
An ML Approach for Crosstalk-Aware Modulation

Format Selection in SDM-EONs
Shrinivas Petale, Suresh Subramaniam

Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, USA

{srpetale, suresh}@gwu.edu

Abstract—In space-division-multiplexed elastic optical net-
works (SDM-EONs), the routing, modulation, core, and spectrum
assignment (RMCSA) problem is a critical lightpath resource as-
signment problem. Intercore-crosstalk (XT) between cores lowers
the quality of parallel transmissions, and the RMCSA algorithm
must ensure that XT restrictions are satisfied while optimizing
network performance. There is a tradeoff between spectrum
efficiency and XT tolerance - higher modulation formats are more
efficient in terms of spectrum but are also less forgiving in terms
of XT and allow fewer connections on adjacent cores on the
overlapping spectrum. XT-aware RMCSA algorithms typically
impose an upper limit or threshold on the number of lighted
cores on the overlapped spectrum in order to ensure compliance
with XT limits. In this paper, we offer a machine learning
(ML)-assisted threshold optimization strategy that significantly
enhances the performance of XT-aware RMCSA algorithms in
terms of bandwidth blocking probability.

I. INTRODUCTION

Recent increases in bandwidth requirements for cloud-based

services, 5G and 6G communications, high-resolution game

streaming, and data center networks can be met via space

division multiplexed elastic optical networks (SDM-EONs)

[1]. Coherent optical transmission advancements have enabled

fine-tuning of transmission parameters and an increase in

spectral efficiency. SDM-EON provides parallel optical signal

transmission over multicore fibers (MCFs) using distance-

adaptive multicarrier transmission [2]. The quality of trans-

mission (QoT) of signals carried by MCF, on the other

hand, suffers due to intercore crosstalk (XT) between weakly

coupled cores [3].

Owing to the small geometry of weakly coupled cores in

MCF in SDM-EON, signal transmission does not mirror that

of a multifiber connection, and the QoT of a signal on a

spectrum slice worsens due to XT. As a result, it is critical to

develop strategies for dealing with the effect of XT and to do

so properly [4]. The choice of efficient modulation formats

(MFs) has an effect on XT levels. Selecting a spectrally

efficient MF (for e.g., PM-64QAM) saves spectrum but has a

poor tolerance for XT and shorter transmission reaches (TRs).

As a result, the resource assignment problem becomes more

complex when multiple modulation formats are available.

Many RMCSA algorithms fulfill XT restrictions by imposing

a limit or threshold on the number of lit neighboring cores on

overlapping spectrum [4], [5].

The maximum TR for a given MF can be obtained by

considering the signal to noise ratio (SNR) in the form

of accumulated XT to maintain the desired QoT. The XT

accumulation for a lightpath increases with the number of

litcores which is the number of Overlapping spectrum on

adjacent Cores (OsaCs), i.e., the number of existing lightpaths

on adjacent cores that use overlapping spectrum. We assume

that XT from only adjacent cores is significant in weakly

coupled cores [6].

The decrease in SNR results in a decrease in TR, which

means every litcore value corresponds to a different TR.

Thus, MF selection can be modeled in terms of the number

of litcores associated with the MFs. Error-vector magnitude

(EVM) takes SNR into account and it degrades due to the

penalties induced by in-band XT [7]. The TRs of each MF for

different levels of XTs for different litcores can be obtained in

terms of degradation of EVMs using approximated analytical

modeling. There is a tradeoff between spectrum utilization and

XT accumulation with respect to the selection of the MF.

In our recent work [8], we studied the improvement in per-

formance due to careful selection of core-modulation format

(MF)-spectrum combination. We discovered using extensive

simulations that the proper selection of MF significantly

improves the balance between spectrum utilization and XT

accumulation, which results in decreased blocking. Recent

advances in machine learning (ML) have enabled complicated

problems in optical networks to be solved [9]. The underlying

relationship between network features and output labels is

discovered, and this information can then be used to construct

network models. In this paper, we present a machine learning-

aided strategy for learning such underlying relationships in

order to improve MF selection and achieve a favorable tradeoff

between spectrum usage and XT tolerance. Our technique is

general in that it can be utilized with any XT-aware RMCSA

algorithm.

The paper is organized as follows. The network model and

problem statement are introduced in Sec. II. The proposed

ML-aided approach is presented in Sec. III. Sec. IV presents

simulation results and the last section concludes the work.

II. NETWORK MODEL AND PRELIMINARIES

We now give the network model along with the transmission

reach model. We also explain the problem description and

illustrate how modifying the selection approach of MFs effect

the resource assignment to connections.

A. Network Model and Problem Statement

We assume that the SDM-EON is equipped with coherent

transceivers (TRXs) and works on a flexible grid with a gran-

ularity of 12.5 GHz. The TRXs support reprogrammable bit

rates and a variety of MFs [6]. The TRXs operate at a constant

baud rate of 28 GBaud, and each TRX transmits and receives

978-3-903176-44-7 © 2022 IFIP

2022 International Conference on Optical Network Design and Modelling (ONDM)

978-3-903176-44-7/22/$31.00 ©2022 IEEEAuthorized licensed use limited to: The George Washington University. Downloaded on July 31,2022 at 14:35:19 UTC from IEEE Xplore.  Restrictions apply. 



optical signals on a carrier with a total bandwidth occupying

three frequency slices (FSs) (i.e., 37.5 GHz) [10]. If the desired

bit rate is more than the capacity of a single TRX employing a

specific MF, the request is carried by multiple optical carriers

within a single superchannel (SCh). A 12.5 GHz guard band

isolates each SCh from its neighbors. The nodes are connected

through MCF-based optical links. Each fiber link is made

up of identical MCFs with a specific core geometry in both

directions. 1 Two generally accepted core geometries, three-

core and seven-core, are investigated. We assume that the

effect of XT impacts only adjacent/neighbor cores, and is

negligible between non-adjacent cores. Each core in a three-

core fiber, for example, contains two adjacent cores. Similarly,

in a seven-core fiber, the outer cores are surrounded by three

adjacent cores, while the center core is surrounded by six

adjacent cores (see Figure 1). Additionally, spatial continuity is

enforced, which implies that the same core is allocated to each

lightpath on a route’s MCF links. Lightpath requests arrive at

a Poisson rate with an exponentially distributed mean holding

time of unity (arbitrary units), while lightpath datarates are

uniformly distributed over a predetermined range.

The mean XT experienced in a core of an MCF, denoted

as XTµ and shown in (1), can be obtained using an analytical

model that uses coupled-power theory [6], [11]. Here, γ, h,

and L are the litcores, a design parameter which represents

the increase in XT per unit fiber length, and path length,

respectively. γ is the number of OsaCs that are occupied

by ongoing (parallel) transmissions, meaning, these adjacent

cores are lit. The maximum TR (Lmax) can be obtained using

(2) where Lspan, EVM0, and EVMspan are the span length,

EVM to attain target bit-error rate (BER), and EVM of the

span, respectively [10]. The TR obtained with respect to the

EVM ensures the BER of 3.8×10−3 for h of 3.15×10−9 and

span length of 50km. The corresponding TR model is shown

in [10].

XTµ =
γ − γexp(−(γ + 1)hL)

1 + γexp(−(γ + 1)hL)
(1)

Lmax = Lspan

⌊

EVM2

0

EVM2

span

⌋

(2)

The TR is a function of MF and γ. For a given γ, the TR of

a higher MF, which is more spectrally efficient but more XT-

sensitive, is lower than the TR of a lower MF. In addition, for a

given MF, the TR decreases with increasing γ, as each increase

in γ increases the XT accumulation. The MF selection for a

lightpath can be controlled by specifying a maximum value

of γ for each MF d, denoted as γd
max (explained through the

example below), which serves as the threshold for selection of

MFs. In other words, γd
max is the maximum number of OsaCs

that are allowed to be occupied for the dth MF. This means that

for a given MF d, no more than γd
max (0 ≤ γd

max ≤ C − 1)
OsaCs can be occupied by other existing/future connections

during the holding time of the current connection if MF d

1In this paper, we assume that all the links have a single MCF in each
direction, but the proposed work can be easily generalized for multiple fibers
per link.

is chosen. Here, C denotes the total number of cores. This

ensures that the XT will be capped in order to maintain

the QoT. Using a higher γd
max allows more OsaCs to be

occupied by other connections; however, this also means that

the corresponding TR will be lower because of the higher

potential XT. Thus, the set {γd
max : d = 1, . . . , |D|} (called

set of thresholds (ST)) can be used to control the selection of

MFs. For an arriving connection request, a resource allocation

algorithm would choose the highest MF whose TR exceeds

the path length of the connection; here, the TR depends on

the ST. A candidate MF for assignment is defined below.

Definition II.1 (Candidate MF). Given a lightpath of length

l, MF d is called as a candidate MF for assignment ⇐⇒ the

TR corresponding to γd
max, T γ

d ≥ l.

B. Illustrative Example

We now present an example to explain the influence of

selection of γd
max on the tradeoff between spectrum usage and

XT accumulation in the network. We will use Table I in [10]

and Figure 1 for this illustration. We first show the effect of ST

when all the thresholds are set to 0 on the occupancy of cores

in spatial domain and corresponding occupancy of frequency

slots in spectral domain. Later we explain the improvement

by changing the ST.

Table I: Transmission reaches (in km) of MFs for different

values of allowable lit core (γ) for a 7-core MCF for an

average XT per span of -40dB (from Table I in [10]).

Modulation Formats (|D| = 5, fd ∈ D)

γ (Lit-

cores)

PM-

QPSK

PM-

8QAM

PM-

16QAM

PM-

32QAM

PM-

64QAM

0 5200 2050 1100 550 250

1 4650 1850 1000 500 250

2 4200 1650 900 450 200

3 3850 1500 800 400 200

4 3550 1400 750 400 150

5 3300 1300 700 350 150

6 3050 1200 650 300 150

For a connection arrival, the path length of the shortest path

(SP) between source and destination nodes is used to get the

MF as per Definition II.1. For this example, we consider the

selection pattern of MF and corresponding γd as shown in

our work [8]. Readers may refer the Algorithm 1 in [8] for

better understanding of selection of MF and γ, and how it

represents the spectrum requirement and allowed occupancy

of the OsaCs. The only difference will be that in this example

first fit policy is imposed to determine the highest MF. The

TRs (T γ
d ) for different values of γ for each MF for the network

model explained above is given in Table I, and are used to

select the MF. Later the spectrum and core are selected. Let

us assume that D = {PM-32QAM (d = 4), PM-64QAM (d
= 5)} for this example. The links are equipped with 7-core

fibers with cores 1 to 6 at the periphery and the core 7 is at

the center. Suppose a 320 Gbps connection arrives on route

r. The spectrum requirements for this connection using PM-

64QAM and PM-32QAM (including guardband (GB)) are 4

FSs and 7 FSs, respectively. Suppose γ4
max and γ5

max are set
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Figure 1: Change in spectrum utilization for two different

selections of MFs.

to 0. Suppose the length of the SP is 250 km and that the

spectrum on all the links on this SP is unoccupied. Here, PM-

64QAM with γ5 = 1 will be selected since (l =) 250km is less

than or equal to the TR, at γ5 = 1, (T 1
5 =) 250km. Here, γ5

= 1 means if PM-64QAM is chosen for this connection, only

one OsaC among the OsaCs on cores 2, 6, and 7 is allowed

to be occupied by other connections during this connection’s

holding time in order to maintain the QoT. Suppose that the

OsaCs on cores 6 and 7 are not allowed to be occupied as

shown in Figure 1a. In this case, the spectrum of 4 FSs on

core 1, and 3 FSs each on cores 6 and 7 need to be reserved

for this connection, for a total of 10 FSs. The other MFs will

not be considered as we have found the first MF suitable for

this connection, and thus this connection will be established on

core 1 using FSs 1 to 4. Remember that we take the occupancy

of OsaCs into consideration during the selection process. For

example, assume that the FSs 1 to 4 are already occupied by

another ongoing connections on any of the two cores, let’s

say cores 6 and 7, then this MF can’t be selected since to

maintain the QoT of PM-64QAM for this connection we need

the OsaC atleast one core out of the three adjacent cores to

be free. There are other conditions for assignment which are

defined in Definition V.1 in [8].

Now suppose that the γ5
max is changed from 0 to 2. In this

case, T 2
5 (= 200 km) is less than the path length of 250 km,

and therefore PM-64QAM cannot be selected on this SP. The

next MF PM-32QAM is then considered. The TR at γ4 = 6

(T 6
4 = 300 km) is greater than or equal to the path length of

250 km. Thus we can use PM-32QAM for assignment. γ4 =

6 implies that there is no limitation on OsaCs and the same

spectrum on all the three adjacent cores will be allowed to be

occupied by future connections as shown in Figure 1b. Thus

the reserved spectrum is only 7 FSs as shown in Figure 1b. It

is evident from this example that the choice of ST can improve

the selection process of MF.

III. MACHINE LEARNING-AIDED LITCORE THRESHOLD

SELECTION

We now present a novel approach for selecting optimal

litcore thresholds that is aided by machine learning. This

approach can be used by any RMCSA algorithm that meets XT

constraints using litcore thresholds. In this section, we discuss

the prerequisites for the machine learning model (MLM) and

its working principle. Recall that D denotes the set of MFs

and γd
max denotes the litcore threshold for the dth MF. The

first step is to collect samples of sets of thresholds (STs),

followed by training the MLM. Let the optimal value of γd
max

be denoted by γd
∗ . The steps involved in machine learning-

aided threshold optimization to obtain γd
∗ for all MFs using

MLM are illustrated in Figure 2 and explained below.

A. Data Generation

First, the problem is defined to select the network parame-

ters in the Problem Definition stage. The data is then fed to

the data generation model. In the Synthetic Data Generation

stage, a small sample of random STs is generated and the

corresponding BBPs are obtained for a given RMCSA algo-

rithm through simulation. To generate a single value of BBP

from an ST, dynamic network operations must be simulated

which also involves the selection of MFs as per Definition

II.1. Because simulating performance for all possible STs

would take an inordinate amount of time, we let the MLM

learn the relationship between ST and BBP and select the

optimal ST. Furthermore, network telemetry is difficult and

getting precise network data requires separate expenditure in

a real network [12]. Therefore, we generate several hundreds

of ST samples and then obtain the corresponding BBP values

through simulation. These STs are then fed into the MLM,

which develops an understanding of the relationship and can

then predict the BBP of the remaining STs. The MLM’s

training and prediction times are negligible in comparison to

the total computation time required to generate the BBP for

each sample. Additionally, the MLM can be easily modified

by altering the hyperparameters, which increases the flexibility

of the learning process. The difference between predicted and

actual BBP values for STs with known BBPs is used to tune

and calibrate the MLM for precise predictions.

Let Sγ
i and Bγ

i denote the ith ST (|Sγ
i | = |D|) and

corresponding BBP. Each ST is used to generate the filtered

TR model to select the MF. The selection of route, MF, core,

and spectrum is done using the RMCSA algorithm of choice.

It is very unlikely to have the optimal ST present in the small

set of randomly selected STs used for training. Hence, the

load for the training data generation is chosen such that the

BBP values are somewhat higher than desired (10−2to10−1)

so that the MLM can discriminate between various STs (as

lower loads may give a BBP of 0 for several STs).

B. Machine Learning Model and Threshold Selection Tech-

nique

We use a deep-neural network (DNN) as the MLM. The

optimal γd is denoted as γd
∗ and optimal ST is denoted as Sγ

∗

(={γ1
∗ , γ

2
∗ , . . . , γ

|D|
∗ }). The feature-label samples are used to

train the DNN, which then predicts the Sγ
∗ . The feature-label

samples are used to train the MLM. The MLM seeks statistical

relationships and learns more effectively when the dataset is

pre-processed prior to feeding it to the MLM. The second
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Figure 2: Machine learning approach for selection of optimal ST.

step as illustrated in Figure 2, which is the Synthetic Data

Generation phase, produces the STs (Sγ
i ) and corresponding

BBPs (B
γ
i ) which then acts as the input to the MLM. The

details of the steps involved in training the model (Training

Phase (Figure 2)) and optimizing the STs (Deployment Phase

(Figure 2)) are given in Algorithm 1.

Algorithm 1 ML-Aided Optimization Model

Input: STs S
γ
i and corresponding B

γ
i

Output: S
γ
∗

1: Select the desired features
2: Get Ft and F

′

t , and Pt and P
′

t

3: Get F
s
t and F

s′

t by scaling Ft and F
′

t using the mean and
standard deviation of Ft

4: Train and Tune the MLM by choosing hyperparameters to get as
low validation loss as possible using F

s
t and Pt

5: Get the desired hyperparameters by regularization
6: Train the model with obtained hyperparameters on F

s
t and Pt

7: Use GridSearchCV() and trained model to get S
γ
∗

In Line 1 of Algorithm 1, the features are processed. Each

feature value is checked to determine its contribution in the

label. In other words, if a change to a feature has no effect on

the label, the change is noted and the feature is discarded from

the learning process. In our case, we observed that altering the

values of γd
max has an effect on the BBP.

The selected features are then statistically processed in

the last phases of data preprocessing. To begin, the entire

dataset is separated into training and testing subsets (Line 2).

Generally, 80% of samples are used for training and 20% for

testing. A portion of training dataset (around 80%) is used

for training the model and the remaining for validation. This

step is essential so as to track whether the model is overfitting

or not. The training dataset’s features and labels are denoted

as Ft and Pt, respectively. The testing dataset’s features and

labels are denoted as F ′
t and P ′

t . Both Ft and F ′
t are scaled

(or normalized) to F s
t and F s′

t using Ft’s mean and standard

deviation (Line 3).

The model is trained using the default hyperparameters and

the training and validation loss are monitored (Line 4). We

use k-fold cross validation (kCV) to get the errors to check

the fit of the model. The training and tuning are repeated

until the best hyperparameters are obtained using F s
t and Pt

(Line 5). We use regularization as discussed briefly in the

next subsection. We observed that the MLM with tuned hy-

perparametes performs at least 20% better than the MLM with

default hyperparameters. Finally, the tuned hyperparameters

e1, η1 e1, η2 e1, η3 e2, η1 e2, η2 e2, η3
e, η

10−1

1.25×10−1

1.5×10−1
1.75×10−1

2×10−1
2.25×10−1
2.5×10−1
2.75×10−1

3×10−1

BB
P

B0(E)
B * (E)

B0

B *

0.00000
0.00001
0.00002
0.00003
0.00004
0.00005
0.00006
0.00007
0.00008

RM
SE

Train Test

Figure 3: Performance of DNN with respect to (e-η).

are used to train the model, which discovers the fundamental

relationship between STs and the BBPs (Lines 6). The trained

MLM, employing the gridsearch process, returns the set of γd
∗

denoted by Sγ
∗ (Line 7).

During our extensive experiments with the variable sizes

of feature sets, we observed that the relationship between the

γd
max and BBP is not linear. We experimented with a variety of

MLMs for regression and discovered that the DNN regression

model performs the best. Hence, the findings for DNN MLM

are reported in this study.

C. Tuning the Machine Learning Model

During training, the DNN can suffer from overfitting,

wherein it works well with the known data but poorly with

unknown data. We use a two-step process to avoid this as

mentioned in Lines 4 and 5 in Algorithm 1. The first is to split

a portion of the training data into validation dataset to monitor

the validation loss. The second step is the use of callbacks.

Callbacks are set to stop the learning process at a lower epoch

when the performance of DNN does not improve for e epochs.

The DNN is comprised of input, hidden, and output layers.

The output layer is set to Regression mode and has a single

node. The number of epochs and DNN parameters, such as the

number and type of neuronal layers and the number of neurons

comprising each layer, affect the performance of DNN. The

proper selection of the parameters can be done using Pruning,

which is out of scope of this paper, and we therefore include

experimental values that follow nh = T/α(ni + no) where,

nh, T , ni and no are the number neurons in hidden layer(s),

total samples, input nodes, and output nodes, respectively, and

α is a scaling factor. The BBP (on left y-axis), and root mean

square error (RMSE) value corresponding to the training and

testing (on right y-axis) with respect to the number of epochs

(e) and set of neurons per hidden layer (η) is shown in Figure

3. The results are obtained for first-fit RSA (xtFF) (explained

in Sec. IV) with complete dataset of all samples divided into
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training (80%) and testing data (20%). The validation dataset

is 20% of the training data and no callbacks are set (e=0).

B0(E) and B0 denote experimental and predicted BBP when

all thresholds are set to 0, and B∗(E) and B∗ denote the

experimental and predicted BBP corresponding to the optimal

thresholds. Let ei denote the ith value of number of epochs.

Let ηi denote the set of neurons per hidden layer (nh) for

i hidden layers. Here, e1=10, e2=50, η1={16}, η2={16,16},

η3={16,32,16}. It can be seen that DNN with η3 (denser

version) predicts the B0 and B∗ better than DNN with η1
and η2. It also offers lower prediction error with respect to

the training and testing datasets.

Once the epochs and DNN parameters are selected, the

training and testing datasets are standardized using mean and

variance of training dataset. Here, the mean is subtracted from

each feature which is then scaled to unit variance. The trained

DNN is then used with the GridSearchCV procedure to get Sγ
∗

in the Deployment phase. The MLM uses the pre-calculated

TRs corresponding to different γ values. Thus the MLM works

as the generalized model which can be used with any TR

model and RSA.

IV. SIMULATION RESULTS

We now present simulation results for a range of scenarios in

which we compare the chosen RMCSA with and without ma-

chine learning-assisted optimization. We employ two topolo-

gies, namely generic German (DT) and European (EURO) [8].

A spectrum of 4 THz is considered on each core with a slice

width of 12.5 GHz, or 320 FSs (S = 320). Poisson connection

arrival process with exponential holding times of mean one

(arbitrary time unit) is assumed. The Erlang loads were chosen

to maintain a BBP range of approximately 10−5 to 10−1.

100,000 requests are generated in each trial, excluding 10,000

warm-up requests to let the network reach steady state. Each

experiment yields 95 percent confidence intervals after ten

trials. The datarates are uniformly distributed between 40 and

400 Gbps with a 40 Gbps granularity. Three SPs (K = 3) are

considered for each s-d pair. The set of assignable modulation

formats is denoted by D = {f1, f2, . . . , f|D|}, where f1 is the

lowest modulation format and f|D| is the highest modulation

format. We assume five modulation schemes in this article:

PM-QPSK (f1), PM-8QAM, PM-16QAM, PM-32QAM, and

PM-64QAM (f5). The transmission reach (i.e., the maximum

length which can be traversed while maintaining the desired

QoT) is dependent on both the MF of the lightpath and the

status of overlapping spectrum on adjacent cores (OsaCs). TR

models for each MF with an average crosstalk of -40 dB

between two adjacent cores after a single span propagation

and a TRX operating at 28 GBaud and a span length of 50

km are taken from [10]. Only 100 and 200 data samples are

generated for the case of C = 3 and C = 7, respectively,

and 80% of these are used for training and the remainder for

validation. To obtain assessment scores, the kCV employs k
= 5 folds.

For this study, the RMCSAs XT-aware first fit (xtFF), xtFF

with modulation selection (xtFM), and P-XT [6] are chosen.

Table II: ML based Sγ
∗ ={γ1

∗ , γ2
∗ , γ3

∗ , γ4
∗ , γ5

∗} for DT topology

RSA C = 3 C = 7

xtFF { 1, 0, 2, 2, 2 } { 3, 0, 3, 6, 6 }
xtFM { 0, 0, 2, 2, 2 } { 6, 5, 3, 3, 3 }
P-XT [6] { 0, 0, 0, 2, 2 } { 0, 6, 3, 2, 2 }

Table III: ML based Sγ
∗ ={γ1

∗ , γ2
∗ , γ3

∗ , γ4
∗ , γ5

∗} for EURO

topology.
RSA C = 3 C = 7

xtFF { 1, 1, 2, 1, 1 } { 1, 3, 5, 6, 3 }
xtFM { 1, 2, 2, 0, 2 } { 0, 3, 3, 5, 6 }
P-XT [6] { 0, 1, 2, 2, 2 } { 6, 3, 6, 5, 1 }

In xtFF and P-XT, based on the path length, only the first

fit highest MF is selected and checked for assignment. If the

spectrum and the core are not available, i.e., don’t satisfy the

XT constraint, the connection is blocked. In xtFM, the above

step is repeated to get all the MFs for which the spectrum

and core are available, and the highest MF is chosen. Readers

may refer [8] and [6] to understand the XT-aware approach to

select path, MF, spectrum, and core.

The Sγ
∗ for all the algorithms for both core geometries

are shown in Table II for DT topology and in Table III for

EURO topology; which is then used to select MFs as per

Definition II.1. The utilized epochs out of 50 due to callbacks

for xtFF, xtFM and P-XT are 29, 21, and 25 for C = 3, and

24, 18, and 17 for C = 7 for DT topology. The comparison

between RSA and their ML-aided version for C = 3 and C
= 7 for DT and EURO topologies is shown in Figure 4. The

corresponding utilization of MFs is shown in Figure 5. It is

clear the ML-aided versions of all the RSAs outperform the

unaided RSAs by up to three orders of magnitude. The main

reason for this to happen can be seen in the distribution of

MFs. In all the cases, the selection of higher MFs is slightly

reduced and the selection of lower MFs is slightly increased.

It becomes possible because the MLM learns that the balance

can be made between the selection MFs in terms of spectrum

utilization and XT accummulation by choosing optimal γd
∗ .

We observed that by using Sγ
∗ , the non-ML assisted variant

never chooses a lower MF such as PM-8QAM in case of C
= 7 in DT topology (Figure 4b) but the ML-assisted version

brings it in by limiting the selection of higher MFs i.e. PM-

64QAM (Figure 5b). Higher MFs require less spectrum for

the connection, but due to their XT sensitivities the OsaCs

are blocked. On the other hand, lower MFs require more

spectrum for the connection but also block less spectrum on

OsaCs due to lower XT sensitivity. The MLM successfully

balances this tradeoff and achieves excellent performance. The

selection of lower MFs is higher in EURO than DT because

the path lengths of EURO topology are longer than that of

DT. We also observed that in some of the cases either the

non-ML assisted versions or the ML-assisted versions of xtFF

and xtFM performs almost the same. The reason for this is the

similar selection pattern of MFs. Here the reason for blocking

can be either the unavailability of the spectrum (for e.g. due to

fragmentation) or due to QoT constraints (e.g. spectrum being

blocked by ongoing connections as shown in Figure 1).

The performance of ML aided versions of RMCSAs can

easily be improved further by choosing more samples for
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Figure 4: Variation in BBP for all RMCSAs and their ML-aided versions with respect to the traffic for DT topology (Figure

4a, 4b) and EURO topology (Figure 4c, 4d).
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Figure 5: Distribution of MFs for all RMCSAs and their ML-aided versions with respect to the traffic for DT topology (Figure

5a, 5b) and EURO topology (Figure 5c, 5d).

training. Based on extensive simulations, we observed that

number of samples, and number of hidden layers and neurons

per hidden layer are inversely proportional. As it is desired to

get the optimal ST with as less STs as possible and availability

of the computation power, denser DNN are used in this paper.

V. CONCLUSION

For space division multiplexed elastic optical networks,

we studied crosstalk-aware RMCSA algorithms. Depending

on the modulation type chosen, a tradeoff exists between

spectrum usage and inter-core crosstalk (XT) accumulation.

Many RMCSA techniques meet XT requirements by imposing

a constraint on the number of litcores on overlapped spectrum.

We suggested a machine learning-assisted strategy in this study

for optimizing the thresholds used to govern the selection of

MFs. The technique is applicable to any RMCSA allocation

mechanism that constrains the number of litcores to satisfy

XT requirements. We evaluated the performance of several

existing RMCSA algorithms and their ML-aided variants and

demonstrated that the latter decrease the bandwidth blocking

probability of dynamic connection requests by up to three

orders of magnitude for different combinations of topologies

and types of cores. A very intriguing observation is that the

ML-aided variant of the worst performing baseline method

outperforms the best performing algorithm that does not use

ML to optimize the threshold.
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