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Abstract—In space-division-multiplexed elastic optical net-
works (SDM-EONSs), the routing, modulation, core, and spectrum
assignment (RMCSA) problem is a critical lightpath resource as-
signment problem. Intercore-crosstalk (XT) between cores lowers
the quality of parallel transmissions, and the RMCSA algorithm
must ensure that XT restrictions are satisfied while optimizing
network performance. There is a tradeoff between spectrum
efficiency and XT tolerance - higher modulation formats are more
efficient in terms of spectrum but are also less forgiving in terms
of XT and allow fewer connections on adjacent cores on the
overlapping spectrum. XT-aware RMCSA algorithms typically
impose an upper limit or threshold on the number of lighted
cores on the overlapped spectrum in order to ensure compliance
with XT limits. In this paper, we offer a machine learning
(ML)-assisted threshold optimization strategy that significantly
enhances the performance of XT-aware RMCSA algorithms in
terms of bandwidth blocking probability.

I. INTRODUCTION

Recent increases in bandwidth requirements for cloud-based
services, 5G and 6G communications, high-resolution game
streaming, and data center networks can be met via space
division multiplexed elastic optical networks (SDM-EONs)
[1]. Coherent optical transmission advancements have enabled
fine-tuning of transmission parameters and an increase in
spectral efficiency. SDM-EON provides parallel optical signal
transmission over multicore fibers (MCFs) using distance-
adaptive multicarrier transmission [2]. The quality of trans-
mission (QoT) of signals carried by MCF, on the other
hand, suffers due to intercore crosstalk (XT) between weakly
coupled cores [3].

Owing to the small geometry of weakly coupled cores in
MCEF in SDM-EON, signal transmission does not mirror that
of a multifiber connection, and the QoT of a signal on a
spectrum slice worsens due to XT. As a result, it is critical to
develop strategies for dealing with the effect of XT and to do
so properly [4]. The choice of efficient modulation formats
(MFs) has an effect on XT levels. Selecting a spectrally
efficient MF (for e.g., PM-64QAM) saves spectrum but has a
poor tolerance for XT and shorter transmission reaches (TRs).
As a result, the resource assignment problem becomes more
complex when multiple modulation formats are available.
Many RMCSA algorithms fulfill XT restrictions by imposing
a limit or threshold on the number of lit neighboring cores on
overlapping spectrum [4], [5].

The maximum TR for a given MF can be obtained by
considering the signal to noise ratio (SNR) in the form
of accumulated XT to maintain the desired QoT. The XT
accumulation for a lightpath increases with the number of
litcores which is the number of Overlapping spectrum on
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adjacent Cores (OsaCs), i.e., the number of existing lightpaths
on adjacent cores that use overlapping spectrum. We assume
that XT from only adjacent cores is significant in weakly
coupled cores [6].

The decrease in SNR results in a decrease in TR, which
means every litcore value corresponds to a different TR.
Thus, MF selection can be modeled in terms of the number
of litcores associated with the MFs. Error-vector magnitude
(EVM) takes SNR into account and it degrades due to the
penalties induced by in-band XT [7]. The TRs of each MF for
different levels of XTs for different litcores can be obtained in
terms of degradation of EVMs using approximated analytical
modeling. There is a tradeoff between spectrum utilization and
XT accumulation with respect to the selection of the MF.

In our recent work [8], we studied the improvement in per-
formance due to careful selection of core-modulation format
(MF)-spectrum combination. We discovered using extensive
simulations that the proper selection of MF significantly
improves the balance between spectrum utilization and XT
accumulation, which results in decreased blocking. Recent
advances in machine learning (ML) have enabled complicated
problems in optical networks to be solved [9]. The underlying
relationship between network features and output labels is
discovered, and this information can then be used to construct
network models. In this paper, we present a machine learning-
aided strategy for learning such underlying relationships in
order to improve MF selection and achieve a favorable tradeoff
between spectrum usage and XT tolerance. Our technique is
general in that it can be utilized with any XT-aware RMCSA
algorithm.

The paper is organized as follows. The network model and
problem statement are introduced in Sec. II. The proposed
ML-aided approach is presented in Sec. III. Sec. IV presents
simulation results and the last section concludes the work.

II. NETWORK MODEL AND PRELIMINARIES

We now give the network model along with the transmission
reach model. We also explain the problem description and
illustrate how modifying the selection approach of MFs effect
the resource assignment to connections.

A. Network Model and Problem Statement

We assume that the SDM-EON is equipped with coherent
transceivers (TRXs) and works on a flexible grid with a gran-
ularity of 12.5 GHz. The TRXs support reprogrammable bit
rates and a variety of MFs [6]. The TRXs operate at a constant
baud rate of 28 GBaud, and each TRX transmits and receives
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optical signals on a carrier with a total bandwidth occupying
three frequency slices (FSs) (i.e., 37.5 GHz) [10]. If the desired
bit rate is more than the capacity of a single TRX employing a
specific MF, the request is carried by multiple optical carriers
within a single superchannel (SCh). A 12.5 GHz guard band
isolates each SCh from its neighbors. The nodes are connected
through MCF-based optical links. Each fiber link is made
up of identical MCFs with a specific core geometry in both
directions. ! Two generally accepted core geometries, three-
core and seven-core, are investigated. We assume that the
effect of XT impacts only adjacent/neighbor cores, and is
negligible between non-adjacent cores. Each core in a three-
core fiber, for example, contains two adjacent cores. Similarly,
in a seven-core fiber, the outer cores are surrounded by three
adjacent cores, while the center core is surrounded by six
adjacent cores (see Figure 1). Additionally, spatial continuity is
enforced, which implies that the same core is allocated to each
lightpath on a route’s MCF links. Lightpath requests arrive at
a Poisson rate with an exponentially distributed mean holding
time of unity (arbitrary units), while lightpath datarates are
uniformly distributed over a predetermined range.

The mean XT experienced in a core of an MCF, denoted
as XT,, and shown in (1), can be obtained using an analytical
model that uses coupled-power theory [6], [11]. Here, v, &,
and L are the litcores, a design parameter which represents
the increase in XT per unit fiber length, and path length,
respectively. v is the number of OsaCs that are occupied
by ongoing (parallel) transmissions, meaning, these adjacent
cores are lit. The maximum TR (L,,,,) can be obtained using
(2) where Lgpan, EVMg, and EVM,y,,,, are the span length,
EVM to attain target bit-error rate (BER), and EVM of the
span, respectively [10]. The TR obtained with respect to the
EVM ensures the BER of 3.8 x 10 for / of 3.15 x 10~ and
span length of 50km. The corresponding TR model is shown
in [10].
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The TR is a function of MF and . For a given ~, the TR of
a higher MF, which is more spectrally efficient but more XT-
sensitive, is lower than the TR of a lower MF. In addition, for a
given MF, the TR decreases with increasing -, as each increase
in 7 increases the XT accumulation. The MF selection for a
lightpath can be controlled by specifying a maximum value
of 7 for each MF d, denoted as 7%,,, (explained through the
example below), which serves as the threshold for selection of
MFs. In other words, 72, is the maximum number of OsaCs
that are allowed to be occupied for the d** MF. This means that
for a given MF d, no more than 7, (0 <~4,. <C—1)
OsaCs can be occupied by other existing/future connections
during the holding time of the current connection if MF d

'In this paper, we assume that all the links have a single MCF in each
direction, but the proposed work can be easily generalized for multiple fibers
per link.

is chosen. Here, C' denotes the total number of cores. This
ensures that the XT will be capped in order to maintain
the QoT. Using a higher v% . allows more OsaCs to be
occupied by other connections; however, this also means that
the corresponding TR will be lower because of the higher
potential XT. Thus, the set {72, :d = 1,...,|D|} (called
set of thresholds (ST)) can be used to control the selection of
MFs. For an arriving connection request, a resource allocation
algorithm would choose the highest MF whose TR exceeds
the path length of the connection; here, the TR depends on
the ST. A candidate MF for assignment is defined below.

Definition II.1 (Candidate MF). Given a lightpath of length
l, MF d is called as a candidate MF for assignment <= the
TR corresponding to <., T > L.

B. Illustrative Example

We now present an example to explain the influence of
selection of v on the tradeoff between spectrum usage and
XT accumulation in the network. We will use Table I in [10]
and Figure 1 for this illustration. We first show the effect of ST
when all the thresholds are set to 0 on the occupancy of cores
in spatial domain and corresponding occupancy of frequency
slots in spectral domain. Later we explain the improvement
by changing the ST.

Table I: Transmission reaches (in km) of MFs for different
values of allowable lit core (v) for a 7-core MCF for an
average XT per span of -40dB (from Table I in [10]).

Modulation Formats (|D| =5, f; € D)
v (Lit- | PM- PM- PM- PM- PM-
cores) QPSK SQAM 16QAM | 32QAM 64QAM
0 5200 2050 1100 550 250
1 4650 1850 1000 500 250
2 4200 1650 900 450 200
3 3850 1500 800 400 200
4 3550 1400 750 400 150
5 3300 1300 700 350 150
6 3050 1200 650 300 150

For a connection arrival, the path length of the shortest path
(SP) between source and destination nodes is used to get the
MEF as per Definition II.1. For this example, we consider the
selection pattern of MF and corresponding v¢ as shown in
our work [8]. Readers may refer the Algorithm 1 in [8] for
better understanding of selection of MF and v, and how it
represents the spectrum requirement and allowed occupancy
of the OsaCs. The only difference will be that in this example
first fit policy is imposed to determine the highest MF. The
TRs (TJ ) for different values of  for each MF for the network
model explained above is given in Table I, and are used to
select the MF. Later the spectrum and core are selected. Let
us assume that D = {PM-32QAM (d = 4), PM-64QAM (d
= 5)} for this example. The links are equipped with 7-core
fibers with cores 1 to 6 at the periphery and the core 7 is at
the center. Suppose a 320 Gbps connection arrives on route
r. The spectrum requirements for this connection using PM-
64QAM and PM-32QAM (including guardband (GB)) are 4
FSs and 7 FSs, respectively. Suppose vz, and 75, are set
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Figure 1: Change in spectrum utilization for two different
selections of MFs.

to 0. Suppose the length of the SP is 250 km and that the
spectrum on all the links on this SP is unoccupied. Here, PM-
64QAM with v° = 1 will be selected since (I =) 250km is less
than or equal to the TR, at 7° = 1, (T3 =) 250km. Here, ~°
= 1 means if PM-64QAM is chosen for this connection, only
one OsaC among the OsaCs on cores 2, 6, and 7 is allowed
to be occupied by other connections during this connection’s
holding time in order to maintain the QoT. Suppose that the
OsaCs on cores 6 and 7 are not allowed to be occupied as
shown in Figure la. In this case, the spectrum of 4 FSs on
core 1, and 3 FSs each on cores 6 and 7 need to be reserved
for this connection, for a total of 10 FSs. The other MFs will
not be considered as we have found the first MF suitable for
this connection, and thus this connection will be established on
core 1 using FSs 1 to 4. Remember that we take the occupancy
of OsaCs into consideration during the selection process. For
example, assume that the FSs 1 to 4 are already occupied by
another ongoing connections on any of the two cores, let’s
say cores 6 and 7, then this MF can’t be selected since to
maintain the QoT of PM-64QAM for this connection we need
the OsaC atleast one core out of the three adjacent cores to
be free. There are other conditions for assignment which are
defined in Definition V.1 in [8].

Now suppose that the 42, is changed from 0 to 2. In this
case, T52 (= 200 km) is less than the path length of 250 km,
and therefore PM-64QAM cannot be selected on this SP. The
next MF PM-32QAM is then considered. The TR at v* = 6
(T$ = 300 km) is greater than or equal to the path length of
250 km. Thus we can use PM-32QAM for assignment. v* =
6 implies that there is no limitation on OsaCs and the same
spectrum on all the three adjacent cores will be allowed to be
occupied by future connections as shown in Figure 1b. Thus
the reserved spectrum is only 7 FSs as shown in Figure 1b. It
is evident from this example that the choice of ST can improve
the selection process of MF.

III. MACHINE LEARNING-AIDED LITCORE THRESHOLD
SELECTION
We now present a novel approach for selecting optimal

litcore thresholds that is aided by machine learning. This
approach can be used by any RMCSA algorithm that meets XT

constraints using litcore thresholds. In this section, we discuss
the prerequisites for the machine learning model (MLM) and
its working principle. Recall that D denotes the set of MFs
and v2  denotes the litcore threshold for the d** MF. The
first step is to collect samples of sets of thresholds (STs),
followed by training the MLM. Let the optimal value of v
be denoted by <. The steps involved in machine learning-
aided threshold optimization to obtain v¢ for all MFs using
MLM are illustrated in Figure 2 and explained below.

A. Data Generation

First, the problem is defined to select the network parame-
ters in the Problem Definition stage. The data is then fed to
the data generation model. In the Synthetic Data Generation
stage, a small sample of random STs is generated and the
corresponding BBPs are obtained for a given RMCSA algo-
rithm through simulation. To generate a single value of BBP
from an ST, dynamic network operations must be simulated
which also involves the selection of MFs as per Definition
II.1. Because simulating performance for all possible STs
would take an inordinate amount of time, we let the MLM
learn the relationship between ST and BBP and select the
optimal ST. Furthermore, network telemetry is difficult and
getting precise network data requires separate expenditure in
a real network [12]. Therefore, we generate several hundreds
of ST samples and then obtain the corresponding BBP values
through simulation. These STs are then fed into the MLM,
which develops an understanding of the relationship and can
then predict the BBP of the remaining STs. The MLM’s
training and prediction times are negligible in comparison to
the total computation time required to generate the BBP for
each sample. Additionally, the MLM can be easily modified
by altering the hyperparameters, which increases the flexibility
of the learning process. The difference between predicted and
actual BBP values for STs with known BBPs is used to tune
and calibrate the MLM for precise predictions.

Let S} and B] denote the i*" ST (|S]| = |D|) and
corresponding BBP. Each ST is used to generate the filtered
TR model to select the MF. The selection of route, MF, core,
and spectrum is done using the RMCSA algorithm of choice.
It is very unlikely to have the optimal ST present in the small
set of randomly selected STs used for training. Hence, the
load for the training data generation is chosen such that the
BBP values are somewhat higher than desired (10~2t010~1)
so that the MLM can discriminate between various STs (as
lower loads may give a BBP of 0 for several STs).

B. Machine Learning Model and Threshold Selection Tech-
nique

We use a deep-neural network (DNN) as the MLM. The
optimal v? is denoted as v¢ and optimal ST is denoted as S7
={11,72,...,7P1). The feature-label samples are used to
train the DNN, which then predicts the S7. The feature-label
samples are used to train the MLM. The MLM seeks statistical
relationships and learns more effectively when the dataset is
pre-processed prior to feeding it to the MLM. The second
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Figure 2: Machine learning approach for selection of optimal ST.

step as illustrated in Figure 2, which is the Synthetic Data
Generation phase, produces the STs (S;) and corresponding
BBPs (B]) which then acts as the input to the MLM. The
details of the steps involved in training the model (Training
Phase (Figure 2)) and optimizing the STs (Deployment Phase
(Figure 2)) are given in Algorithm 1.

Algorithm 1 ML-Aided Optimization Model

Input: STs S] and corresponding B
Output: S

1: Select the desired features

2: Get F; and FY, and P and P/

3: Get Ff and FY by scaling F; and F/ using the mean and
standard deviation of F}

4: Train and Tune the MLM by choosing hyperparameters to get as
low validation loss as possible using Fy’ and P;

5: Get the desired hyperparameters by regularization

: Train the model with obtained hyperparameters on F; and P;
7: Use GridSearchCV() and trained model to get S7

(=)

In Line 1 of Algorithm 1, the features are processed. Each
feature value is checked to determine its contribution in the
label. In other words, if a change to a feature has no effect on
the label, the change is noted and the feature is discarded from
the learning process. In our case, we observed that altering the
values of vZ _ has an effect on the BBP.

The selected features are then statistically processed in
the last phases of data preprocessing. To begin, the entire
dataset is separated into training and testing subsets (Line 2).
Generally, 80% of samples are used for training and 20% for
testing. A portion of training dataset (around 80%) is used
for training the model and the remaining for validation. This
step is essential so as to track whether the model is overfitting
or not. The training dataset’s features and labels are denoted
as F; and P, respectively. The testing dataset’s features and
labels are denoted as F/ and P;. Both F; and F/ are scaled
(or normalized) to F}’ and Ftsl using Fi’s mean and standard
deviation (Line 3).

The model is trained using the default hyperparameters and
the training and validation loss are monitored (Line 4). We
use k-fold cross validation (kCV) to get the errors to check
the fit of the model. The training and tuning are repeated
until the best hyperparameters are obtained using F;’ and P;
(Line 5). We use regularization as discussed briefly in the
next subsection. We observed that the MLM with tuned hy-
perparametes performs at least 20% better than the MLM with
default hyperparameters. Finally, the tuned hyperparameters
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are used to train the model, which discovers the fundamental
relationship between STs and the BBPs (Lines 6). The trained
MLM, employing the gridsearch process, returns the set of v
denoted by S} (Line 7).

During our extensive experiments with the variable sizes
of feature sets, we observed that the relationship between the
74, .. and BBP is not linear. We experimented with a variety of
MLMs for regression and discovered that the DNN regression
model performs the best. Hence, the findings for DNN MLM
are reported in this study.

C. Tuning the Machine Learning Model

During training, the DNN can suffer from overfitting,
wherein it works well with the known data but poorly with
unknown data. We use a two-step process to avoid this as
mentioned in Lines 4 and 5 in Algorithm 1. The first is to split
a portion of the training data into validation dataset to monitor
the validation loss. The second step is the use of callbacks.
Callbacks are set to stop the learning process at a lower epoch
when the performance of DNN does not improve for e epochs.

The DNN is comprised of input, hidden, and output layers.
The output layer is set to Regression mode and has a single
node. The number of epochs and DNN parameters, such as the
number and type of neuronal layers and the number of neurons
comprising each layer, affect the performance of DNN. The
proper selection of the parameters can be done using Pruning,
which is out of scope of this paper, and we therefore include
experimental values that follow n;, = T'/a(n; +n,) where,
np, T, n; and n, are the number neurons in hidden layer(s),
total samples, input nodes, and output nodes, respectively, and
« is a scaling factor. The BBP (on left y-axis), and root mean
square error (RMSE) value corresponding to the training and
testing (on right y-axis) with respect to the number of epochs
(e) and set of neurons per hidden layer () is shown in Figure
3. The results are obtained for first-fit RSA (xtFF) (explained
in Sec. IV) with complete dataset of all samples divided into
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training (80%) and testing data (20%). The validation dataset
is 20% of the training data and no callbacks are set (e=0).
BY(E) and B° denote experimental and predicted BBP when
all thresholds are set to 0, and B*(F) and B* denote the
experimental and predicted BBP corresponding to the optimal
thresholds. Let e; denote the i*" value of number of epochs.
Let n; denote the set of neurons per hidden layer (nj) for
i hidden layers. Here, e1=10, e2=50, n={16}, 1,={16,16},
13={16,32,16}. It can be seen that DNN with 73 (denser
version) predicts the B® and B* better than DNN with 7,
and 7. It also offers lower prediction error with respect to
the training and testing datasets.

Once the epochs and DNN parameters are selected, the
training and testing datasets are standardized using mean and
variance of training dataset. Here, the mean is subtracted from
each feature which is then scaled to unit variance. The trained
DNN is then used with the GridSearchCV procedure to get S7
in the Deployment phase. The MLM uses the pre-calculated
TRs corresponding to different v values. Thus the MLM works
as the generalized model which can be used with any TR
model and RSA.

IV. SIMULATION RESULTS

We now present simulation results for a range of scenarios in
which we compare the chosen RMCSA with and without ma-
chine learning-assisted optimization. We employ two topolo-
gies, namely generic German (DT) and European (EURO) [8].
A spectrum of 4 THz is considered on each core with a slice
width of 12.5 GHz, or 320 FSs (S = 320). Poisson connection
arrival process with exponential holding times of mean one
(arbitrary time unit) is assumed. The Erlang loads were chosen
to maintain a BBP range of approximately 10~° to 1071
100,000 requests are generated in each trial, excluding 10,000
warm-up requests to let the network reach steady state. Each
experiment yields 95 percent confidence intervals after ten
trials. The datarates are uniformly distributed between 40 and
400 Gbps with a 40 Gbps granularity. Three SPs (K = 3) are
considered for each s-d pair. The set of assignable modulation
formats is denoted by D = {f1, fo,..., fip|}, where fi is the
lowest modulation format and fip) is the highest modulation
format. We assume five modulation schemes in this article:
PM-QPSK (f;), PM-8QAM, PM-16QAM, PM-32QAM, and
PM-64QAM (f5). The transmission reach (i.e., the maximum
length which can be traversed while maintaining the desired
QoT) is dependent on both the MF of the lightpath and the
status of overlapping spectrum on adjacent cores (OsaCs). TR
models for each MF with an average crosstalk of -40 dB
between two adjacent cores after a single span propagation
and a TRX operating at 28 GBaud and a span length of 50
km are taken from [10]. Only 100 and 200 data samples are
generated for the case of C' = 3 and C' = 7, respectively,
and 80% of these are used for training and the remainder for
validation. To obtain assessment scores, the kCV employs k
=5 folds.

For this study, the RMCSAs XT-aware first fit (xtFF), xtFF
with modulation selection (xtFM), and P-XT [6] are chosen.

Table II: ML based S7={~}, 72, 72, ¥4, 42} for DT topology
RSA C=3 =1
XUFF [1.0.222) | {3.0.3667
X(FM (0,022,227} | {65333
PXT 6] | {0,0,0,2,2) | {0.6,3,2,2]
Table III: ML based S7={v!, 72, 72, 7%, ~2} for EURO
topology.
POogY RSA c=3 C=17
XIFF {1,201} | {1,35637}
X(EM (1.220,2}7 | {03,356
PXT[6] | {01,222} | {63,651}

In xtFF and P-XT, based on the path length, only the first
fit highest MF is selected and checked for assignment. If the
spectrum and the core are not available, i.e., don’t satisfy the
XT constraint, the connection is blocked. In xtFM, the above
step is repeated to get all the MFs for which the spectrum
and core are available, and the highest MF is chosen. Readers
may refer [8] and [6] to understand the XT-aware approach to
select path, MF, spectrum, and core.

The S7 for all the algorithms for both core geometries
are shown in Table II for DT topology and in Table III for
EURO topology; which is then used to select MFs as per
Definition II.1. The utilized epochs out of 50 due to callbacks
for xtFF, xtFM and P-XT are 29, 21, and 25 for C = 3, and
24, 18, and 17 for C = 7 for DT topology. The comparison
between RSA and their ML-aided version for C' = 3 and C
= 7 for DT and EURO topologies is shown in Figure 4. The
corresponding utilization of MFs is shown in Figure 5. It is
clear the ML-aided versions of all the RSAs outperform the
unaided RSAs by up to three orders of magnitude. The main
reason for this to happen can be seen in the distribution of
MFs. In all the cases, the selection of higher MFs is slightly
reduced and the selection of lower MFs is slightly increased.
It becomes possible because the MLM learns that the balance
can be made between the selection MFs in terms of spectrum
utilization and XT accummulation by choosing optimal <.
We observed that by using S, the non-ML assisted variant
never chooses a lower MF such as PM-8QAM in case of C
= 7 in DT topology (Figure 4b) but the ML-assisted version
brings it in by limiting the selection of higher MFs i.e. PM-
64QAM (Figure 5b). Higher MFs require less spectrum for
the connection, but due to their XT sensitivities the OsaCs
are blocked. On the other hand, lower MFs require more
spectrum for the connection but also block less spectrum on
OsaCs due to lower XT sensitivity. The MLM successfully
balances this tradeoff and achieves excellent performance. The
selection of lower MFs is higher in EURO than DT because
the path lengths of EURO topology are longer than that of
DT. We also observed that in some of the cases either the
non-ML assisted versions or the ML-assisted versions of xtFF
and xtFM performs almost the same. The reason for this is the
similar selection pattern of MFs. Here the reason for blocking
can be either the unavailability of the spectrum (for e.g. due to
fragmentation) or due to QoT constraints (e.g. spectrum being
blocked by ongoing connections as shown in Figure 1).

The performance of ML aided versions of RMCSAs can
easily be improved further by choosing more samples for
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Figure 4: Variation in BBP for all RMCSAs and their ML-aided versions with respect to the traffic for DT topology (Figure

4a, 4b) and EURO topology (Figure 4c, 4d).
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Figure 5: Distribution of MFs for all RMCSAs and their ML-aided versions with respect to the traffic for DT topology (Figure

5a, 5b) and EURO topology (Figure 5c, 5d).

training. Based on extensive simulations, we observed that
number of samples, and number of hidden layers and neurons
per hidden layer are inversely proportional. As it is desired to
get the optimal ST with as less STs as possible and availability
of the computation power, denser DNN are used in this paper.

V. CONCLUSION

For space division multiplexed elastic optical networks,
we studied crosstalk-aware RMCSA algorithms. Depending
on the modulation type chosen, a tradeoff exists between
spectrum usage and inter-core crosstalk (XT) accumulation.
Many RMCSA techniques meet XT requirements by imposing
a constraint on the number of litcores on overlapped spectrum.
We suggested a machine learning-assisted strategy in this study
for optimizing the thresholds used to govern the selection of
MFs. The technique is applicable to any RMCSA allocation
mechanism that constrains the number of litcores to satisfy
XT requirements. We evaluated the performance of several
existing RMCSA algorithms and their ML-aided variants and
demonstrated that the latter decrease the bandwidth blocking
probability of dynamic connection requests by up to three
orders of magnitude for different combinations of topologies
and types of cores. A very intriguing observation is that the
ML-aided variant of the worst performing baseline method
outperforms the best performing algorithm that does not use
ML to optimize the threshold.
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