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Abstract—Elastic Optical Networks (EONs) have become a
promising solution to satisfy the dramatic growth of bandwidth
demand due to 5G and cloud applications. Due to the flexibility
of resource allocation, EONs provide high spectrum utilization
efficiency, and because of this, developing efficient policies to
ensure the survivability of EONs is a challenging problem. A
well-designed disaster management plan is needed to prevent
data loss during network failures and large-scale disasters. The
bottleneck problem caused by disabled parts of the network
causes difficulties for disaster recovery. Depending on the disaster,
even traffic that may be far away from the disaster may be
impacted by it. In this paper, we propose a new approach
to disaster management using machine learning to facilitate
efficient recovery. In addition to traffic immediately affected
by the disaster, all traffic which is “close to” the disaster
is re-routed and re-assigned with possibly degraded service,
while requests “far from” the disaster are left unaffected. A
deep reinforcement learning disaster recovery algorithm with
mitigation awareness (DeepDRAMA) is proposed for recovery. A
novel deep reinforcement learning agent is designed and trained
for the agent to select the appropriate level of service degradation
for re-assigned traffic. Simulation results show the performance
improvement with DeepDRAMA.

Index Terms—Disaster management, degraded service, ma-
chine learning

I. INTRODUCTION

Elastic optical networks (EONs) have arisen as an efficient
solution to satisfy growing bandwidth demands due to their
flexibility in resource allocation and spectrum assignment [1].
In EONs, network traffic is allocated bandwidth in terms of
frequency slots (FS), each of which is 12.5 GHz. The FSs must
be continuous and contiguous throughout the entirety of the
lightpath [2]. Further, the development of coherent transmis-
sion and high-level modulation formats means that an efficient
modulation format can be chosen for a lightpath depending on
its length. Therefore, the routing and wavelength assignment
problem in Wavelength Division Multiplexing (WDM) opti-
cal networks has evolved into the Routing, Modulation, and
Spectrum Assignment (RMSA) problem.

Survivability is regarded as an important aspect for opti-
cal networks. Survivability mechanisms can be divided into
protection and recovery [3]. In protection strategy, backup
resources are reserved and will be used immediately upon
failure. For instance, p-cycle protection is considered to be
particularly promising due to high protection efficiency [4] [5]
[6]. In restoration or recovery strategy, resources are assigned
to affected lightpaths after a network failure happens. Affected

lightpaths are re-routed and re-assigned based on the surviving
network.

A special case of survivability is disaster management.
Disasters, such as earthquakes and hurricanes, may cause
large-scale damage to network infrastructure. In this case, the
protection strategy is not appropriate because of the excessive
amount of redundant resources required to protect against an
unlikely large-scale network failure. Therefore, a recovery-
based policy is the best solution in this case. Disaster recovery
in optical networks has been previously studied. A heuristic
traffic recovery algorithm is proposed in [7], where a genetic
operator is used to optimize the serving order for failed
services. A capacity-constrained maximally spatial disjoint
lightpath algorithm is proposed in [8] for EONs. However,
in these papers, services far away from the disaster center are
inevitably affected by the recovery.

With the rapid development of machine learning, deep
reinforcement learning (DRL) has begun to play an important
role in network management, and has been shown to provide
better performance compared with conventional heuristic algo-
rithms for EONs. The use of machine learning in EONs has
been previously studied. [9] proposed Deep-RMSA, a deep
Q learning (DQL) agent which was used for path selection
in standard RMSA. In [10], a transfer learning framework
is proposed, which uses multiple agents that share DNN
parameters among each other. In [11], a DRL is proposed
to enhance network survivability by providing protection, in
which two agents are used to select primary and backup paths.
However, DRL has not been applied to disaster management
in the literature.

In this paper, we propose a new approach to disaster
recovery using a mitigation zone and machine learning. All
the traffic inside the mitigation zone is re-accommodated with
potentially degraded service (i.e., decreased bit rate) to solve
the bottleneck problem caused by a large-scale disaster. This
new approach is also based on the intuition that services that
are far away from the disaster zone should not be affected
during the recovery process. The benefit of mitigation zone
has been demonstrated in [12], where we proposed a heuristic
recovery algorithm called DRAMA. This work expands upon
the use of mitigation zone by using a DQL agent to select a
degradation factor for rerouted lightpaths affected by a disaster.
A new recovery algorithm called DeepDRAMA is proposed
and a DQL agent is designed to select the degradation for each
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traffic inside the mitigation zone. To the best of our knowledge,
this is the first paper that leverages machine learning for
disaster management in optical networks. The contributions
of our work can be summarized as follows:
• A DQL agent is designed for disaster management.
• A novel deep neural network (DNN) is designed and

trained to select the appropriate degradation for each
lightpath in different mitigation cases.

• The DeepDRAMA algorithm is proposed for the recovery
of affected traffic and re-assignment of traffic inside the
mitigation zone with proposed DQL agent.

• Simulation results show the effectiveness of Deep-
DRAMA.

The rest of the paper is organized as follows. The disaster
recovery problem is defined in Section II. The DQL agent is
designed in Section III, and the DeepDRAMA algorithm is
presented in Section IV. Sample simulation results are given
in Section V, and the paper is concluded in Section VI.

II. PROBLEM STATEMENT

A. Network and traffic model

We define the problem as follows. Consider a network
G(N,E), where N denotes the node set and E denotes the
link set. On each link, there is a pair of fibers in opposite
directions. At the time of disaster, there is a set of ongoing
lightpaths, T , with pre-assigned resources (routes, spectrum,
modulation). Each lightpath is denoted as t(s, d, w), where
s and d represent the source and destination nodes, and w
represents the lightpath data rate. There are several modula-
tion formats for different spectrum efficiencies and different
distance limitations. A lightpath is assigned the highest level
modulation possible for the length of its path, and assigned
spectrum according to continuity and contiguity constraints.

Consider a circular disaster zone D(Cd, Rd), where Cd

denotes the center and Rd denotes the radius. We assume the
disaster causes any node that lies in the disaster zone and
any link with either end node in the disaster zone to fail. If
there is no possible path from a lightpath’s source node to
its destination node, or either source node or destination node
is failed after the disaster, the lightpath is considered to be
unrecoverable.

A mitigation zone M(Cm, Rm) is established as the annulus
bounded by the circular region with center Cm = Cd and
radius Rd + Rm, and the disaster zone. The area excluding
the disaster and the mitigation zones is denoted as U .

Every lightpath t ∈ T is considered be in one of the
three zones – D, M , or U – determined by where their
source/destination nodes lie. If the source and/or destination
node lies within D, then we say t ∈ D. In this case, the
lightpath is not recoverable. For all recoverable lightpaths, if
either source or destination node lies within M , then we say
t ∈M ; else, t ∈ U .

Based on different areas, all the lightpaths can be divided
into 5 types and managed in different ways (examples are
shown in Fig. 1):
• If t ∈ M is affected by the disaster, the lightpath will

be recovered with a new path and frequency slots with
degradation. This case is shown as t5.

• If t ∈M is not affected by the disaster, the lightpath will
be re-assigned with degradation in order to re-organize
the spectrum to solve the bottleneck issue. This case is
shown as t2.

• If t ∈ U is affected by the disaster, the lightpath will be
recovered with its original data rate without degradation.
This case is shown as t3.

• If t ∈ U is not affected by the disaster, the lightpath will
not be touched at all. This case is shown as t1.

• If the lightpath is unrecoverable, the lightpath will be
dropped without recovery attempt. This case is shown as
t4.

Fig. 1. Examples of LPs inside and outside the disaster and mitigation zones.

B. Penalty function

Since each lightpath (LP) brings revenue to the network,
we assume that the revenue is equal to the data rate of the
LP (arbitrary units) in this paper. If the data rate of a LP
is degraded (or dropped) after disaster, we assume a penalty
function to model the lost revenue [13]. The penalty function
P (df) is a non-decreasing function of the degradation factor
df . In this paper, we assume the following function [12], which
is also plotted in Fig. 2.

P (df) =
log(1− 0.9× df)
log(1− 0.9× 1)

. (1)

Fig. 2. The penalty function.

The penalty function shows the relationship between the
percentage of the revenue lost and the percentage of reduction
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in the LP’s data rate. In (1), df is the percentage of the
data rate degraded. The value of the penalty function is 0
for no degradation, while the value is 1 for full degradation.
The absolute value of the penalty is the value of the penalty
function times the total revenue. For example, suppose the
original data rate of a LP is 400 Gbps and the LP is recovered
with 300 Gbps. In this case, the percentage of data rate
degraded is 25%. Then the value of the penalty function is
0.11 and the absolute penalty is 0.11 * 400 = 44. If a LP is
blocked/dropped during the recovery or re-assignment, all the
revenue is considered to be lost and the absolute penalty is
equal to the revenue.

The objective of the disaster management problem is to
accommodate the recoverable LPs (LPs that need recovery or
re-assignment) and minimize the total penalty.

This problem is challenging since it is very hard to find the
appropriate degradation for every single lightpath. In [12], we
presented a heuristic algorithm to find the appropriate degra-
dation factors and do the Routing and Spectrum Assignment.
In this work, we leverage deep reinforcement learning to solve
this problem.

III. DEEP Q LEARNING DESIGN

Reinforcement learning is widely used in scenarios that
need to interact with the environment. The general process of
reinforcement learning is: given the state of an environment,
the agent selects a corresponding action according to some
policy. The state will be updated to a new state after executing
this action. The agent will get a reward after executing the
action, and will adjust its policy according to the value of
the reward. The objective is to maximize the sum of the
rewards when the state reaches the terminal state. Q-learning
is a type of reinforcement learning in which the agent stores
the reward value of state-action pairs in a table (Q-table).
However, conventional Q-learning is limited by the space of
states and actions. When the number of state-action pairs
becomes very large, using a Q-table becomes impractical.

Fig. 3. The structure of DQL agent.

Deep Q Learning (DQL), which is a typical case of deep
reinforcement learning and a combination of deep learning and
Q learning, replaces the Q-table with a deep neural network
(Q-network), and acts as the policy for action selection. Fig. 3
shows the structure of DQL. The environment is presented
as the state, and the Q-network is used to determine the
action. Once the action is selected, the environment is changed
according to the action execution. Meanwhile, a reward is
generated and fed back to the Q-network for training. A
target Q-network is used to stabilize learning and establish
an optimal policy. The purpose of the target neural network is

to calculate the target Q values, which are used as the training
label of the main Q-network. The target Q-network is updated
with the parameters of the main Q-network periodically.

DQL is well-suited to the disaster recovery problem because
it does not require a labeled training data set, and attempts
to obtain training samples through continuous interaction
between the agent and the environment.

A. Q-network design
We now describe the structure of the Q-network inside the

DQL agent, including the presentation of the environment and
the DNN design.

The observation space state includes three sub-states: net-
work state s, lightpath state t and mitigation zone state mz.
The network sub-state s is represented by a 2-D array, where
the information of the FS usage is carried. The row represents
the FS index and the column represents the fiber index. For
example, if FS 3 on fiber 1 is assigned and occupied by a
lightpath, then the value of row 1 and column 3 is set to 1.
The value is set to 0 if the corresponding FS is not occupied.
The lightpath sub-state t is represented as a 1-D array of 4-
tuples, where the source node S, destination node D, data
rate R and modulation factor M are included. The modulation
factor M is the normalized spectrum efficiency of the highest
modulation format available (defined as data rate per FS (in
Gbps) / 12.5, e.g., the value of M for 8QAM is 3) to be used
for the shortest path in the surviving network. The mitigation
zone sub-state mz is represented as a 1-D array. The value
is set to 1 if the corresponding node is inside the mitigation
zone, otherwise it is set to 0. For example, the value of index
2 is set to 1 if node 2 is inside the mitigation zone.

Layer 1 of the DNN is generated by convolution of t and
each unit in s as follows:

li,j2 = f(w · [li,j1 , tS , tD, tR, tM ]T + b) (2)

where li,j2 is the value of row i and column j in layer 2 and
li,j1 is the value of the position in layer 1. tS , tD, tR, tM are
the lightpath’s source node, destination node, data rate and
modulation factor, respectively. w and b are the weight of the
kernel and bias. Function f is the activation function.

After convolution between s and t, Layer 2 is generated by
standard convolution with nk kernels and biases. The kernel
size is 3 × 3 in this step. Then, layer 3 is generated by
doing max pooling to layer 2 with strides size 2 × 2. Layer
4 is generated with one more convolution and max pooling
calculation, same as layers 1 through 3. Layer 5 is generated
by the convolution of each column in layer 4 with nk kernels.
Then, the dense layer D1 is generated by the convolution of
all the elements on each channel and flatten reshaping.

Dense layer D1 and D2 are full-connected while D2 and
the upper part of D3 are full-connected. The mitigation zone
sub-state mz is flatten reshaped and concatenated to layer D3
as the bottom part. Then, dense layer D4, D5 and action layer
are full-connected.

In this work, the size of the action space is 21 × 1,
corresponding to 21 degradation options (0 % to 100 % in 5%
steps). Action value 1 represents 0% degradation and action 21
is 100% degradation (i.e., drop the lightpath). The action with
the highest value is selected as the degradation. For example,
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Fig. 4. The structure of Q-network in DQL agent.

if the original data rate of a lightpath is 400 Gbps and action
value 15 has the highest value in the action space, then the
value the lightpath is recovered with is 400×(1−70%) = 120
Gbps.

B. Training design
The training of the DNN aims to adjust the parameters to

minimize the gap between Q-value of the action generated
by the state and the training label. The Q-value is defined as
follows:

Q(state, A) = r + γE
[
max
A′

Q′(state′, A′)
]
, (3)

where state is the current state, including the network sub-
state, lightpath sub-state and mitigation zone sub-state. The
action selected by the DNN is denoted as A, and r is the
immediate reward of the action. The reward is defined as
the remaining revenue of each lightpath, which is the total
revenue of the lightpath minus the absolute penalty due to
the degradation. γ is the discount factor, which is 0.95 in this
paper. Q′ represents the target Q network. state′ is the updated
state after the recovery operation according to action A. A′ is
the future action selected based on future states. In this work,
we randomly select 5 of the lightpaths waiting to be recovered
or assigned as the future lightpaths. The average Q-value of
these 5 lightpaths is used.

The mean squared error is used as the loss function and the
Adam optimizer is used [14]. ReLU is used as the activation
function. The memory replay mechanism is implemented. In-
stead of training the Q-network immediately after the recovery
or re-assignment, the training data is restored in the memory
pool as a group of state, action, reward, state′, where
state′ represents the next state after the action is applied on
state. Then the training data is periodically randomly selected
from the memory pool and used for training. The reason for
adding experience replay is because the states are obtained
from consecutive environments in the recovery procedure [11].
Compared with conventional reinforcement learning problem,
the samples are much more relevant. If there is no experience
replay, the training basically does the gradient descent in the
same direction for a continuous period of time, so the direct
calculation of the gradient may not converge under the same
training times. The design of the memory replay is presented
in Section V.

IV. DEEPDRAMA

We now describe the DeepDRAMA algorithm. The pseu-
docode of DeepDRAMA is shown in Algorithm 1.

In lines 1-8, we release the spectrum that was assigned
to unrecoverable LPs as well as LPs that are waiting to be
recovered or re-assigned. The LPs that can be recovered and
re-assigned are added to set T ′.

In lines 9 -12, all the LPs in T ′ and U are recovered first.
These LPs are sorted in decreasing order of data rate, and each
LP is recovered one by one in this order. The shortest path
(SP) and first fit (FF) slot assignment is used to accommodate
the lightpath.

In lines 13-16, we recover and reassign the lightpaths inside
the mitigation zone. The Agent is used to select the degraded
data rate of the lightpath.

Algorithm 1 DeepDRAMA Algorithm
Require: G(N,E), T , D(Cd, Rd), M(Cm, Rm), U , Agent
Ensure: Degradation factor and RMSA for recovered LPs

1: Initialize an empty LP set T ′
2: for each t ∈ T do
3: if t ∈ D (i.e., t is unrecoverable) then
4: Release the spectrum of t
5: else if t ∈M or t’s path is disrupted by disaster then
6: Release the spectrum of t, add t to T ′
7: end if
8: end for
9: Sort all t ∈ T ′ in decreasing order of data rate

10: for each t ∈ T ′ do
11: if t /∈M then
12: Assign t with SP-FF RSA without degradation; block

t if FSs not available
13: else
14: Determine the modulation format with SP
15: Select the degradation option with the Agent
16: Assign t with SP and FF with selected degradation;

block t if FSs not available
17: end if
18: end for

V. SIMULATION RESULTS

In this section, we present and analyze the performance of
DeepDRAMA and the training results of DQL. The network
topologies used are the COST239 network (11 nodes and 26
links [6]) and the NSF network (14 nodes and 21 links [15]).
There is a pair of fibers in opposite directions and there are
100 FSs on each fiber.

Three different disasters are tested, as shown in Table I.
Before the disaster, a set of unidirectional traffic requests is
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TABLE I
DISASTER SCENARIOS FOR EXPERIMENTS.

Center Affected links
Node 7 in NSF 1-8, 5-7, 7-8, 4-11
Node 2 in NSF 1-2, 1-3, 2-3, 2-4
Node 6 in COST 0-3, 3-6, 5-6, 8-6, 9-6 ,3-9

generated first. The source and destination nodes for each
traffic request are uniformly randomly selected from the nodes.
We assume there are three different types of requests with
rate 40/100/400 Gbps with probability 0.3, 0.5, and 0.2,
respectively. Four types of modulation formats are used: 16-
QAM, 8-QAM, QPSK and BPSK. The number of required
FSs for a LP is determined by its data rate and modulation
format. The number of FSs corresponding to different data
rates and different modulation formats are shown in Table II.
For each modulation format, the physical distance limitations
are also shown in Table II.1

TABLE II
REQUIRED FSS AND DISTANCE LIMITATIONS [16].

Modulation
Date Rate 40G 100G 400G

16-QAM (500 km) 1 2 8
8-QAM (1000 km) 2 3 11
QPSK (2000 km) 2 4 16
BPSK (>2000 km) 4 8 32

The required numbers of FSs for a given modulation format
is calculated as follows:

F =

⌈
w

ModEm

⌉
, (4)

where w is the data rate of the lightpath, ModEm is the
spectrum efficiency of modulation format m (defined as data
rate per FS, e.g., BPSK is 12.5 Gbps and 16QAM is 50 Gbps)
used for the lightpath.

A. Training and testing
For the training, in each episode, 200 lightpaths are gener-

ated and assigned a path and FSs (if available) with shortest
path-first fit (SP FF). The DeepDRAMA algorithm is operated
with the current Agent for different mitigation zone cases once
(from the smallest mitigation zone case to the case of the
mitigation zone being the entire network). For each lightpath,
the group of state, action, reward, state′ is stored in the
memory pool. We randomly select 10 batches with batch size
16 and do the batch training of DNN in the Agent [9]. The
target Q network is updated after the batch training at the end
of each episode. We train the Agent with 1000 episodes. The
total number of lightpaths used for training is approximately
160k.

During the training, the ε-greedy strategy is used. The action
with highest Q value is selected with probability 1−ε; else the
agent selects a random action for exploration. The value of ε
is set to 1 at the beginning of the training and updated with
ε = ε × εdecay after each batch training until ε < εmin. The
value of εdecay and εmin are set to 0.99 and 0.001, respectively.

In the testing phase, as in training, the number of lightpaths
before the disaster is set to 200. DeepDRAMA with trained

1We assume that there is no physical distance limitation for BPSK.

agent is used to recover and re-assign lightpaths. Average
results over 30 trials are shown with 95% confidence interval.

B. Training results
Before the training process starts, 20 traffic sets of 200

lightpaths each are generated; these sets are not used in the
training process. As the training progresses, we apply (the
partially trained) DeepDRAMA to recover these lightpaths and
observe the penalty. The evolution of the average penalty (over
these 20 traffic sets) as the training progresses (i.e., number of
episodes increases) is shown in Fig. 5 for different mitigation
zone cases. As we can see, the penalty rapidly decreases
and becomes stable after about 100 episodes of training. (We
only show the first 400 episodes here since since the penalty
has already stabilized. The actual training is done for 1000
episodes. It takes about 30 hours to finish all the training.)

Fig. 5. Total penalty when disaster happens at node 7 in NSF network.

C. Testing results
The testing results for NSFnet are shown in Fig. 6 and 7.

The penalty when there is no mitigation zone is shown as a
dashed line. In this case, only affected lightpaths are recovered
by SPFF without degradation. In the no degradation case,
lightpaths inside the mitigation zone are reassigned but no
degradation is applied. Compared with baseline cases, Deep-
DRAMA provides the lowest penalty. The penalty decreases as
the mitigation zone expands, which shows that DeepDRAMA
is able to exploit the flexibility offered by the mitigation zone.

The testing results for COS239 network are shown in Fig. 8.
As we can see, DeepDRAMA is better than baseline cases but
the performance improvement is lower than in NSF network.
The reason is that COS239 is a smaller network and all the
lightpaths select a higher level modulation, which means the
average number of slots required is lower. In this case, it is
hard to gain advantage from lightpath re-accommodation due
to spectrum segmentation. Interestingly, the total penalty for
the no degradation case is larger than that for the no mitigation
case when the mitigation zone is small. This provides evidence
that appropriate degradation selection is necessary even the
mitigation zone is implemented.

VI. CONCLUSION

Disaster management is an important aspect of elastic
optical networks. Conventional disaster recovery algorithms
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Fig. 6. Total penalty when disaster happens at node 7 in NSF network.

Fig. 7. Total penalty when disaster happens at node 2 in NSF network.

attempt to recover the affected traffic using the resources of
the surviving network. In this paper, we use the previously
proposed idea of a mitigation zone which defines an area
around the disaster zone within which service may be re-
covered in a degraded manner. We leverage deep Q learning
(DQL) to select the appropriate level of service degradation.
Results demonstrate the performance improvement that can be
achieved with DQL. In the future, we intend to apply DQL
to the joint problem of re-assignment of path and spectrum in
addition to selecting the degradation level for affected traffic.
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