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Abstract—Iteratively building and testing machine learning
models can help children develop creativity, flexibility, and
comfort with machine learning and artificial intelligence. We
explore how children use machine teaching interfaces with a team
of 14 children (aged 7-13 years) and adult co-designers. Children
trained image classifiers and tested each other’s models for
robustness. Our study illuminates how children reason about ML
concepts, offering these insights for designing machine teaching
experiences for children: (i) ML metrics (e.g. confidence scores)
should be visible for experimentation; (ii) ML activities should
enable children to exchange models for promoting reflection and
pattern recognition; and (iii) the interface should allow quick
data inspection (e.g. images vs. gestures).

Index Terms—child-computer interaction, machine learning,
machine teaching, informal learning, Al education

I. INTRODUCTION

Consider the problem of classifying data as positive or
negative based on a threshold. In this context, Zhu et al. [1]
define machine teaching as a method or algorithm that involves
a teacher who knows the true threshold for separating positive
and negative data and designs an optimal training set for the
learner to learn to classify. In this work, we invite children
to be the teachers and a machine learning algorithm to be
the learner. We explore machine teaching with children using
Google Teachable Machines [2], “an experiment that makes it
easier for anyone to start exploring how machine learning
works, live in the browser” Children are called to design
training sets of images to teach the underlying model, which
leverages neural networks, how to classify their images.

Why explore machine teaching with children? Machine
teaching can be a great vehicle for exposing children early on
to machine learning and Al concepts. This work is aligned
with recent government declarations (e.g. [3, 4, 5, 6]) and
initiatives calling for an Al curriculum as early as the first five
years of schooling [7, 8]. Similar to us, researchers and edu-
cators have early on seen the opportunity to expose children
to Al and machine learning black boxes. When categorizing
prior efforts, we see two main threads: (a) those that require
some programming and (b) those that do not. In the first
thread we see the use of block-based visual programming
languages such as Scratch [9, 10] through worksheets [11],
robotics camps [12, 13], and interactive systems [14, 15].
Such approaches assume prior exposure to block-based pro-
gramming, which may not apply to younger children or those
who do not have access to early computer science (CS)
education. For example, in the US, only 47% of schools teach
CS, with disparities across ethnicity, race, gender, disability,
and socioeconomic status [8]. Perhaps this can explain why
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learning objectives for Al education in K12 [7] highlight the
use of interactive systems before Scratch-based ones [16]. We
see such efforts in the second thread, where children train and
test Al black boxes through e.g. interactive spreadsheets [17]
or e.g. accelerometer-based gesture recognizers [18, 19]. In
this paper, we present findings from one of the earliest efforts
that fall under this second thread, focusing on a more diverse
group of children from a younger age group.

The overarching goal of this work is to inform the design of
teachable machines, a paradigm of machine teaching, for intro-
ducing children to machine learning concepts. As a first step
in designing such applications, we investigate the following
research question: What are the key behaviors characterizing
children’s interactions with a teachable interface?

We explore this question through co-design with a
university-based intergenerational design team of 14 children
and 12 adult co-designers. As shown in Figure 1, during
circle time children answer a warm-up question about teach-
ing others and watch videos introducing them to Google’s
Teachable Machine [2]. For the design activity, they are split
into pairs, where they design their teaching and testing sets
for the classifier and swap classifiers with each other to see
whether their models generalize. Children then demo their
final classifier during a whole group presentation, reflecting
on challenges they faced and workarounds they attempted.

We found that metrics such as confidence scores tend to
serve as proxy for children to judge whether the model was
confused on unstable. Also, inviting children to swap and test
their classifiers elicits collaborative observations and reflec-
tions and promotes experimentation. Last, having classification
tasks such as image recognition can enable children to quickly
inspect the data and uncover patterns, though, they assume that
children are sighted. More research is needed on making such
activities accessible for children with visual impairments.

These findings contribute to our understanding of how chil-
dren interact with machine teaching interfaces. Specifically,
we offer the following insights to designers and educators
for the design of Al-related learning experiences and inter-
active systems to support them: (1) making metrics such as
confidence scores visible and dynamic can enable experimen-
tation, reasoning, and discussion; (2) enabling pair activities
where children can compare training sets and strategies with
others can support reasoning and recognition of patterns for
improving models; and (3) employing modalities accessible to
children (e.g., images rather than gestures for sighted children)
in machine teaching activities can promote pattern recognition
and enable quick data inspection and training adjustment.
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Fig. 1. Our sessions include (a) circle time, (b) design activities, and (c) final presentation with reflections. A screenshot from one of the children’s classifiers
(d), indicates what is captured by the camera, the number of training examples and images, and the confidence bar for the triggered class and its output.

II. RELATED WORK

We discuss recent efforts in Al education for children with
a focus on studies that employ machine teaching. Prior work
involving adults is briefly mentioned as it informs our analysis.

A. Adult Non-experts Training Machine Learning Models

There is a rich literature on adult non-experts' and inter-
active machine learning. We look at efforts that, similarly
to this work, employ machine teaching [1, 20]; where non-
experts train and evaluate supervised classification models
using interfaces that abstract the complexities of the algorithm
as the children do in our study. The arguments for such
applications are many. For example, Amershi et al [21]
argues that involving people more actively in the training
process can lead to higher acceptance of Al and more robust
models. Kacorri [22] also underlines the potential of teachable
interfaces for accessibility, where training data are sparse
and highly variable. We see assistive applications such as
teachable sound and object recognizers [23, 24] falling under
this paradigm.

Given that machine teaching “focuses on the efficacy of the
teachers” [20], early work in this field has put an emphasis
on understanding the underlying concepts that non-experts are
able to grasp as well as misconceptions and other pitfalls that
they may be susceptible to [25]. Our paper shares this goal.
Looking at adults, prior work has shown that non-experts tend
to teach with clear representative examples and sometimes
incorporate examples that are closer to the decision boundary
through variation [26]. Some seem to grasp the concept of
overfitting [27] and there is anecdotal evidence that they
learn to balance class proportions in training after multiple
iterations [28]. However, they also tend to be more satisfied
and trusting toward their models compared to experts [29].
Beyond class imbalance, they are susceptible to disparate
treatments such as being inconsistent in the way they introduce
variation [26]. Common misconceptions relate to accuracy
being a sole measure of performance [29], consistency en-
tailing teaching over and over with the same example [26],
and the machine possessing reasoning capabilities [26]. Such
misconceptions and pitfalls led to problematic deployments.

'We refer to those not formally trained in machine learning as non-experts.

B. Children Training Machine Learning Models

Looking at recent work in Al for K-12, we see many
efforts requiring familiarity with Excel [30], Rapidminer [31]
or block-based programming [11, 12, 13, 14, 32]. In contrast,
our paper focused on efforts that employed machine teaching?
and did not make assumptions about children’s familiarity with
programming.

Table I presents representative examples of studies from
2018-2021 with classification tasks involving either multiclass
gesture recognition [33, 34, 35, 36] or, as in our study,
multiclass image recognition [37, 38]. Surprisingly, only four
reported the number of children involved and their gender
distribution, which is skewed towards boys except for Var-
tiainen [38] which has equal distribution. Being committed to
broadening participation in computing, in our study, we tried to
balance the number of boys and girls and report demographic
data on children’s race and ethnicity. Similar to our study,
children’s ages in these prior efforts ranged from 8 to 14 years
old; Agassi et al. [35] did not report children’s age, and Scheidt
et al. [37] only report the age group of invited children, not
necessarily the ones who actually experienced their system.
Typically, they involve middle and high school children at least
10 years old; exceptions being Cognimates [14] with a younger
age group 7-11 years old and Vartiainen [38] with 6-12 years
old. Limited methodological information is included in these
two publications, perhaps due to their limited page length.
For the other studies, researchers employ both quantitative
methods such as pretest post-test [33] or within-subject [18]
designs and qualitative methods such as design experiments
through workshops and semi-structured focus groups [34].
Similar to Vartiainen [38], our study employs a participatory
design approach known as Cooperative Inquiry (CI) [39, 40].
In CI (also, “co-design™), children and adults act as full
partners, assuming various roles throughout the design process
[41, 42, 43]. For example, children can act as end-users testing
prototypes, evaluate low-fidelity mockups, or have an equal
voice in sharing ideas with adult co-designers [41, 42]. In
contrast to related work, we used pair-testing of the trained
model, where children test each other’s models and investigate
its machine learning properties of generalizability.

When looking at the underlying machine learning models
that children interacted within these studies, two of them,
Scheidt et al. [37] and Vartiainen et al. [38], included neural

ZA term perhaps not originally used by the authors in the publications.
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CHARACTERISTICS OF STUDIES THAT EXPLORE TEACHA BLE MACHINES
WITH CHILDREN JUXTAPOSED WITH OUR WORK.

networks. Others opted for Wizard of Oz [33] or dynamic
time warping algorithms [18, 34, 35, 36]. When interacting
with these algorithms, children only saw the top prediction.
In contrast, in our study children are exposed simultaneously
to the top prediction, and the confidence scores across the
classes, which allow them to gain more insights should their
model fail.

III. METHODS: CO-DESIGN

In our study, we work with youth 7-13 years old who are
members of an intergenerational co-design team [39, 40].
We aimed to explore how youth with no prior programming
experience (as in [33, 34]) might consider teaching a machine
to recognize object and image classes that they themselves
designed from everyday low-fidelity prototyping materials
(e.g., colored paper, popsicle sticks). Informed by prior work,
our exploration process prioritizes recent guidelines for sup-
porting K-12 students [7] and the ISTE standards [44]® more
generally with a focus on children who are 7-13 years old,
to demonstrate how the iterative nature of teachable machines
can promote children’s understanding of AL In our study, child
and adult co-designers engaged with an existing teachable
interface provided by Google abbreviated as GTeach [2]. Chil-
dren’s design session goal was to compose input images (e.g.,
origami shapes) and explore issues they might encounter while
training a well-performing image classifier. They “designed”
the classes for the teachable image classifier to recognize and
experimented with various training examples to present to the
GTeach interface. They devised their input classes from a
paper-based prototyping kit that included a variety of shapes
and colors of origami, which they could personalize with
stickers and markers. Children were invited to select types
of shapes and colors that they thought would be easy to teach
or that they would want to teach, and also, how they would
teach them (e.g., how many training images, what sort of
background, how close to/how far from the camera, and more).

A. Machine Teaching Testbed: GTeach

GTeach [2] is a popular demo exposing how machine
learning works to non-experts. We used its version 1.0 that
allows people to quickly train an image classifier by using

3Specifically: 3d) Building solutions for real-world problems, 4c) Design,
test and redesign solutions, and 5b) where children analyze data to look for
similarities and patterns
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Fig. 2. Characterizing GTeach in the machine teaching space by Zhu et al. [1],
where t stands for teacher and s for student.
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a webcam. As shown in Figure 1d, the input can fall under
one of three classes (green, purple, and orange) that the user
can train. The output can be either GIFs, sounds, or spoken
text. For each class, the interface displays the total number
of training examples, thumbnails of nine last examples, and
the classification confidence when recognizing a video frame.
The user can test the recognition performance of their clas-
sifiers interactively. The underlying recognition model is the
SqueezeNet [45], a neural network architecture small enough
to run locally on the browser. In this case, SqueezeNet was pre-
trained on ImageNet [46] to recognize 1,000 different classes
(such as animals, plants, and everyday objects), thus devel-
oping internal representations for recognizing color, edges,
and shapes in images. Through transfer learning [47], these
internal representations are used to quickly learn how to
recognize a new class that the network has not seen before just
by providing a few training examples. Basically, SqueezeNet
provides an embedding vector for every training image, a
numerical representation that serves as a descriptor for that
image. The underlying assumption here is that similar images
also have similar embedding vectors. Thus, to recognize a new
image, the teachable machine simply compares the embedding
vector of the new image with the embedding vectors of the
previous training examples to see which class is the closest.
We adopt Zhu et al. [1] machine teaching problem space to
characterize GTeach as a system where the child is the teacher
and machine is the only student (Figure 2). A child provides
batches of images that are pooled labels as the teaching signal.
The model (neural network) does not anticipate this signal,
i.e. assumes training examples are error-free, independent, and
identically distributed. The child takes a model free approach,
treating the model as a black box, and is considered a friend,
i.e., no adversarial training. We assume that the child uses
empirical teaching methods to improve model performance.

B. Design Session and Participants

Our study comprised two iterations, conducted with two
different groups of children: one in Feb 2018 (8 children); the
other in Oct 2019 (6 children). In total, 14 children aged 7-13
years old and 12 adult co-designers participated in the design
session (6 girls, 8 boys) over two years. In the first session,
girls and boys were evenly numbered (3 girls, 3 boys); in
the second, 4 boys and 2 girls participated. Many children
(64%, or 9 of 14) are second generation immigrants to the
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Gina F 8 Black/African American .
Jeremy M 8 Black/African American | e

John M 8 Black/African American .

Matt M 10 Asian American .
Amber F 11 Hispanic / Latina .
Caleb M 11 Black/African American .

Rina F 11 White / Caucasian .
Sandy F 11 Asian/Asian American .

Ben M 7 Black/African American .
Brian M 8 Black/African American .
Penny F 11 Black/African American .

Alan M 11 Black/African American .
Denny F 11 Black/African American .
Kevin M 13 Black/African American .
TABLE I

DISTRIBUTION OF CHILDREN ACROSS OUR CO-DESIGN SESSIONS.

USA. Children are recruited through word of mouth, based
on family interest. All participants and activities are approved
by the university’s IRB. We obtain signed parental consent
and child assent, including consent for audio/video recording.
All personally identifiable data is removed to protect the chil-
dren’s anonymity. Of the adult co-designers, 3 had a machine
learning background, and others had an education background.
Children’s pseudonyms, gender, age, race/ethnicity, and the
session they participated in are shown in Table II.

The specific CI technique we employed is technology im-
mersion [48, 49], which exposes children to novel technolo-
gies with little or no experience to raise their awareness of the
design potential of those technologies [48]. Children mainly
assumed the role of informants and evaluators, providing
feedback on their observations [48, 50]. Children also saw
themselves as designers of the paper-based models they used to
train and collaboratively test the GTeach classifier. The adults
assumed facilitating roles [43] as the children designed their
classifier models, scaffolding them with guiding questions as
needed. A session had three parts:

Circle Time: As a warm-up, all co-designers (children
and adults) answered the question what'’s one thing you've
taught someone else? The question provided context for the
design session and enabled the team to discuss challenges
and successes related to people teaching people. For example,
Denny shared that she taught her young “baby cousin to say
the word, ‘eat™. When asked how many times she had to
model or repeat saying the word, ‘eat’, Denny replied, ‘a LOT.
Denny’s every day teaching observation afforded adult co-
designers opportunities later in the session to connect similar
familiar experiences to key components of machine teaching.
The team then watched videos about GTeach [51] and a fun
example to pique their creativity [52].

Train, Test, Deploy: During the main co-design activity,
children selected origami shapes they wished to train and
worked in pairs to train GTeach. After each child had trained
their model with specific shapes and/or colors, they switched
with their partner, to test one another’s model.

Presentation: At the end, each child presented their clas-
sifier to the group. Children elaborated upon their training

strategies and explained how to tackle problems they faced
and possible workarounds to the problems shared by others.
Salient themes from the children’s descriptions and discussion
were captured as “Big Ideas” by an adult on a whiteboard.

C. Data Collection and Analysis

We collected videos through screen recordings and cam-
eras, photos, and field notes. Specifically, screen (and mic)
recordings captured children’s interactions with the GTeach,
including the number of training examples, confidence scores,
and the video from the webcam. Thus, they also captured
the use of props and children’s interactions with their pairs
and adult co-designers. Static cameras also captured group
interactions in circle time and final presentations. Screen
recordings from 5 children were not saved properly; we rely
on complementary data when available e.g. screen recordings
of their pair, static camera, photos, and field notes. Follow up
questions included: (1) How many examples did you have to
give it before it learned what to do? (2) What did you find
challenging? Was it hard to teach the computer? Why or why
not? (3) Why does it make mistakes? If it made mistakes, how
did you make it work better? What trick did you do to stop
it from making mistakes?, and (4) Does it work all the time?
Why not or why?

After the session ended, 5.5 hours of videos, 2 sets of in-
situ, “Big Idea” design themes (i.e., photos of whiteboard
themes) and 2 session notes from researchers were analyzed
and coded using thematic analysis [53]. While open coding
was used for inducing codes, some codes were constructed
beforehand related to machine learning and teaching for de-
ductive analysis. The a priori codes were: sample sizes used
for training each class, presence of balanced and unbalanced
classes, errors, and children’s responses to errors. First, we
coded the screen recording from each child’s computer in the
train, test, deploy followed by corresponding videos in the
circle time and presentation. Codes per child were merged and
tagged with time. Then codes were merged across all children;
quotes and video activities were grouped within similar codes,
and they were merged again based on evidence. Thematic
analysis helped us decouple codes by actions, quotes, and text
in the notes and whiteboard, so patterns reflected in quotes
could be corroborated with actions if quotes were absent.

D. Study Design Limitations

While our co-design study was one of the first efforts that
explores machine teaching with children (early 2018), due to
its subjective nature, it is not conclusive. It provides a rich set
of observations and insights, generating many hypotheses that
need to be further investigated, e.g. through mixed methods.

We made a conscious effort to balance gender and focus
on underrepresented communities in computing in our study.
However, we are aware that our participatory design team of
children may not be representative of children with similar
demographics. Our child participants had prior experience in
evaluating novel technology and training in design thinking.
This experience helps them articulate their thoughts better and
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Fig. 3. Children’s interpretation of the confidence score, (a) Amber found
that the classifier would trigger the wrong class and fluctuate between classes
without reaching 100%, (b) Sandy interpreted the classifier as confused as it
showed a confidence score of 100% for the wrong class, and (c) she used the
score to probe the classifier, by moving towards and away from the camera.

be more aware of their role in the design process. So, they
have more experience with technology (not machine learning),
which does not make them an ideal representative of children.

IV. RESULTS

In this section, we consider how children approached the
process of training their teachable machines. We present the
children’s quotes and corresponding screenshots of their model
as evidence to support our findings. The quotes specify child
and classifier actions or responses italicized and encapsulated
within asterisks, e.g., {she wears her glasses} or e.g., {the
classifier triggers the purple class}, and the rest of the quote is
the statement made, where square brackets denote any addition
to complete missing words, e.g., [the].

A. Interpreting the Confidence Score

Metrics like accuracy, precision-recall, Fl-scores are typi-
cally used to evaluate models [54], and experts have a clear
understanding of how to interpret and use them in the context
of the training pipeline. Amershi et al. [21] showed how adult
non-experts could use metrics such as confidence scores* and
confusion matrices’ to assess and improve the model’s quality.
However, prior work with children (except for Vartiainen [38]
in Table I) has not presented confidence scores along with the
prediction; instead, only the prediction is shown. In contrast,
the GTeach interface dynamically displays its three outputs
with a confidence score for each. It highlights the selected out-
put, making visible Al decision-making mechanisms opaque
in the “black-box™ approaches of prior studies. This feature
helped surface the children’s efforts to understand as well. We
could observe how they interpreted confidence scores and the
model’s output decisions and how they used these metrics to
improve and test their training approaches.

Children interpreted confidence scores in three ways: (1)
if the classifier predicted a correct class with a 100% and
remained stable, they saw it as a success; (2) if the classifier
shifted between classes rapidly, triggering different outputs,
they interpreted it to be confused; and (3) if the classifier
remained 100% on a wrong class, they viewed it as a mistake
or that something had gone wrong. Since the maximum score
for a class would trigger the corresponding output, children
viewed that as a cue that the classifier had selected a class.
The following examples show how children interpreted (or

4A score that denotes the uncertainty a model has on any given output.
5 A matrix that shows the distribution of predicted versus the correct classes.

misinterpreted) confidence scores, enabling us to gain insight
into the potential for such metrics to scaffold exploration,
experimentation and promote understanding of Al concepts.
For John, Sandy, and Amber, the confidence level served as
the primary threshold they used in training: they trained their
inputs until they registered a confidence level of 100%. When
Amber demonstrated the classifier to the whole group, she saw
that the classifier was not performing well (see Figure 3a).
When training her classifier, she had included her head in the
frame; however, when testing it, the camera only captured a
small portion of her head, resulting in a correct classification
but a low confidence score. When asked about the disparity,
she observed, “It reaches 60 the more I put my head up”.

Sandy’s experience offers another example demonstrating
how in-situ metrics help children dynamically attend to and
apprehend the classification process. As she tested, she noticed
her classifier predicted the right class at less than 100%, often
jumping to other classes during training. She wondered aloud,
“It’s not 100%, should I do this again then?” (see Figure 3b).

Adult: Maybe it recognizes your glasses and my scarf
as other objects. [The] top one is me, oh, {the classifier
Sluctuates} because my scarf is off it’s not sure which one’s
which, {Adult wears her scarf back} now it’s really sure,
and let’s do glasses {Adult wears Sandy’s glasses} Oh {the
green class is triggered when she wears the glasses}
Sandy: {she wears her glasses} now it’s really sure {the
purple class is triggered} let’s see about this {she wears
the adult’s scarf}, well it’s clearly focusing on the glasses
and the scarf. It is so confused. Maybe it takes one of the
objects to recognize.

During the presentation, after Sandy reflected on her obser-
vations, she reasoned how the classifier might be working, “I
think it chooses one inanimate object for it to focus on.”

Children actively employed the confidence score to track
how well their classifiers performed and varied according
to variations in their training models. Often they would test
even if they had only trained two out of three classes. Then
they would attempt to “fix” the low confidence scores with
more samples or switch to a completely different set of
objects. When children themselves or their child-partner tested
their classifier, they wrestled with the errors and adjusted
accordingly. Similar to adult non-experts, who aimed to get to
accuracy that “looked good™ [29], children rested training deci-
sions on the prediction metric until deployment, where partners
devised examples confusing the classifier, or they noticed that
a new background affecting prediction and confidence.

B. Varying the Size of the Training Set

In this subsection, we examine how children fix and iterate
on their models by adding or removing training data. We
compare their reasoning with findings from Yang et al. [29],
who provided adult non-experts the choice of adding or
splitting datasets when experimenting with the models. They
observed that in contrast to experts, non-experts tend to choose
the maximum size of the dataset that can be used to train [29]
but not the data quality or class balance. To compare children’s
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Fig. 4. Box-plot distribution of training image for all the classes each time
the children added or reset a training class. Alan went upto 1000 to test how
far the classifier goes and Kevin mostly tested a set of 10-12 images for all
three classes. Other children stayed withing the 15-100 range of images.

efforts with adults, we noted the number of images that
children collected for each class, whether they reset the class
(start with a new set of images) or append to the existing
examples. We calculate whether the dataset is imbalanced (if
it has too few of a certain class).

The number of training examples varied across children,
which collected on average 61 (min-max=10-1058, sd=130)
examples per class (see Figure 4). John, Ben, and Alan
specifically mentioned they needed to train a class with 4,
100, and 300 examples, respectively. When asked during
the presentation about the effect of the training size, Sandy
commented that she didn’t focus on the number of examples
while Gina answered, “Yeah, I think it did, a little bit.”

In contrast to adult non-experts [29], providing more exam-
ples was not a primary strategy among children for overcoming
prediction errors. John and Sandy only employed this strategy
after having accidentally provided a few negative examples.
John saw the problem and tried fixing it by adding multiple
positive examples to the class showing fluctuations. In con-
trast, Sandy, who saw that her classifier was still predicting
the correct class after her mistake, was unsure if there was a
problem. When asked if the wrong images had any effect, she
replied,

Sandy: Probably, actually, 1 don’t know, {moves towards
and away from the camera} 1 don’t think it did, I don’t think
it did anything. Because it doesn’t seem [that] anything
changed by the way it [the confidence] goes on and up.

However, perhaps because she was prompted, she added a
few more positive examples. But then, she decided to drop the
whole training set and start from scratch.

Children who reset a class, ie discarding all previous
examples, tend to retrain with a similar number of images. As
shown in Figure 5, we find that the children more commonly
employed the resetting strategy; all children reset at least once,
but only four appended. When looking at the number of times
children reset, we see a median of 3, with Gina and Kevin
being outliers with 14 and 8 times, respectively.

Class imbalance, a phenomenon explored with adult non-
experts [28], is hardly observed among children. We ex-
amine the presence of skewed class proportions adopting a
definition of mild, moderate, and extreme imbalance with
ratios 1:100 or worse between any two classes indicating
extreme imbalance [55]. We found that none of the classifiers
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Fig. 5. Box-plot distribution of times children employed a reset versus append
strategy. All children reset at least two times with a median of three. Only
four children choose to append.

trained by the children had an extreme imbalance. Only 9 had
moderate, and 3 had a mild imbalance. The majority of the
classifiers (51 out of 63) were balanced. The most skewed
class proportions, observed in one of Alan’s classifiers, had
ratios of 309:89:1058.

C. Composing Examples with Variation

Diversity plays an important role in machine learning [56].
Prior work on teachable object recognizers showed that adult
non-experts draw from parallels to how humans recognize
objects independent of size, viewpoint, location, and illumi-
nation to incorporate diversity in their training examples [26].
Similarly, we see children composing examples that incor-
porate variations in terms of perspective, size, color, and
backgrounds when training and testing their own and their
partners’ classifiers. Similar to adults in [26], they would first
test with examples that were similar to the training set. But
then, they would explore the boundaries by confusing it with
high variation examples e.g. incorporating new faces, hands, or
different origami in the background. These investigations often
led to comments and experiments indicating that children had
noticed how objects can become noise if they share similarities
with the other classes of objects, how backgrounds impact
performance, and how the placement of the objects in the
camera frame can impact the accuracy of the classifier.

For instance, when Alan tried out Ben’s classifier, which
was trained with various origami and Ben’s face as he moved
around in the frame, he found that the classifier is confused.
He tried out different positions of the origami with respect
to the frame and varied the distance from the camera (see
Figure 6a)..

Alan: Ooh, it’s recognizing if it’s [the flower origami] on
my head or not look {he puts flower up close the camera}
whenever it comes to my head. {He puts the flower on his
head, and removes it, sees the confidence fluctuate without
it. It only triggers green class when it is on his forehead.}
It malfunctions there, but when I put my face in {it works
as the classifier triggered green class correctly}.

In a similar exploration, Sandy composed examples that
used her face and an origami. She ensured that her training and
testing examples were similar by bending down while training
to keep her face out of the frame. While testing the classifier,
she argued that the classifier predicted the class for her face
because the images had a high resemblance to her face leading
to this comment (see Figure 6b).
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Fig. 6. Children tried out different configurations and orientations of origami
and faces, (a) Alan brings the flower origami towards and away from the
camera and observed fluctuations, (b) an adult co-designer tested Sandy’s
classifer with her face, and (c) Ben tested out Penny’s classifier, and finds
that it works even when it’s not trained with his face.

Sandy: I have a question, isn’t, aren’t we already a face
aren’t we already a shape? Let’s see if it recognizes her
[adult co-designer].

Adult: {Adult shows the exact “model like” face, face as
Sandy called it, with the origami on top of her head}
Sandy: I think it is the shape [origami] I think that it should
only recognize one face and so someone else can set their
own face.

In another example, Ben used Penny’s classifier with
origami that had been trained for but with Penny’s face and
shirt in the background. The classifier gets confused, switching
erratically between classes. So, Ben tries yellow and ghost-
shaped origami that is not the same color as trained on (see
Figure 6¢). He’s asked why this could be happening,

Ben: They are both the same shapes that’s why {He is
referring to the purple and orange classes}

Adult: Okay, because they are both the same shape. Now,
why is it getting these two confused?

Ben: Because they are both yellow. {He is referring to the
green and orange classes shown.}

When children swapped their classifiers with child- or adult-
partners, they would use the same origami, but the classifiers
would not work right. This is how children would find that the
classifier they trained with faces was not generalizable to other
faces or similar origami; the color would cause confusion.
They would be asked to train a classifier without their faces
to make it possible for others to use the classifier.

D. Reasoning About Noise in the Classifier

Noise in children’s data can be due to wrong labeling or
the corruption of the data features [57]. Feature noise can be
contextual; e.g., low light, partially object, and objects with
their discriminatory portions not adequately captured [22, 26].
We discuss the kind of noise the children found during testing.
For instance, Kevin found that his classifier was confused even
when he added more examples. He reset the erroneous training
samples 8 times to try to fix this issue. His new examples had
his blue coat and a blue origami in the images, which were
driving the predictions. When it is pointed out to him, he says,
“It is? Oh because the ghost is also blue.” He added new
examples by bending out of the frame, constituting more of
the background, leading to noise as other examples remained
same. When asked why the system is confused, he answered,
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Fig. 7. Children revealed and introduced different forms of noise to their
classifiers, (a) Penny found her classifier does not work on all hands and
faces, (b) John built a color classifier because he found that it would not work
on slightly different positions and new faces, and (c) Caleb added wave-like
motions to the classes because he thought that would work better

Kevin: That’s because of the color, because of the light,

because it’s the main, the light has all the colors of the

rainbow, right? The light you know messes with it.

Adult: So you think the color and the background messes

with it. How do you think we can improve that? [by] having

a black background?

Kevin: I feel like we should cancel out the light like the

app cancels the light. Any white light gets rid off. It will

still see with the camera, but it cancels out the white light.

Kevin gave the wrong reason even though he saw the color
of his coat trigger his classifier for the blue origami; having
fixed that, he did not see the background contributing noise.
Alan noticed how changes in the background triggered the

wrong class with Denny wearing a colorful tie-dye shirt.

Adult: Yeabh, it still showing your face. Maybe there is a lot

of background, so it’s still capturing the background, and

it’s giving the same answer.

Alan: So whenever I leave it stays the same

Adult: Oh you know why because there was Denny in the

background when you were training it. So it recognized

Denny and not on anything else. That’s kinda funny.

Alan: Yeah, it’s not getting 100, but when it sees someone

else in the background, then it goes to a 100, see?

With scaffolding about his partner’s colorful shirt, Alan
reasoned that color and background became noise.

Similar to Sandy’s observation about faces, Penny stated
that hands are not same even when placed in the same position
in the frame (see Figure 7a). When asked why this could be
happening, she replied,

Penny: Um I think it happened because, like, um, it does
not recognize every single detail. It just recognizes like if
it’s a hand it just by the looks of it, like it doesn’t like,
take every detail, like if my hand is smaller or your hand
is bigger. It doesn’t take every detail. ...

Adult: So how would you do this better? ...

Penny: I think I would design it with more detail just by
making it like pick up what like maybe they can like. If
someone is like doing some action {raises hand to trigger
purple} they can like zoom in to just like scan it, I guess.

Her idea is similar to labeling parts of an image using
bounding boxes, and she adds that choosing an important
portion could improve the classifier.

Children experimented with the similarity in color, shape,
and portion of camera frame that an object takes. They found



that objects with distinct appearance are easier to train on in
contrast to similar-looking objects or changing backgrounds.

E. Tackling Noise in the Classifier

We explore how children used confidence scores and props
to avoid noise. For example, John began training the classifier
with his face and origami, but he noticed it fluctuated when
his adult partner tried it. To fix it, he completely covered the
camera with a sticker such that it did not have any background
(see Figure 7b). When asked why he used stickers and not his
face or props and replied, “It was easier because, with the
face, you have to do it exactly.” John simplified the task with
a training set that is easy to learn and generalize; however, it
was not an origami recognizer. It was merely a color identifier.

Amber, Caleb, and Ben trained by adding images at various
angles such that a series of images would appear like a wave
(see Figure 7c and 3a for Caleb and Amber). When Caleb was
asked to explain what he had done, he replied,

Caleb: Basically, I was trying to focus on the different

moves, with the same colored shapes, and I was trying to

do movements with them. ... It did better with motion.

Adult: Did you try different movements with the same one,

and it recognized it?

Caleb: yes

Similar to adult non-experts [26], children had misconcep-

tions related to model capabilities for reasoning. For example,
some believed that the classifier recognized movement and im-
proved its performance. All three children that added a wave-
like motion found no problems when testing their classifier, but
they faced problems when demonstrating them to the group.

V. DISCUSSION AND DESIGN IMPLICATIONS

Our study helps characterizes key behaviors of children as
young as 7 when interacting with a teachable interface. Given
prior work’s tendency towards block-based programming, our
in-depth analysis of co-design sessions with children provides
new insights into approaches that effectively expose a broader
group of children to basic machine learning and Al concepts
without a programming background.

Our results extend and reaffirm evidence from prior work
and reveal new understandings regarding children’s interac-
tions with machine teaching. These insights hold the potential
to guide the design of future teachable interfaces and early
educational experiences about machine learning. We highlight
some of them with the following suggestions:

Reveal confidence scores. Following a debugging first ap-
proach [58], our observations suggest that children could
benefit from being exposed to the model’s confidence scores,
which have not been explored previously with children. This
metric was the output of a softmax function in our study,
denoting the distribution of probabilities over the three classes.
It became a proxy for children to judge whether the model
was confused or unstable. It also led to an emerging practice
of building 100% confident models with classes that were
easier to classify (i.e. by choosing more distinct objects or
by zooming in to eliminate any background noise).

Allow for model swapping. The Al for K-12 Initiative [7]
recommends that machine teaching applications like GTeach
be used in grades K to 5 [59, 60]. When designing such
learning activities, we recommend that teachers build-in model
swapping opportunities. Our results indicate that inviting chil-
dren to swap and test their classifiers elicits collaborative
observations and reflections and promotes experimentation.
Model swapping also exemplifies a core design tenet of
constructionist learning: young learners gain opportunities to
construct personally meaningful objects and to share them
publicly with others [61]. In our study, the children engaged
in their knowledge construction process (“in the head”) as
they actively experimented with their tangible object classi-
fiers (“in the world”), discussing, evaluating, and iteratively
expanding their models with their fellow co-designers. The
iterative nature of the children’s efforts to test and reflect on
new hypotheses also echoes the reflect-imagine-create aspect
of Resnick’s Creative learning spiral [62]. In this way, the
iterative nature of teachable machines is well-aligned with
the process of learning by trial and error observed in Scratch
communities [63]. Moreover, swapping can introduce children
to standard machine learning practices that employ train-
validate-test steps before system deployment.

Enable quick data inspection. Most prior studies exploring
teachable interfaces with children have opted for gesture
recognition tasks [18, 34, 35, 36]. As multivariate time series,
such data can be difficult to visualize, inspect, and contrast. We
suggest that future teachable interfaces include classification
tasks that allow children to quickly inspect the data and
uncover patterns in a modality that is accessible to them e.g.,
image classification for sighted children or texture recognition
for blind children. When reasoning about classification errors
and instability in their models, children in our study often
referred to the notion of similarity in shape and color of
an image and their training set. This affordance for quick
inspection can be further leveraged to incorporate concepts
around variance and bias as well as existing mechanisms
around explainability in teachable interfaces for children.

VI. CONCLUSION

Aligned with more recent efforts for an Al curriculum in
early education, we explore how machine teaching can expose
children to machine learning concepts. We employ co-design
sessions with youth 7-13 years old. Our findings and insights
can contribute to the ongoing discussion on how children
conceptualize, experience, and reflect on their engagement
with machine teaching. We discuss how they can guide the
design of future teachable interfaces to anticipate children’s
tendencies, misconceptions, and assumptions. Our findings are
being incorporated in developing a teachable interface that
exposes children to common barriers for teaching machines.
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