersurface
ff0 in M2

k,φ is naturally the double space for k,φNtfY -suspended operators for the fiber
bundle φtf : tf → Y × [0, π

2 ]θ . Hence, the normal operator Nff0(A) can be seen as a
k,φNtfY -suspended operator. In terms of the small calculus, this induces the short exact
sequence

0 �� xff0�
m
k,φ(M; E, F) �� �m

k,φ(M; E, F)
Nff0 �� �m

sus(k,φNtfY )−φtf
(tf; E, F) �� 0,

(7.5)

where xff0 ∈ C∞(M2
k,φ) is a boundary defining function for ff0.

Proposition 7.2. For A ∈ �
m,E
k,φ (M; F,G) and B ∈ �

m′,F
k,φ (M; E, F) with index fami-

lies E and F such that

inf Re E |ff0 ≥ 0, inf ReF |ff0 ≥ 0, inf Re(E |φbf0 + F |φbf0) > h + 1,

inf Re(E |lf0 + F |rf0) > 0 and inf Re(E |ff + F |lf) > h + 1,
(7.6)

we have that

Nff0(A ◦ B) = Nff0(A) ◦ Nff0(B) (7.7)

where the composition on the right is as k,φNtfY -suspended operators.

Proof. From Theorem 6.2, we see that the composition A ◦ B makes sense as a k, φ-
pseudodifferential operators and the restriction of its Schwartz kernel to ff0 is well-
defined. Moreover, this restriction comes from the pushforward of the restriction of
(6.11) to ff0T . Thus the composition on the right of (7.7) is the one induced by ff0T seen
as a triple space for ff0, which is precisely composition as k,φNtfY -suspended operators.

��
Finally, in terms of the vector bundle k,φNscY of (4.10), the face ff does not quite

correspond to the double space of k,φNscY -suspended operators with respect to the fiber
bundle φsc : sc → Y × [0,∞)k . Instead, because of the blow-up of �0 in (4.17), it
is an adiabatic version of this suspended calculus, namely it is semi-classical in the
suspension parameters with k playing the role of the semi-classical parameter. However,
since suspended operators are already ‘classical’ in the suspension parameter, insisting
on having rapid decay at ff ∩φbf0 and ff ∩φbf, the boundary hypersurface ff can be seen
as a double space for (k−1)k,φNscY -suspended operators. That is, in terms of suspended
operators, the effect of blowing up �0 in (4.17) amounts to rescaling the suspension
parameters by k−1. Notice that such an observation was implicitly used in [39] to avoid
introducing an extra blow-up. In particular, the normal operator map Nff induces the
short exact sequence

0 �� xff�m
k,φ(M; E, F) �� �m

k,φ(M; E, F)
Nff �� �m

sus(V )−φsc
(sc; E, F) �� 0,

(7.8)

where xff ∈ C∞(M2
k,φ) is a boundary defining function for ff and V := (k−1)k,φNscY .
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Proposition 7.3. For A ∈ �
m,E
k,φ (M; F,G) and B ∈ �

m′,F
k,φ (M; E, F) with index fami-

lies E and F such that

inf Re E |ff ≥ 0, inf ReF |ff ≥ 0, inf Re(E |φbf + F |φbf) > h + 1,

inf Re(E |rf + F |lf) > h + 1 and inf Re(E |lf + inf ReF |rf) > 0,
(7.9)

we have that

Nff(A ◦ B) = Nff(A) ◦ Nff(B) (7.10)

with composition on the right induced by the boundary hypersurface ff+T seen as a triple
space for ff . Furthermore, if E |φbf0 = E |φbf = ∅, then the composition on the right is
as (k−1)k,φNscY -suspended operators.

Proof. By Theorem 6.2, the composition A ◦ B is a k, φ-pseudodifferential operator
whose restriction to ff makes sense. Furthermore, by the pushforward theorem, this
restriction comes from the pushforward of the restriction of (6.11) to ff+T , hence (7.10)
holds with the composition on the right induced by ff+T seen as a triple space for ff.
By the discussion above, this corresponds to composition as (k−1)k,φNscY -suspended
operators when E |φbf0 = E |φbf = ∅. ��

8. Low Energy Limit of the Resolvent of Dirac Fibered Boundary Operators

Let ðφ ∈ Diff1φ(M; E) be the elliptic formally self-adjoint first order fibered boundary
operator of § 3. Suppose that Assumption 3.3 holds and that ðφ is a Dirac operator
associated to a fibered boundary metric gφ and a structure of Clifford module on E
with respect to the Clifford bundle of the φ-tangent bundle. In particular, ðh in (3.2) is
a family of Euclidean Dirac operators. Let γ ∈ C∞(M;End(E)) be self-adjoint as an
operator in �0

φ(M; E) and suppose that

γ 2 = IdE , ðφγ + γðφ = 0. (8.1)

In terms of (3.2) and (3.23), suppose also that γ anti-commutes with Dv , ðh , c and ðY .
In this section, we will consider the first order k, φ-operator

ðk,φ := ðφ + kγ. (8.2)

By (8.1), notice that

ð
2
k,φ = ð

2
φ + k2 IdE . (8.3)

In particular, for k > 0, ð2k,φ has positive spectrum and is invertible. Essentially for

the same reason, its normal operator is invertible, which means by [33] that ð2k,φ is

invertible in the small φ-calculus for k > 0. Since ð−1
k,φ = ðk,φ(ð2k,φ)−1, we see that ðk,φ

is invertible as well in the small φ-calculus for k > 0. On the other hand, when k = 0,
ðφ is typically not invertible in �∗

φ(M; E), but as shown in § 3, it is at least Fredholm
when acting on suitable Sobolev spaces with an inverse modulo compact operators in the
large φ-calculus. This and the invertibility for k > 0 can be combined to invert ðk,φ as a
k, φ-operator as we will now explain. In order to do this, we need to make the following
hypothesis.
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Assumption 8.1. There exists ε > 0 such that the interval (−1−ε, ε) contains no critical
weight of the indicial family I (Db, λ) of Definition 3.4. There is also ε ≤ ε1 such that
each element ψ of the kernel of Dφ in L2

b(M; E) is such that x−ε1ψ is bounded.

Remark 8.2. By Corollary 3.16, we can take ε1 = ε. However, there are situations where
we can take ε1 > ε as the next example shows, yielding better control on the inverse of
(8.3).

Example 8.3. If ðφ is the Hodge–deRham operator acting on forms valued in a flat vector
bundle, then by Lemma 3.8, provided the de Rham cohomology group

Hq(Y ; ker Dv) = {0} for q ∈ {h − 1

2
,
h

2
,
h + 1

2
}, (8.4)

Assumption 8.1 will be satisfied for gφ with metric gY sufficiently scaled (so that the
positive spectrum of d2 is sufficiently large). Moreover, if also

Hq(Y ; ker Dv) = {0} for q ∈ {h − 2

2
,
h + 2

2
}, (8.5)

then we can also assume that ε1 + ε ≥ 2ε > 1, again provided the metric gY arising
in the asymptotic behavior of gφ is sufficiently small. Finally, if (8.4) holds, but not
(8.5), in which case h is necessarily even, then we can still ensure that ε1 + ε > 1 by
requiring that the L2-kernel of ðφ is trivial, in fact requiring to be trivial only in degree
q ∈ { h−2

2 , h
2 , h+2

2 , h+4
2 } in the scattering case (when Y = ∂M and φ is the identity map).

Indeed, in this case, again assuming gY is sufficiently small, we can take ε1 > 1, since by

Lemma 3.8 the indicial root λ = 1
2 coming from the non-triviality of H

h±2
2 (Y ; ker Dv)

does not show up in the polyhomogeneous expansion of elements of the L2-kernel. In
general, with h odd or even, we can ensure that ε1 > 1 by scaling gY provided either

Hq(Y ; ker Dv) = {0} for q = h ± �

2
, � ∈ {0, 1, 2, 3}, (8.6)

or that we know that (8.4) holds and that the L2-kernel of ðφ is trivial, in fact only in
degree q = h+1±�

2 with � ∈ {1, 2, 3, 4, 5} in the scattering case.

As in § 3, it will be convenient, instead of ðk,φ , to work with the conjugated operator

Dk,φ := x− h+1
2 ðk,φx

h+1
2 = Dφ + kγ (8.7)

acting formally on L2
b(M; E). In terms of this conjugated operator, we have the following

characterization of the inverse.

Theorem 8.4. There exists Gk,φ ∈ �
−1,G
k,φ (M; E) such that

Dk,φGk,φ = Id, Gk,φDk,φ = Id,

where G is an index family given by the empty set at lf, rf and φbf , while

inf ReG|zf ≥ −1, inf ReG|φbf0 ≥ h, G|ff = N0, inf ReG|ff0 ≥ 0,

and inf ReG|lf0 ≥ ν, inf ReG|rf0 ≥ h + 1 + ν with ν := min{ε, ε1 − 1}.
(8.8)

Furthermore, if ε+ε1 > 1 for ε and ε1 in Assumption 8.1, then in factG|zf = (N0−1)∪N
with N an index set with inf ReN > 0.
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Remark 8.5. Coming back to ðk,φ = ðφ + kγ , we see that x
h+1
2 Gk,φx− h+1

2 is such that

ðk,φ(x
h+1
2 Gk,φx

− h+1
2 ) = (x

h+1
2 Gk,φx

− h+1
2 )ðk,φ = Id .

To prove Theorem 8.4, wewill closely follow the approach ofGuillarmou andHassell
[21,22], but relying on the k, φ-calculus described in § 4. Roughly, the strategy will
consist in constructing a parametrix with error term vanishing to some positive order
in k as k ↘ 0 when it is described in terms of the lift from the right of a b-density.
Thus in terms of the density bundle k,φ
R(M), this will correspond to decay of order
strictly bigger than h + 1 at rf and φbf and decay of positive order at the other boundary
hypersurfaces where k = 0 in M2

k,φ . Once we get such a good parametrix, we can
construct the actual inverse from the parametrix by using a Neumann series argument.
The construction of the parametrix and the proof of Theorem 8.4 will involve a few
steps, namely, we will need to invert Dk,φ at zf, ff0, φbf0 and ff making sure along the
way the error term decays suitably elsewhere.

Step 0: Inversion at zf and ff0. Consider then the fibered cusp operator

Dfc = x− 1
2 Dφx

− 1
2 . (8.9)

This operator is formally self-adjoint on L2
b(M; E). By Assumption 8.1, we can take

δ = 1
2 and μ = 1

2 + ε in Corollary 3.20 to obtain an inverse G− 1
2

: L2
b(M; E) → D− 1

2
such that

G− 1
2
Dfc = Id−�, DfcG− 1

2
= Id−�, (8.10)

where � is the orthogonal projection in L2
b(M; E) onto the finite dimensional kernel of

Dfc andD− 1
2

⊂ L2
b(M; E) is the minimal domain of Dfc. If � = 0, then as in [21], one

can take x− 1
2G− 1

2
x− 1

2 to invert Dk,φ = Dφ + kγ at zf, for

Dφx
− 1

2G− 1
2
x− 1

2 = x
1
2 DfcG− 1

2
x− 1

2 = x
1
2 Id x− 1

2 = Id . (8.11)

If instead � �= 0, then (8.11) becomes

Dφx
− 1

2G− 1
2
x− 1

2 = Id−x
1
2 �x− 1

2 (8.12)

and we can proceed as in [22] to remove the error term. More precisely, let {ϕ j }Jj=1 be

an orthonormal basis of the kernel of Dfc in L2
b(M; E), so that

� =
J

∑

j=1

(pr∗L ϕ j ) pr
∗
R(ϕ jνb)
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for the b-density νb = xh+1dgφ with respect to which Dfc is formally self-adjoint. By

Assumption 8.1, ϕ j = O(x
1
2 +ε1) near ∂M . In particular, {x− 1

2 ϕ j } is a basis of the kernel
of Dφ in L2

b(M; E). If {ψ j }Jj=1 is a choice of orthonormal basis of kerL2
b
Dφ , then

ψi =
J

∑

j=1

αi j x
− 1

2 ϕ j

for some αi j and

�ker
L2b

Dφ =
J

∑

j=1

(pr∗L ψ j ) pr
∗
R(ψ jνb) (8.13)

is the orthogonal projection onto kerL2
b
Dφ . If αi j denotes the inverse of the matrix αi j ,

then

x− 1
2 ϕi =

J
∑

j=1

αi jψ j . (8.14)

In terms of the projection (8.13), we compute that

�ker
L2b

Dφ (x
1
2 ϕ j ) =

J
∑

k=1

(∫

M
ψk x

1
2 ϕ jνb

)

ψk =
J

∑

k=1

(

∫

M

(

J
∑

i=1

αki x
− 1

2 ϕi

)

x
1
2 ϕ jνb

)

ψk

=
J

∑

k=1

αk jψk . (8.15)

This means that

ψ⊥
j := x

1
2 ϕ j − �ker

L2b
Dφ (x

1
2 ϕ j ) = O(xε1) near ∂M. (8.16)

It also follows from (8.15) that

J
∑

j=1

pr∗L(�ker
L2b

Dφ (x
1
2 ϕ j )) pr

∗
R(x− 1

2 ϕ jνb) =
∑

j,k,�

αk jα
j�(pr∗L ψk) pr

∗
R(ψ�νb)

=
∑

k

(pr∗L ψk) pr
∗
R(ψkνb)

= �ker
L2b

Dφ .

(8.17)

Lemma 8.6. There exists χk such that Dfcχk = x− 1
2 ψ⊥

k . Moreover, χk is smooth on
M \ ∂M with polyhomogeneous expansion at ∂M having leading term of order at least

xν+ 1
2 with ν = min{ε, ε1 − 1}.
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Proof. By (8.14), x− 1
2 ϕi is orthogonal to ψ⊥

k , which implies that ϕi is orthogonal to

x− 1
2 ψ⊥

k . Thus, x− 1
2 ψ⊥

k is orthogonal to kerL2
b
Dfc. Hence, taking δ = 1

2 in (3.44), this

means that x− 1
2 ψ⊥

k is in the range of Id−P2, so that

χk := G− 1
2
(x− 1

2 ψ⊥
k )

is such that

Dfcχk = x− 1
2 Dφx

− 1
2 χk = x− 1

2 Dφx
− 1

2G− 1
2
(x− 1

2 ψ⊥
k )

= (Id−P2)(x
− 1

2 ψ⊥
k )

= x− 1
2 ψ⊥

k

(8.18)

as claimed. Moreover, by Assumption 8.1, Corollary 3.20 and Proposition 2.4, χk is

polyhomogeneous at ∂M with χk = O(xν+ 1
2 ). ��

Using (8.17), we see that

Dφx
− 1

2

⎛

⎝G− 1
2
+

J
∑

j=1

(pr∗L χ j pr
∗
R(ϕ jνb) + pr∗L ϕ j pr

∗
R(χ jνb))

⎞

⎠ x− 1
2

= Id−x
1
2 �x− 1

2 +
J

∑

j=1

pr∗L ψ⊥
j pr∗R(x− 1

2 ϕ jνb)

= Id +
J

∑

j=1

(

− pr∗L(x
1
2 ϕ j ) pr

∗
R(x− 1

2 ϕ jνb) + pr∗L ψ⊥
j pr∗R(x− 1

2 ϕ jνb)
)

= Id−
J

∑

j=1

pr∗L(�ker
L2b

Dφ (x
1
2 ϕ j )) pr

∗
R(x− 1

2 ϕ jνb)

= Id−�ker
L2b

Dφ .

(8.19)

To construct the inverse of Dk,φ , this suggests to consider the approximate inverse

Q0 := k−1γG−1
zf + G0

zf (8.20)

with

G−1
zf :=

J
∑

j=1

pr∗L ψ j pr
∗
R(ψ jνb) = �ker

L2b
Dφ ,

G0
zf = x− 1

2

⎛

⎝G− 1
2
+

J
∑

j=1

(

pr∗L χ j pr
∗
R(ϕ jνb) + pr∗L ϕ j pr

∗
R(χ jνb)

)

⎞

⎠ x− 1
2 .

(8.21)

On M2
φ × [0,∞)k , it is such that

(Dφ + γ k)Q0 = Id +R0 with R0 = kγG0
zf . (8.22)
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Whenwe lift this parametrix toM2
k,φ ,we can regardQ0 as an element of�−1,Q0

k,φ (M; E)

with index family Q0 such that

Q0|zf = N0 − 1, inf ReQ0|φbf = inf ReQ0|φbf0 ≥ h, inf ReQ0|ff0 ≥ 0,

inf ReQ0|ff ≥ 0 and

inf ReQ0|lf = inf ReQ0|lf0 ≥ ν, inf ReQ0|rf = inf ReQ0|rf0 ≥ h + 1 + ν,

with ν := min{ε, ε1 − 1},
(8.23)

while the error term R0 has leading order 1 at zf and ff0, leading order 0 at ff, leading
order h + 1 at φbf0, leading order h at φbf, leading order 1 + ν at lf0, leading order ν at
lf, leading order h + 2 + ν at rf0 and leading order h + 1 + ν at rf. This means that Q0
also inverts Dk,φ at ff0. At ff0, the lift of Q0 gives the expected model for the inverse

of Dk,φ . In fact, since ψk and χk are of order xε1 and x
1
2 +ν at the boundary, notice that

k−1G−1
zf is of order h + 2ε1 in terms of (φ, k)-densities at ff0, while

x− 1
2

⎛

⎝

J
∑

j=1

(

pr∗L χ j pr
∗
R(ϕ jνb) + pr∗L ϕ j pr

∗
R(χ jνb)

)

⎞

⎠ x− 1
2

is of order h +1+ ν + ε1. Hence, the term of order 0 at ff0 of Q0 comes exclusively from

the term x− 1
2G− 1

2
x− 1

2 in G0
zf .

Step 1: Cutting off to enforce rapdid decay at lf , φbf and rf . At φbf0, the error term
R0 does not vanish at order h + 1. Moreover, the error term R0 does not vanish rapidly
at φbf, lf and rf. This forces us to seek a better model to invert the operator at φbf0.
Looking at the behavior of Q0 near φbf0, notice that k−1G−1

zf is O(xh+2ε1φbf0
), while G0

zf

has main term of order h coming from x− 1
2G− 1

2
x− 1

2 (in terms of right k, φ-densities).
On the other hand, before performing the last blow-up in (4.16), we can consider the

coordinates

k, κ = k

x
, κ ′ = k

x ′ , y, y
′, z, z′ (8.24)

in the interior of φbf0, where y and z denote coordinates on the base and the fibers of
a local trivialization of φ : ∂M → Y . Recalling (3.7), we see that in terms of these
coordinates, the restriction of the operator Dk,φ to φbf0 is given by

Dk,φ = Dv + kDC with DC := −c
∂

∂κ
+
1

κ
DY + γ. (8.25)

Here, the operator DC can be seen as an operator on the cone Y × [0,∞)κ with cone
metric dκ2 +κ2gY acting on the sections of ker Dv . Near the apex of the cone, that is, for
κ < 1, the operator κDC can be treated as b-operator, while for κ > 1, the operator DC
can be seen as a scattering operator in the sense of [38]. This is consistent with the fact
that, when we forget about the fibers of φ : ∂M → Y , the boundary hypersurface φbf0,
before performing the last blow up in (4.16), is just the double space for Y × [0,∞]
corresponding to a b-double space near κ = κ ′ = 0 an a scattering double space near
κ = κ ′ = ∞.



282 C. Kottke, F. Rochon

rf0(Y )

lf0(Y )

bf0(Y )

lf∞(Y )

rf∞(Y )

sc(Y )
bf∞(Y )

bf∞(Y )

Fig. 7. The double space (Y × [0, ∞])2b,sc

More precisely, this double space is given by

(Y × [0,∞])2b,sc = [Y 2 × [0,∞]2; Y 2 × {0}2,Y 2 × {∞}2, Bsc], (8.26)

where Bsc is the intersection of the lifted diagonalwith the boundary hypersurface created
by the blow-up of Y 2 × {∞}2.

Denote by bf0(Y ), bf∞(Y ) and sc(Y ) the boundary hypersurfaces created by these
three blow-ups and let lf0(Y ), rf0(Y ), lf∞(Y ) and rf∞(Y ) be the lifts of the boundary
hypersurfaces Y 2 × {0} × [0,∞], Y 2 × [0,∞] × {0}, Y 2 × {∞} × [0,∞] and Y 2 ×
[0,∞] × {∞}. In terms of the boundary hypersurface φbf0, notice that bf0(Y ), bf∞(Y )

and sc(Y ) correspond to φbf0 ∩ zf, φbf0 ∩φbf and φbf0 ∩ ff, while lf∞(Y ) and rf∞(Y )

correspond to φbf0 ∩ lf and φbf0 ∩ rf. However, for lf0(Y ) and rf0(Y ), there is a small
twist since they correspond respectively to φbf0 ∩ rf and φbf0 ∩ lf instead of φbf0 ∩ lf
and φbf0 ∩ rf as one could have naively expected. This is consistent with the fact that,
for instance, Y 2∩{0}×[0,∞] intersects Y 2×[0,∞]×{∞}, but not Y 2×{∞}×[0,∞]
(Fig. 7).

Now, by construction, the term q0 of order h of Q0 atφbf0 is such that�hq0�h = q0,
where �h is the projection of (3.6). To enforce rapid decay of the error term at φbf, lf
and rf, we can take Q1 to be Q0 smoothly cut-off near φbf, lf and rf, but insisting that
Q1 = Q0 away from a small neighborhood of φbf, lf and rf, in particular near ff0 and
zf. In this case, we will have that

Dk,φQ1 = Id−R1 (8.27)

with R1 now having a term r1 of order h+1 at φbf0 vanishing near φbf0 ∩φbf, φbf0 ∩ lf,
φbf0 ∩ rf and φbf0 ∩ ff0. Choosing our cut-off function to be constant in the fibers of
the lift of the fiber bundle

φ × φ : ∂M × ∂M → Y × Y

to φbf0, we can also ensure that the term q1 of order h of Q1 at φbf0 and the term r1 of
order h + 1 of R1 at φbf0 are such that

�hq1�h = q1 and �hr1�h = �hr1.

We need also to choose the cut-off function near lf and rf in such a way that it does
not introduce more singular terms in the expansion of the error terms at lf0 and rf0. Near
rf ∩ rf0, this can be done in terms of the right variable x ′

k , ensuring that the error terms
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vanishes to order h + 2+ ν at rf0. Indeed, the problematic term to cut-off is k−1G−1
zf , but

cutting off in this manner, that is using a cut-off function in x ′
k , we see that Dφ applied

to the cut-off of this term still gives zero, so yields no singular term, while kγ yields a
term of order h + 2 + ν. Cutting off the term G0

zf in the same manner also yields at term
of order h + 1 + ε1 by (8.19). At lf, we should instead cut off using a cut-off function
constant in the fibers of the lift of the fiber bundle φ × Id : ∂M × M → Y × M on
lf0. In terms of the decomposition (3.7), we thus see that Dk,φ applied to the cut-off of
k−1G−1

zf gives a term of order ε1 at lf0. From (8.19), we also see that the terms of order
ν or less of G0

zf at lf0 are in ker Dv , where ν = min{ε, ε1 − 1}. Hence, we see from
Lemma 3.5 that cutting off G0

zf near lf0 ∩ lf yields an error term of order ν + 1 at lf0.
To summarize, cutting off to get rapid decay at lf, φbf and rf, we get Q1 in (8.27)

where we can assume that the error term R1 is in �
−1,R1
k,φ (M; E) with index familyR1

given by the empty set at lf, φbf and rf and such that

inf ReR1|ff ≥ 0, inf ReR1|φbf0 ≥ h + 1, inf ReR1|ff0 ≥ 1,

inf ReR1|rf0 ≥ h + 2 + ν, inf ReR1|lf0 ≥ 1 + ν, inf ReR1|zf ≥ 1.
(8.28)

Step 2: Inverting at φbf0. To get rid of r1 at φbf0, this means that in terms of (8.25),
we should try to find q2 such that

kDC(q2) = �hr1. (8.29)

To achieve this, we need to analyse the operator DC in terms of the double space (8.26).
More precisely, we will invert DC using the pseudodifferential operators defined by the
double space (8.26). To define this pseudodifferential calculus, let�b,sc be the lift of the
diagonal in (Y ×[0,∞])2 to (Y ×[0,∞])2b,sc. Let also b,sc
(Y ×[0,∞]) be the density
bundle on Y ×[0,∞] corresponding to a b-density bundle near κ = 0 and to a sc-density
bundle near κ = ∞. If prL and prR are the projections (Y ×[0,∞])2 → Y ×[0,∞] on
the left and right factors respectively and if βb,sc : (Y ×[0,∞])2b,sc → (Y ×[0,∞])2 is
the natural blow-down map, we can consider the lift from the right of the b, sc-density
bundle,

b,sc
R(Y × [0,∞]) := β∗
b,sc pr

∗
R
b,sc
(Y × [0,∞]).

If F is a vector bundle on Y × [0,∞], one can also consider the bundle

Homb,sc(F, F) := β∗
b,sc(pr

∗
L ⊗ pr∗R F∗).

With this notation, the small calculus of b, sc-operators acting on sections of F can be
defined as the union over all m ∈ R of the spaces

�m
b,sc(Y ; F) := {κ ∈ Im((Y × [0,∞])2b,sc,�b,sc;
Homb,sc(F, F) ⊗ b,sc
R(Y × [0,∞])) |
κ ≡ 0 at ∂(Y × [0,∞])2b,sc \ (bf0(Y ) ∪ sc(Y ))}. (8.30)

If E is an indicial family for (Y × [0,∞])2b,sc, we can define more generally the spaces

�
−∞,E
b,sc (Y ; F) := AE

phg(((Y × [0, ∞])2b,sc;Homb,sc(F, F) ⊗ b,sc
R(Y × [0, ∞])), (8.31)
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�
m,E
b,sc (Y ; F) := �m

b,sc(Y ; F) + �
−∞,E
b,sc (Y ; F), m ∈ R. (8.32)

By the discussion above, we could alternatively define the b, sc-calculus by restriction
of the b-sc transition calculus of Y × [0,∞] to the boundary hypersurface bf0. In
particular, restriction to bf0 of the composition result of Theorem6.5 yields the following
composition result for the b, sc-calculus.

Theorem 8.7. Let A ∈ �
m,E
b,sc (Y ; F) and B ∈ �m′,F (Y ; F) be pseudodifferential b, sc-

operators with index families E and F given by the empty set at lf∞(Y ), rf∞(Y ) and
bf∞(Y ). Assume furthermore that

inf Re E |sc(Y ) ≥ 0, inf ReFsc(Y ) ≥ 0 and inf Re(E |rf0(Y ) + F |lf0(Y )) > 0.

In this case, A ◦ B ∈ �
m+m′,G
b,sc (Y ; F) with index family G given by

G|sc(Y ) = E |sc(Y ) + F |sc(Y ),

G|bf0(Y ) = (Ebf0(Y ) + Fbf0(Y ))∪(E |lf0(Y ) + F |rf0(Y )),

G|lf0(Y ) = (E |bf0(Y ) + F |lf0(Y ))∪(E |lf0(Y )),

G|rf0(Y ) = (E |rf0(Y ) + F |bf0(Y ))∪(F |rf0(Y )),

G|bf∞(Y ) = G|lf∞(Y ) = G|rf∞(Y ) = ∅.

(8.33)

Proof. Recall that in terms of the boundary hypersurface bf0 in Theorem 6.5, the
boundary hypersurfaces bf0(Y ), bf∞(Y ) and sc(Y ) correspond to bf0 ∩ zf, bf0 ∩ bf
and bf0 ∩ sc, while lf∞(Y ) and rf∞(Y ) correspond to bf0 ∩ lf and bf0 ∩ rf. However,
for lf0(Y ) and rf0(Y ), there is a small twist since they correspond respectively to bf0 ∩ rf
and bf0 ∩ lf. With this understood, it suffices to look at what happens to the term of order
zero at bf0 in (6.14). In particular, the condition

inf Re(E |rf0(Y ) + F |lf0(Y )) > 0

is there to ensure that in (6.14), there are no terms of negative order at bf0 and that the
term of order zero comes exclusively from the terms of order zero at bf0 of the operators
that are composed. Thus, it suffices to replace the index sets at bf0 by 0 and restrict
(6.14) to bf0 to obtain (8.33). ��

Now that we have properly defined the pseudodifferential b, sc-operators, we can
come back to the question of inverting the operator DC in this calculus. First, as men-
tioned before, near bf0(Y ), κDC is b-operator. From (3.7) and (8.25), we see that its
indicial family is given by

I (κDC, λ) = DY − cλ = I (Db,−λ). (8.34)

We also know from the parametrix construction of § 3 that the term of order h of Q1 at
φbf0 ∩ zf is precisely

x− 1
2

(

1

2π

∫ ∞

−∞
eiξ log s I (Db,−1

2
+ iξ)−1dξ

)

(x ′)−
1
2
dx ′

x ′

where s = x
x ′ . In terms of the coordinates (8.24), this becomes

k−1κ
1
2

(

1

2π

∫ ∞

−∞
e
iξ log

(

κ
κ′

)

I (κDC,
1

2
+ iξ)−1dξ

)

(κ ′)
1
2
dκ ′

κ ′ (8.35)
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This suggests that we should consider

G
1
2
b =

(

1

2π

∫ ∞

−∞
e
iξ log

(

κ
κ′

)

I (κDC,
1

2
+ iξ)−1dξ

)

dκ ′

κ ′ ,

the inverse of κ− 1
2 (κDC)κ

1
2 at bf0(Y ) as a b-operator, since then κ

1
2G

1
2
b κ

1
2 gives a

corresponding inverse for DC at bf0(Y ),

DCκ
1
2G

1
2
b κ

1
2 = κ− 1

2 (κDC)κ
1
2G

1
2
b κ

1
2 = κ− 1

2 Id κ
1
2 = Id,

and (8.35) is precisely k−1κ
1
2G

1
2
b κ

1
2 as expected.

At sc(Y ), DC can instead be inverted as a scattering operator. From (8.25), we see
that its normal operator is

Nsc(DC) = ðh + γ (8.36)

where ðh is the family of Euclidean Dirac operators of (3.2) on φNY =
scT (Y × [0,∞])|Y×{∞}. Since by assumption γðh + ðhγ = 0, we see that

Nsc(DC)2 = ð
2
h + Id (8.37)

is clearly invertible as a family of suspended operators in the sense of [33]. Thus, Nsc(DC)

itself is invertible as a family of suspended operators with inverse

Nsc(DC)−1 = Nsc(DC)(ð2h + Id)−1. (8.38)

Hence, using this to invert DC at sc(Y ), while at bf0(Y ) using instead κ− 1
2 (κDC)κ

1
2 , we

can construct a parametrix for DC as follows.

Lemma 8.8. There exists QC ∈ �
−1,Q
b,sc (Y ; ker Dv) and RC ∈ �

−∞,R
b,sc (Y ; ker Dv) such

that

DCQC = Id−RC, Q∗
CDC = Id−R∗

C, (8.39)

where Q is an index family which is trivial at bf∞(Y ), lf∞(Y ), rf∞(Y ), given by N0 at
sc(Y ) and such that

inf ReQ|bf0(Y ) ≥ 1, inf ReQlf0(Y ) ≥ 1 + ε and inf ReQrf0(Y ) ≥ 1 + ε,

while R is an index family which is trivial at sc(Y ), bf∞(Y ), lf∞(Y ), rf∞(Y ), lf0(Y ),
bf0(Y ) and such that inf ReR|rf0(Y ) ≥ 1 + ε. Moreover, at sc, the restriction of QC is

given by Nsc(QC) = Nsc(DC)−1, while at bf0(Y ), the restriction of κ− 1
2 QCκ− 1

2 is G
1
2
b .

Proof. At the end κ = ∞, we can invert DC as a scattering operator as in [33] to obtain
QC near sc(Y ), bf∞(Y ), lf∞(Y ) and rf∞(Y ). At end κ = 0, we can invert instead
κ− 1

2 (κDC)κ
1
2 as a b-operator as in [37], yielding a parametrix ˜Q such that

κ− 1
2 (κDC)κ

1
2 ˜Q = Id−˜R,

where ˜Q is a b-operator of order one with polyhomogeneous expansion at lf0(Y ) and
rf0(Y ) having leading term of order 1

2 + ε and smooth at bf0(Y ) with restriction given
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by G
1
2
b , while ˜R is a b-operator of order −∞ vanishing rapidly at lf0(Y ) and bf0(Y ) and

with polyhomogeneous expansion at rf0(Y ) having leading term of order 1
2 +ε. It suffices

then to take QC = κ
1
2 ˜Qκ

1
2 and RC = κ− 1

2 ˜Rκ
1
2 near bf0(Y ). This can be combined

with the construction near sc(Y ) to give the parametrix QC globally as claimed. ��
In particular, if u is a boundary defining function for Y × {0} in Y × [0,∞], then

since

inf ReR|rf0(Y ) ≥ 1 + ε >
1

2
,

this parametrix shows that the operator u
1
2 DCu

1
2 has right and left parametrices u− 1

2

QCu− 1
2 and u− 1

2 Q∗
Cu

− 1
2 with compact error term,

(u
1
2 DCu

1
2 )(u− 1

2 QCu− 1
2 ) = Id−(u

1
2 RCu− 1

2 ),

(u− 1
2 Q∗

Cu
− 1

2 )(u
1
2 DCu

1
2 ) = Id−(u− 1

2 R∗
Cu

1
2 ),

implying that DC induces a Fredholm operator

DC : u 1
2 H1

b,sc(Y × [0,∞]; ker Dv) → u− 1
2 L2

b(Y × [0,∞]; ker Dv), (8.40)

where

H1
b,sc(Y × [0,∞]; ker Dv) = { f ∈ L2

b(Y × [0,∞]; ker Dv) |
ξ f ∈ L2

b(Y × [0,∞]; ker Dv) ∀ξ ∈ Vb,sc(Y × [0,∞]; ker Dv)} (8.41)

with Vb,sc(Y × [0,∞]; ker Dv) the Lie algebra of smooth vector fields on Y × [0,∞]
which are b-vector fields near Y × {0} and scattering vector fields near Y × {∞}. The
operator is also formally self-adjoint.

Lemma 8.9. The Fredholm operator of (8.40) is a bijection.

Proof. Since we assume that ðφ is a Dirac operator, we know from (3.7) and (3.23) that
the operator DC takes the form

DC = −c
∂

∂κ
+
1

κ
(ðY +

c

2
) + γ. (8.42)

Using that γ anti-commutes with −c ∂
∂κ

+ 1
κ
(ðY + c

2 ), that c
2 = − Id and that c anti-

commutes with ðY , we compute that

κ2D2
C = −

(

κ
∂

∂κ

)2

+ 2κ
∂

∂κ
+ (ð2Y + cðY − 3

4
) + κ2. (8.43)

Hence, we see that

κ−1(κ2D2
C)κ = −

(

κ
∂

∂κ

)2

+

(

ð
2
Y + cðY +

1

4

)

+ κ2. (8.44)

Setting˜ðY := cðY , this becomes

κ−1(κ2D2
C)κ = −

(

κ
∂

∂κ

)2

+

(

˜ð
2
Y +˜ðY +

1

4

)

+ κ2. (8.45)
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Now,˜ð∗
Y = (cðY )∗ = −ðY c = cðY = ˜ðY , so˜ðY is formally self-adjoint. Moreover,

I (Db, λ) = c(λ −˜ðY +
1

2
), (8.46)

so Assumption 8.1 implies that˜ðY has no eigenvalue in the range [− 1
2 ,

1
2 ]. Now, if λ is

an eigenvalue of˜ðY with eigensection σ̃ , then σ̃ is an eigensection of˜ð2Y +˜ðY + 1
4 with

eigenvalue (λ + 1
2 )

2. Since λ /∈ [− 1
2 ,

1
2 ], we have in particular that (λ + 1

2 )
2 > 0. Hence,

decomposing (8.45) in terms of the eigenspaces of˜ðY , we obtain the modified Bessel
equation

(

−
(

κ
∂

∂κ

)2

+ α2 + κ2

)

f = 0, with α2 = (λ +
1

2
)2 > 0. (8.47)

A basis of solutions of this equation is given by the modified Bessel functions Kα and
Iα . The function Iα grows exponentially as κ → ∞ and tends to zero as κ ↘ 0, while
Kα blows up like κ−|α| as κ ↘ 0 and decays exponentially at infinity. Thus, except
for the trivial solution, no solution of (8.47) are in L2((0,∞), dκ

κ
). This means that the

operator κ−1(κ2D2
C)κ has a trivial kernel in L2

b(Y ×[0,∞]; ker Dv), hence that DC has
a trivial kernel in κL2

b(Y × [0,∞], ker Dv). A fortiori, DC thus has a trivial kernel in
uL2

b(Y × [0,∞]; ker Dv).
Now, if σ ∈ L2

b(Y × [0,∞], ker Dv) is such that DCσ = 0, then in fact σ decays
rapidly as κ → ∞ by [33] and has a polyhomogeneous expansion at κ = 0 by [37].
Furthermore, Assumption 8.1 and the fact that I (κDC, λ) = I (Db,−λ) implies that
σ = O(u1+ε) near Y × {0}. This shows that the operator (8.40) is injective.

To show that it is surjective, notice the operator u
1
2 DCu

1
2 is formally self-adjoint,

which forces in particular the operator (8.40) to be surjective since DC has a trivial kernel
in u

1
2 L2

b(Y × [0,∞]; ker Dv) ⊂ L2
b(Y × [0,∞]; ker Dv). ��

Let us denote by GC the inverse of the bijective operator in (8.40).

Lemma 8.10. The inverse GC is an element of �
−1,G
b,sc (Y ; ker Dv) with index family G

trivial at rf∞(Y ), lf∞(Y ) and bf∞(Y ), given by N0 at sc(Y ) and such that

inf Re(G|bf0(Y )) ≥ 1, inf Re(G|rf0(Y )) ≥ 1 + ε, inf Re(G|lf0(Y )) ≥ 1 + ε. (8.48)

Moreover, the restriction of u− 1
2GCu− 1

2 at bf0(Y ) is precisely G
1
2
b , while at sc(Y ), we

have instead Nsc(GC) = Nsc(DC)−1.

Proof. Using the parametrix of (8.39) and proceeding as in the proof of Corollary 3.20,
we have that

GC = GC Id = GC(DCQC + RC) = QC + GCRC,

GC = IdGC = (Q∗
CDC + R∗

C)GC = Q∗
C + R∗

CGC .
(8.49)

Inserting the second equation in the first one thus yields

GC = QC + GCRC = QC + Q∗
CRC + R∗

CGCRC . (8.50)

Since RC and R∗
C are very residual operators in the sense of [32], we see by the semi-ideal

property of such operators that R∗
CGCRC is also semi-residual. Hence, the result follows

from (8.50), Lemma 8.8 and the composition formula of Theorem 8.7. ��
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In fact, near bf0(Y ), we can compare GC with κ
1
2G

1
2
b κ

1
2 as follows,

κ
1
2G

1
2
b κ

1
2 = κ

1
2G

1
2
b κ

1
2 DCGC = GC + κ

1
2G

1
2
b κ

1
2 γGC, (8.51)

where we have used in the last step thatG
1
2
b is the inverse of κ− 1

2
(

κ
(−c ∂

∂κ
+ 1

κ
DY

))

κ
1
2 .

Hence, from the composition formula of Theorem 8.7, we see that the leading order term
of GC at bf0(Y ) is at order 1 with next term at least at order 2. That is,

GC = κ
1
2G

1
2
b κ

1
2 +O(x2bf0(Y )). (8.52)

This can be used to improve the parametrix Q1 in (8.27) by removing the term of order
h + 1 at φbf0 of the error term.

Proposition 8.11. There exists Q2 ∈ �
−1,Q2
k,φ (M; E) and R2 ∈ �

−1,R2
k,φ (M; E) such

that

Dk,φQ2 = Id−R2, (8.53)

where Q2 and R2 are the empty set at φbf, lf and rf , while

Q2|zf = (N0 − 1) ∪ N2 with inf ReN2 > 0, inf ReQ2|φbf0 ≥ h,

inf ReQ2|ff0 ≥ 0, inf ReQ2|ff ≥ 0

inf ReQ2|lf0 ≥ ν, inf ReQ2|rf0 ≥ h + 1 + ν with ν := min{ε, ε1 − 1}
(8.54)

and

inf ReR2|zf ≥ 1, inf ReR2|ff0 > 0,

inf ReR2|ff ≥ 0, inf ReR2|lf0 ≥ 1 + ν, inf ReR2|rf0 ≥ h + 1 + ε

and inf ReR2|φbf0 > h + 1.

(8.55)

Proof. To solve (8.29), we can take q2 = k−1GC�hr1 seen as term of order h at φbf0.
Letting Q′

2 be a smooth extension of q2 off φbf0 corresponding to a term of order h
there, we can consider

Q2 = Q1 + Q′
2.

This ensures in particular that R2 in (8.53) is such that its term r2 or order h + 1 at φbf0
is such that �hr2 = 0. But extending D−1

v r2, seen as at term of order h + 1, smoothly
off φbf0 and adding it to Q2, we can suppose that R2 has no term order h + 1 at φbf0,
that is, inf ReR2|φbf0 > h + 1.

Clearly then, the term of order h at φbf0 of Q2 must be the inverse of DC , namely it
is precisely GC . Moreover, the property (8.52) ensures that the new error term R2 still
vanishes to order 1 at zf,

inf Re R2|zf ≥ 1.

Finally, the extension of q2 off φbf0 can be done using the ‘right’ boundary defining
function x ′

k near lf0. Since �hq2 = q2, this means that the part of the error term R2
coming from the extension ofq2 will have leading order 1+ε at lf0, so that inf ReR2|lf0 ≥
1+ν as claimed. On the other hand, q2 has in principle a term of order h+1+ε ≤ h+2+ν

at rf0, hence the slight lost of decay at rf0. ��



Low Energy Limit for FB-Operators 289

Step 3: Inversion at ff . The parametrix Q2 inverts Dk,φ at all boundary hypersurfaces
of M2

k,φ except at ff. There, the model to invert is

Nff(Dk,φ) = Dv + ðh + γ k. (8.56)

Using that γ anti-commuteswith Dv+ðh and thatðh anti-commutewith Dv , we compute
that

Nff(Dk,φ)2 = D2
v + ð

2
h + k2.

This is clearly invertible as a suspended operator for k > 0 with inverse given by

Nff(Dk,φ)−1 = (Dv + ðh + γ k)(D2
v + ð

2
h + k2)−1. (8.57)

To see that this matches our model as k ↘ 0, we should decompose the normal oper-
ator in terms of ker Dv and its orthogonal complement (ker Dv)

⊥. First, on (ker Dv)
⊥,

Nff(Dk,φ) is still invertible as a suspended operator for k = 0. Lifting this inverse from
ff ×{0} ⊂ M2

φ ×[0,∞) toM2
k,φ through the blow-downmapM2

k,φ → M2
φ ×[0,∞), this

clearly corresponds to the part of Q2|ff0 acting on (ker Dv)
⊥ on ff0, while it vanishes

rapidly at lf, rf, φbf0, lf0 and rf0. Hence, when acting on (ker Dv)
⊥, the operator Q2

can be naturally extended on ff by
(

(Nff(Dk,φ)|ker D⊥
v

)−1
.

On the other hand, on ker Dv , the matching of Nff(Dk,φ)−1 with Q2 is more in the
spirit of [21], so we shall take the point of view offered by Lemma 4.4 and work initially
with [M2

k,b;�+]. On this space, the face ffb,+ created by the blow-up of �+ corresponds

to a blow-down version of ff in M2
k,φ = [M2

k,b;�+,�0]. Because of this missing final
blow-up, the model operator Nffb,+(Dk,φ) acting on ker Dv is not ðh + γ k in the limit
k → 0+, but instead

k(ðh + γ ).

This is because near k = 0, it is x ′
k , not x

′, which can be used as a boundary defining
function for ffb,+. The inverse is thus given by

(ðh + γ )−1k−1 = (ðh + γ )(ð2h + Id)−1k−1. (8.58)

By (8.38), this is precisely matched by Q2|φbf0 acting on ker Dv , the factor k−1 in (8.58)
indicating that k−1(ðh + γ )−1 yields a term of order h instead of h + 1 at φbf0.

Now, the face ff0 created by the blow-up of �0 is not really needed to invert the part
of Dk,φ asymptotically acting on ker Dv . Indeed, when we are considering the action on
ker Dv , the operator Dφ becomes a scattering operator, and we can simply use the b-sc
transition double space. The inverse can then be lifted to M2

k,φ via the blow-down map

M2
k,φ → [M2

k,b;�+].
This means that after we blow up �0 on [M2

k,b;�+], we still have that the limit of

Nff(Dk,φ)−1 acting on ker Dv matches the term of order h of Q2 at φbf0, but also
that it matches the part of Q2|ff0 acting on ker Dv . This yields the following improved
parametrix.
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Proposition 8.12. There exists Q3 ∈ �
−1,Q3
k,φ (M; E) and R3 ∈ �

−1,R3
k,φ (M; E) such

that

Dk,φQ3 = Id−R3 (8.59)

withQ3 = Q2 andR3 the same index family asR2, except at ff where we have instead
that

inf ReR3|ff > 0.

Proof. This follows from the previous discussion. ��

Step 4: Inversion up to an error term of order −∞ decaying rapidly as k ↘ 0. By the
composition rules of Theorem 6.2 and thanks to the decay rate of R3 at all boundary
hypersurfaces, notice that there exists δ > 0 such that for H a boundary hypersurface
of M2

k,φ distinct from zf,

R3 = O(xμ
H ) at H 	⇒ Rk

3 = O(xμ+kδ
H ) at H ∀k ∈ N0. (8.60)

When H = zf, then (8.60) holds provided ε + ε1 > 1. However, for ε + ε1 ≤ 1, it is
not quite true at zf, since R3 = O(xzf) there, but the lack of decay at lf0 and rf0 only
ensures that R2

3 = O(xε+ε1
zf ) at zf. Still, (8.60) still holds for H = zf provided we take

μ = ε instead of μ = 1. Since R3 is a pseudodifferential operator of order −1, this
means we can make sense of the formal sum

∞
∑

j=1

R j
3

as an asymptotic sum, both symbolically and in terms of polyhomogeneous expansions
at the various boundary hypersurfaces. If S is such an asymptotic sum,

S ∼
∞
∑

j=1

R j
3 ,

then S ∈ �
−1,S
k,φ (M; E) with S satisfying the same lower bounds as R3, except at zf

when ε + ε1 ≤ 1, where we have instead 0 < inf ReS|zf ≤ 1 in that case.
Then, by construction,

R4 := Id−(Id−R3)(Id +S) ∈ �−∞
k,φ (M; E)

has Schwartz kernel decaying rapidly at all boundary hypersurfaces of M2
k,φ . Hence,

setting Q4 = Q3(Id +S), we have that

Dk,φQ4 = Id−R4 (8.61)

with Q4 ∈ �
−1,Q4
k,φ (M; E), where Q4 is an index family having the same lower bound

as Q3, except at rf0 where we have instead inf ReQ4|rf0 ≥ h + ε. Furthermore, by
Theorem 6.2, if ε + ε1 > 1, then inf ReS|zf ≥ 1, inf ReS|lf0 ≥ 1 + ν and 1 + 2ν > 0,
so Q4|zf = (N0 − 1) ∪ N4 with inf ReN4 > 0.

The error term R4 can be seen as a smooth family of operators R4(k) ∈ �̇−∞(M; E)

parametrized by k ∈ [0,∞) and approaching rapidly 0 as k ↘ 0. In particular, the
operator R4(k) has a small operator norm for k small.
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Step 5: Completion of the proof of Theorem 8.4.

Proof. Since the operator norm of R4(k) tends to zero when k ↘ 0, there exists δ > 0
such that Id−R4(k) is invertible with inverse given by Id +S4(k), where

S4(k) =
∞
∑

j=1

R4(k)
j for k ∈ [0, δ)

is a smooth family of operators in �̇−∞(M; E) decaying rapidly to zero when k ↘ 0.
Hence, for k ∈ [0, δ), we can finally find a right inverse

Gk,φ := Q4(Id +S4) 	⇒ Dk,φGk,φ = Id . (8.62)

For k ≥ δ, we can invert Dk,φ simply in the small φ-calculus as in [33], that is, with
inverse in�−1

φ (M; E). Hence,Gk,φ can be extended to k ∈ [δ,∞) to give a right inverse
for all k ≥ 0.

By the composition rules of Theorem 6.5, Gk,φ is a k, φ-operator and (8.8) holds, ex-
cept possibly at rf0 and ff wherewe can only conclude for themoment that inf ReG|rf0 ≥
h + ε and inf ReG|ff ≥ 0. Hence, it remains to prove that Gk,φDk,φ = Id and that in fact
inf ReG|rf0 ≥ h + 1 + ν and G|ff = N0. To see this, take the adjoint of Dk,φGk,φ = Id,

G∗
k,φDk,φ = Id .

It suffices then to notice that

G∗
k,φ = G∗

k,φ(Dk,φGk,φ) = Gk,φ.

In particular, Gk,φ is self-adjoint as expected and inf Re G|lf0 ≥ ν 	⇒ inf ReG|rf0 ≥
h+1+ν. On the other hand, for k > 0 we know from the parametrix construction of [33]
in the small φ-calculus that the expansion at ff of Gk,φ must be smooth. By continuity,
this means that this is still the case in the limit k ↘ 0, so that G|ff = N0 as claimed. ��

ComposingGk,φ with itself also gives a description of the inverse of D2
k,φ = D2

φ +k
2.

Corollary 8.13. Let ðφ ∈ Diff1φ(M; E) be a Dirac operator satisfying Assumption 8.1.

Then there exists an operator G2
k,φ ∈ �

−2,G2
k,φ (M; E) such that

(D2
φ + k2)G2

k,φ = G2
k,φ(D2

φ + k2) = Id,

where G2 is an index family given by the empty set at lf, rf and φbf , and such that

inf ReG2|zf ≥ −2, inf ReG2|φbf0 ≥ h − 1, G2|ff = N0,

inf ReG2|ff0 ≥
{

0, h > 1,
(0, 1), h = 1,

and inf ReG2|lf0 ≥ (ν − 1, 1) ∈ R × N0,

inf ReG2|rf0 ≥ (h − 1 + ν, 1) ∈ R × N0.

(8.63)
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Proof. ToapplyTheorem8.4,weneed tofinda self-adjoint operatorγ ∈ C∞(M;End(E))

as in (8.1).Oneway toproceed is to consider, insteadofðφ the operator˜ðφ ∈ Diff1φ(M; E⊕
E) given by

˜ðφ =
(

ðφ 0
0 −ðφ

)

, (8.64)

since then one can consider the self-adjoint operator γ̃ ∈ C∞(M;End(E ⊕ E)) given
by

γ̃ =
(

0 −√−1√−1 0

)

. (8.65)

Theoperator γ̃ is such that γ̃ 2 = IdE⊕E and˜ðφγ̃+γ̃˜ðφ = 0. Setting ˜Dφ = x− h+1
2 ˜ðφx

h+1
2 ,

we can thus apply Theorem 6.2 to find ˜Gk,φ ∈ �
−1,G
k,φ (M; E ⊕ E) such that

(˜Dφ + kγ̃ )˜Gk,φ = ˜Gk,φ(˜Dφ + kγ̃ ) = IdE⊕E

with index family G as in (8.8). Composing ˜Gk,φ with itself and applying Theorem 6.2

gives us an operator ˜G2
k,φ ∈ �

−2,G2
k,φ (M; E ⊕ E) with index family G2 as in (8.63) such

that

(˜D2
φ + k2)˜G2

k,φ = ˜G2
k,φ(˜D2

φ + k2) = IdE⊕E

If P1 : E ⊕ E → E is the bundle projection on the first factor, it suffices then to take
G2

k,φ = P1˜G2
k,φP1. ��

Remark 8.14. In terms of ð2φ , this means that x
h+1
2 G2

k,φx
− h+1

2 is such that

(ð2φ + k2)(x
h+1
2 G2

k,φx
− h+1

2 ) = (x
h+1
2 G2

k,φx
− h+1

2 )(ð2φ + k2) = Id .

Thanks to Example 8.3, this can be applied in particular to Hodge Laplacian of a
fibered boundary metric.

Corollary 8.15. Letðφ be theHodge–deRhamoperator associated to a fibered boundary
metric gφ product-type up to order 2. Suppose that the exterior differential dker Dv and
its formal adjoint δker Dv acting on sections of the flat vector bundle ker Dv → Y in
Lemma 3.8 are such that the de Rham cohomology groups

Hq(Y ; ker Dv) = {0} for q ∈ {h − 1

2
,
h

2
,
h + 1

2
}, (8.66)

Spec(dker Dv δker Dv + δker Dvdker Dv ) h
2

>
3

4
, (8.67)

Spec(dker Dv δker Dv ) h+1
2

> 1. (8.68)

Then there exists an operator G2
k,φ ∈ �

−2,G2
k,φ (M;�∗(φT ∗M)) such that

(D2
φ + k2)G2

k,φ = G2
k,φ(D2

φ + k2) = Id,
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where G2 is an index family given by the empty set at lf, rf and φbf , and such that,

inf ReG2|zf ≥ −2, inf ReG2|φbf0 ≥ h − 1, G2|ff = N0,

inf ReG2|ff0 ≥
{

0, h > 1,
(0, 1), h = 1,

and inf ReG2|lf0 ≥ (ν − 1, 1) ∈ R × N0,

inf ReG2|rf0 ≥ (h − 1 + ν, 1) ∈ R × N0,

(8.69)

where ν = min{ε, ε1 − 1}.
Proof. We need to show that the indicial family I (Db, λ) has no indicial root in the
interval [−1, 0]. By Lemma 3.8, this will be the case provided the de Rham cohomology
groups

Hq(Y ; ker Dv) = {0} for q ∈ {h − 1

2
,
h

2
,
h + 1

2
}, (8.70)

(

Spec(dker Dv δker Dv + δker Dvdker Dv ) h
2

\ {0}
)

>
3

4
, (8.71)

(

Spec(dker Dv δker Dv ) h+1
2

\ {0}
)

> 1, (8.72)
(

Spec(δker Dvdker Dv ) h−1
2

\ {0}
)

> 1, (8.73)
(

Spec(dker Dv δker Dv ) h+2
2

\ {0}
)

>
3

4
, (8.74)

(

Spec(δker Dvdker Dv ) h−2
2

\ {0}
)

>
3

4
. (8.75)

Clearly, (8.66) and (8.67) corresponds to (8.70) and (8.71). On the other hand, by the
symmetry of the positive spectrum of the Hodge Laplacian, (8.67) also implies (8.74)
and (8.75), while (8.68) implies (8.72) and (8.73). ��

When Y = ∂M and φ : ∂M → Y is the identity, we see, taking into account the
different conventions for densities to define pseudodifferential operators, that Corol-
lary 8.15 gives back [23, Theorem 1], but on a double-space with with one extra face,
namely ff0. In our parametrix construction however, the face ff0 is not required when φ

is the identity map, so our parametrix does indeed descend to the b-sc transition double
space of [21,30] as in [23].

On the other hand, with respect to [23, Theorem 1], our hypothesis is slightly less
restrictive. Indeed, first, in the terminology of [23], we are allowing an asymptotically
conic metric to order 2 instead of 3. Second, the assumption [23, (2)], namely

kerx−1L2
b
(D2

φ) = kerL2
b
(D2

φ) (8.76)

in our notation, implies in particular that

kerx−1L2
b
Dφ = kerL2

b
Dφ. (8.77)

By the relative index theorem of [37, Theorem 6.5] and the symmetry of the critical
weights of I (Db, λ) around − 1

2 , we can infer from (8.77) that

(−1, 0) ∩ Crit(Db) = ∅. (8.78)
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By Lemma 3.8, the condition (8.78) implies (8.66), (8.67) and (8.68), but the last two
with only non-strict inequalities. However, using the symmetries of the positive spectrum
of the Hodge Laplacian, the first condition of [23, (4)], namely

∣

∣

∣

∣

q − h + 1

2

∣

∣

∣

∣

≤ 1

2
	⇒ 1 −

(

h + 1

2
− q

)2

/∈ Spec(dker Dv δker Dv )q (8.79)

in our notation, precisely rules out the equality case in the (8.67) and (8.68) with non-
strict inequalities. Thus, conditions [23, (2),(4)] implies our conditions (8.66), (8.67)
and (8.68). Conversely, if h is even, notice that (8.66) and (8.67) implies [23, (2),(4)]
by [23, Lemma 27]. If instead h is odd, then at least we see that (8.66) and the stronger
version of (8.68)

Spec(dker Dv δker Dv + δker Dvdker Dv ) h+1
2

> 1

imply [23, (2),(4)] by [23, Remark 28].

9. The Inverse of a Non-fully Elliptic Supended Dirac φ-Operator

In this final section, let us come back to our original motivation for studying the low
energy limit of the resolvent of a Dirac φ-operator. Thus, on M × Rq , let

ðsus = ðφ + ðRq (9.1)

be a Rq -suspended Dirac φ-operator, where ðφ is a Dirac φ-operator associated to a
fibered boundary metric gφ and a Clifford module E → M as in § 8, and where ðRq is
a family of Euclidean Dirac operators on Rq parametrized by M and anti-commuting
with ðφ . If {e1, . . . , eq} is the canonical basis of Rq , then

ðRq =
q

∑

j=1

cl(e j )∇e j

with ∇ the pull-back of the Clifford connection of E to its pull-back on M × Rq and
cl(e j ) denotes Clifford multiplication by e j . Thus, we suppose that the Clifford module
structure of E lifts to a Clifford module on its pull-back on M × Rq for the Clifford
bundle associated to the product metric

gφ + gRq

on M × Rq , where gRq is the canonical Euclidean metric on Rq . Taking the Fourier
transform in Rq , we obtain a family of operators

̂ðsus(ξ) = ðφ + i cl(ξ), ξ ∈ R
q . (9.2)

As noted in the introduction, for ξ �= 0, this can be rewritten

̂ðsus = ðφ + kγ with k = |ξ |, γ = i

|ξ | cl(ξ). (9.3)

Conjugating by x
h+1
2 , we get the corresponding operators

Dsus = x− h+1
2 ðsusx

h+1
2 = Dφ + ðRq and ̂Dsus(ξ) = Dφ + i cl(ξ) (9.4)
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with ξ ∈ Rq and Dφ = x− h+1
2 ðφx

h+1
2 as in (3.1).

We will suppose that Assumption 8.1 holds for the operator ðφ . In this case, using
(9.4), we know by Theorem 8.4 that the inverse Gξ,φ of the operator ̂Dsus(ξ) admits
a pseudodifferential description all the way down to ξ = 0. Hence, taking the inverse
Fourier transform of the inverse Gξ,φ will give a corresponding inverse for Dsus. The
detailed description of Gξ,φ in the limit ξ → 0 will allow us to give a pseudifferential
characterization of the inverse of Dsus. First, recall for instance from [11, Lemma 6.2]
that the small calculus ofRq -suspended φ-operators acting on sections of E is the union
over m ∈ R of the spaces

�m
φ−sus(Rq )(M; E) := {κ ∈ Im(M2

φ × Rq ,�φ × {0};
pr∗1(Homφ(E, E) ⊗ φ
R(M))) · pr∗2(
Rq ) |
κ ≡ 0 at ∂(M2

φ × Rq) \ (ff ×Rq)}, (9.5)

where Rq is the radial compactification of Rq , pr1 : M2
φ × Rq → M2

φ and pr2 :
M2

φ × Rq → Rq are the projections on the first and second factors and 
Rq is the
density of the Euclidean metric on Rq . However, because of the lack of decay and the
lack of smoothness, the inverse Fourier transform ofGξ,φ will not quite be an element of
�−2

φ−sus(Rq )
(M; E). We need in fact to slightly modify this space of operators if we want

to include the inverse Fourier transform of Gξ,φ . To describe this space, let ρ be a total
boundary defining function for the b-double space M2

b . Let Vρ = M2
b × ρRq denote the

vector bundle of rank q over M2
b trivialized by the sections ρe1, . . . , ρeq . As sections of

Vρ , these sections are not vanishing on ∂M2
b , though of course they do vanish as sections

of M2
b × Rq → M2

b . Let Vρ = M2
b × ρRq denote the fiberwise radial compactification

of the fiber bundle Vρ . The double space needed to describe the Schwartz kernels of our
class of operators is obtained by blowing up the p-submanifold � × {0} ⊂ M2

b × ρRq ,
that is, the zero section of Vρ |�, where � ⊂ M2

b is the p-submanifold of (2.12),

˜M2
φ−sus(Vρ) = [M2

b × ρRq ;� × {0}]. (9.6)

Denote by ff the new boundary hypersurface created by this blow-up. Let us also denote
by S(Vρ), φbf, lf and rf the boundary hypersurfaces of ˜M2

φ−sus(Vρ) corresponding to

the lifts of M2
b × ∂(ρRq), bf ×ρRq , lf ×ρRq and rf ×ρRq . Because of the blow-up of

� × {0}, notice that the space of suspended operators (9.5) can alternatively be defined
by

�m
φ−sus(Rq )(M; E)

= {κ ∈ Im( ˜M2
φ−sus(Vρ), �φ,sus; p̃r∗1(Homb(E, E) ⊗ β∗

b pr
∗
R

φ
(M))) · p̃r∗2(ρ−q
ρRq ) |
κ ≡ 0 at ∂( ˜M2

φ−sus(Vρ)) \ ff}, (9.7)

where �φ,sus is the lift of �b × {0} ⊂ M2
b × ρRq to ˜M2

φ−sus(Vρ) with �b the b-diagonal

in M2
b ,

p̃r1 : ˜M2
φ−sus(Vρ) → M2

b and p̃r2 : ˜M2
φ−sus(Vρ) → ρRq
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are the naturalmap induced by the blow-downmap and the natural projections Vρ → M2
b

and Vρ → ρRq , while 
ρRq = ρq
Rq is the natural Euclidean density on ρRq and

Homb(E, E) = β∗
b (pr∗L E ⊗ pr∗R E∗)

with prL : M2 → M and prR : M2 → M the projections on the left and right factors.
If E is an index family associated to the manifold with corners ˜M2

φ−sus(Vρ), one can
more generally consider the spaces

�
−∞,E
φ−sus(Rq )

(M; E) := AE
phg(

˜M2
φ−sus(Vρ);

p̃r∗1(Homb(E, E) ⊗ β∗
b pr

∗
R

φ
(M)) · p̃r∗2(ρ−q
ρRq )),

�
m,E
φ−sus(Rq )

(M; E) := �m
φ−sus(Rq )(M; E) + �

−∞,E
φ−sus(Rq )

(M; E), m ∈ R.

(9.8)

Theorem 9.1. Suppose that Assumption 8.1 holds for ðφ and that h = dim Y > 1. Then
the inverse D−1

sus of Dsus, for instance seen as acting from its minimal domain onto the
L2-space of sections of E with respect to the metric gb + gRq with gb a b-metric on M,

is an element of �−1,Ǧ
φ−sus(Rq )

(M; E) for an index family Ǧ such that

inf Re Ǧ|S(Vρ) ≥ q − 1, inf Re Ǧ|φbf ≥ h + q, inf Re Ǧ|ff ≥ 0,

inf Re Ǧ|lf ≥ ν + q, inf Re Ǧ|rf ≥ h + q + 1 + ν, with ν = min{ε, ε1 − 1}.
(9.9)

Furthermore, if ε + ε1 > 1 for ε and ε1 as in Assumption 8.1, then

Ǧ|S(Vρ) = (q − 1 + N0) ∪ (N + q)

with N an index set such that ReN > 0.

Proof. Notice first that performing a standard symbolic inversion as in the proof of
Proposition 3.10, there exists Q ∈ �−1

φ−sus(Rq )
(M; E) such that

DsusQ = Id +R, R ∈ �−∞
φ−sus(Rq )

(M; E).

Hence, taking its Fourier transform ̂Q(ξ) in the factor Rq gives for each η ∈ Sq−1 an
operator ̂Q(kη) in �−1

k,φ(M; E) such that for γ = i cl(η),

(Dφ + kγ )̂Q(kη) = Id +̂R(kη), ̂R(kη) ∈ �−∞
k,φ (M; E).

In particular, this shows that

(Dφ + kγ )−1 = (Dφ + kγ )−1((Dφ + kγ )̂Q(kη) − ̂R(kη))

= ̂Q(kη) + (Dφ + kγ )−1
̂R(kη).

Since the inverse Fourier transform of the first term on the right hand side is already
in the desired space, it suffices to concentrate on the second term. By Theorem 8.4 and
Theorem 6.2, notice that

̂R2(kη) := (Dφ + kγ )−1
̂R(kη) ∈ �

−∞,G
k,φ (M; E).
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Now, near zf, but away from the other boundary hypersurfaces, the inverse Fourier trans-
form converts the polyhomogeneous expansion at zf into a polyhomogeneous expansion
at S(Vρ) with term of order k� = |ξ |� at zf being converted into a term of order ρ

q+�∞ at
S(Vρ), where ρ∞ denotes a boundary defining function for S(Vρ). In particular, the term
of order −1 at zf corresponds to a term of order ρq−1 at S(Vρ) given by the pull-back
of

G−1
zf = �ker

L2b
Dφ

on M2
b to S(Vρ). Near φbf0, lf0 and rf0, but away from ff0, we can take advantage of

the rapid decay of ̂R2(kη) at φbf, lf and rf to make the change of variable

˜ξ = ξ

ρ
, x̃ = ρx (9.10)

in the inverse Fourier transform of ̂R2(ξ), so that
(

1

(2π)q

∫

Rq
eix ·ξ ̂R2(ξ)dξ

)

dx =
(

1

(2π)q

∫

ρ−1Rq
ei x̃ ·˜ξ ̂R2(ρ˜ξ)d˜ξ

)

dx̃

with x̃ the natural variable on the fibers of Vρ = M2
b × ρRq (so that dx̃ = 
ρRq ). In

particular, the inverse Fourier transform will have the claimed behavior away from the
lift of Vρ |� ⊂ Vρ on ˜M2

φ−sus(Vρ).

Hence, the only problematic region left to consider is near ff0 and ff in M2
φ,k . To

describe the inverse Fourier transform near this region, we will first provide more details
on the expansion of (Dφ + kγ )−1 at ff and ff0. Let ρff and ρff0 be boundary defining
functions for the boundary hypersurfaces ff and ff0 in M2

k,φ . Then the expansion of

(Dφ + kγ )−1 at ff in powers of ρff makes in principle the Fourier transform hard to

compute, since in local coordinates, ρff = x ′
k , yielding a singular expansion in k as

k ↘ 0. However, as we will now show, the expansion at ff of ̂R2(kη) is in powers of
ρffρff0 , that in powers of x

′. Indeed, since

̂R2(kη) = (Dφ + kγ )−1 − ̂Q(kη) (9.11)

and since ̂Q(kη) is already a conormal distribution with smooth expansion at M2
φ ×

[0,∞)k , it clearly suffices to show that the expansion of (Dφ + kγ )−1 at ff is in powers
of ρffρff0 instead of just ρff , a result established in Lemma 9.2 below.

Knowing this, we can thus take the inverse Fourier transform in ξ of each term in
the expansion of ̂R2(ξ) at ff. Doing this, we are left with an error term with rapid decay
at ff. To take the inverse Fourier transform near ff0, we can thus make the change of
variable (9.10) again and invoke Lemma 9.3 below to show it is of the desired form.

Still, there could be a problem while taking the inverse Fourier transform of each
term in the expansion of ̂R2(ξ) at ff. Indeed, in principle the expansion in |ξ | would
yield an expansion at the boundary hypersurface created by the blow-up of the lift of
� × ρRq in ˜M2

φ−sus(Vρ). The fact that we do not need to perform this blow-up to have a
polyhomogeneous conormal distribution comes from the fact that the expansion in |ξ |
is in fact smooth in ξ , so when we take the inverse Fourier transform, this ensures rapid
decay at this extra-blown-up face. To see this smoothness in the expansion at ξ = 0,
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notice that by Lemma 9.4 below, each term in the expansion of (Dφ + kγ )−1 at ff has
a smooth expansion in ξ

ρφbf0
, not just |ξ |

ρφbf0
, at ff0 ∩ ff, so that by (9.11), the same holds

for the terms in the expansion of ̂R(ξ) at ff. ��
Lemma 9.2. The expansionofGk,φ = (Dφ+kγ )−1 at ff in Theorem8.4 canbedescribed
in terms of powers of ρffρff0ρφbf0 for ρff , ρff0 and ρφbf0 boundary defining functions for
ff , ff0 and φbf0.

Proof. According to (8.57), the top order term in the expansion of Gk,φ at ff is given
by

Nff(Dk,φ)−1 = (Dv + ðh + γ k)(D2
v + ð

2
h + k2)−1. (9.12)

It has a term of order h at ff ∩φbf0 involving only the part (8.58) of the normal operator
acting on sections of ker Dv . Hence, the model (9.12) can be extended smoothly off ff
to an operator Q0 ∈ �

−1,Q0
k,φ (M; E), where for j ∈ N0, Q j corresponds to the index

family such that

Q j |ff = Q j |ff0 = Q j |φbf0 − h = N0 + j

with Q j given by the empty set elsewhere. This extension can be made in such a way
that its expansion at ff is in powers of ρffρφbf0ρff0 . Then we have that

Dk,φQ0 = Id +R1, (9.13)

and with R1 ∈ �
0,R1
k,φ (M; E) having also expansion at ff in powers of ρffρφbf0ρff0 ,

where for j ∈ N, R j corresponds to the index family such that

R j |ff = N0 + j, R j |ff0 − 1 = R j |φbf0 − h − 1 = N0,

and which is the empty set at all other boundary hypersurfaces of M2
k,φ . Indeed, by

Theorem 6.2, the error term R1 is of the claimed form. Since the expansion of R1 at ff is
in power of ρffρff0ρφbf0 , notice that Nff(R1ρ

−1
ff ) has index sets N0 + 1 and N0 + h + 2 at

ff0 and φbf0. In fact, adding successively terms of order (ρ1
ffρ

1
ff0

ρ
h+ j
φbf0

) for j ∈ N in the
expansion of Q0 at the corner ff ∩φbf0 and taking a Borel sum of those, we can require
as well that Nff(R1ρ

−1
ff ) decays rapidly at this corner.

Now, replacing Eff and F |ff by 0 in Theorem 6.2 yields a composition result for
Schwartz kernels on ff. This suggests to consider a term Q1 ∈ �

−1,Q1
k,φ (M; E) such that

Nff(Q1ρ
−1
ff ) = −Nff(Q0)Nff(R1ρ

−1
ff )

and with expansion at ff in powers of ρffρφbf0ρff0 . With this understood, we have that

Dk,φ(Q0 + Q1) = Id +R2

with R2 ∈ �
0,R2
k,φ (M; E) having expansion at ff in powers of ρffρff0ρff0 . In particular,

Nff(R2ρ
−2
ff ) has index set N0 + 2 and N0 + h + 3 at ff0 ∩ ff and φbf0 ∩ ff. Adding

successively terms of order (ρ2
ffρ

2
ff0

ρ
h+1+ j
φbf0

) for j ∈ N in the expansion of Q1 at the

corner φbf0 ∩ ff and taking a Borel sum, we can also ensure that Nff (R2ρ
−2
ff ) vanishes

rapidly there. Clearly, this construction can be iterated, so that more generally, we can
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define recursively Q� ∈ �−1,Q� (M; E) having expansion in powers of ρffρff0ρφbf0 at
ff such that Nff(Q�ρ

−�
ff ) = −Nff(Q0)Nff(R�ρ

−�
ff ) and

Dk,φ(

�
∑

j=0

Q j ) = Id +R�+1

with R�+1 ∈ �
0,R�+1
k,φ (M; E) having expansion in powers of ρffρff0ρφbf0 at ff with

Nff(R�+1ρ
−�−1
ff ) vanishing rapidly at φbf0 ∩ ff. If Q ∈ �

−1,Q0
k,φ (M; E) is a Borel sum

of the Q j , then its expansion at ff is in powers of ρffρff0ρφbf0 and

Dk,φQ = Id +R

for some R ∈ �
0,R
k,φ (M; E) withR the index family such that

R|ff0 − 1 = R|φbf0 − h − 1 = N0

and withR given by the empty set elsewhere, in particular at ff. Since

D−1
k,φ = D−1

k,φ(Dk,φQ − R) = Q − D−1
k,φR,

we see from Theorem 6.2 that D−1
k,φ has the same expansion as the one of Q at ff, from

which the result follows. ��
Lemma 9.3. The terms in the expansion of Gξ,φ at ff0 can be decomposed into terms
coming from M2

φ × Rq and terms coming from [M2
k,b;�+] × Sq−1.

Proof. Using (8.52), we know how to invert Dξ,φ at φbf0. This inverse makes sense
on [M2

k,b;�+] × Sq−1, that is, before we blow up �0 in (4.16) to obtain M2
k,φ × Sq−1.

When lifted to M2
k,φ × Sq−1, it induces on ff0 the part of the inverse of Nff0(Dξ,φ)

in the range of �h . The part of the inverse of Nff0(Dξ,φ) off this range is a family of
suspended operators in the usual sense, so decaying rapidly on φbf0. Moreover, the
full inverse of Nff0(Dξ,φ) does not depend on ξ

x and descends to M2
φ × Rq . Hence, let

Q0 ∈ �
−1,Q0
k,φ (M; E) be a parametrix of Dξ,φ obtained by extending the inverses at

φbf0 and ff0 smoothly and by inverting symbolically, so that

Dξ,φQ0 = Id−R′
0 − R′′

0 , (9.14)

where R′
0 ∈ �

−∞,R′
0

k,φ (M; E) comes from a polyhomogeneous section on [M2
k,b;�+] ×

Sq−1, R′′
0 ∈ �−∞

k,φ (M; E) vanishes to order one at ff0 and comes from a polyhomoge-

neous section on M2
φ × Rq , and where Q0 is an index family such that

inf ReQ0|zf ≥ 0, inf ReQ0|ff0 ≥ 0, inf ReQ0|φbf0 ≥ h, inf ReQ0|lf0 > 0,

inf ReQ0|rf0 > h + 1,

Q0|ff = N0, Q0|lf = Q0|rf = Q0|φbf = ∅,
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whileR′
0 is an index family such that

inf ReR′
0|zf ≥ 0, inf ReR′

0|ff0 > 0, inf ReR′
0|φbf0 > h + 1,

inf ReR′
0|lf0 > 0, inf ReR′

0|rf0 > h + 1,

R0|ff = N0, R′
0|lf = R′

0|rf = R′
0|φbf = ∅.

Essentially, the term R′
0 is the error term created by the inversion at φbf0 and the

inversion on ff0 in the range of �h , while R′′
0 is the error term created by the inversion

at ff0 off the range of �h and the symbolic inversion. Extending smoothly

Nff0(Q1) := Nff0(Q0)Nff0(R
′′
0 )

off ff ×{0} inM2
φ ×Rq , we obtain an operator Q1 ∈ �−∞

k,φ (M; E) coming from a smooth

section on M2 × [0,∞) such that

Dξ,φ(Q0 + Q1) = Id−R′
1 − R′′

1

with R′
1 and R′′ satisfying respectively the same properties as those of R′

0 and R′′
0 , but

with R′′
0 vanishing to order 2 at ff0. Proceeding recursively, we can more generally

construct Qi ∈ �−∞
k,φ (M; E) coming from a smooth section on M2

φ × Rq such that

Dξ,φ

⎛

⎝

i
∑

j=0

Q j

⎞

⎠ = Id−R′
i − R′′

i

with R′
i and R′′

i satisfying the same properties as R′
0 and R′′

0 , but with R′′
i vanishing to

order j at ff0. Taking a Borel sum

Q∞ ∼
∞
∑

j=0

Q j

at ff0 gives a a parametrix Q∞ ∈ �
−1,Q0
k,φ (M; E) such that

Dξ,φQ∞ = Id−R∞

with R∞ ∈ �
−∞,R0
kφ (M; E) satisfying the same properties as R0. Proceeding as in the

proof of Proposition 8.11, we can also remove the expansion of R∞ at the boundary
hypersurface of [M2

k,b;�+] that lifts to φbf0 on M2
k,φ to get a new parametrix Q ∈

�
−1,Q
k,φ (M; E) with Q satisfying the same properties as Q0 and such that

Dξ,φQ = Id−R (9.15)

for some R ∈ �
−∞,R
k,φ (M; E) with R satisfying the same properties as R′

0, but with
R|ff0 = R|φbf0 = ∅. In this construction, notice that we can write

Q = Q′ + Q′′

with Q′ coming from a conormal distribution on [M2
k,b;�+] × Sq−1 and Q′′ coming

from a conormal distribution on M2
φ × Rq . On the other hand, by (9.15),

Gξ,φ = Gξ,φ Id = Gξ,φ(Dξ,φQ + R) = Q + Gξ,φR.
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Since R decays rapidly on φbf0 and ff0, using the fact that in (6.13), the terms in the
expansion at ff0 coming from (E |lf0 +F |rf0) correspond to terms polyhomogeneous on
[M2

k,b;�+], we see that Gξ,φ has the same expansion as Q at ff0 modulo terms coming

from [M2
k,b;�+] × Sq−1, from which the result follows. ��

Lemma 9.4. Suppose that h > 1. Then each term of the expansion of Gξ,φ = (Dφ +
i cl(ξ))−1 at ff has a smooth expansion in powers of ξ

ρφbf0
at ff ∩ ff0, not just in powers

of k
ρφbf0

= |ξ |
ρφbf0

.

Proof. Let us start by showing that Nff(Dk,φ)−1 has a smooth expansion in ξ
ρφbf0

at

ff ∩ ff0. For this purpose, we can decompose the action of Nff(Dk,φ)−1 with respect to
the decomposition ker Dv ⊕ ker D⊥

v in the fibers of φ : ∂M → Y . Clearly, the part
acting on (ker Dv)

⊥ is smooth in ξ and it even descends to ff ×R
q
ξ in M2

φ × R
q
ξ .

For the part acting on ker Dv , it is given by

(ðh + i cl(ξ))−1 = (ðh + i cl(ξ))(ð2h + |ξ |2)−1. (9.16)

Now, ð2h = |ξ |2�h , where �h can be seen as a family of Euclidean Laplacian on the
fibers of the vector bundle k,φNscY introduced in (4.8). Taking the Fourier transform in
the fibers of this vector bundles, the operator (ð2h) + |ξ |2) thus becomes

|ξ |2(|ζ |2σ2(�h)
) + 1),

where ζ denotes linear coordinates in the fibers of k,φN∗
scY with norm | · |σ2(�h) induced

by the principal symbol of �h . The inverse is clearly given by

|ξ |−2(|ζ |2σ2(�h)
+ 1)−1.

Taking the inverse Fourier transform, we see that

(ð2h + |ξ |2)−1 =
(

|ξ |−2 1

(2π)h+1

∫

eiζ ·kY dζ

1 + |ζ |2σ2(�h)

)

d(kY ),

where Y denotes linear coordinates in the fibers of V = (k−1)k,φNscY in (7.8), so that kY
corresponds to linear coordinates in k,φNscY . Since (1 + |ζ |2σ2(�h)

)−1 has an expansion

in even powers of |ζ |−1
σ2(�h)

, its inverse Fourier transform has an expansion of the form

1

(2π)h+1

∫

eiζ ·kY

(1 + |ζ |2σ2(�h)
)
dζ ∼ 1

|kY |h−1
σ2(�h)

∞
∑

j=0

a j |kY |2 jσ2(�h)

at |kY |σ2(�h) = 0, where we have used the fact that h > 1 to rule out the presence of
a logarithmic term in the expansion. Hence, taking into account the change of density
d(kY ) = kh+1dY , we see that at |kY |σ2(�h) = 0, the inverse (ð2h + |ξ |2)−1 has the
expansion

(ð2h + |ξ |2)−1 ∼
⎛

⎝

1

|Y |h−1
σ2(�h)

∞
∑

j=0

a j |ξ |2 j |Y |2 jσ2(�h)

⎞

⎠ dY at k|Y |σ2(�h) = 0.
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Since |Y |−1
σ2(�h)

is a boundary defining function for φbf0, this expansion corresponds to

a smooth expansion in ξ
ρφbf0

at ff ∩ ff0. Since (ðh + i cl(ξ)) is already smooth in ξ , we

thus see that the composite (9.16) has a smooth expansion in powers of ξ
ρφbf0

at ff ∩ ff0.

Hence, letting Q0 ∈ �
−1,Q0
k,φ (M; E) and R1 ∈ �

0,R1
k,φ (M; E) be as in the proof of

Lemma 9.2, notice that Q0 and R1 can be chosen to have a smooth expansion in ξ
ρφbf0

at

ff0. In fact, adding terms of order ρff

( |ξ |
ρφbf0

) j
for j ∈ N to Q0 that are smooth in ξ

ρφbf0

and taking a Borel sum, we can further assume that Nff(R1ρ
−1
ff ) decays rapidly at ff0 as

well.
Letting ˜Q j denote index family given by ˜Q j |ff = N0 + j , ˜Q j |φbf0 = N0 + h + 1

and by the empty set elsewhere, we can thus take Q1 ∈ �
−1, ˜Q1
k,φ (M; E) with smooth

expansion in ξ
ρφbf0

at ff0 such that

Nff(Q1ρ
−1
ff ) = −Nff(Q0)Nff(R1ρ

−1
ff )

and

Dk,φ(Q0 + Q1) = Id +R2

for R2 ∈ �
0, ˜R2
k,φ (M; E) having smooth expansion in powers of ξ

ρφbf0
at ff0, where ˜R j

denotes the index family with

˜R j |ff = N0 + j, ˜R j |ff0 = ˜R j |φbf0 − h = N0 + 1

and with ˜R j elsewhere given by the empty set. In fact, since we are not insisting on
Q1 having rapid decay at ff0 and φbf0, we can assume that Nff(R2ρ

−2
ff ) decays rapidly

at ff0 ∩ ff by considering appropriate terms of order ρ2
ff

( |ξ |
ρφbf0

) j
smooth in ξ

ρφbf0
for

j ∈ N0 in the expansion of Q0 at ff0 ∩ ff and taking a Borel sum of those. Similarly,
adding terms of order ρ2

ff(ρφbf0)
h+ j for j ∈ N through a Borel sum in the expansion of

Q1 at ff ∩φbf0, we can assume as well that Nff(R2ρ
−2
ff ) vanishes rapidly at ff ∩φbf0.

Clearly, this construction can be iterated, so that one can more generally construct

Q j ∈ �
−1, ˜Q j
k,φ (M; E) with smooth expansion in powers of ξ

ρφbf0
at ff0 such that

Nff(Q jρ
− j ) = −Nff(Q0)Nff(R jρ

− j
ff )

and

Dk,φ(Q0 + · · · + Q j ) = Id +R j+1

with R j+1 ∈ �
0, ˜R j+1
k,φ (M; E) having a smooth expansion in powers of ξ

ρφbf0
at ff0 and

such that Nff(R j+1ρ
− j−1
ff ) vanishes rapidly at ff0 ∩ ff and φbf0 ∩ ff. Taking Borel sum

of the Q j , we thus obtain an operator Q ∈ �
−1,Q0
k,φ (M; E) such that Q has a smooth

expansion in powers of ξ
ρφbf0

at ff0 and

Dk,φQ = Id +R
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with R ∈ �
0, ˜R
k,φ (M; E), where ˜R is the index family with

˜R|ff0 = ˜R|φbf0 − h = N0 + 1

and with ˜R given by the empty set elsewhere. Since

D−1
k,φ = D−1

k,φ(Dk,φQ − R) = Q − Dk,φR,

we see from Theorem 6.2 that Q and D−1
k,φ have the same expansion at ff, from which

the result follows. ��
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Appendix A. Blow-ups in Manifolds with Corners

In this appendix, wewill establish the commutativity of blow-ups of two p-submanifolds
used in Lemma 4.4 to show that our two ways of constructing the k, φ-double space are
equivalent. Indeed, this result definitely requires a proof, especially since it does not
seem to follow from standard results like the commutativity of nested blow-ups or the
commutativity of blow-ups of transversal p-submanifolds.

Lemma A.1. Let W be a manifold with corners. Suppose that X and Y are two p-
submanifolds such that their intersection Z = X ∩ Y is also a p-submanifold with the
property that for every w ∈ Z, there is a coordinate chart

ϕ : U → R
n1
k1

× R
n2
k2

× R
n3
k3

× R
n4
k4

(A.1)

sending w to the origin such that

ϕ(U ∩ X) = {0} × {0} × R
n3
k3

× R
n4
k4

,

ϕ(U ∩ Y ) = {0} × R
n2
k2

× {0} × R
n4
k4

,

ϕ(U ∩ Z) = {0} × {0} × {0} × R
n4
k4

.

(A.2)

Then the identity map in the interior extends to a diffeomorphism

[W ; X,Y, Z ] → [W ; Y, X, Z ]. (A.3)
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Proof. Since we blow up Z last, notice first that this result does not quite follows from
the commutativity of nested blow-ups. Now, clearly, away from Z , the blow-ups of X and
Y commute since they do not intersect. Thus, to establish (A.3), it suffices to establish
it near Z . Let w ∈ Z be given and consider a coordinate chart (U , ϕ) as in (A.2). Let
x = (x1, . . . , xn1), y = (y1, . . . , yn2), z = (z1, . . . , zn3) and w = (w1, . . . , wn4) be the
canonical coordinates for the factors Rn1

k1
, Rn2

k2
, Rn3

k3
and R

n4
k4

respectively.
When we blow up X , this coordinate chart is replaced by the one induced by the coor-
dinates

(ωx,y = (
x

r
,
y

r
), r =

√

|x |2 + |y2|, z, w) ∈ S
n1+n2−1
k1+k2

× [0,∞)r × R
n3
k3

× R
n4
k4

.

In this coordinate chart, the lifts of Y and Z corresponds to

({0} × S
n2−1
k2

) × [0,∞)r × {0} × R
n4
k4

and

S
n1+n2−1
k1+k2

× {0} × {0} × R
n4
k4

,

where {0} × S
n2−1
k2

⊂ R
n1
k1

× R
n2
k2

is seen as a p-submanifold of Sn1+n2−1
k1+k2

seen as the
unit sphere inRn1

k1
×R

n2
k2
. To blow up Y , this suggests to consider the smaller coordinate

chart induced by the coordinates

(x, ωy = y

|y| , r, z, w) ∈ R
n1
k1

× S
n2−1
k2

× [0,∞)r × R
n3
k3

× R
n4
k4

in which the lift of Y corresponds to

{0} × S
n2−1
k2

× [0,∞)r × {0} × R
n4
k4

and the lift of Z to

R
n1
k1

× S
n2−1
k2

× {0} × {0} × R
n4
k4

.

Hence, blowing up Y , we obtain a coordinate chart on [W ; X,Y ] by considering the one
induced by the coordinates

(ωx,z = (
x

ρ
,
z

ρ
), ρ =

√

|x |2 + |z|2, ωy = y

|y| , r =
√

|x |2 + |y|2, w) ∈ S
n1+n3−1
k1+k3

×[0,∞)ρ × S
n2−1
k2

× [0,∞)r × R
n4
k4

in which the lift of Z corresponds to

(S
n1−1
k1

× {0}) × [0,∞)ρ × S
n2−1
k2

× {0} × R
n4
k4

with Sn1−1
k1

×{0} ⊂ R
n1
k1

×R
n3
k3

seen as a p-submanifold of Sn1+n3−1
k1+k3

. To blow up Z , this
suggests to consider the coordinate charts induced by the coordinates

(z, ωx = x

|x | , ρ =
√

|x |2 + |z|2, ωy = y

|y| , r =
√

|x |2 + |y|2, w) ∈ R
n3
k3

× S
n1−1
k1

×[0,∞)ρ × S
n2−1
k2

× [0,∞)r × R
n4
k4
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in which the lift of Z corresponds to

{0} × S
n1−1
k1

× [0,∞)ρ × S
n2−1
k2

× {0} × R
n4
k4

.

Hence, blowing up the lift of Z , we see that [W ; X,Y, Z ] admits a coordinate chart
induced by the coordinates

(ωz,r = (
z

s
,
r

s
), s =

√

|z|2 + r2, ωx = x

|x | , ωy = y

|y| , ρ =
√

|x |2 + |y|2, w)

∈ S
n3
k3+1

× [0,∞)s × S
n1−1
k1

× S
n2−1
k2

× [0,∞)ρ × R
n4
k4

. (A.4)

In this chart, Z lifts to

S
n3
k3+1

× {0} × S
n1−1
k1

× S
n2−1
k2

× [0,∞)ρ × R
n4
k4

,

Y lifts to

S
n3
k3+1

× [0,∞)s × S
n1−1
k1

× S
n2−1
k2

× {0} × R
n4
k4

and X lifts to

(S
n3−1
k3

× {0}) × [0,∞)s × S
n1−1
k1

× S
n2−1
k2

× [0,∞)ρ × R
n4
k4

,

where S
n3−1
k3

× {0} ⊂ R
n3
k3

× [0,∞)r is seen as a p-submanifold of the unit sphere
S
n3
k3+1

⊂ R
n3
k3

× [0,∞)r .
Since we are interested in the commutativity of the blow-ups of X and Y when the blow-
up of Z is subsequently performed, we can consider instead a smaller coordinate chart
on [W ; X,Y, Z ] in a neighborhood of the lift of X which is induced by the coordinates

(ωx = x

|x | , ωy = y

|y| , ωz = z

|z| , r =
√

|x |2 + |y|2,

ρ =
√

|x |2 + |z|2, s =
√

|x |2 + |y|2 + |z|2, w)

∈ S
n1−1
k1

× S
n2−1
k2

× S
n3−1
k3

× [0,∞)r × [0,∞)ρ × [0,∞)s × R
n4
k4

. (A.5)

This chart is defined near the intersection of the lifts of X , Y and Z , which corresponds
to Sn1−1

k1
× S

n2−1
k2

× S
n3−1
k3

× {0} × {0} × {0} × R
n4
k4
.

The definition of this system of coordinates is symmetric with respect to X and Y ,
namely, considering instead [W ; Y, X, Z ], we would have obtain the same coordinate
system valid near the intersection of the lifts of X,Y and Z . This indicates that in this
region, the identity map in the interior naturally extends to a diffeomorphism. Since this
clear elsewhere, the result follows. ��
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