
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 Ju

ly
 2

02
2 
royalsocietypublishing.org/journal/rstb
Opinion piece
Cite this article: Brooks EA, Galarza S,
Gencoglu MF, Cornelison RC, Munson JM,

Peyton SR. 2019 Applicability of drug response

metrics for cancer studies using biomaterials.

Phil. Trans. R. Soc. B 374: 20180226.
http://dx.doi.org/10.1098/rstb.2018.0226

Accepted: 29 April 2019

One contribution of 13 to a discussion meeting

issue ‘Forces in cancer: interdisciplinary

approaches in tumour mechanobiology’.

Subject Areas:
biomaterials, bioengineering

Keywords:
breast cancer, ovarian cancer, drug resistance,

bioengineering, extracellular matrix, tumour

microenvironment

Authors for correspondence:
Jennifer M. Munson

e-mail: jm4kt@vt.edu

Shelly R. Peyton

e-mail: speyton@ecs.umass.edu
& 2019 The Author(s) Published by the Royal Society. All rights reserved.
†These authors contributed equally to the

study.

Electronic supplementary material is available

online at https://dx.doi.org/10.6084/m9.

figshare.c.4518941.
Applicability of drug response metrics for
cancer studies using biomaterials

Elizabeth A. Brooks1,†, Sualyneth Galarza1,†, Maria F. Gencoglu1,†,
R. Chase Cornelison2, Jennifer M. Munson2 and Shelly R. Peyton1

1Department of Chemical Engineering, University of Massachusetts Amherst, 240 Thatcher Road, Amherst,
MA 01003-9364, USA
2Department of Biomedical Engineering and Mechanics, Virginia Tech, 325 Stanger Street, Blacksburg,
VA 24061, USA

SRP, 0000-0002-7364-8727

Bioengineers have built models of the tumour microenvironment (TME) in

which to study cell–cell interactions, mechanisms of cancer growth and

metastasis, and to test new therapies. These models allow researchers to cul-

ture cells in conditions that include features of the in vivo TME implicated in

regulating cancer progression, such as extracellular matrix (ECM) stiffness,

integrin binding to the ECM, immune and stromal cells, growth factor and

cytokine depots, and a three-dimensional geometry more representative of

the in vivo TME than tissue culture polystyrene (TCPS). These biomaterials

could be particularly useful for drug screening applications to make better

predictions of efficacy, offering better translation to preclinical models and

clinical trials. However, it can be challenging to compare drug response

reports across different biomaterial platforms in the current literature. This

is, in part, a result of inconsistent reporting and improper use of drug

response metrics, and vast differences in cell growth rates across a large var-

iety of biomaterial designs. This study attempts to clarify the definitions of

drug response measurements used in the field, and presents examples in

which these measurements can and cannot be applied. We suggest as best

practice to measure the growth rate of cells in the absence of drug, and

follow our ‘decision tree’ when reporting drug response metrics.

This article is part of a discussion meeting issue ‘Forces in cancer:

interdisciplinary approaches in tumour mechanobiology’.
1. Introduction
Pharmacology metrics, such as IC50 (the inhibition concentration of a drug

where the response is reduced by half ), EC50 (the effective concentration of a

drug that gives half-maximal response) and Emax (the drug’s maximum

effect), have been used to evaluate the results of drug response assays and

describe drug potency. Recently, Hafner et al. [1] defined the GR50: the concen-

tration of a drug that reduces cell growth rate by half. The GR50 is an important

contribution to the field of drug screening, because it accounts for the variable

differences in growth rates between different cell lines. However, drug response

metrics can be misrepresented or applied incorrectly in certain instances, which

has led to inconsistent results between studies. One high-profile study, Haibe-

Kains et al. [2], reported inconsistencies between two large pharmacogenomic

studies: the Cancer Genome Project (CGP) [3] and the Cancer Cell Line

Encyclopedia (CCLE) [4]. They compared the IC50 and the area under the

dose–response curve (AUC) for 15 drugs across 471 cell lines, and found

very little correlation between the two studies (Spearman’s rank correlation

of 0.28 and 0.35 for IC50 and AUC, respectively) [2]. Discrepancies between

these studies and others could be attributed to differences between experimen-

tal protocols (e.g. type and length of assay, cell culture substrate and medium

used), method of dose–response analysis or because different laboratories

use and apply these pharmacological metrics to their results differently.
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This type of inconsistency has extended to bioengineering,

where new biomaterial platforms have been developed to

incorporate features of the tumour microenvironment (TME),

e.g. geometries, coculture systems and tunable extracellular

matrix (ECM) stiffness. Bioengineers have postulated that

these ECM cues from the TME could radically impact drug

responses,which could be important for predicting the efficacy

of a drug before embarking on preclinical studies. During a

search of the literature, we observed that bioengineers have

quantified drug responses usingmany different drug response

metrics; however, it is not clear in every study why certain

reporting tools were used, and whether or not they were

applied correctly. As examples, we found cases where an

IC50 was reported, but the drug was not effective enough to

inhibit growth of half the cell population. Particularly a con-

sideration when using different types of biomaterials, cell

growth rate differences between two-dimensional (2D) and

three-dimensional (3D) systems raises the question of whether

the same metric tool should be used for both.

When analysing the literature, we wondered whether the

implementation of a global, consistent analysis could reduce

the disagreement of values reported. Could methods used to

analyse drug responses in 2D culture also apply for 3D sys-

tems? In the case of coculture systems, should a different

approach be used to separate the responses from cancer cells

and healthy cells in the TME? With this in mind, this perspec-

tive paper compares select cases in the literature, our own data

for cell responses to drugs in and on biomaterials, metrics

reported and inconsistencies between studies. We end with a

recommendation for the incorporation of additional drug

response metrics when working with biomaterial systems.
2. Definitions of drug response metrics
Drug response assays evaluate the impact of a drug on a popu-

lation of cells over a range of concentrations. For simplicity, we

will define the number of cells at the start of the assay readout,

or the ‘initial value’ of the cells, as y0 (figure 1a). Unfortunately,

many studies do not report y0, which prevents some metrics

from being reported, as we discuss later in this section. The

cells are then incubated with drug for a defined period of

time (typically 24–72 h), and cell viability is measured

(yfinal). Cells are also incubated with a small amount of the

vehicle in which the drug was dissolved (often DMSO or

water), serving as a control (yctrl). A drug is considered cyto-

static if it slows or completely prevents growth of cells [5]. In

other words, if the measured cell viability is between y0 and
yctrl, that drug is said to be cytostatic at that concentration.

Cytotoxic means that the drug reduces the cell number below

the initial cell count (yfinal , y0). Note that when y0 is not

measured, a true drug cytotoxicity cannot be reported.

There are six typical metrics used to report the effect of a

drug on a cell culture: IC50, EC50, GI50, GR50, Emax and AUC

(figure 1a). Figure 1 gives definitions of these metrics, with

three hypothetical drug response curves with varying

degrees of ‘potency’. A ‘potent’ drug is 100% cytotoxic, a

‘moderately potent’ drug achieves 100% growth inhibition

but no net cell death and a ‘less potent’ drug reduces cell

growth by 50% (figure 1b–g). Drug potency can also be eval-

uated by the curve response class classifier (CRC), as

described by Inglese et al. [6]. The CRC metric helps group

the efficacy of cell and drug combinations to reveal if a
particular combination is fully cytotoxic or cytostatic, and

can be valuable in cases where a full dose–response curve

is not obtained. Furthermore, these classifications aid in

determining promising cases to select for future screening

studies.

The IC50 and Emax metrics do not consider the initial

population (y0), nor the number of cell divisions during the

length of the assay, which was a motivating factor for

Hafner et al. [1] to define the GR50. Only the GI50 and GR50

take y0 into consideration. GI50 is the dose that inhibits the

growth of cells by 50%, and GR50 represents inhibition of

the growth rate, not total growth, of the cell culture. The

initial cell population, y0, can vary between type of assay,

cell type or length of assay. To account for this variation,

GR50 is represented as data normalized with respect to the

initial values (figure 1e–g).
Although the ‘50’ in IC50, EC50, GI50 and GR50 metrics sig-

nifies a 50% inhibition, they can be used with values other

than 50 to indicate different effects, e.g. IC90 [7,8]. Negative

values can be used for the cytotoxic regime (yfinal , y0),
although these do not come from the formal definitions of

GI or GR. In this case, GI-10 would be the concentration

where the cells are reduced 10% from the initial value

(yfinal ¼ 0.9 � y0), and GI-100 would be the concentration

which kills all the cells. In the figure 1 example, 0–100 is

defined over the range of 20 k � y � 100 k, while 2100 to 0

is defined over the range of 0 � y � 20 k. IC-n or EC-n

values are not possible since these metrics do not consider

initial values.

The Emax represents the maximum and the AUC metric

represents the cumulative effect of the drug. Emax is the frac-

tion of viable cells at the highest drug concentration tested in

the experiment, and AUC is the area under the viability curve

for a cell population over the tested drug concentration range.

Although neither of these metrics make any explicit assump-

tion about growth kinetics, they still depend on the

concentration range, experiment duration and cell growth

rate, which means that their reported values cannot be com-

pared with other studies in most cases. Fallahi-Sichani et al.
[9] found AUC to be a robust response metric when the

goal was to compare a single drug across identical cell

lines. However, these need to be exposed to identical dose

ranges, and preferentially at an intermediate concentration.

Emax can be used with multiple drugs and concentration

ranges but is more informative at high doses [9]. Particularly,

in the case of Emax, Fallahi-Sichani et al.’s work highlighted it

as a parameter that yielded high variation independent of cell

proliferation rate. Yet, this study was unable to conclude

what drug metric parameter best describes a drug response

without considering drug concentration.

The IC50 is the most commonly reported drug response

metric [10] and, therefore, it is important to highlight cases in

which it is used with an incorrect definition. For instance, the

IC50 should not be considered a measure of cell death [5]. As

one example, in a case when the control value is more than

200% of the initial value (yctrl . 2 � y0, as can be seen in the

examples given in figure 1b–d), the IC50 will result in a ‘cyto-

static’ dose, but the cells are still growing, be it at a reduced

rate. Second, in a casewhere a reduction in half the population

is not reached (such as in [11–13]), the IC50 cannot be appropri-

ately calculated, and instead the EC50 is the more appropriate

metric to report. In other instances in the literature, the EC50

and GI50 are confused with the IC50 [1]. However, the GI50
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Figure 1. Definitions and examples of drug response metrics. The IC50 represents the drug concentration where the response is reduced by half. The EC50 represents
the concentration of a drug that gives half-maximal response. The GI50 represents the concentration of a drug that reduces total cell growth by 50%. The GR50
represents the concentration of a drug that reduces cell growth rate by 50%. The Emax represents the fraction of viable cells at the highest drug concentration
(maximal response), and the AUC represents the area under the dose– response curve. The y-axis shows the cell count (top plots) and normalized growth
rate (bottom plots). Drugs are considered ‘cytotoxic’ if viability is reduced below the initial value ( y0), and ‘cytostatic’ if viability is above the initial value,
but below the control value ( yctrl). Right curves (less potent) show a drug which reduces viability by 50% at maximum dose (IC50 is the maximum dose).
Middle curves (moderately potent) show a drug which completely inhibits growth, but is not cytotoxic (Emax ¼ initial viability). Left curves ( potent) show a
drug which is 100% cytotoxic (Emax ¼ 0). Note that in these special cases, some of the other metrics are also equal to each other, which are labelled on
the plot. (Online version in colour.)
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metric is a correction of the IC50, since it takes into consider-

ation the initial cell count (y0) [14,15].
Through our analysis, we also found examples where

authors report a GI50, when it is actually an IC50 (they did

not measure y0) [16]. For example, the cell population could

grow over the course of an experiment, while the measured

population values could still be lower than the control. There-

fore, the initial cell populations must be measured to know

whether a drug is killing cells or only slowing their growth.

In addition, the IC50 is sometimes discussed in the context

of growth inhibition [17], although it is not capable of

measuring this. We thus recommend the field report the

metric that is most appropriate for their observed responses
and experimental conditions, given the explanations stated

above. We also recommend that researchers measure the

initial cell population values (y0), which will enable them

to calculate GI50 and GR50 (if cell growth of the control is

achieved over the course of the assay), particularly important

where multiple cell lines or growth conditions are being

tested as these metrics will account for differences in

growth rates. This is also the only way to know if a drug is

truly cytotoxic, as we mentioned earlier.

The GR50 is very similar to GI50, but is defined by

reduction in the growth rate, not cell growth as the GI50.

Growth rate inhibition is calculated from initial and control

values, and the fitting for the GR50 relies on the assumption
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that the cells are in exponential growth before application

of the drug. GR50 is thus reported to be more robust than

GI50 against variations in experimental protocols and

conditions [1].
ietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180226
3. Applying drug response metrics to data
obtained from biomaterial drug screening
assays

Drug screening with cells on biomaterials rather than on

tissue culture polystyrene (TCPS) is increasingly popular

due to the ability to capture more physiologically relevant

features in biomaterials that may impact drug response.

Two-dimensional [18–20] and 3D [11,21,22] biomaterial plat-

forms have been developed to study cell behaviour in vitro.
Since it is widely accepted that cells grow at different rates

in 2D and 3D biomaterial platforms [23], it is difficult to com-

pare drug responses across these different environments

without a GI50 or GR50. Experiments to obtain these metrics

require only minor adjustments to traditional drug screening

protocols performed by seeding cells in an additional plate to

measure initial population values (y0) (figure 2a). In particu-

lar, the GR50 has worked very well for over 4000

combinations of breast cancer cell lines and drugs on TCPS

[24], but has only been used in 3D biomaterials in limited

reports [25].

Our own laboratory uses both 2D and 3D biomaterials in

addition to TCPS for drug screening studies [26,27], and we

have adapted our experimental procedures to collect data

for calculating GR metrics in addition to the other metrics

depicted in figure 1. However, we have found that the

GR50 cannot always be applied. As it has been previously

reported [1,24], it is necessary for the cells to achieve expo-

nential growth over the course of the assay to use the GR50.

On TCPS, this is not an issue, as demonstrated by our data

in figure 2b with SKOV-3 ovarian cancer cells dosed with

paclitaxel. In this case, the GR values span a 21 to 1 range,

which results in a good curve fit to calculate a GR50.

Another important factor to consider in preclinical drug

screening assays is the increasing use of patient-derived pri-

mary cells. This has become a hurdle as many primary cells

grow more slowly, or in some cases not at all, making it

impossible to calculate a GR50 value. In these cases, the calcu-

lated GR values remain well below 0.5, even at a control dose.

Therefore, the formula for calculating GR values can be

applied, but with low growth rates the GR50 specifically

does not apply (though the GR curve could still provide

useful information). As illustrated by our own data of

patient-derived cells—ovarian cancer cells from ascites

dosed with cisplatin on TCPS (figure 2c)—IC50 and EC50

values could be calculated, but the growth rate was too

slow for a GR50 value, and one could not be calculated.

This serves as an example in which additional drug response

metric parameters are necessary to understand the effect of

drug dosing, given that these primary cells proliferated

very slowly when grown in a 3D environment.

For example, work by Longati et al. [11] highlights how

pluripotent stem cell (PSC) drug response differs on 2D

versus in 3D biomaterials. Although IC50 values were not

reported in this work, we calculated the IC50 and EC50 from

their published data and observed higher resistance in their
PSC cells in 3D compared to 2D (electronic supplementary

material, table S1). Ivanov et al. [22] performed drug response

studies with neural stem cells (NSCs) and the UW228-3 glio-

blastoma cell line in 3D. They found that the NSC drug

response was biphasic, but not for the human glioblastoma

cell line (which showed more resistance in 3D). Here, two

IC50 values were reported for the same curve in the case of pri-

mary cells, representing a situation where an IC50 (or GI/GR/

EC50) is inappropriate. We would suggest an AUC or Emax

instead, which are not dependent on curve fitting (figure 1b–d).
As demonstrated by our own experimental data

(figure 2d ), culture of 3D patient-derived ovarian carcinoma

ascite spheroids (OCAS) from ascites in a non-degradable

3D hydrogel exhibited a low growth rate over the course of

the assay. Although a drug response curve with mafosfamide

was generated from the data (figure 2d ), this does not mean

that a valid GR50 value can be obtained. GR value curves

need to pass through GR ¼ 0.5 or they cannot have a reliable

GR50 value, even if certain curve fitting software gives a value

for these circumstances, as we demonstrate in figure 2d.
Therefore, we recommend that only the online GR calculator

[1] be used to calculate GR metrics from raw data to ensure

that true GR metrics are reported. There are cases of drug

screening in 3D environments [25] where the GR metrics

could be applied, but since growth is often slower in 3D

than in 2D, the application of the GR calculations should be

done carefully. In contrast with our dosing of ovarian

cancer cells above, we demonstrate in figure 2e an example

where we encapsulated SKOV-3 cells grown in multicellular

tumour spheroids (MCTS) in a 3D hydrogel and dosed

with mafosfamide. In this case, the cell growth was high

enough to calculate a GR50. From our own work, we rec-

ommend reporting the GR50 when possible to best account

for differences in growth rates between different cell sources.

We also encourage others to provide all the raw data and

drug response curves with their publications to allow

others to compare published results with their own (elec-

tronic supplementary material, table S2).

To further characterize the drug response in different

material environments, we applied CRC metrics described

by Inglese et al. [6] to our own data (figure 2f ). We found

that the r2 values that we obtained for the nonlinear curve

fits to the data were less than 0.9, which meant it was not

possible to fit our results into these exactly defined classes

according to the criteria set by Inglese et al. However, some

of these drugs had greater than 80% efficacy, and displayed

drug response curve with one (partial), two (complete) or

no asymptotes (incomplete). We found that the 3D models,

OCAS in a 3D non-degradable hydrogel and SKOV-3

MCTS in a degradable 3D hydrogel, were in the same

curve response class: ‘partial’ even though their GR metrics

were very different. Additionally, patient cells on TCPS had

a ‘complete’ response (class 1a), but it was not possible to cal-

culate biologically meaningful GR metrics. Interestingly, at

the range of concentrations that were tested, the case of

SKOV-3 cells on TCPS was classified with an ‘incomplete’

response (class 2a), but all the traditional dose-response

and GR metrics could be calculated. These additional metrics

could be helpful for eliminating cases for further study in bio-

materials when there are no responses (class 4), but we do not

show any examples of that here. Characterization with CRC

could be used as another method for grouping drug curve

responses on biomaterials.
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Figure 2. (a) Schematic of typical experimental work flow for a drug response assay. Cells are seeded on a 2D tissue culture plastic surface, on a 2D biomaterial or
within a 3D biomaterial for drug dosing. Wells in a second plate are seeded with the same conditions as the drug dosing plate to measure GI50 or GR50 values. After
24 h, drugs are added to the drug dosing plate and the second plate for initial values is assayed simultaneously for initial cell counts. The drug dosed plate is incubated
for a period of time (e.g. 48 h) and then assayed for the final cell response. The collected data is used to calculate drug response metrics. (b) Cells grown on tissue
culture plastic achieve sufficient growth to generate a traditional dose-response curve, as well as a GR values curve to calculate a GR50. (c) An example of patient cells
grown on tissue culture plastic that do not grow exponentially over the course of the dosing assay. This results in a curve for traditional drug response metrics, but a GR
curve cannot be calculated. (d ) This is a case where cells grow over the course of the assay, but sufficient growth for calculating a GR50 measurement is not achieved
because the resulting GR values are less than 0.5, which is the point where the GR50 is calculated. (e) Cell line MCTS encapsulated in a degradable 3D hydrogel
demonstrates enough growth to calculate a GR50 and other drug response metrics. ( f ) Curve response classification descriptions for the data shown here. The
cases presented here do not exactly correspond with the criteria described by Inglese et al. (particularly r2 values), but we categorized them to their nearest classification.

5

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180226
 D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//r
oy

al
so

ci
et

yp
ub

lis
hi

ng
.o

rg
/ o

n 
14

 Ju
ly

 2
02

2 
4. Evaluation of drug responses in biomaterials
reported in the literature

To compare IC50 values across studies, we mined data from

25 reports that performed drug screening with biomaterial
systems, and that provided raw data that could be extracted

and analysed independently. We calculated the IC50, EC50,

Emax and AUC values and organized them by drug in elec-

tronic supplementary material, table S1. We were not able

to calculate GI50 and GR50 because the initial population
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(y0) and control (yctrl) values were not provided in these

studies. Table 1 shows a summary of the reported IC50

values from the literature and the drug response metrics cal-

culated by us from their reported data. Table 2 summarizes

cases where the drug response curve did not reach 50% inhi-

bition, meaning the IC50 was not reached. Table 3

summarizes cases where the IC50 values reported in the lit-

erature did not agree with the values we calculated from

reported data. We also applied the CRC metrics described

by Inglese et al. [6] to the data we extracted from the literature

(tables 1 and 3).

First, we found that for highly potent drug–cell line com-

binations, such as MCF7 with paclitaxel or MDA-MB-231

with epirubicin, IC50 values reported were in the same

order of magnitude (table 1). By contrast, when a cell line

was not particularly sensitive to the drug, like in the case of

the MDA-MB-231 cell line to paclitaxel or docetaxel and

MCF7 treatment with doxorubicin or tamoxifen, IC50 values

reported from different studies varied much more strongly.

This variance appears to be more dependent on the potency

of the drug than the platform in which the cells were treated.

When drug sensitivity was moderate or low, wide ranges in

IC50 values tended to be even more drastic in the 3D

models compared to 2D.

Another finding in table 1 is that highly efficacious drugs

had ‘complete’ response curves, while less efficacious drugs

had ‘partial’ or ‘incomplete’ curves. This is unsurprising,

though there are some interesting observations: (i) all the

drugs that failed to reach IC50 values had ‘incomplete’

curves; (ii) ‘incomplete’ or ‘partial’ response curves were

mostly obtained in 2D models, while drugs tested in 3D

models tended to display a ‘complete’ response curve. Pacli-

taxel results with MDA-MB-231 are a good example of this

[20,27,38]. These results also illustrate the inadequacy of r2.
In table 1, we present five cases (out of 28 cases in table 1)

where r2 . 0.9, while the drug response curve had no asymp-

totes. So, it is unclear if Inglese et al.’s criteria apply here.

One of the major challenges we encountered during our

literature search was that a limited number of studies pub-

lished their drug response curves. Some publications did

not report IC50 values for cases where the drug concentration

did not kill half of the cell population (table 2). Unsurpris-

ingly, these drug response curves were all ‘incomplete’,

with one exception. In most cases, there were too few

points to even calculate an r2 value from the nonlinear fit.

In these cases, r2 was reported as ‘ND’ (non-determined).

Table 3 illustrates cases in which the IC50 we indepen-

dently calculated did not agree with the one reported. This

was mostly the case for cell lines that were fairly drug insen-

sitive, as evidenced by the ‘partial’ response curves of these

drugs. Despite the ‘partial’ response curve, Emax, IC50 and

other metrics could be calculated for these drugs. This find-

ing is significant, because it shows a pitfall of assessing

drugs based on metrics without accounting for the drug

response curve. The drugs in table 3 would seem efficacious

based on their response metrics, although the raw response

curves show that these cells are insensitive to these drugs.

Finally, similar to table 1, the drug response curves in

table 3 have r2 values of greater than 0.9, but only one asymp-

tote (partial). This again shows that r2 alone is not an

adequate criterion for CRC classification.

The drug response metric values reported in tables 1–3

vary by study, and may depend on the type/length of
assay, biomaterial used and/or analysis conducted. The

most commonly used cell viability assays in our search

included MTT assay [38], AlamarBlue (i.e. resazurin), Live/

Dead staining and CellTiter-Glo. These types of assays

indirectly measure the cytostatic or cytotoxic effect of a

drug, via metabolic activity, counting of dead cells, cell

death or ATP activity. There are additional complications

with data reported in the literature. Many publications did

not present enough data points for us to calculate IC50, and

could not be included in the comparison. There were other

published reports where no metrics were reported, which

makes it impossible to relate them to other published data.

Clearly, better standard practices should be adopted. We rec-

ommend that future publications explicitly define the metrics

they use, for two reasons. First, clearly explaining the metrics

used in an article would help others learn about drug

response metrics, and it would also prevent them from mis-

interpreting results. Second, definitions of the metrics are

dependent on the context. For example, in the articles we

summarized, ‘inhibition’ in IC50 refers to the inhibition of

cell viability. In other works, however, it may refer to the

inhibition of cell growth, which should be called a GI50 and

calculated accordingly.

Among the 30 studies we examined, 25 presented drug

response curves from which IC50 values could be obtained.

We used the WebPlotDigitizer Tool (https://automeris.io/

WebPlotDigitizer) [39] to extract drug concentrations and

cell viabilities from these curves. These data were analysed

in GraphPad Prism to calculate an IC50 using nonlinear

regression with variable slope (four parameter) and least-

squares fit method. From the data summarized in tables 1–

3, we made comparisons between the 51 drug response

curves and IC50 values reported in these studies. We found

our results in agreement with 35 of these (69%), including

five cases where neither we nor the original authors could

obtain an IC50 value due to drug potencies being too low.

In 16 cases (31%), IC50 values were significantly different

between the value reported and our own calculation. These

differences are possible because (i) we extracted the numeri-

cal data from plots in article figures, which may introduce

error; (ii) different researchers may have used different

forms of nonlinear regression (e.g. least-squares or robust fit

methods for curve fitting, fixing the hill slope to the standard

21 or using variable slope); (iii) other researchers may have

chosen different methods (appropriate or not) to handle pro-

blems such as outliers and negative inhibition, including

setting constraints on the maximum and minimum values,

manually determining outliers, using software algorithms for

automatic outlier detection, etc.; and (iv) there could be cases

where the IC50 could not be calculated due to the shape of

the fitted curve, yet some data analysis software will attempt

to calculate an IC50 that results in an unrealistic value.
5. Assessing drug response in coculture systems
Coculturing cancer cells with stromal cells (e.g. cancer-associ-

ated fibroblasts, pericytes or adipocytes) has been shown to

drastically alter drug response, ranging from promoting

drug resistance to increasing drug sensitivity [25,40–44].

Furthermore, multicellular cocultures may be more physio-

logically relevant than monocultures, either in 2D or 3D, as

they can account for tissue-level interactions. In fact, it was

https://automeris.io/WebPlotDigitizer
https://automeris.io/WebPlotDigitizer
https://automeris.io/WebPlotDigitizer
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decision tree for determining drug response metrics that can be calculated
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Figure 3. Decision tree for determining what drug response metrics can be calculated from drug response data. It is easiest to first look at a typical dose-response
curve and calculate data from it. Then, depending on cell growth over the course of the assay, additional metrics may be calculated. In the first step, the criterion is
whether the normalized cell growth decreased below 0.5, which is required for IC50 calculation. Criterion for the second step is whether exponential growth was
achieved during the experiment. (Online version in colour.)
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recently shown that basal-like and mesenchymal-like sub-

classes of breast cancer could be distinguished based on

their expected drug sensitivities, but only when cocultured

with fibroblasts [41]. It is unclear how much complexity is

required to accurately predict in vivo drug efficacy, but

recreating aspects of the cellular TME is emerging as an

important consideration due to the in vivo spatial heterogen-

eity. Logsdon et al. [40] found that MDA-MB-231 cells in

mixed, 3D culture with fibroblasts were more resistant to

10 mM doxorubicin at low ratios of tumour to stromal

cells (4 : 1) but equally affected by the drug at higher ratios

(1 : 4). Shen et al. [45] found similar results using a micro-

patterned interface of tumour to stromal cells wherein

MCF7 cell proliferation was inhibited by reversine at the

interface but not in the bulk. Expanding these datasets to

evaluate a range of drug doses would provide insight into

how dose response varies between the tumour bulk and

regions of more diffuse invasion.

One challenge with cocultures is the determination of

drug response metrics for the discrete populations of cells.

It is easiest to use cells expressing a reporter transgene or

labelled with non-toxic dyes. Measurement of total fluor-

escence or bioluminescence then provides an estimate of the

labelled cell number over the course of drug treatment

[46,47]. However, dead cells may remain within 3D models,

so the use of total fluorescence readings in these systems

may be inaccurate. More appropriate in 3D is to stain cells

using a viability marker like propidium iodide or JC-1 and

quantify cell viability and/or number using either confo-

cal/multiphoton microscopy or flow cytometry [40,41,44].
These methods can be used to track the drug response of

one cell type while ignoring other cell types, or examine it

for multiple cell types via multiplexing of different fluoro-

phores. Coculture systems do require deciding which

sample is more appropriate for calculating yctrl: a cancer cell

only sample or a sample with all the cell types. Arguably,

the respective untreated sample should be used for each trea-

ted sample to compensate for any effects of the stromal cells

on cancer cell viability or growth rate. Additionally, the mul-

tiple centrifugation steps involved in harvesting and labelling

cells for flow cytometry carry a risk of decreasing cell yield,

such that it would be best to seed separate samples at the

start of the study for determining an accurate y0.
Physically separating stromal and tumour cells using

either conditioned media or culture inserts can isolate effects,

but several studies have shown that direct cell–cell contact

may be a crucial component of stromal-derived effects on

cancer cells [45,48,49]. In mixed cultures, the most common

methods to assess cell viability, such as MTT assay, Alamar-

Blue and CellTiter-Glo, measure the entire population of cells

such that isolating the effects on only the cancer cells is not

feasible. For example, by using CellTiter-Glo, Ngo & Harley

[25] reported an increase in the overall growth rate of glio-

blastoma–endothelial cell cocultures with increasing

temozolomide concentration, but it is unknown if both cell

types contributed equally. It is possible the cancer cells

responded the same as in monoculture (growth rate inhi-

bition), while endothelial cells increased their growth rate,

or that only endothelial cells were affected and therefore pro-

tected the cancer cells. Separating the responses of different
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cell types may not always be a significant drawback, but the

presence of stromal cells has the potential to confound the

results if overall survival apparently increases with drug treat-

ment, aswas reported by Yang et al. [46], such that IC50 or EC50

would be impossible to calculate. Thus, it may be more appro-

priate in thesemulticellular cultures to calculateGR50 orGI50 to

determine overall drug responses across conditions.
ing.org/journal/rstb
Phil.Trans.R.Soc.B

374:20180226
6. Conclusion
Drug screening in biomaterials could be particularly useful in

making better predictions in the early stages of preclinical

drug development. However, it can be challenging to com-

pare drug responses across different platforms and

conditions in the current literature. This is, in part, a result

of inconsistent applications of drug response metrics, and

differences in cell growth rates for cells cultured in different

biomaterials. For this reason, we suggest the use of GI50
and GR50 to account for initial populations (y0) and

number of cell divisions during an assay, since cell growth

highly impacts dose response. However, in instances when

steady cell growth is not achieved, multiple drug response

metrics could be applied (e.g. IC50, EC50, Emax and AUC) to

account for possible experimental variation. To aid research-

ers in determining what drug response metrics can be

calculated from their data, we suggest the use of a decision

tree (figure 3) based on the traditional drug response curve

and cell growth rate data that are obtained for a drug

response experiment. First, visual inspection of a drug
response curve will determine if an IC50 can be calculated if

less than 50% of the control cell population is remaining at the

highest drug concentration that was tested. If 100% cell death

has been achieved, then theEC50 and IC50will be equal. Further-

more, if the cells grew exponentially over the course of the drug

screening assay, then the GI50 and GR50 metrics can be applied.

We also encourage other research groups to incorporate raw

data and drug response curves in their reports that will allow

other researchers to gather additional data for their analyses.

In the long term, this will lead to more accurate predictions

early in the drug development pipeline of how likely a drug

will be successful in a clinical setting.
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