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Fig. 1. A blind participant in our study training the MYCam app in their homes to recognize Lays with real-time descriptors. A dual 
video conferencing captures participant’s activities via a laptop camera and smart glasses worn by the participant. 

Teachable object recognizers provide a solution for a very practical need for blind people – instance level object recognition. They 
assume one can visually inspect the photos they provide for training, a critical and inaccessible step for those who are blind. In this 
work, we engineer data descriptors that address this challenge. They indicate in real time whether the object in the photo is cropped 
or too small, a hand is included, the photos is blurred, and how much photos vary from each other. Our descriptors are built into 
open source testbed iOS app, called MYCam. In a remote user study in (� = 12) blind participants’ homes, we show how descriptors, 
even when error-prone, support experimentation and have a positive impact in the quality of training set that can translate to model 
performance though this gain is not uniform. Participants found the app simple to use indicating that they could efectively train 
it and that the descriptors were useful. However, many found the training being tedious, opening discussions around the need for 
balance between information, time, and cognitive load. 
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1 INTRODUCTION 

Echoing the end-user programming paradigm, the idea of having end-users consciously provide training examples in 
AI-infused applications has recently gained traction along with advances in neural networks. By leveraging prior work 
in transfer, meta, and few-shot learning (e.g., [7, 11, 70, 76, 80]), we are now able to build teachable applications, where 
end-users can train models of their own. These applications facilitate personalization as they promise a better ft for 
real-world scenarios by signifcantly constraining the machine learning task to a specifc user and their environment. 
Thus, it is no surprise to see early mentions of the term “teachable” in accessibility research (e.g. [55]), where data is 
sparse and there is a high diversity even for a given disability [32, 33]. A more recent example (and the focus of this 
work) is teachable object recognizers [3, 34, 41, 42, 47, 68], where blind users train their camera-equipped devices such 
as mobile phones to recognize everyday objects by providing a few photos as training examples. 

Why is it important to access one’s training examples? In teachable applications such as teachable object 
recognizers, users are called to interact with the machine learning model and improve its performance by accessing and 
controlling their examples [83]. Personalization is often the ultimate goal. However, the interactive nature of these 
applications can also help people uncover basic machine learning concepts and gain familiarity with AI (e.g., [14, 17, 25, 
27, 56]). Thus, they can also contribute to the larger goal of “making the process of teaching machines easy, fast and above 
all, universally accessible” [65]. An underlying assumption for both improving a model and uncovering concepts via 
experimentation is that users can inspect their data and iterate the training and testing. By doing so, they could build 
an intuition about what works and what doesn’t and perhaps why. However, this assumption does not often hold for 
assistive teachable applications. Inspecting training examples typically requires similar skills to those the technology 
aims to fulfll [20, 31]; thus, it is often inaccessible. For example, teachable object recognizers, where users teach the model 
to recognize objects on their behalf, assume that they can see the training images they are providing, which is almost never 
the case with blind users. Sure enough, blind participants in prior studies with this technology wanted to know more 
about their training examples [31] with one of them stating “the most challenging and most fun is training the person”. 

Existing approaches for real-time ‘alt text’ for individual images and ‘scene description’ for a series of images are not 
suitable for this task; they do not capture fne-grained diferences across otherwise similar images (e.g., see Figure 1). 
In this paper, we explore this challenge of accessing one’s training data. Within the context of teachable object 
recognizers for the blind, we study the potential and limitations of real-time ‘data descriptors’ that can capture users’ 
training examples with photo- and set-level attributes. Specifcally, we investigate whether these descriptors could 
be derived from visual attributes used to code training photos from sighted (e.g., [26, 27]) and blind (e.g., [34, 41]) 
people. To this end, we engineer photo-level descriptors that communicate to the user in real-time information about 
the photo they just took such as blurriness, presence of their hand, object visibility, and framing. We also engineer 
set-level descriptors that communicate information one would get from glancing over a group of training photos such 
as variation in object background, distance, and perspective; all factors that can afect model performance. 

Through a remote user study with 12 blind participants (with the setup shown in Figure 1), we demonstrate that 
our data descriptors support blind users in reducing photos with cropped objects in their training sets and increase 
variation. Many participants chose to iterate after inspecting their training sets and refected by improving many photo 
attributes, which resulted in models that generalize better to photos from others, even though they reduced variation 
in background. Aligned with prior studies, we also observe challenges among participants in crafting good testing 
examples that could further promote experimentation. Still, their models perform better when tested on their own photos 
compared to both aggregated test sets from all 12 blind participants in our remote study and from 9 blind participants 
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in an in-lab study [41]. Observations from our analysis of the photos and model performance are also confrmed by 
participants’ subjective feedback. Responses support the potential of descriptors, with blind participants indicating that 
they were able to tell their meaning by looking at relative changes in values and fnding them useful. However, errors 
in descriptors afected the reliability of the app for some. More so, some considered training being tedious referring 
both to time and cognitive load (e.g., optimize for multiple variables). Many made design recommendations that could 
further improve the efectiveness of the descriptors and the training process. 

To the best of our knowledge, this is the frst work to propose non-visual access to training data and to provide 
empirical results with blind participants on automatically estimating and incorporating descriptors for data inspection in 
teachable computer vision applications. Our analysis focuses on object recognizers, where ‘learning to train’ is deemed 
as one of the main challenges among blind users [31, 34]. However, we see how the underlying methods for extracting 
meaningful instance- and set-level descriptors can be adopted for other teachable applications both in assistive and 
informal AI learning contexts. Perhaps, they can also serve towards more accessible approaches for explainable AI 
interfaces, where there is an underlying assumption on people’s ability to visually inspect explanations [62, 66, 69]. 

2 RELATED WORK 

There is a rich literature exploring how computer vision can beneft people with disabilities (e.g., [10, 13, 30, 36, 46, 58, 71]). 
This is especially the case with assistive technologies for the blind, where computer vision is employed on smartphones 
(e.g., [2, 24, 38, 60, 78, 82]), smart glasses (e.g., [18, 43, 67, 81]), and smart suitcases (e.g., [23, 35]). A common challenge 
we share with prior work is that aiming the camera and inspecting recognition errors typically requires similar skills to 
those the technology aims to fulfll (i.e., sight), even though the majority of prior work employs AI-infused systems 
pre-trained by engineers, not fne-tuned by the end-user. Thus, it is not a surprise to fnd that recognition errors afect 
blind users’ experience [51]; sometimes, to a degree where it can not be corrected even by human clarifcation [61]. In 
fact, blind users may depend on the recognition especially when it is difcult to verify its predictions. They may overtrust 
the predictions even when they know they can be error-prone [41, 45] though, errors are especially non-acceptable 
when they can adversely afect interactions with others [1, 43]. Aligned with prior eforts aiming to support users’ 
recovery from errors [6, 28, 52], we explore how to make training and resolving errors in teachable object recognizers 
more accessible to blind users. Below, we focus on prior work that closely relates to ours and contrast it to our study. 

2.1 Teachable Object Recognizers 

Looking at prior work on teachable object recognizers, we see diversity in research aims. Some, similar to this work, 
focus on the blind community. They explore the potential of teachable object recognizers as an assistive technology for 
blind users [34, 68], build feedback mechanisms for better camera aiming [3, 41], and collect benchmarking datasets for 
evaluating approaches in transfer learning and meta learning [72]. Our work is orthogonal and highly complementary 
to these eforts – our shared goal is to improve blind users’ experience with teachable object recognizers. 

We also see studies involving sighted people both adults (e.g., [27]) and children (e.g., [17, 75]). They aim to better 
understand the potential of teachable machines for enabling non-experts to uncover basic machine learning concepts as 
well as better understand common AI misconceptions they may have. Insights from these studies are very informative 
for our eforts in making the ‘learning to train’ challenge more accessible to blind adults and perhaps in the future to 
blind children that may want to participate in similar informal learning activities as in Dwivedi et al. [17]. 

Table 1 provides a more detailed overview from a sample of these prior studies over the past fve years (2017-2021) 
with the number of participants being typically smaller for in-person studies with blind people and sighted children. As 
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Table 1. Characteristics of related studies on teachable object recognizers juxtaposed with ours. 

[34] [68] [41] [27] [3] [75] [17] [72] This study 

Blind Adults 8 14 9 10 52 12 
Sighted Adults 2 10 2 100Participants Sighted Children 6 14 

Real-world • • • • • •Setting Controlled • • • • • • 

Photo • • • • • • •Input Video • • 

Train • • • • • • • • 
Tasks Test • • • • • • • • • 

Iterate • • • • 

Framing • •Access Review • • • • 

the performance of teachable object recognizers and users’ behavior in taking photos can be afected by environmental 
factors such as background, light condition, and selection of objects, many studies collected inputs from participants’ 
environments to incorporate these factors [3, 27, 34, 72]. We also opted for this approach in our study; the study was 
conducted in the homes of blind participants while we control for factors such as study procedure and object stimuli. 

The majority of prior work on teachable object recognizers facilitates training through photos [3, 14, 27, 34, 41], 
except for one [72], where blind users are called to use short videos. In our study, we also used photos so that the 
outcomes of our study could be applicable (and comparable) to the majority of existing approaches. More so, collecting 
videos may increase the burden on the user, especially when they are given several instructions and tasks to do [72] as 
in the case of our study. In addition, video-based assistive technology can pose a greater privacy risk for blind users [5] 
as it is more likely to capture unwanted objects and unnecessary information in a video. Perhaps, live photos [53], could 
be the middle ground between the two. We further refect on the potential of this approach in the discussion section. 

In their early explorations, Kacorri et al. [34] highlighted some of the main challenges that blind users may face 
when training a teachable object recognizer and testing its performance. They revolve around camera framing (i.e., 
adjusting the distance between the camera and an object and centering the object), capturing the side of the object 
with the most distinctive visual features (i.e., product logos), and reviewing the training photos after taking them (i.e., 
quality and characteristics). Lee et al. [41] and Ahmetovic et al. [3] aimed to resolve the camera framing challenge 
by developing real-time audio/haptic feedback that helps blind users estimate the proper distance and position of the 
object in the image frame [3, 41]. However, the challenge of reviewing photos for iteration has not been addressed yet. 

Typically, studies included a training and testing step for exploring participants’ interactions with the teachable 
interfaces. Very few of them [17, 27], though, allowed people to refect and iterate giving them access to their training 
data for review. We believe iteration is a critical step for understanding the potential of descriptors for making the 
review process more accessible. Thus, in our study, we also provide blind participants with an opportunity to refect 
and the option to iterate after reviewing their images with the descriptors. After all, our goal is to examine how data 
descriptors that provide non-visual access to training photos, either individually or as a set, can be helpful for blind 
users during the iterative process of training and testing, as well as how blind users may interact with them. 
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3 MYCAM: A TESTBED TEACHABLE OBJECT RECOGNIZER WITH DESCRIPTORS 

To explore the potential and limitations of real-time descriptors derived from visual attributes for accessing one’s training 
data, we build MYCam. MYCam serves as a testbed for deploying descriptors in a teachable object recognizer. In the 
background, it sends users’ photos to a server, where an image recognition model is being fne-tuned by the user. While 
privacy is one of the promises of teachable object recognizers [31] (i.e., by processing photos entirely on the user’s 
mobile device), we fnd that the state-of-the-art on-device training is not there yet. As a screen-reader accessible iOS 
mobile app, MYCam enables remote studies with blind participants. This was critical for us; due to the pandemic, we 
had to move our study from the lab to blind participants’ homes. By open sourcing both the MYCam app (available at 
https://iamlabumd.github.io/MYCam-Mobile/) and our proof-of-concept implementation of the descriptors (available at 
https://iamlabumd.github.io/MYCam-Server/), we are hoping that others can contribute to further advance this work. 

3.1 Design Rationales 

DR1: Prioritize Blind Users. Both the form factor and interaction modalities of MYCam are informed by prior work 
with blind users and teachable object recognizers as well as broader real-world object recognition applications. We 
opted for an iOS app since prior work in the United States, the location of our study participants, suggests that blind 
smartphone users overwhelmingly favor the iPhone [50] though the actual numbers may be changing these past 
years [49]. When users open the app, they enter the main screen (Figure 2a), which shows a camera preview. We opted 
for the default camera app in iOS maximizing both compatibility with VoiceOver and user familiarity with it. The 
recognition mode for MYCam was modeled after existing real-world applications, such as Seeing AI [63], where users 

Fig. 2. The user flow of MyCam. MyCam has three main parts: Recognizing an object in the camera view (purple thread), reviewing 
and editing the information of the objects (red thread), and teaching an object to the model (green thread). 
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can immediately ask the app to recognize what is captured by the camera with a double-tap; the Scan button is activated 
by default. In this case, the app takes a photo, sends it to the personalized object recognition model in the server, and 
indicates the predicted label both via speech and visually (Figure 2b). To mitigate potential errors that can’t be verifed 
non-visually, the app says “Don’t know” when uncertain (approach for uncertainty is discussed in Implementation). 

DR2: Simplify the Machine Teaching Flow. Users can add a new object to the recognition model via the Teach 
button on the Home screen. The app displays the (rear-facing) camera preview with the shutter button at the bottom 
center and a thumbnail image of the last photo in the lower-left corner (Figure 2f). Users are asked to take 30 photos with 
the count indicated in real-time via speech and visually (Figure 2g); in Kacorri et al. [34], blind participants indicated 
that they would like to obtain feedback from the camera on the number of photos taken. The number of training 
examples (i.e., 30) is also informed by the same study [34] with blind participants spending on average 65 seconds 
(SD=35.2) to take 30 photos and often providing variation in their training examples. More so, �-shot learning results in 
the literature are often reported for � = 1, 5, or 20. Thus, 30 examples could allow for bootstrap estimates for future 
comparisons in this feld. As discussed in Related Work, the majority of prior work in teachable object recognizers opt 
for photos rather than videos – we followed this approach in hope that photos provide blind users with more control 
over their training examples in terms of both conscious variation incorporated and privacy concerns mitigated (e.g., 
presence of their hand, bystanders, or surroundings in the camera frame). In the one study where videos were used, 
blind users had to be explicitly trained to record videos and follow specifc flming techniques [72]. Given the emphasis 
of this study on the descriptors, we decided to simplify the machine teaching and not require any explicit training 
steps for the users. After the training examples, a dialogue box with a text feld shows up prompting users to enter the 
name of the object (Figure 2i). More so, in this screen users can opt to add an audio description. (Both object name and 
description can be edited at a later time, as shown in Figures 2d and 2e.) Once this step is completed, the app notifes 
the user with a “Training in progress” message (Figure 2j). At this point Scan and Teach buttons are made inactive. They 
are activated once training on the server is complete and the user is notifed. 

DR3: Enable Access to Training Data with Descriptors. Some of the main concerns of blind participants about 
teachable object recognizers in Kacorri et al. [34] were: “knowing whether the photos were good, knowing the area of a 
package where the label or distinguishing information resides,.., and deciding on the distance between the object and camera 
lens.” We observe that this information wanted by the participants can be provided both at a photo level and at a higher 
level across a set of photos. Thus, we devise two types of descriptors, shown in Table 2. These are all derived from 
visual attributes used to code training photos from sighted (e.g., [26, 27]) and blind (e.g., [34, 41]) people. Photo-level 
descriptors are binary, they indicate whether the object is too small or partially included in the frame (cropped), whether 
the photo is blurred, and if user’s hand is included in the frame. Set-level descriptors are indicated as a percentage. 
They draw from parallels to how humans recognize objects independent of size, viewpoint, and location [54]. 

As shown in Figure 2f, users access the photo-level descriptors after every photo that they take so that they can 
identify problems in the photo (e.g., object being cropped) right away; since this gets repetitive, a photo-level descriptor 
is communicated only when true. Users can access this detailed information also later, when reviewing their trained 
objects (Figure 2e). Photo-level descriptors are also provided in aggregate together with the set-level descriptors (e.g., 
photo blurred in 50% of the training examples for an object). Users can access these aggregates along with the set-level 
descriptors at the end of a training session (Figure 2h), where they are called to select either OK to proceed or Retrain 
to retake the photos from scratch. Both photo-level and set-level descriptors can be accessed at a later time when 
reviewing and editing trained objects, as shown in Figure 2d. 
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Fig. 3. The architecture of the MYCam system indicating approaches for estimating the descriptors and recognizing the object. 

3.2 Implementation 

We built the MYCam testbed on Apple iPhone 8 with the object recognition models and descriptor estimators running 
on our server on an NVIDIA GeForce GTX 1080 Ti GPU; the two communicate through HTTP. The architecture of 
the system, indicating how both descriptors and recognition predictions are obtained, is illustrated in Figure 3. The 
estimation of the descriptors in the current implementation of MYCam is error-prone; our approaches merely serve 
as proof of concept. Prior to making these approaches more robust, we wanted to examine whether blind users can 
leverage such descriptors in the frst place for accessing their training data and experimenting with the model. 

3.2.1 Descriptors. In all previous studies that informed our descriptors, researchers coded the attributes of photos 
manually through visual inspection of the photos from participants. Given that this is a time-consuming process, 
methods like Wizard of Oz do not deem appropriate in this early exploration of descriptors for facilitating accessible 
non-visual experimentation. Thus, we opt for methods that attempt to automatically estimate them, even though, 
developing techniques for more accurate estimations is beyond the focus of this paper and is briefy discussed in 
Section 6. Specifcally, we employ state-of-the-art computer vision techniques such as world tracking in ARKit, a 
YOLOv3 object detection model [57], and hand segmentation models [42] to estimate the descriptors. To speed up the 
calculations for real-time interactions, the object detection, hand segmentation, and edge detection run on our server. 

Table 2. Photo-level and set-level descriptors. The descriptors are informed by prior studies with sighted and blind people who have 
no machine learning expertise looking at the way they synthesize their data for training [17, 26, 27, 34, 41]. 

Photo-level descriptors 
Small object The bounding box of the object is smaller than 1/8 (12.5%) of the image. 
Cropped object The object is partially included in the image. 
Blurry photo The photo is too blurry to recognize textures or texts. 
Hand in photo A user’s hand is visible in the image. 

Set-level descriptors 
Variation in size A set of images shows objects with diferent sizes. 
Variation in perspective A set of images shows diferent sides of objects. 
Variation in background A set of images show backgrounds with diferent textures or items. 
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• Small object: Given a bounding box of an object in an image from YOLOv3 [57], the object is considered too 
small if the size of its bounding box is smaller than 1/8 (12.5%) of the image. 

• Cropped object: If the YOLOv3 [57] bounding box is at the edge of the image, the object is considered cropped. 
• Blurry photo: The original RGB image is converted to grayscale (pixels values range: 0-255). We use Laplacian 
edge detection [37] to produce an image with the edges in the grayscale image. In this last image, we then 
calculate variance in pixel values to quantify blurriness. If the variance is lower than a threshold, the photo is 
considered blurry. In this study, we set the threshold at 3.0; we found it classifes the blurriness most accurately 
when tested on photos collected in a prior study with blind participants [41]. 

• Hand in photo: The server detects the pixels from a hand via a hand segmentation model that has been 
previously tested with blind participants [42]. If the proportion of pixels of a hand(s) in an image is greater than 
a threshold, it considers the photo to show a hand. The threshold is 0.3%, which detected photos with hands 
most accurately when tested with the photos collected in a prior study by Lee et al. [41] 

• Variation in size: When users take a photo, we detect the position of the smartphone with ARKit. As the size 
of the object depends on the distance between the phone and the object, we used the standard deviation of the 
diferences between the phone positions (����� ) to measure the variation in size indirectly. We set the maximum 
value of the variation as 0.15 (����� ) that we could observe with the photos collected by a sighted person in our 
research team through an internal test. The app presents the variation in size as percentage (����� /����� ∗ 100). 

• Variation in perspective: We detect the sides of an object using ARKit. For this, we pre-trained the 3D object 
detection model in ARKit with the three object stimuli in our study. The model provides an enclosing bounding 
box of an object with six sides in 3D space when it detects the object regardless of the object shape. The model 
fnds the main side of the bounding box based on the object orientation. We calculate the variation in perspective 
based on the number of object sides shown in a training set. For consistency with other descriptors, we present 
the variation in perspective as a percentage with scaling (� ∗ 15% where � is the number of sides in photos). 

• Variation in background: Assuming that the backgrounds captured in photos can vary as a user moves the 
camera to diferent places or changes its orientation, we used the location and orientation of the camera to 
measure the variation in the background. We calculate the standard deviations of diferences in both orientation 
(using 1-cosine similarity) and the location of the camera in the 3D coordinate system in ARKit. The greater 
value of the two standard deviations is selected as a variation in background. Like variation in size, we set the 
maximum value as 0.15 through an internal test. We present the variation in background as a percentage. 

3.2.2 Object Recognition Model. The base model for object recognition is Inception V3 pre-trained on ImageNet [15]. 
When users train the app, it fne-tunes the last layer of the base model using transfer learning with photos taken by the 
users. The transfer learning works with a gradient descent algorithm with 500 iterations and a 0.01 learning rate. The 
training takes around 80 seconds with 90 photos of three objects. When users recognize an object with a personalized 
model, the time from taking a photo to notifying the recognition result is around 100 milliseconds. To make the model 
distinguish the objects in a user’s training set and tell the diference from other objects that it has not been trained on, 
we employed an approach of quantifying the confdence level of the discriminability based on the entropy of confdence 
scores [79]. Specifcally, when the entropy value is greater than 2.0 or the confdence score is lower than 0.4, the app 
says "Don’t know" in synthesized speech instead of the label predicted by the model. We decided the thresholds of the 
entropy and confdence score through internal tests such that the app could diferentiate the three objects for the user 
study in the Section 4 from other items (e.g., pen, keyboard, mouse, keys) with the thresholds most accurately. 
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4 USER STUDY 

To explore the potential and limitations of descriptors in the context of a teachable object recognizer, we conducted a 
remote user study with blind participants. The study took place in participants’ homes to minimize safety concerns 
during the COVID-19 pandemic. The study was approved by the Institutional Review Board at the University of 
Maryland, College Park (IRB #1255427-1). In designing this remote study, we came across many challenges, including 
how to provide remote guidance and observe participants’ interactions with MYCam and their objects. We quickly 
found that having just the third-person camera view from the laptop was not enough. Thus, as shown in Figure 1, 
we added a frst-person view with smart glasses. We iterated via several pilot tests that involved blind and sighted 
researchers in our team to anticipate the logistics (i.e., study equipment delivery) and communication methods (i.e., 
laptop and smart glasses) required for this remote study. Lessons learned from accessing blind participants’ interactions 
via smart glasses (with this study serving as part of a larger case study) are discussed in depth in Lee et al. [40]. 

4.1 Participants 

We recruited 12 blind participants (6 women, 6 men, 0 nonbinary) from campus email lists and local organizations. 
As shown in Table 3, their ages ranged from 32 to 70 (� = 54.3, �� = 15.2). Three participants reported being totally 
blind, fve having some light perception, and four being legally blind. P1 and P2 reported having an “auditory processing 
disorder” and difculty in hearing “very high sound”, respectively. All participants reported using smartphones several 
times a day and taking a photo or recording a video at least once a month. As for their familiarity with machine 
learning, two participants reported being somewhat familiar, eight being slightly familiar, and two being not familiar at 
all—we used a 4-point scale for this question: (1) not familiar at all (have never heard of machine learning), (2) slightly 
familiar (have heard of it but don’t know what it does), (3) somewhat familiar (have a broad understanding of what it is 
and what it does), (4) extremely familiar (have extensive knowledge on machine learning). While all participants had 
experience taking photos before, many indicated that they had challenges related to image framing (9), focusing (2), 
holding a camera steadily (2), and controlling the lighting (2). Many participants indicated prior experience with other 
camera-based assistive mobile applications such as Aira [4], Be My Eyes [8], Google Lookout [21], Microsoft Seeing 
AI [63], Mediate Labs Supersense [48], Super Lidar [29], and Voice Dream Scanner [16]. 

Table 3. Participants’ demographics and experience with machine learning, photo taking, and camera-based assistive apps. 

ID Age Gender Level of vision Onset Machine learning Photo taking Experience with assistive apps 
P1 39 Woman Light perception Birth Not familiar at all Once a day Aira, Be My Eyes, Seeing AI 
P2 67 Man Legally blind 55 Slightly familiar Once a month Seeing AI 
P3 62 Woman Totally blind Birth Somewhat familiar Several times a month Seeing AI, Be My Eyes 
P4 32 Man Legally blind 20 Slightly familiar Several times a day None 
P5 66 Man Light perception 46 Slightly familiar Once a week Seeing AI, Supersense, Super Lidar 
P6 61 Man Light perception 41 Somewhat familiar Several times a week Seeing AI 
P7 70 Man Legally blind Birth Slightly familiar Several times a week None 
P8 50 Woman Legally blind 45 Slightly familiar Several times a week Seeing AI 
P9 69 Woman Totally blind 55 Not familiar at all Several times a day VD Scanner, Be My Eyes, Seeing AI 
P10 66 Woman Light perception Birth Slightly familiar Several times a week None 
P11 33 Woman Light perception Birth Slightly familiar Once a month Seeing AI, VD Scanner 
P12 36 Man Totally blind Birth Slightly familiar Several times a day Seeing AI, VD Scanner, Lookout 
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4.2 Procedure 

Participants communicated with the experimenter remotely via dual Zoom video conferencing [84] connected both via 
a laptop and a pair of Vuzix Blade smart glasses [77] that we delivered prior to their study sessions (see Lee et al. [40]). 
At the beginning of the study, we briefy explained the concept of a teachable object recognizer. Here, we provided a 
minimal description of how to take photos to train or test the app to mitigate priming in photo-taking strategies for 
training and testing an object recognizer. The description given at the beginning of the study reads as follows: 

“The idea behind the app is that you can teach it to recognize objects by giving it a few photos of them, 
their names, and if you wish, audio descriptions. Once you’ve trained the app and it has them in its 
memory, you can point it to an object, take a photo, and it will tell you what it is. You can always go back 
and manage its memory.” 

Then, participants were asked to perform three tasks: (1) train the app with their own photos and labels of three 
snacks that served as object stimuli shown in Figure 4, (2) use the app again to recognize those objects later i.e. to test 
the performance of the app, and (3) review and edit the information of the already trained objects. For the frst task, the 
order of objects for training was fully counterbalanced between participants. When participants trained the app with 
the frst object, the experimenter provided step-by-step instructions on the MYCam user interface (e.g., the position and 
functionality of buttons as well as the audio feedback that indicates the steps of training). Then, participants trained the 
app with the second and third objects and asked the experimenter for help when necessary. When participants were 
testing the app for the frst time, the experimenter also gave detailed instructions on the MYCam interface for testing. 
After that, participants were free to test their models for as long as they wished (taking any number of photos). When 
reviewing their trained objects in the third task, participants could access both information related to the descriptors as 
well as their own object labels and any audio descriptions they may have recorded. 

After reviewing a training set with the descriptors, participants decided whether they would collect the photos again 
or not for that object. We made retraining optional for two reasons: (1) to avoid collecting data from participants who 
are not motivated to experiment by retraining a model (as this could add a confounding factor in our analysis) and (2) 
to be able to contrast the attributes of training sets for who decided to retrain their models and those who did not. 

Throughout the study, we encouraged participants to think out loud and to ask questions at any time. After each 
task, participants were asked to answer questions related to their experience with the descriptors and MYCam and 
questions captioning usability satisfaction [44]. All questions in this study were either open-ended or on a 5-point 
Likert scale (i.e., strongly disagree, disagree, neutral, agree, strongly agree). 

4.3 Object Stimuli 

Accounting for blind people’s need for recognizing objects with similar sizes, weights, and textures with fne-grained 
labels [34, 68], we selected three snacks, shown in Figure 4, with the same size, texture, and nearly identical weights 
for our user study. As prior work shows that end-users’ strategies of collecting training photos are often inconsistent 
between objects [27], we expect that the choice of three similar objects allows us to observe blind people’s teaching 
strategies in the context of fne-grained object recognition. With these snacks, we simulated a scenario in which a blind 
user interacts with the app to recognize diferent objects that the blind user may feel difcult to distinguish using only 
the tactile sensation. It was engineered to be a challenging scenario for machine learning models since these objects 
were similarly shaped and colored, had refective surfaces, and were deformable. Unique and personal objects without 
logos or texts on them (e.g., key, mug cup) can be potentially used with a teachable object recognizer and perhaps 
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Fig. 4. Object stimuli in the study simulating a challenging fine-grained classification task: Fritos, Cheetos, and Lays. 

could be ft for a more realistic scenario. However, for this study, we included only commercial products to allow for 
comparison and replicability similar to prior studies regarding teachable object recognizers [34, 41, 68]. 

5 RESULTS 

Participants spend on average 143.8 seconds (�� = 72.4) taking 30 photos of an object. Five out of 12 participants re-train 
the object recognizer after inspecting their training sets with descriptors. Examples of the photo-collection attempts and 
their annotated attributes (i.e., ground-truth attributes annotated by a researcher through visual inspection) are shown 

Fig. 5. Photos of Cheetos from P10 and manually annotated atributes to be compared with automatically estimated descriptors. 
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in Figure 5. Through the analysis of the participants’ photos and the performance of the personalized object recognition 
models, we show how descriptors may relate to the participants’ strategies for collecting training photos when they 
decided to retrain their models. We also show the impact of these changes in training photos on the performance of 
the models. We observe promising trends in the characteristics of photos (i.e., adding more variations and reducing 
problematic photos) over time and iterations. Participants’ subjective feedback also indicate that our descriptors can be 
a promising approach for providing access to one’s training data in this context. 

5.1 Correlation Between Estimated Descriptors and Annotated Atributes 

We report the performance of our approach in estimating descriptors as it is a critical context for interpreting the 
remainder of the results. More so, it can provide a glimpse at future eforts for estimating such descriptors in a real-world 
context. Here we measure performance by computing the correlation between the estimated descriptors and annotated 
attributes. Given that prior work indicates high inter-rater agreement for the annotation of these attributes [27], we 
had a single researcher in our team performing this task. To quantify the variation of background and perspective, the 
researcher grouped the photos within a set based on their similarity in terms of background and object side. We used 
the groups to calculate the Shannon-Wiener Diversity Index [64], a measure of variation in background and perspective. 
The researcher also coded the photos with a cropped object, participants’ hands, and blurriness. For the attributes 
related to the size of the object (i.e., variation in size, small object), the researcher annotated the bounding boxes of 
the objects. The variation in size was considered as the standard deviation of the proportions that the bounding boxes 
occupy in photos. The proportions range from 0.0 (i.e., the object is not captured) to 1.0 (i.e., a bounding box covers the 
entire photo). A photo with a small object is defned as one having a bounding box smaller than 12.5% of the photo. 

As shown in Figure 6, the correlation coefcients between estimated descriptors and annotated attributes ranged 
from 0.23 to 0.57, highlighting that this is a challenging task. The correlation for "small object" is not shown since only 
three of all photos had small objects that are not detected by our descriptor estimator. Even though we employed naive 
approaches for estimating the descriptors as a proof of concept, all pairs had positive correlations. This indicates that 
even with partial access there can be an opportunity for refection and experimentation i.e., if participants considered 
relative changes rather than absolute values. Below, we see some empirical evidence in support of this premise. 

Fig. 6. Scater plots indicating correlations between manual annotations (x-axis) and estimations (y-axis) for each descriptor. 
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(a) The aggregate of photo-level descriptors. (b) Set-level descriptors. 

Fig. 7. Contrasting descriptor values in initial atempts to retraining atempts for P1, P3, P5, P8, and P10. Red dots indicate means. 

5.2 Changes in Annotated Descriptors For Participants who Choose to Retrain 

Five participants (P1, P3, P5, P8, P10) decided to retrain with a new set of photos for an object after reviewing their initial 
training sets; one of them (P3) trained the same object three times, each time with a new set of photos. A participant 
(P10) retrained with new sets of photos for two of the three objects. No participant retrained all three objects. 

As shown in Figure 7, we contrast the estimated descriptors for initial attempts to those during retraining attempts. 
When the participants decided to retrain, their new training sets had fewer photos with cropped objects, no hands 
included, almost no blurred photos, and higher variation in perspective and size on average compared to their initial 
photos. This is a promising trend providing some evidence on participants’ attempt to respond and adhere to the 
descriptors though it may have come at the cost of lower variation for background. 

Specifcally, the average numbers of photos with cropped objects and users’ hands were fewer at 15.83 (�� = 13.41) 
and 0.00 (�� = 0.00) in their new training photos versus the initial at 19.50 (�� = 12.52) and 0.33 (�� = 0.81), 
respectively. The number of blurry photos was 0.00 (�� = 0.40) and 0.17 (�� = 0.41) in retrained and initial, respectively. 
The system did not detect any photos with a too-small object in either set. As for variation, mean variation in perspective 
and size in retrained were 0.37 (�� = 0.33) and 0.12 (�� = 0.09), respectively, which is higher compared to those in the 
initial sets at 0.20 (�� = 0.32) and 0.11 (�� = 0.07). However, this trend was reversed for variation in background. This 
descriptor was on average lower in retrained at 0.19 (�� = 0.28) compared to the initial at 0.26 (�� = 0.28). 

5.3 Changes in Annotated Atributes for All Participants Over Time 

Many participants chose not to retrain. Perhaps the interactive nature of the descriptors created opportunities for 
early refection and experimentation; not just at the end of training. To explore this, we measured trends over time at 
diferent levels of granularity; for this analysis, we use the manually annotated attributes, which serve as the ground 
truth, rather than the estimated descriptors. 

5.3.1 Fine-grained Changes Across 90 Training Photos. With photo-level descriptors participants’ could gauge potential 
image quality issues right away; MYCam indicates them immediately after a photo is taken. As shown in Figure 8a, 
we observe a dropping trend in the number of images where the object was cropped as participants progressed in the 
study. This is promising for a descriptor that merely provides binary feedback (i.e., whether the object is cropped or not) 
instead of directional guidance on how to move a camera to fully capture an object (e.g., Lee et al. [41]). The proportion 
of photos with cropped objects was around 0.56 at the beginning (1st photo in 1st training), decreasing to 0.37 by the 
last photo (30th photo in 3rd training). Whereas the proportion of training examples with participants’ hands included, 
objects too small, or blurry photos were nearly zero throughout the study (Figure 8b). 
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(a) Cropped object. (b) Blurry photo, hand in photo, too small object. 

Fig. 8. The average values of annotated photo-level atributes for individual photos among 12 participants. The charts include photos 
of the first three training sets (1-30: first set, 31-60: second set, 61-90: third set). The lines are fited to dots using LOWESS smoothing. 

(a) Set-level descriptors. (b) Cropped object. (c) Blurry photo, hand in photo, small object. 

Fig. 9. The average annotated values of set-level atributes and the annotated number of photos with photo-level atributes for all 12 
participants across three training sets (a training set per object). 

5.3.2 Coarse-grained Changes Across 3 Training Sets. With photo-level descriptors and set-level aggregates participants’ 
could gauge potential issues related to their teaching strategies or image quality at the end of each training attempt; 
MYCam shows them immediately after 30 photos are taken. Participants may or may not choose to go back and 
retrain. But they may also choose to refect when training the next object, especially since our object stimuli were 
engineered to be very similar. As shown in Figure 9, participants increased the variation among their training examples 
and reduced the number of photos with cropped objects. A one-way repeated-measure ANOVA indicate a signifcant 
efect of order of sets on variation in background (� (2, 22) = 4.59, � = 0.022, partial �2 = 0.18) and in perspective 
(� (2, 22) = 3.61, � = 0.044, partial �2 = 0.05). We did not observe a statistically signifcant efect of the other attributes. 
However, we do observe a tendency for an increase in the number of photos that were blurry or where the participant’s 
hand was included. Perhaps these descriptors were not deemed as that problematic or they were ranked lower in 
priority as teaching strategies evolved. Participants’ feedback below can shed a bit more light on these observations. 

5.4 Performance of Participants’ Object Recognition Models 

After fnalizing their training for all objects, participants were called to test the performance of their models; we 
explicitly did not allow for intermediate train-test iterations in an attempt to limit interference from that type of 
experimentation in the observed behaviors. For the purpose of our analysis, we report model performance not only on 
participants’ fnal training sets but also dive deeper and look at their photos chosen to test their models and how well 
their model generalizes e.g., if tested with photos taken by others. 
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(a) Object recognition accuracy on one’s own testing images. (b) Accuracy against participant satisfaction with performance. 

Fig. 10. When testing their models, participants’ experiences varied (a), which seems to be reflected in their satisfaction scores (b). 

(a) Accuracy per participant. (b) Summary statistics of accuracy. 

Fig. 11. Model accuracy when tested on individual test images, aggregated test images from all 12 blind participants in this remote 
study, and aggregated test images from all 9 blind participants in a prior in-lab study [41]. 

5.4.1 Model Performance with Testing Images from Self. We found that participants used a very small number of photos 
(� = 3.7, �� = 3.2) to check if their models were working properly. Some (4 out of 12) included photos where the object 
was more than half cropped. Others (4 out of 12) captured multiple objects in the frame. Some of these observations 
could be perhaps explained by our study setup (e.g., participants were done with taking photos for the day or objects 
were in close proximity due to study setup). However, prior work in teachable object recognizers employing diferent 
study designs also indicates that model testing and evaluation can be challenging for end users [17, 27]. These challenges 
are critical as perceived and actual performance may be diferent when the models are actually used after testing. 

Overall, we fnd that when testing on one’s own data the average accuracy (i.e., the number of correct predictions 
divided by total test images) of the models was 0.65 (�� = 0.24) with a breakdown across participants shown in 
Figure 10a. These results may seem surprisingly low for a 3-way classifcation task. However, beyond being a fne-grained 
classifcation, the task can be particularly challenging with objects of deformable shapes, same-size, refective-surface, 
and similar colors that can be hard to distinguish. Among the high-performing models are those of P1 and P8 who 
choose to iterate on their training (they tested the models with 3 and 7 photos, respectively); though the same is not 
to be said for the models of P3, P5, and P10 who also iterated on their training (they tested the models with 12, 28, 
and 10 photos, respectively). When juxtaposing model performance with participants’ subjective responses on the 
satisfaction of their models (Figure 10b), we fnd that those whose models did not perform well disagree with this 
statement and those whose models perform better agree. This alignment, however, did not hold for those on the edges 
(strongly disagree and strongly agree). Participants’ feedback in the next section, provides a potential explanation. 
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5.4.2 Model Performance with Testing Images from Others. One of the promises of a teachable object recognizer is that 
it works well for each individual since the training and test sets are collected by the same person and it is highly likely 
that they are going to exhibit similar patterns [34, 68]. This was also the case in our study. As shown in Figure 11, for 9 
out of 12 participants, the accuracy of the model was higher when tested with an individual participant’s test set than an 
aggregated test set from all participants in our study and photos from another study with blind participants [41] on the 
same objects. The accuracy of the model with individual test sets was 0.65 (�� = 0.24). The accuracy was lower at 0.51 
(�� = 0.14) and 0.52 (�� = 0.09) when pooling test sets across all participants in the current study and testing photos 
from a prior study [41], where nine blind participants trained and tested a teachable object recognizer, respectively. 
However, we observed that the iteration can make the models generalize better. Among the fve participants who did 
retraining, four and three participants had higher accuracy after retraining when their models were tested with the 
aggregated test set and the set from the prior study [41], respectively. 

5.5 Subjective Feedback from Participants 

5.5.1 Overall Experience. To provide more context on participants’ feedback for the descriptors, we illustrate in 
Figure 12 their responses related to the MYCam testbed. Overall, participants agreed that they could train the object 
recognition model efectively with MYCam and disagreed on training being difcult, though they were divided on 
whether it could be done quickly. This is promising. Specifcally, ten participants agreed or strongly agreed that they 
could train their models efectively with some pointing to the need for onboarding. P1 and P10, for example, who 
are not familiar at all and slightly familiar with machine learning said “after a while, I learned that I could train it” 
and “It’s pretty easy. You have to teach me though. But if you teach me then it’s pretty easy to follow instructions and 
fnish the process.” respectively. On the other hand, P11 and P12 were neutral. P11 mentioned that taking 30 photos is 
time-consuming, saying “I don’t really feel like I was all that efective because it takes a while to train for each one.” The 
errors in descriptors afected the reliability of the app, making a participant think the training process was less efective 
even though the two models work independently of each other. P12 said "I don’t think that the app is correct, especially 
when I know, for example, that my hand was not in the photo...I don’t have a lot of confdence in the app’s accuracy.” 

When asked whether they could train the app quickly, fve participants agreed, four disagreed, and three were neutral. 
Seven participants indicated that taking 30 photos is tedious. For example, P10 said, "The process is pretty straightforward. 
But I have to spend, like, quite long time to train the three objects." When asked about the difculty of the training task, 
all but one who remained neutral, disagreed or strongly disagreed that the task was difcult. P11 who was neutral, 
found it not difcult but tedious. Surprisingly, this sentiment of the task being tedious was not presented in the initial 
study with teachable object recognizers [34] even though the number of training photos was identical. We suspect this 
diference refects more on our implementation of the descriptors in the MYCam testbed rather than the process of 
training itself. In MYCam users could not opt in or out of the photo-level descriptors during training leading to higher 
training times; specifcally, the time for taking photos for training an object was doubled from 65 seconds (�� = 35.2) 
reported in that frst study [34] to 143.8 seconds on average (�� = 72.4) in our study. 

5.5.2 Descriptors. As shown in Figure 13, all but one participant (P1, who was neutral) agreed or strongly agreed that 
the descriptors were easy to understand. P6 said “I understood what it was telling me. I didn’t have questions about 
what I was supposed to do.” Participants’ responses indicate user refection based on descriptor changes across multiple 
attempts, strengthening some of our observations in the previous sections. P2 elaborated “It gives you directions. The 
explanation (descriptors) afterwards, in the analysis, told me that my photographs were not always good. So I have to 
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learn to take better photographs.” Some participants found it difcult to understand the absolute values of provided 
in the descriptors and were wondering whether they should have a specifc value as a goal. For example, the values 
of descriptors were somewhat ambiguous to P1 who said, “I guess just knowing exactly what they’re referring to what 
numbers are really preferable.” P4 also mentioned the challenge in understanding the values of descriptors, but then 
mentioned that over repeated data collection during the study, he fgured out their purpose. P4 said “I wasn’t aware of 
any of those felds when we did the frst object [...] For the second and third objects, I could take a little bit more variation in 
the photos or to better train the application.” This is interesting feedback as the descriptors are there merely to provide 
access to what one could infer via a visual inspection not per se dictate optimal characteristics for the training set. The 
diference of course is that when a sighted person glances over their training photos they may or may not make an 
inference on potentially problematic photos or lack of variation (see Hong et al. [27]), but a blind person always hears 
the descriptors. This explicit presence of the descriptors calls for the need for more context. While “ideal values” are 
use-case depended, during onboarding users could perhaps be provided with some rationale or examples. 

Ten participants agreed or strongly agreed that the descriptors were useful. P10 (who was neutral on this) and 
P11 thought descriptors helped them understand how to collect training examples for the object recognizer. P10 said, 
“(I agree) because I know the quality of the photos, the diferent aspects of the photos that I take.” P11 said, “It helped me 
understand what the camera needed in order to recognize the objects.” Participants also mentioned that descriptors were 
useful to identify problems in their training sets. P10 elaborated “you have to get feedback or you’re not going to improve 
[...] it helps you to understand what you’re doing wrong.” P2 had a similar idea: “the explanation (descriptors) afterward, 
in the analysis, told me that my photographs were not always good, so I have to learn to take better photographs.” P12 
thought they were not useful because they were error-prone. P12 said, “I don’t think that the app is correct, especially 
when I know, for example, that my hand was not in the photo, or that the object is not cropped because the previous objects 
were cropped.” This feedback highlights the need for improving the estimation of descriptors in future work. 

Participant feedback suggests that it would have been helpful to include more explicit guidance on how to improve 
the training photos. For example, P7 suggested similar feedback to Lee et al. [41] and Ahmetovic et al. [3] along the 

Fig. 12. Participants’ feedback on training with the MYCam testbed. 

Fig. 13. Participants’ feedback on the descriptors. 
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descriptors, elaborating “Cropped, it did not help me know what to do diferently. If it said, maybe move up, move down 
and move camera left, move the camera, right. That would have been more useful.” Our current implementation of this 
photo-level descriptor actually can be re-purposed to provide such feedback. More so, P6 mentioned that the interface 
for replacing problematic photos in a training set would improve the app. He said “I would assume the training process 
can self-evaluate itself and it should sum that up for me and tell me what photos I should replace. [...] you need to replace 
those bad pictures unless you don’t need them for the training.” This is an intriguing approach, one that we aim to explore. 

5.5.3 Model Performance. When we asked participants if they were satisfed with the performance of the object 
recognizer, opinions were divided; fve participants agreed or strongly agreed, six participants disagreed or strongly 
disagreed, and one participant was neutral, as shown in Figure 14. When accounting for the performance of their model 
in their subjective responses (Figure 10b), we observe that participants were not satisfed if the accuracy was lower 
than 0.6. However, it did not all come down to model performance. Open-ended feedback indicates that satisfaction is 
also related to efort. P11 remained neutral even though she did not observe any recognition errors (her model had the 
highest accuracy) but attributed this to the training task being tedious (see Section 5.5.1). P11 said, “Because it took so 
much work to get that small amount of performance.” 

P7 and P10 agreed that they were satisfed with the performance though their model accuracy was only 0.6 and 0.4, 
respectively. As legally blind P7, expressed that the performance is good enough to supplement his vision. P10 believed 
that she just did not train the app properly. She said, “I think it recognized objects, but if you don’t train it properly, then 
it’s not going to recognize anything [...] the Fritos bag was the one that didn’t work out, but that was probably my fault.” 

While the majority (9 out of 12) of participants observed recognition errors during testing, many could not explain 
why. Six participants were neutral or disagreed with the statement that they have a good sense of why the recognition 
errors occurred. Their responses were simply “I have no idea.” or “I don’t know.” Though P7 and P10 strongly agreed 
and agreed, respectively, their rationale was vague. P10 said “I think it was my fault. I think it was my training. Other 
than that, I don’t know.” P9 strongly agreed and contributed the recognition errors to imperfect descriptors in training, 
elaborating “The reason is because I was teaching it, and I wasn’t 100% sure that it was 100% accurate. It makes sense that 
while I was teaching it, I was a little bit of, so its recognition was a little bit of. It kept telling me that the hand was in the 
photos.” We believe that these observations motivate the need for accessible computer vision explanations. 

6 DISCUSSIONS 

Our user study, exploratory in nature, shows both promising results and future research directions for supporting 
blind users’ interactions with teachable machines. In this section, we frst refect on lessons learned, while discussing 

Fig. 14. Participants’ feedback on the performance of their object recognition models. 
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implications for designing descriptors to access one’s training data in teachable object recognizers and broader teachable 
applications either assistive or educational. We then discuss limitations in our study that may afect the generalizability of 
our fndings as well as future work for better estimating such descriptors and exploring their potential for explainability. 

6.1 Implications 

Our study provides evidence that descriptors derived from visual attributes used to code training photos in teachable 
object recognizers, can provide blind users with a means to inspect their data, iterate, and improve their training examples. 
Challenges often involve onboarding, time needed for training, as well as descriptor accuracy and interpretation. 

Insights from this work are complementary to prior studies exploring the feasibility of training [34, 47, 68] and 
camera aiming [3, 42, 72] in teachable object recognizers for the blind. More so, the underlying methods for extracting 
meaningful descriptors, i.e., instance- and set-level characteristics that can be coded by quickly inspecting the training 
data and that point to noise and variation, respectively, can be adopted for other teachable applications. This is especially 
critical for those assistive applications where training typically requires similar skills to those the technology aims 
to fulfll. For example, teachable sound detectors for Deaf/deaf and hard of hearing people [9, 20] could beneft from 
visualizations of the sound examples in a way that allows users to quickly inspect potential noise in a training example 
and variation across the training set (e.g., better start and end of a recording, multiple sound sources, variation, and 
other characteristics that hearing users could leverage for experimentation just by listening to the audio). Indeed, 
Goodman et al. [20] observed that Deaf/deaf users collected similar-sounding examples during training and thus, could 
beneft from an interface that visualizes features of their training sets; data descriptors could fll that need. 

Accessing one’s training data is also critical for making informal learning activities that typically employ teachable 
machines with children more inclusive. Learning objectives for AI education in K12 (e.g. [73]) highlight the use of 
interactive systems for exposing children to AI prior to using those that leverage block-based programming [74]. 
Dwivedi et al. [17] suggest that future teachable interfaces for such activities beneft from classifcation tasks that allow 
children to quickly inspect the data and uncover patterns. Thus, it is not a surprise to see many learning activities for 
exposing children to AI often leverage teachable image classifcation applications [14, 17, 22, 39, 75]. However, in these 
initial explorations, none of these applications are inclusive of blind children. Our data descriptors could help increase 
their accessibility e.g., by leveraging our shared code for MYCam and the descriptors. Further, we see how researchers 
working in teachable object recognizers and broader contexts, could beneft from the following insights: 

Balancing descriptors with demand on time and cognitive load. MYCam’s set-level descriptors are given at 
the end of training but image-level descriptors are played every time the user takes a training photo (they can 
also be accessed when reviewing at a later time). Participants’ feedback indicates that, although the image-level 
descriptors are informative, they add to the training time and cognitive load. Indeed, if we were to compare our 
study with the times reported in Kacorri et al. [34] training with descriptors (4.8 seconds per photo on average) 
took more than double the time without them (2.2 seconds on average), respectively. Still, this was much less 
when compared to another study, where blind users took photos with real-time camera aiming guidance (i.e., 
audio and haptic feedback for camera aiming); there, they spent on average 10.3 seconds per photo [41] but 
did not refect much on the time needed to train. The diference between the two is: MYCam feedback when 
taking photos is passive and requires listening to a list of descriptors and optimizing simultaneously multiple 
variables whereas the feedback in Lee et al. [41] is interactive and requires listening to an audio cue or sensing 
vibration and optimizing a single variable (including the object in the frame). This challenge of maximizing 
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information while minimizing cognitive load is not new and calls for better interactivity with the descriptors via 
opt in/out mechanisms (e.g., play descriptors via press and hold), verbosity controls, or audio haptic feedback. 
For example, P10 expressed that while descriptors provide hints to problems, they do not directly instruct users 
on how to solve them. For example, when an object is cropped in a photo, participants did not get feedback on in 
which direction the camera should move even though this information can be made available from the current 
implementation. We expect that combining the descriptors with camera guidance (e.g., [3, 41]) could be helpful. 

Balancing descriptors with instructions. There is a rich literature on the value of tutorials, instructions, and 
in-context interactive assistance for supporting users with technology; a comprehensive review for blind users 
and smartphone devices can be found in Rodrigues et al. [59]. Some prior studies with blind users have shown 
that real-time descriptions can lead to better accuracy and confdence compared to instructions at the start of a 
task (e.g., [19]). While we did not compare the two, participants’ feedback indicate that data descriptors would 
be complementary and not a substitute for tutorials and instructions. In addition to the real-time feedback, par-
ticipants call for support in navigating the app and interpreting descriptor values. In our study, the experimenter 
provided some of this information. For example, for the set-level descriptors the experimenter said: “you can 
check how much variation your photos have. For example, a 10% variation in the background means that most of 
your photos have similar backgrounds.” However, participants mentioned that they could better understand the 
absolute values of descriptors after experimenting. We suspect that the level of understanding for these values 
would afect both the quality of the training sets as well as how reliable the system is perceived by the users. 

Editing a training set based on descriptors. The current design of MYCam focuses on informing the users of 
the attributes of their training sets rather than instructing how to spot potential issues in their training sets 
or making the data collection process efcient. Participants had to diagnose problems for themselves based on 
descriptors and replace the entire training set with new photos if they wanted to fx something. Participants 
suggested adding functions to edit (e.g., delete) at a photo level e.g., right after taking a photo that is deemed noisy 
or while reviewing the training set at the end to make the iterations more efcient. For example, P8 suggested 
having an interface that flters out bad images based on descriptors or enables users to replace them instead of 
starting from scratch. This opens up interesting venues for approaches such as active learning and data valuation. 

6.2 Limitations and Future Work 

There are many limitations that could impact the generalizability of our fndings. Our observations come from a small 
sample even though � = 12 is most common in human-computer interaction studies [12]. Our study is remote, yet 
participants are recruited from a relatively small area in the US in proximity to the authors’ institution. The study 
is conducted in participants’ homes, yet it shares more characteristics with a controlled in-lab study rather than a 
real-world deployment: object stimuli were predefned and small in number, the duration of the study was relatively 
short, MYCam was deployed on one of our devices, participants were being observed and had real-time support from 
the experimenter, and they were somewhat confned in terms of space. 

Specifcally, participants were asked to wear smart glasses and communicate with the experimenter through a laptop 
computer in front of them. Though these devices were necessary for communication and data analysis, they limit 
participants’ behavior e.g., in walking around with the phone and taking photos in diferent locations and illuminations. 
For example, when participants wanted to vary the backgrounds in photos, they took pictures with diferent parts of a 
table. However, if they could move around outside the user study setup, perhaps they would choose completely diferent 
locations for background variation. More so, using MYCam on one of our iPhone 8 devices instead of their own mobile 
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devices could have afected our observations. All but one participant owned an iPhone; most participants were familiar 
with iOS apps. However, the diference between their personal phones and our device (e.g., in terms of size and camera 
location) could have afected the quality of photos and overall perception of the descriptors. We expect that the use of 
MYCam in a real-world scenario would have resulted in a richer set of contexts in users’ photos (typically a table in 
our study). Though we limited the objects to three snacks with similar textures and weights, blind people may choose 
to train on personal objects that may not be products in the market with a larger number of object instances. As the 
performance of an object recognizer depends on the number of classes and visual diference between the objects, these 
diferences could have afected the performance of a personalized model and blind users’ experiences with it. 

Our experimental setup was in part restricted by our implementation of the descriptors, which is meant to serve 
as a proof of concept and is somewhat tied to a predefned set of object stimuli (e.g., for the ARKit to work and for 
establishing diferent thresholds). Although the estimated descriptors had a positive correlation with the manually 
annotated attributes and enabled participants to inspect their training sets, they were error-prone. When some of the 
participants noticed the errors in descriptors, they deemed them as well as the object recognition model unreliable. This 
suggests that it is imperative to further advance approaches related to descriptor estimation for a better user experience. 

Due to the lack of datasets for benchmarking our descriptor-based approach, we had to manually create our own 
dataset for comparison. As in other AI-based systems evaluation, having benchmark datasets is useful to assess systems 
for generating descriptors in a more widely accepted way. One potential step in this direction would be to invite 
blind data contributors, who can inspect their personal training data and agree to data sharing, to contribute to such 
benchmark datasets employing approaches similar to Theodorou et al. [72]. 

Last, in this study, images were used for the purpose of training. This approach can provide more control for the 
blind users over their training sets regarding both incorporating variations and mitigating privacy risk concerns [5] 
as it would be less likely for a blind user to capture unnecessary information in an image. For example, blind users 
usually use their hands as a reference to center the object in the camera frame, but they are often not willing to include 
their hands in the fnal photo to preserve user anonymity [41]. Also, in the one study where videos were used, blind 
users had to be trained to follow some instructions and flming techniques [72]. On the other hand, video increases the 
number of collected images since it is a collection of frames. Also, the use of video increases the chance of the object 
being in the frame at some point [72]. Perhaps a way to get the best of the two worlds could be live photos as they are 
easy to capture (like photos), and they include multiple frames over one to three seconds [53]. 

7 CONCLUSION 

In this work, we examined the challenge of accessing one’s training examples in teachable object recognizers, where 
visual inspection of training photos is not accessible to blind users with the ultimate goal of making machine teaching 
more inclusive. To this end, we engineered real-time descriptors that indicate to the blind user whether the photo 
they just took is blurry, if their hand is in it, if the object is cropped, and whether their photos overall vary in object 
background, distance, and perspective; all factors that can afect model performance. We built MYCam, an accessible and 
open-source teachable object recognizer iOS app with descriptors. We shared our fndings, observations, and lessons 
learned from a remote study with 12 blind participants who trained MYCam in their homes to recognize three distinct 
but visually similar objects. 

Our results showed that participants who choose to iterate their training for an object, were able to provide fewer 
photos where the object was cropped, included no hand in their photos, and had slightly less blurry photos that 
overall had more variation in terms of object perspective and size but less in terms of background. Overall, participants 
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increased the variation among their training examples and reduced the number of photos with cropped objects as they 
moved in training from one object to the next. Some of these changes are refected in their model performance that 
somewhat relate to their satisfaction scores. However, errors in descriptor estimates seem to afect overall participants’ 
perception and trust of model performance. Participants’ responses indicate that even though it was difcult to gauge 
the meaning of absolute values for some of the descriptors (e.g., variation), they could infer it based on relative changes. 
However, many found the training being tedious, opening discussions around the need for balance between information, 
time, and cognitive load. These results, taken together, indicate that our novel data descriptors, realized in MYCam, hold 
potential for facilitating quick inspection of training photos among blind individuals. Going forward, we are excited to 
continue our endeavors towards building more inclusive participatory machine learning experiences both for blind 
youth and adults. 
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