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Abstract

An inexact rational Krylov subspace method is studied to solve large-scale
nonsymmetric eigenvalue problems. Each iteration (outer step) of the rational
Krylov subspace method requires solution to a shifted linear system to enlarge
the subspace, performed by an iterative linear solver for large-scale problems.
Errors are introduced at each outer step if these linear systems are solved approx-
imately by iterative methods (inner step), and they accumulate in the rational

Krylov subspace. In this article, we derive an upper bound on the errors intro-
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duced at each outer step to maintain the same convergence as exact rational
Krylov subspace method for approximating an invariant subspace. Since this
bound is inversely proportional to the current eigenresidual norm of the target
invariant subspace, the tolerance of iterative linear solves at each outer step can
be relaxed with the outer iteration progress. A restarted variant of the inexact
rational Krylov subspace method is also proposed. Numerical experiments show
the effectiveness of relaxing the inner tolerance to save computational cost.
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eigenvalue and eigenvector, generalized Schur decomposition, inexact method, rational Krylov
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1 | INTRODUCTION
Let A € R™" be a large, sparse, and nonsymmetric matrix. In this article, we consider computing a real partial Schur form
AV =V0, €]

where V € R™P has orthonormal columns, and ® € RP*P is quasi upper triangular with 1 X 1 or 2 X 2 diagonal blocks
that contain the p desired eigenvalues of A.

Variants of standard Krylov subspace methods have been widely used for eigenvalue computation (see, e.g., References
1-6), and they are most efficient for approximating dominant eigenvalues or exterior eigenvalues that are not significantly
smaller in modulus than the dominant ones. For eigenvalues in other locations, the rational Krylov subspace method
(RKSM), which was first proposed by Ruhe,” can be more effective. RKSM has been extensively investigated in recent
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years for approximating solutions to matrix equations,®!° actions of functions of matrices,!"1?

eigenvalue problems.!31°
Standard Krylov subspace methods construct subspaces of the form

and algebraic nonlinear

K (A,v0) = span {vo, Avy, A%vy, ... ,A" 1o},
while RKSM generates subspaces
QO (A, V) = gn-1(A) " K (A, 0p)

where gm-1(A) is a polynomial of degree m — 1 with respect to matrix A. Expansion of such a subspace at each step needs
the computation of a shift-invert matrix-vector product of the form (y — 74)~!(aI — A)v, which is equivalent to the solu-
tion of the linear system (y — #A)x = (aI — pA)v. For large-scale problems, especially those arising from discretizations of
PDEs in 3D domains, iterative methods are recommended to solve the linear systems. Errors are introduced at each outer
step from approximate linear solves, and they accumulate in the rational Krylov subspace.

Our goal is to relax the accuracy of the shift-invert matrix-vector product (linear solves) at each rational Krylov step,
without negatively impacting the convergence of RKSM toward the desired invariant subspace. This motivation is the
same as that for the investigation of inexact standard Krylov methods for eigenvalue problems,'¢ but the need for relax-
ing the accuracy of operator-vector products is more natural and consequential in the setting of RKSM for reducing the
computational cost. Similar research for inexact shift-invert Arnoldi’s method can be seen in Reference 17, which uses
one fixed pole at each step, whereas our RKSM uses variable poles. Also in Reference 18, the authors investigated the
influence on the eigenresiduals of RKSM with a fixed uniform tolerance for errors allowed for inner linear solves. In this
article, we have found that the errors allowed for solving the shifted linear system at each rational Krylov step is inversely
proportional to the current eigenresidual norm of the desired invariant subspace. Therefore, the tolerance of iterative
linear solves can be relaxed with the outer iteration progress. More computational cost can be saved at the later stage of
the algorithm, when we are approaching convergence and having a smaller eigenresidual norm. Similar result of inexact
RKSM for solving Lyapunov matrix equations can be found in Reference 19.

The rest of the article is organized as follows. In Section 2, we review the RKSM for solving eigenvalue problems,
and derive the inexact Arnoldi relation and residual expressions. In Section 3, we review the perturbation theorem of
invariant subspaces of matrix pairs and derive a theoretical bound on the norm of the allowable error introduced at each
RKSM step, which guarantees the difference of eigenresiduals between the inexact and the exact method is below a given
tolerance. In Section 4, we introduce a restarted RKSM based on Schur decomposition, and derive similar bounds on the
errors allowed. In Section 5, we provide numerical results to show that the norm of the errors can be allowed to grow
without affecting the convergence of the algorithm. We also compare inexact and exact RKSM to show the advantage of
the inexact method. Conclusions of this article are presented in Section 6.

2 | PRELIMINARIES ABOUT RKSM FOR EIGENVALUE PROBLEMS
2.1 | Exact RKSM

To review the framework of RKSM, we begin with a starting vector v; with |[v; ||, = 1. At step k, we choose parameters
ak, Pr, 7 and i such that |ag|® + [c]® # 0, |yl® + |mk|* # 0, and (ax, fr) # (7k me) up to a constant; then we compute the
shift-invert matrix vector product w = (y,I — mA) ™' (axI — PrA)vg, orthogonalize w against vy, vy, ..., v and normalize into
Vi+1- This can be described by Equation (2):

k+1
(il = mA) (ol — prA)W = Zhikvi- (2

i=1

Repeat the above relation for each index value k = 1, 2, ..., m. Assuming that there is no breakdown, we can get the
Arnoldi relation for RKSM:

AVm+1Em = V1K

—m’

(3)
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where V41 = [V1,V2, ... ,Vne1] contains orthonormal basis vectors of the rational Krylov subspace

m
Qi1 (A, V1) = q(A) " K1 (A, v1) = (H(m - nkArl) span {v,, Av;, A%y, ... ,A™v },
k=1

andH_,F ,and K & R"+X™ are all upper Hessenberg matrices as follows:

H
m ) Em
hm+1,mejn

3k k
fm+1,mem hm+1,m’7mem

l Fy, ] lediag(U17 e ) — diag(ﬂl, ey ﬂm)]

[ K ] lediag(}/l, e Ym) —diag(al,...,am)] . @
&

m+1,me;kn hm+1,m7me>:n

To simplify the parameter configuration, a convenient approach is to set ay = 1, fix = 0, yx = —Sk, and 7, = —1 where
Sk is a pole of the rational Krylov subspace Q11 (4, V1), that is, a zero of g,,(t) = H,Z"zl(yk — nit). With such a choice, the
Arnoldi relation represented in (3) can be written as AV, H, = Viu11 G, , o1

AVyHp, + hm+1,mAvm+1e:<n = ViuGpm + Smhm+1,mvm+le:<m (5)

Gm
Smhm+1,me:<n ’

Approximate eigenvalues and eigenvectors of the matrix A can be obtained from the eigenpairs of the matrix pair
(G, Hm):

where G,, = H,Dy, + Iy, Dy, = diag(sy, ..., Sm), and G, =

Gmyi = AiHpy;.

We call (/11-, Vi H myl-) a Ritz pair of matrix A with respect to the subspace col (V},,); see, for example, References 14,20-22.
Another definition of the Ritz pair for RKSM is given in Reference 6. For inexact rational Arnoldi methods, some refer-
ences prefer to use the explicit projection A,, = V;; AV, instead of the derived projection matrix pair (G, Hn); see, for
example, References 19,23. Our experiments suggest that there is no obvious advantage in the convergence rate by using
the explicit projection in eigenvalue computation by RKSM. Therefore, we use derived projection in both our derivations
and numerical tests.

Assume that we want to find a specific set of p (p < m) eigenpairs of matrix A. Suppose that the corresponding
generalized Schur decomposition®* of (G, Hy,) is (see, e.g., References 24,25):

Gn = ZmSmU;:n Hy, = ZmeU;,, (6)

where Uy, Z,, € R™™ are unitary matrices, and (S,,, T,) is a pair of (quasi) upper triangular matrices of order m. We
partition the above matrices into blocks:

Sll SIZ Tll T12
Un=ut w2 2Zn=|22 2].5n= l(’)” S;’;],andTm= l(’)" Tg;], %
m m

where SII, TI! € RP*P, S22 T22 ¢ Rm-pPX(m=p) gyl 71 e Rm*p U2 72 € R™™=P) and the 1 X 1 or 2 X 2 diagonal blocks
of (S}, T} and (S%2, T2?) define the wanted and unwanted Ritz values, respectively. The partial generalized Schur form
of (G, Hp) of order p is then given by:

GnUL, = H,U}0M, (8)

where @) = (T},})_IS},} € RP* is (quasi) upper triangular, and U}, € R™® has orthonormal columns that are basis
vectors of the invariant subspace of the matrix pair (G,,, Hy,,) corresponding to our desired spectrum of A.
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We are mostly interested in the eigenresidual associated with an approximate partial Schur form of A. Based on the
Arnoldi relation in (3) and partial Schur form in (8), we have

Rp = AV H, Uy = Vien H, Uy O = Vi1 G, Upy = Vinin H, Up @
= Vme Urln + Smhm+1,mvm+le:<nUrln - VmHmUrlne}r} - hm+1,mvm+1e*m [Jrlrze)}rl1
= hm+1,mvm+1efn Urln (SmI - Q}nl) s )
and

IRmll2 = 1hmsrm! 1Vmsrll2

enUn (sl = O0) |, = 1msrml e, Un (sml = OR) (10)

This means that the residual norm associated with the wanted invariant subspace approximation can be obtained easily
from OL}, the last row of UL, Sm, and 41 m. Our primary interest in this article is about the conditions under which this
observation still holds approximately for the inexact method. The process of RKSM for eigenvalue computation is shown
in Algorithm 1.

Algorithm 1. RKSM to solve eigenvalue problems

Input: A € R™",v; € R" and ||v;|| = 1, max iteration step m, tolerance tol > 0.
Output: desired p eigenvalues and the corresponding invariant subspace.
fork=1,2,..mdo
Choose the pole s.
Let iy = (A — sp]) vy, orthogonalize against vy, vy, ..., Vg, and normalize into vy, .
Compute the generalized Schur decomposition of matrix pair (G, Hy) in (6).
if residual ||Rk||, < tol, then
Return the diagonal entries or the eigenvalues of the 2 x 2 diagonal blocks of (T;l)_1 S, in (7) as approxi-
mations to the desired eigenvalues of A, and Vi1 H, Uli as approximation to the desired invariant subspace.
end if
end for

2.2 | Inexact RKSM

For large-scale problems, the shift-invert matrix vector productw = (A — s;I)~'vg cannot be easily computed to high preci-
sion. In practice, as the linear system (A — sp])w = vy is solved approximately by an iterative method, errors are introduced
into the solution w and hence into the basis vectors of the rational Krylov subspaces. Let the residual of this linear solve
be & = v — (A — sp])wi,1. Then (2) turns into:

k+1

Wis = (A —seD)7 (v — &) = ) ha. ()

i=1

From (11), the inexact Arnoldi relation of RKSM is given by:

AVm+1ﬂm +Em = Viur1G

o (12)

where &, = [£1, &, ..., En], and Hy,, G, have the same forms as exact RKSM in (5).
The eigenresidual of the inexact method is defined as:

Ry = AV H, Uy = Vi H, Up O = Vit G, Uy, — EnUy, — Vi H, Up Ot
= N1 mVm1€uUp (Smd = O ) = EnUp,. 13)

The residual R,, in (13) is the true residual of inexact RKSM, and R,, in (9) is the derived residual, which has the same
expression as the true residual of exact RKSM and can be computed very conveniently. However, the derived residual Ry,
for the exact and the inexact method are not equal, since they have different values of entries in H, . Consequently, there
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is no theoretical guarantee that the eigenresiduals of the inexact and the exact method are sufficiently close at any RKSM
step, though they are usually close in practice. We are interested in exploring the difference between these two residuals
for inexact RKSM to see how to keep it sufficiently small, so that we can disregard the impact of the error term =,,. The
difference between the two residuals is:

Ap =Ry — R, =E,U},. (14)

We will explore certain restrictions on Z (1 < k < m) so that Ay is always below a user-specified small tolerance for us
to see similar convergence behavior between the exact and the inexact method.

3 | TOLERANCE RELAXATION STRATEGY FOR INEXACT RATIONAL
KRYLOV

To realize the relaxed accuracy of operator-vector product at later steps of RKSM, what we need is a Ay = E U}, (k < m)
sufficiently small in norm, where k denotes the current step of RKSM and m denotes the maximum steps of RKSM.
To achieve this, it would be sufficient to have either the jth column of & (1 <j < k) small in norm, or the jth entry of
each column of U}, small in absolute value. The main observation to support inexact rational Krylov is that, as RKSM
approaches convergence to the desired invariant subspace, the last k — p entries in each column of U}, typically decrease to
zero in modulus from top to bottom. As a result, the jth column of E; (p < j < k) can be inversely proportional in norm to
the entries in the jth row of U},, which in turn are proportional to the eigenresidual norm of the desired invariant subspace
approximation at step j. This idea is similar to that explored in Reference 16, but there are more complex technical details
to handle in our problem setting.

3.1 | Perturbation theorem for regular pairs

In order to investigate the difference between the true residual and the derived residual, we first introduce the approxi-
mation theorem for regular pairs.

Definition 1. For square matrices A, B € R"™", (4, B) is called a regular pair if there exists A € C such that det(1A — B) #
0. Define the norm ||| on the space of matrix pairs (P, Q), where P, Q € RP*4, as:

I(P, Q)ll» = max {[|P||. [|QllF} - (15)

Based on the ||-||» norm, the difference between regular pairs (A;, By) and (A;, B;), where A1, B; € R?*?and A,, B, € RP*P,
is defined as:

dif [(A1, B1), (A2, By)] = ”(PiQr)l”f 4 I(QA1 + A2P, QB; + BoP)|| . (16)
» F—
Note that dif [(A1, B1) , (A2, B;)] > 0 if and only if the spectra of (41, B;) and (A;, B;) are disjoint.
With the above definition, we can introduce the approximation theorem?®2” for the regular pair.

Theorem 1 (26 (theorem 2.13)). Let X,Y € R™" be nonsingular, partitioned as X = [U X], Y = [Z W], where U,Z €
R"™P. For a regular pair (A, B), set

Voax = lz*]A[UX] _ lAl HA] pepv o
W

Ga A,

;] B [U X] = lﬁ;iﬂ . 17)

Define y = ||(Ga, Gg)ll#, n = |(Ha, Hp)|z, and 6 = dif [(A1, By1) , (A2, B)]. Assume that the spectra of (A1, By) and (A;, By)
are disjoint (6 > 0). Then if

) (18)
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there is a unique (P, Q) satisfying:

2
IP.Qllr <« —=L— <2L, (19)

54Ny 0

such that the column space of U=U+XP is an invariant subspace of (A,B) corresponding to the regular pairs
(A; + H4P, B, + HgP).

Remark 1. If X defined in Theorem 1 is unitary, we can get a new unitary matrix

A

X=[UX]= [(U+XP)(I + PP (X — UP*)(I+P*P)‘§] , (20)

where the column space of U is an invariant subspaces of (4, B). It’s easy to directly verify that X is unitary.

3.2 | Approximation theorem for eigenpairs computation

As explained earlier in Section 3, the fundamental observation backing the theory of inexact RKSM is that the eigen-
vectors of the projected matrix pair (Gy,, Hy,) corresponding to the desired eigenvalues (called “primitive Ritz vectors”
in Reference 28) tend to have a decreasing pattern in their trailing entries (those at the bottom) as the method proceeds
toward convergence. To establish such a pattern rigorously, we need to study the trailing entries of these eigenvectors at
different steps of RKSM.

We can now use the result of Theorem 1 about approximate eigenpairs. Let U2, Zli € R®® (k > p) contain p Schur vec-
tors of (G, Hy), such that Gy, U; = ZiS}Cl, HkU; = Zli T ,11, where S}cl, T ]11 € RP*P are both order-p (quasi) upper triangular.
We extend matrices U; and Zli into unitary matrices X, Y € R™ " as follows:

(o)=L =105 0]
0 0 X5 0 0 W

We partition G,, and H,, into 2 X 2 blocks:

G G H, H
Gm _ k a i Hm _ k a )
Skhir1kere;, Gy hicv1ere;,  Hp

X =

Then, we left multiply Y* and right multiply X to G,, and H,,, respectively:

1)* 1
VGx = (z})" o G Go| U} X
Wl* W2* Skhkrikere; Gy 0 X,

k
_ [ (1) U} (Z1) Gexa + (z;)*GaXZ] _ lAu Au] ’ (22)
Wl*GkU,i+Skhk+1,kW;eler; W*GpX An Ap
—— (z}) o] l Hy Ha] lU; Xl]
Wy Wi |hasere, Hy| [0 X,
_ l (7)) HeU? (Z0) HiX, + (z;)*HaXZ] _ lBu Bu] ' 23)
Wi H U] + hi1Wiee Uy W*Hn X By Bxn

Note that WGy U; = WfZiSil = 0 and W} Hy U; = W;‘Z;Ti1 = 0, thanks to the partial Schur relation Gy Uli = ZiSil,
Hy U; = Zi Til and the structure of the unitary matrices in (21). Also, W, has orthonormal rows, that is, W has orthonor-
mal columns by (21), such that We, is a unit vector in 2-norm. Besides, the Frobenius norm of a rank-1 matrix uw* is

simply ||ul|2||w||,. It follows that
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lailly = ||schieiWseie U | = Ischieil g0y |- (24)
1Bally = | iWsenesU| . = 1wl |02, - (25)

We now define y for the partitioned matrices in (22) and (23) corresponding to that defined in Theorem 1. With the
relation (10), we have

¥ = lI(A21, B[l = max { NJYe ”e,tU,i”z o |kl ”e’tUli”z}

= | Mgk

e Uy |, max (L. Isil} = oxlhinsil |60} | (26)

where wy, is defined as

o = max {1, [sk|} . (27)

Our next step is to quantify # and 6 for our partitioned matrices in (22) and (23). To this end, define ¥; =
[(Zi)* 0] G — SI! [(U;)* 0] € R®™. Given the construction of & in (21), we have [(U;)* 0] X = 0. Then from (22), we
have:

A = (Z}) GeXa + () GaXa = [(Z}) 0] GuX = ¥1X. (28)
Define ¥, = [(Z1)" 0] H — T™ [(U2)" 0] € RP*™, Similarly, from (23):

B = (Z}) HiXi + (Z}) HaXo = [(Z))" 0] HuX = ¥,X. (29)

, 1
Note that S}! = (Z;)*Gk Ul = [(Zli)* 0] G [[’ék ] . Therefore, ¥; can be written as:

0 0

W = [(20) 0] G =51 [(U1)" 0] = [(2))" 0] G (’m - lUé(Ui)* 0] >

1

Since T}' = (Zi)*HkU; = [(Zi)* 0| Hp [l{)’f] , it follows that ¥, can be written as:

wo= ()" O Ho = 11 [(U1)" 0] = [(21)” 0] i (Im - lUi(U;)* 0] >

0 0

From (28) and (29), we can define # and derive an upper bound on this quantity for the partitioned matrices in (22) and
(23), the same way as their counterpart described in Theorem 1:

7 = |[(A12, Ba)llp = max {||¥1X||p, |'¥2X|lr}

Smax{ <f§>,x <lgi>,X]

where the first inequality holds following the definition of the Frobenius norm, and the last equality holds because
1

Ok ,X| is unitary, and the Frobenius norm is invariant under unitary transformations.

Finally, we define 6 for our partitioned matrices as defined in Theorem 1. We note that A;; in (22) can be simplified,
since A;; = (Z;)*GkU; = S;'. Also, from (23), we have By, = (Zi)*HkU; = T}'. Therefore, we define § as:

IPl lPZ

bl

} = max {||¥1lg, I'¥2ll} . (30)

F F

Smk = dif [(A11, B11), (Aza, B)] = dif [(S, T}Y) . (W*GuX, W*H, X)) . (31)

Proposition 1. Consider an m-step RKSM, which generates the Arnoldi relation (3), for computing a specific set of p desired
eigenvalues of matrix A € R™". At the kth step, where p < k < m, let the columns of U; € R®® contain an orthonormal
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basis for a simple invariant subspace of the matrix pair (Gx, Hy) such that Gy U} = ZS}', H U} = Z[ T}, where S;" and T,
are both order-p (quasi) upper triangular and the column space of Z,i € R is corresponding left invariant subspace. Define

the simplified eigenresidual Ry, as:
Ry = hirivise, U, (32)

With the quantities y, wy, n, and &k defined in (26), (27), (30), and (31), respectively, if:

2
mk

dnwy

IRkll2 < ; (33)

~

then there exists a matrix U = [gl], U0 = Iwith U; € RO and U, € R0, such that the columns of U span a simple
2

invariant subspace of (G, Hy,) with

~ wi ||R
|02, < 1Pl where 0 < 1Pl < 22 0R4lz
F 5m,k

Proof. Based on the expression of R, in (32), we have:
IRelly = il ;U -

From (26), if (33) holds, then

*771
yn Okl i), 7 _ oxlRillan _ 1
2 2 = > =
5m,k 5m,k (sm’k 4

By Theorem 1, we conclude that there is a unique (P, Q) satisfying:

k| Pt 1.k | “e*U1|| R
IP. QI < 22— =2 il @ IRl

5m,k 5m,k 5m,k

)

A i 1
such that U = [gl] = < [[(])k ] + [%] P> (I+PP =3 contains the p right Schur vectors of (Gy,, Hy,) corresponding to the
2

desired spectrum. In addition,

o = v+ o

= ”P(I +PP):

|, < 1IPll2 < IPIlF < P, Q-

Here, we used the fact || Xz||, < ||X]||> = 1, and the inequality ”(I + P*P)_é
value decomposition of P without difficulty. n

, < 1 which can be shown by the singular

Proposition 1 shows that if || R||, satisfies (33), then for any i, k + 1 < i < m,

@i [ Ryll

e;U
5m,k

(34

|, <[22, < nPie <2
2 2

The definition of the simplified eigenresidual R,, in (32) is slightly different from the derived residual R,, in (9) up to
a matrix factor of s,,] — @} . We used R,, instead of R,, in Proposition 1 to simplify the discussion of the impact of the
extra factor s,,] — @}, which may yield an excessively stringent relaxation estimate in practice for RKSM. Based on the
definition of R, in (32), it can be easily acquired once the mth RKSM step is completed. Both ||R||, and ||Rk||, tend to
zero with the outer iteration progress of RKSM, if the algorithm converges to the desired invariant subspace. Therefore,
[[Rk|l, can be a monitor for the convergence of RKSM.
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We have just established a critical foundation for inexact RKSM, namely, if —= is bounded from above, the trailing

mk

entries of the wanted eigenvectors of (G, Hy) indeed have a decreasing pattern as || R||, — 0 with step k, that is, as RKSM
proceeds to convergence towards the desired invariant subspace of A.

3.3 | Error bounds for inexact RKSM solving eigenvalue problems

As shown in (12), if the linear operator at each step is not applied exactly, the Arnoldi relation from RKSM involves a
matrix of errors accumulated at the accomplished steps. If the norm of A, in (14) is sufficiently small, we can conclude
that the difference between the true and the derived residuals remains small.

The following theorem shows that if the norm of the error introduced at each step of RKSM is properly bounded,
inexact RKSM can deliver the true eigenresiduals of the desired invariant subspace that are close to the derived
eigenresiduals.

Theorem 2. Assume that inexact RKSM is used for computing p eigenpairs of the matrix A, and m (m > p) steps are taken
such that the Arnoldi relation (12) holds. With the quantities Ry, &, Ry, wk, 1, Smi, and R, defined in (9), (11), (13), (27),
(30), (31), and (32), respectively, given any € > 0, assume that for each step k (1 < k < m),

5m.k—le
el = § 2ot lRedl:

=, otherwise.
m

. 5
if k>pand [|[Rell2 < 3 Cjkjl, (35)
Then

lAmll, = ”Rm _Rmnz <e

Proof. When k > p, the simplified eigenresidual at the end of step k —1 of RKSM can be written as ||Rk-1]|, =
U;_l “ , where U;_l e R*DXP contains the desired Schur vectors of (Gi_1, Hx_1). Assume that Q is the sub-

2

5

set of {1,2, ... ,m} such that for each k € Q, k > p and ||Ry_1||, < 2L, and Q, is the complement of ;. With the
Wy

bound on §k given in (35) and the conclusion (34) as a result of Proposmon 1, we have from (14):

m
1
IZ:ke;:Um < Y l&
k=1 keQ,

Omk-1€ ‘ €
<Y U]+ X5
& 2moien [Riall; ? ea,™M

Omik-_1€ i1 || Ri— €|Q €|Q
Z k-1 2k1“k1”2+2£=|1|+|2|=
2my-1 || Ri-1ll, Omje—1

[Amll, = “EmUrlnuz =

1 1
e Unl,+ 2 Nl |ecUn|,
keQ,

*r7l
ekU’"”z

m m m

keQ, keQ,

The proof is established. u

Note that 6,1 depends on G,, and H,,, which are not available yet at step k. Therefore, Theorem 2 in its original
form is mostly of theoretical interest. In practice, we need to find reasonable approximations to §,, x—; that are available
at each step k to effectively run inexact RKSM.

3.4 | Evaluation of the difference between two regular pairs

It is impossible to know the exact value of §,, 1 at the kth step from its definition in (31) before finishing all m steps.
Upon completing the (k — 1)th step, we already get the matrix pair (G_1, Hr-1), and we suggest to use it to approximate
Smi—1- Let Xe_1, Vi_1 € REDXE=D be the Schur vectors of (Gx_1, Hx_1), such that

~11

1l
. Gi1 X . H,_, X
yk_le—l(Yk—l = ~22 | yk_lHk—lf\)k—l = ~2 |
0 Gy, 0  Hy,
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where G;lcl_l,lzlllcl_l € RP*P are upper triangular matrices whose diagonal entries define the p desired Ritz values. Then
Smix-1 in (31) can be approximated by

i1 = dif[(é,lf_l,ﬁl,ﬁl_l) <Gk 1,Hﬁ21)] (36)

To approximate &1, the following lemma gives relatively tight lower and upper bounds on §,,_;, such that the
upper and the lower bounds differ only by a factor of 2.

Lemma 1. For two regular pairs (A;,B;) and (A,B;), where A;, B € R™™ and A, B, €R™" and §=

dif[(A1, By) , (A2, By)], we have:
1
Tgmin < > <6< \/Eamin < > s
2

where omin refers to the smallest singular value of the matrix involved.

AT®I, In®A;
Bi®IlL, In®B:

A QL In®A;
B:®L I.®B

Proof. We begin with the first matrix of the pair in the definition of dif (16):

1QAL + AxPlly = lIvec (QA1 + AxP)ll> = || (A} ® L) vee (Q) + (In ® Az vec (P),

VeC(Q)]

[AT &l I ®A2] vec (P)

Similar equation holds for B; and B,. Also, for any vectors vy, v,:

L

V2

2 2
max {|villz, [[v2lla} 2 —=/ llvillz + [[vally =

\/_

o

2

Based on this inequality,

vec (Q) vec (Q)
max {|Q4: + AsPllp, QB + BoPlly) = max{ |[[A; @1, 1 ® A B®n LeB)
vec (P) vec(P) |||,
o1 AT®I, Im®Az| |vec(Q)
V2 |[|B®L In®B:]| |vec(p) 2'
Define M = g% g{: gﬁ ggﬁ] , and then:
5= QA + A;P. QB, + B,P)]l > m|Ve@
0 G (@41 F A42P QB + BaP)lly \/’n(P o= | vee (p) .
= L Omin  ( vee@ > LO'min('/lvl)s
V/212Qlr=1 vec(P) | |1, V2
where the particular [“],ZE ((g)) ] in the second equality is the right singular vector of M up to a scaling factor, corresponding
_ . . vec (Q) _
t0 omin(M). The last inequality holds because vec (P) > 1for ||(P,Q)||r = 1.
2

On the other hand, for any vectors vy, v,:

2 2
max {|lvillz, [[valla} < A/ Hvallz + [vally = ‘

o

2
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Similarly, based on this inequality,

vec (Q)
max {||QA; + A2P||r, [|QB1 + B,P||p} < ||M ,

vec (P) 5

and then

5= inf QA + AP0 + Bl < inf |[M|" Pl = o vee(@
1P QIF=1 IP.Qll»=1 vec (P) 5 IP.OIF=1 vec (P) 5
< V260min(M) max {[[vec (Q)l2, [[Vec (P)l|2} < V20min(M).
The proof is established. u

3.5 | A necessary condition for inexact RKSM to track exact RKSM

In Section 3.3, we derived a sufficient condition for ||&]|, at each step k, to make the difference A,, between the true
residual and the derived residual in (14) smaller than a given tolerance. In this section, we will derive another upper
bound on ||&,41 ||, which is a necessary condition to make ||A,, |, smaller than a given tolerance.

For an m-step RKSM, we notice that || Ay ||, = ||E,Uy,||,» where the columns of Uy, € R™® are partial general Schur
vectors of the projection matrix pair (G, Hy,) in (8). We partition Uy, and Z,, in (6) into 2 X 2 blocks:

Ull U12 le Z12

— | 2l = | m m — |71 2| = |Tm m
Un = [U’" Um] B lum UZZ] » Zm = [Z’" Z’"] B lzn 222] : (7)

m m m m

It follows that the difference ||A,,||, can be divided into two parts:

1Anlly = [[EpUs + &prs oo s nlURL < I1Zpll, + 1, - Enll, | U2 - (38)
Suppose that ||U£11||2 is not small. If ||[&p41. ... . &nl|, is not sufficiently small, then ||Ay|l, may not be small, even if

|E5 ||, = 0. This observation would generate another upper bound on the errors at later steps, for example, ||£,+1||,, which
is necessary (may not be sufficient) to keep [|A,||, small. To this end, we first derive a lower bound on |UZ'||, in the next
theorem, which is similar to theorem 4.1 in Reference 29.

Theorem 3. Let AV Hp + hyi1pAvpiae, + By = Vi Gp + Sphypi pVp+1€;, be a p-step inexact Arnoldi decomposition for RKSM,
where the general Schur form of the matrix pair (Gp, Hy) is Gy = ZpS,U, and Hp = ZpT,U,. Let m — p additional inexact
RKSM steps be performed, giving AV, Hy, 4 Wyt mAVims1 €y, + Em = VinG + Sl mVme1€yy,. Let Ry = hp+1,pvp+1e; Up be
the simplified residual at RKSM step p. Given the generalized Schur decomposition of (Gy,, Hy,) in (6) and partitions in (37),
then

[Ro

> (39
P IRl + 1Gmll-

(]

where Gy, is the operator (X, Y) — Gm(X, Y) : (is&,ﬁx + iYSp, T2X + YTP>, and |Gl = maxy.yyj, =1 |Gm(X, V)l
Proof. The simplified eigenresidual norm at RKSM step p is

”Rp”z = ||hp+1,pvp+1e;Up“z = |hps1p] ||e;§Up||2.

Define

B Up Zy B Gp Gl |Up Zy | GUp—2Z,Sp | 0
Y, =Gn - Sy = . - Sp = ) = . .
0 0 Sphp1pere;  Gp 0 0 Sphp+1.pe1€;Up Sphp+1.pe1e;Up
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Similarly, define:

Y, =H, Up|  |Z T, = H, | H,:,,j Up| % T, = HyU, - Z,T, _ 0 ‘
0 0 hp+1,pele; Hm 0 0 hp+1,pele; Up hp+1,pelel*, Up

1 * _ * —

S =10l = [ peic; U, = s iUy, = IRl

Using the partition of Z,, in (37), and left multiplying Z;, to Y;, we get

We can see that

0 Sphps1p (Zf,})*ele; Uy

ZyY1 = l( ’1”2)* ( ;’;)*] l ] = l e ] (40)
(Z)" (Z32)] [sohp+1peresUp sphp+1p(Z37) e1¢;Up

On the other hand, using the general Schur decomposition of H,,, we get

11 12 11)* 11)*
ZEY, = Z5Gp Up -7z Zp S, = SuUp, Up -7 Zp S, = S S| | (Un) Up| _ (Z’")*ZP S
0 0 0 0 0 s2| [(U2)'U, (Z32) Zp

_ S}nl(Urlnl)*Up"‘S}nz(Urlnz)*Up_ (Zrlnl)*ZpSp 1)
anz(Urlnz)*UP - (Z}nz)*ZpSp .
Using the upper block from (40) and lower block from (41), we have
sy o Sphpﬂ,p(zrznl) ere,Up (42)
mEL T o2y 12)* :
S (Um ) UP - (Zm) ZPSP

Similarly, if we left multiply Z;;, to Y,, we will eventually have

Z5Y, = Ry (Z31) ereUp (43)
m =2 T22 U12 *U _ ZlZ 1<Z T :
m ( m ) p ( m ) PP

We have already shown that ”SLLH = |IY2ll; = ||Rp||,» and since SlYl, Y,, and R, are all rank-1 matrices, their
P 2 P
Frobenius norms are also equal. It follows that:

— —Zn Y

1 1 *
||Rp||2 = max ‘ Yi| LYzl p = max NZm Yallp
S ||p s -

P
< o1 (22) e Up |, + |G (U32) U~ (232)"2)

F
< |[Rpll, ” (Zm) e1|| + Gmllr ” (Un) Up,—( mz)*zp)”r
< 1Rl |22, + NGm - || (U2, 232) . (44)
Note that “ 212 “z “ |1Z5 |, = ||Zai ||, see, for example, Reference 24. It follows that ||Z3} ||, = ||Z3]], < |1 2ol <
” (UR2,Z32) Hr Based on (44), we get
IRoll, < (IRl + IGmllr) [ (U3, 232)]) .
The lower bound on ” (U, Z}2) ”r in (39) is thus established. "

As shown in Theorem 3, there exists a lower bound on ” (Uk2,z32) ”r We are most interested in ||U2||, form = p + 1,

which corresponds to the first RKSM step after each restart. The following lemma shows a lower bound on | U;il “ .
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Lemma 2. With the notation in Theorem 3,
Rl L
o], = @)
1Roll, + Gl €
-1
22 22 1

where 6 = max{ Sp+l_Tp+1 ‘ (S—pSp—Tp> 2}.

Proof. It’s easy to show that SlYl = Y,, and therefore SlZ;knYl = Z»Y,. Based on the lower blocks in (42) and (43), we get
P P

L5z (Ul) U, - L(282)' 2,5, = T3 (UR) U - (22) 21,
P P

-1
* 1 * 1 -1
= @) = (Lsp-12) Ry v -1.) @)
Sp Sp
Let m = p + 1, and it follows that

12 22 22
||Zp+1 “ S Sp+1 Tp+1

)71,

2

[l et

-1
1

=S, —-T
<Sp P p)

Based on the definition of ||-||» norm in (15), we immediately get:

= ‘T>1

| U12
2

22 22
Sp+1 Tp+1 p+1 ||
Sp

2

12 12
i)

, =m0 (75, ) < ol

, and Zlil are column vectors. Together with the lower bound on

H (UR2,Z32) Hr in Theorem 3, the lower bound on || U, ||, is thus established. "

where the last inequality holds because both U!? fon

As shown in Lemma 2, there exists a lower bound on || Uy} |, To make || A, in (38) sufficient small, ||[£ps1, ... Em] |,
cannot be too large. In particular, The following theorem gives an upper bound on ||&y41|,, similar to theorem 4.2 in
Reference 29.

Theorem 4. Given e, > 0, let AV,H), + hpi1 pAvpii€y + Ep = VpGp + Sphpsa pVpr1€), be a p-step inexact Arnoldi relation for
RKSM, where ||Ep||, < e1. Let G, be defined as in Theorem 3, and 6 be defined as in Lemma 2. Then for the next RKSM step,

Rpll, + 1|6
Imﬂms<”ﬂ2”p“m)mﬁ+@ “6)
oI,

is a necessary condition to make ||Ap41 ||, < €, where A,y defined in (38) is the difference between the true and the derived
residuals at the p + 1st step of RKSM.

Proof. Let m = p + 1 for (38). Note that &,,, and U21 are, respectively, a column vector and row vector, so prﬂ frs) “ =

||§p+1||2|| p+1|| . We get

”AP+1”2 - “—'p p+l + ‘fp+1 p+1“ prﬂ p+l|| - H—'pU;Jlrl“

Rl 1
2 ||§P+1”2 HU§+1-1H |‘—‘P”2 ” p+1” = ||§P+1“2 ”Rp” +P”g2p+1” 5 - €1 (47)
2 F
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Note that (Ulﬁl> ‘Up X = ” U;il ”2 = ” U;}rl ”2; see, for example, Reference 24. It follows immediately that (47) is greater
than e if ||&p, > <% 6 (1 + €). Note that the bound (46) on the error at step p + 1 is also inversely
Pll2
proportional to the residual norm ||R, ||, (assuming it is sufficiently small) as the bound in (45) for this step. "

The difference between Theorems 2 and 4 is that the former derived a sufficient condition to make ||Aj,||, < €, while
the later derived a necessary condition to make ||A,1||, < e. To be specific, if we follow the upper bounds on ||&]|,
(1 <k <m)in(35),itis guaranteed that || A, ||, < e.If ||&y41 ||, is greater than the upper bound in (46), we have ||Ap4 ||, >
€, which means that the eigenresidual of inexact RKSM and that of the exact method differ more than the prescribed
tolerance.

4 | RESTARTED RKSM WITH SCHUR DECOMPOSITION

In this section, we consider extending the observation we developed for unrestarted RKSM in Section 3 to the restarted
variant,’>*! which aims at saving storage and orthogonalization cost.

We first provide the formulation of inexact restarted RKSM, with the relationship between the eigenresiduals at the
end of the current cycle and the beginning of the restarted cycle. We assume that p eigenpairs of A are wanted, and
the largest dimension of rational Krylov subspaces used for projection is m (m > p). For our problem setting, we adopt
the widely-used Krylov-Schur restarting.>!> Assume that at the mth step of inexact RKSM, we end up with the Arnoldi
decomposition:

AVIHYD + 0D, AV er + B = VIGY +sUn0 W en (48)
where the superscriptj > 0 denotes the number of restarted cycles.

We apply the partial generalized Schur decomposition® to (G(,Q,Hf,’f ) and get G(,Q U,l,l(i) = Z;U)Si,}(") and H,(fl) U,I,l(i) =

Z;f") ) 7, where U,l,l(i),Z,ln(j) € R™? have orthonormal columns, and (S:nl("), T, ,1,110)) is a pair of (quasi) upper triangular
matrices of order p, whose diagonal entries define the desired Ritz values obtained from (G(,Q, Hgf )

We post-multiply both sides of (48) by U,l,l(i) and obtain

T, Wy 10) S
O3 I()] m = = [y @10 0 m
A [Vm Z, ’vm+1] h(i) o Ul(]') +EnUpn = [Vm L ’vm+1] S(i)h(j) e Ul(j) ’
mYm mYm

m+1,m m - "m+1,m

Then for next cycle of RKSM, it begins with the Arnoldi relation

AVI()Irll)I;I‘l()Hl) + E(i+1) — VU+1)GU+1),

p p+l —p
where
11(j) 11(¢)
H(j+1) — [ Tm ] G(j+1) — [ Sm ]
=P ) el —p ) 1,0) s 7710) |’
hm+1,me:" Um Sm hm+1,mem Um (49)

(+1) _ () 71() () =0+D) _ =0 7710)

Vp+1 - [Vm L vm+1] > = = mUnm -

Since GI(,HD and Hgﬂ) are both already (quasi) upper triangular, if we follow the generalized Schur decomposition in
G+ p7(+1) : : +1) _ (+D) _ (+1) _ ~U+D (+1) _ 7y0+D 0 G+
(6) for (Gp . Hp) ) we immediately get Uy '=2, =1),S, ' =G, ', and T, =H, ".LetR, and R, be the
derived residual corresponding to U,(fl) and UI(,’“) , respectively. Then:

RIV = hl 00 e U UT (s01 =0, ) = h0., ol ent,d (s01 - ©,) = RY. (50)

m+1lm m+1-m m+1.m m+1
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Similarly, the simplified eigenresidual in (32) satisfies:
U+ _ 3,0 (1) 1D 770+ _ 3,0 (1) 1) _ 0
RP hm+1 m m+1 U U hm+1 m m+1emU Rm . (51)

Our next step is to quantify the allowable errors introduced at each RKSM step. Except the first cycle, errors that occur

at each of the m — p steps during the jth cycle are denoted as &V D1 4‘ D427 7000 0 w (> 1). Additional errors are inherited from

the previous cycle, represented by E,, gD Ul(’ Y The algorithm of restarted RKSM is shown in Algorithm 2.

Algorithm 2. Restarted RKSM for eigenvalue computation

Input: A € R™",v; € R" and ||v;|| = 1, max subspace dimension m + 1, max restarts J, tolerance tol>0.
Output: desired p eigenvalues and the corresponding invariant subspace.

Follow Algorithm 1 to go through the first cycle of RKSM; obtain the Arnoldi relation at the end of this cycle
AV,(,BAH;? = Vr(nlLQE;?'
forj=2,3,...,Jdo
Compute the generalized Schur decomposition Gi_l)Urln(i_l) = Z;("_I)Sinl U= and H,(L_I)Urln(i_l) = Z;("_DTE("_D.
Obtain Iig), Qg), and V;}’il from (49) to shrink the dimension of subspace.
fork=p+1,p+2,...,mdo
Choose the pole s(i) at step k.

Letwi,; = (A — S(})I )~!vy, orthogonalize against V(’) and normalize into v¥ ; update G(’) and F(’)

k+1’
Compute the generalized Schur decomposition of matrix pair <G§{’), F;{”)

if ||| < ol then
-1 .
Return the eigenvalues of ( 11(”) Sll{l(’) in (7) as approximations to the desired eigenvalues of A, and

V;’llH (’)Ul(’) as approximations to the desired invariant subspace.
end if
end for

end for

Similar to (14), the difference between the true and the derived eigenresidual of inexact RKSM at the end of the jth
cycle is:

A ==Y (52)
As we did for RKSM without restart, we want to derive a bound on the errors allowed at each rational Krylov step, so
that the inexact restarted RKSM can achieve the desired eigenresiduals sufficiently close to those obtained by the exact
counterpart. To this end, we first present an inequality in linear algebra, then give the main result on inexact restarted
RKSM.

Lemma 3. For matrix A € R™™ (n > m), any matrix Q € R™* (m > k) with orthonormal columns satisfies

k

inf ZIIAQelII2<\/_ Y o2,

xk *Q:
QeR™E,Q"Q i=1

where 61,03, ... ,0k are the k largest singular values of A.

Proof. Assume A has a singular value decomposition A = U % V*, where U € C™", vV € C™m ¥ € C™™ and X isa

diagonal matrix with singular values 01 > 6, > - - - > 0, 0On its diagonal. With W = V*(Q, it’s easy to show that

k
z
inf AQe;||, = inf We;il| -
QE]Rmxk Q*Q= IZ ” Q l||2 WGR’"XI‘,W*W Izl lo] t
2
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The object function is the sum of 2-norm of each column of the matrix [g] W. We assume that the 2-norm of each column

isaj, as, ..., ar. Then

Denote W = [wy, w,, ..wk], then

0

z
l ] W|| = 4/trace (W*E*W) =
F
By using Ky Fan’s Maximum Principle2(p- 24 problem L6.15) '\ye get

Jinf Z||AQel||2 inf Vi Zw 2w, = Vk ZGZ.

Q*QI Ti=1 W*WI

The proof is established. m

Theorem 5. Consider using inexact restarted RKSM for computing a set of p eigenvalues of matrix A € R™", with maximum
subspace dimension m + 1, and maximum cycle J. Let all quantities with superscript j refer to those in the jth cycle previously
defined for the unrestarted RKSM. Given € > 0, assume that forall1 <k <mand1<j </,

50 @ 59 )2
0 —m*_if k> pand “R ” mi-t)
62|, = 3 2=l (53)
2 ¢ .
—, otherwise.
Jm
Let o-Y) > ag) > > o-(’) be the singular values of the error matrix E ”(’) f
s0e
2imoy™ [R],
then
s, = - 2 <.
2 2
Proof. To prove this theorem, it is sufficient to prove that for 1 <j < J,
], = 1% - 2], < 5. 9

which can be shown by mathematical induction. For j = 1, (55) holds directly by Theorem 2. Now assume when j =i > 1,

”A(’)” _”R(” R(’)“ _“—(z)Ul(w” < (56)

e,
J

and we want to show that (56) also holds for superscriptj =i + 1.
O o
By the assumption of the theorem, forj =i+ 1, if R(’“) satisfies ”R(l“) “ ’”k“il) , then from Proposition 1:

o ﬁ(i+1) Ul(i+1) X L
ost = e =7 [+ P )arPey,
0 0 X,
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umH <z+1>||
where 0 < ||P||F < 2 -
mk—1

(G;(Hll), H (HD) corresponding to the desired spectra, respectively. Besides, for any k <[ < m:

2 and U%Y e R™P and Ul(l“) R&Dxp contain the Schur vectors of ( G gt ) and

o [RE],
o] o, <vmy <222 o
Ok
and
[Ik—l ] U(1+1) _ ”U(z+1)” ” 1(z+1) +X,P )(I+P*P)_§ (58)
2

(l+1) (l+1)
P

be specific, note that Q;’“) and ﬂ;*l) in (49) is not an upper Hessenberg matrix. From (50),

5, = o e (-1

m+1l,m

(1+1)

In particular, when k = p + 1, the definition of w, is slightly different from other w, ' with k > p + 1. To

2

(i+1) (i+1) (1) 1) D3, x 7710 ; ;
Based on (49), the (2,1) blocks of H,,"* and G, are h,,_,  eie;, Uy, and s,,h, ", | eie;, U, respectively. Following the
procedure in (24) and (25),

Azl = sy W;elefnU},f””F ISt 1l

m "m+1,m Sm m+1l.m

1G)
m B

)
1Bailly = [, WrerenUpl”| = 3,

m+1.m m+1,m

1(0)
m .

s : i+1 i 1(3i . i+1) . i
Therefore, we can still write y = ||(A21, Ba1)llr = a)g )|h£;)+1’m| e;‘nUm(’)”2 with col(,l )+ = max { 1, |s§n’)| }

2

i i i - GRS
Let Q(l“) beasubsetof {p+1,p+2, ... ,m},such thatforeachk € ng), the condition ||Rl(c])—1 ”2 < 4’”’4(}.} is satisfied

nwe_y

with the cycle number j = i + 1. Also, define Q(Hl) {p+1p+2,..,m}\ Qgi“). Then

) o ) I o noo o
(i+1) _ :(l+1) (i+1) _ :(l+1) p (i+1) (i+1) (i+1)
%mmmemh—m[JMOWn+Zaﬁ%

k=p+1 2
m
2 s
k=p+1

Similar to the proof of Theorem 2, if we refer to (53) and (57), the second term in the last line of (59) can be bounded as
follows:

<%

AR [Ip 0] el
2

% 7y(I+1
el )“2 . (59)

5(z+1) (z+1) H (1+1)H
H O, < e 7 1460577
1
( +1) Zme(lH) ”R(ZH)” 5£rlz+k)1 EQ(ZHI)

i+1 1
em‘;* ., el e(m - p)

Jm Jm Jm

Considering (49), (51), (54), (56), and (58) with k = p + 1, together with Lemma 3, we can bound the first term in the
last expression in (59):
|

g+ [Ip o] ool = (290 (U;’“) + X1P> I+PP): ) (I +XP)

2

p P
=0 7710) 1(1) ot i (@2
< || UM “ +y “ X1P|| < zetvp Zaj 1Pll
j=1
(+D) (i+1) ” (i+1)“
i \/_5 “p Rp 2 _ i p
j€+\/— GtD ) 2 D) =j€+r€.
i i m
2™ R, oo
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Combining the bounds on the two terms in the last line of (59), we get:

+-et+—e=

i, < T2+ ek e = B

This concludes our mathematical induction for (55). n

Similar to the situation for the non-restarted inexact RKSM, it is impossible to know the exact value of 5(’) , in the
Jjth cycle before end of this cycle. For the flI'St cycle, we can follow Section 3.4 for the non-restarted method to evaluate
6. For the jth cycle (j > 1), we can use 6 to approximate 6(’) 1> for any values of k (k < m), so that this quantity is
fixed for the entire jth cycle. To be spemflc at the beginning of the Jjth cycle, we can use the generalized Schur decom-
position of (G(,il Y HI" D) from the last cycle. Let XU=, YU=1 € R™*™ contain the Schur vectors of (G(,L Y HI" D), such

that

~0-1 FrU—1
YIDeGP R0 = lGl ~(Tﬁ] L YU H T = lHl ;1)]
0o & o A

where G(lj_l), H(lj_l) € RP*P are (quasi) upper triangular matrices whose diagonal entries define the p desired Ritz values.
Then 55’; «_, can be approximated by

0 _ gt [(GY_I)’H({_D> ’ (Gg—n’ﬁg—n)] ) (60)

This quantity can be then approximated by the lower bound given in Lemma 1.

5 | NUMERICAL TEST

To support the strategy of relaxing the accuracy for solving the linear system at each RKSM step suggested by Theorem 2
for inexact non-restarted RKSM and Theorem 5 for inexact restarted RKSM, we report numerical experiment results in
this section. .

In all numerical experiments, we assume that the condition ||R||, < == is always satisfied for all k. Actually, if our

desired eigenvalues are well-separated from other eigenvalues, 6,k should not be too small so that this condition can
be satisfied in practice. For the restarted method, we also assume that condition (54) is always satisfied. All experiments
were carried out in MATLAB R2019b in Windows 10 on a laptop with a 16GB DDR4 2400MHz memory, and a 2.81 GHz
Intel dual Core CPU.

5.1 | Compare exact and inexact RKSM with artificial errors

We first show that the convergence of inexact methods can match that of exact methods if we artificially introduce properly
controlled errors to the shift-invert matrix vector product at each step of RKSM. Let us recall that the number of desired
eigenvalues is p, the maximum subspace dimension is m + 1, and the maximum number of restarted cycles is J. For exact
RKSM, the shift-invert matrix-vector product is solved by backslash in MATLAB. For inexact unrestarted RKSM, we still
use backslash for the first p steps, and after that we artificially add a random error term & to the right-hand side of the
linear system at each step based on Theorem 2, which satisfies:

0 k—1€
ll&ll, € ——= (61)

2maoy—1 || Ri-1ll,

where e is the tolerance of the difference between the residuals obtained by the exact and the inexact methods.
In Section 3.4, we have discussed a practical approximation to 6, k-1 by Sm,k_l in (36), which can be computed when
step k — 1 is done. But in practice, it’s not advisable to use Sm,k—l to approximate 8, k-1 when k is small. To be specific,
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when k is small, the spectrum of the projection matrix pair (Gi, Hy) varies with k significantly and cannot be a good
approximation to the spectrum of the original matrix A. Consequently, the value of 6,,;_; defined in (31) and 8,5,
defined in (36) are so different, that it is not reliable to approximate &, x_, by 6,1 at the first few steps of RKSM. In our
test, 6,1 tends to be relative large when k is small, and it usually decreases significantly when k increases. Therefore, we
may let k-1 = i when k is small, then let 6,41 = Sm,k_l when 5m,k—1 becomes stable. In addition, as we use Lemma 1
to compute the approximate value of 6, it takes time to compute the singular values of a large matrix constructed by
Kronecker product, especially when the dimension of subspace is large. Our experience suggests that when the dimension
of subspace k increases to a certain level, 6, x_; tends to become stable. Therefore it’s sufficient to keep 6,,x_1 fixed after
several iterations. In our test, for k > 5p, we fiX k-1 = min,j<sp {Sm J-1 } Also, whenever 6, ,_; in (36) is less than i
it is sufficient to set &y -1 = i
For inexact restarted RKSM, the first cycle can follow the evaluation of 6,, x—; for the non-restarted method. For the
jth cycle (j > 1), we can use 5V in (60) to approximate 6(’) . For each restarted cycle, we begin with shrinking the
dimension of the subspace from m + 1 to ¢ = min{2p,p + 5} by generalized Schur decomposition. We let the dimension
of the subspace right after restart be larger than the number of desired eigenvalues, which makes it more likely that our
desired eigenpairs are kept in the rational Krylov subspace upon restart. We also artificially add a random error term efg)
to the right-hand side of the linear system at each step, which satisfies (see Theorem 5):
. sV e
”57(61)”2 (/r;ik : W |l (62)
2ol [’

We hope that the above configuration helps satisfy the conditions specified in Theorems 2 and 5, so that we can see
the inexact methods converge as rapidly as their exact counterpart.

Example 1. We consider a scaled 2D discrete Laplacian matrix of order 1272 = 16,129 based on standard 5-point
stencils on a square, which is a classical symmetric positive definite (SPD) matrix, and we generate it by the
function “delsq” in MATLAB. This matrix can be written as Ao ®I +1® Ay, where Ay is the 1-D discrete
Laplacian based on the 2nd order centered finite differences, with 2’s on the diagonal, and —1’s on its super-
diagonal and subdiagonal entries. In this example, we perform two experiments to find the smallest eigenvalue
alone and the 3 smallest eigenvalues, respectively. We choose m = 50, and € = 107", To compute the smallest
eigenvalue, we set repeated poles s; = —1, s, = —0.1, and s; =0, and we get the approximate smallest eigenvalue
to be 1.2047 x 1073, Then we set repeated poles s; = 1.5x 1073, and s, =2.5%x 10~ to compute the 3 smallest
eigenvalues.

Figure 1 shows that inexact RKSM can converge within the given tolerance ¢. We also notice that in Figure 1B, as
we compute multiple eigenvalues, there are significant differences between the residuals of exact and inexact meth-
ods at the same step. Theoretically, based on Theorem 2, it only guarantees that the difference between the true and
the derived residuals for inexact RKSM is no greater than e, not the difference between the true residuals for the
exact and the inexact methods. After sufficient number of steps, both methods nearly converge, and they tend to
find the same set of the desired eigenvalues, with similar true eigenresiduals no greater than e in the norm of their
difference.

Restarted RKSM is not considered in this example, since this problem only takes a very small number of steps to
converge.

Example 2. We consider a matrix A € R16388x16388 from the aerofoilA problem. All eigenvalues of A are plotted in Figure 2.
Our test is to find two eigenvalues of matrix A that are closest to the imaginary axis. We set three repeated
poles s; = —1, s, = —0.1, and s; =0, and apply them cyclically for RKSM. For this example, we set m = 100, and
e=10""2
We apply two different strategies for setting the value of §: the first one is to approximate it by using the lower bound
in Lemma 1 on (36), which is denoted by &;; the second one is denoted by

b= damin [ o2 @

at step k, where di_; is the distance between the inverse of desired eigenvalues and the undesired eigenvalues of the
current step. The motivation of using 6, is from our observation of the definition in Figure 3B, and similar approaches
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matrix pairs and also to the norm of those matrices. We find that this strategy works for inexact RKSM in most tests.

For both strategies, when 6 becomes stable, the value of §; is around 3.96 x 1073, whereas the value of §, is around
2.69. As can be seen from Figure 3B, if we increase 6; to the value of 6,, the difference in eigenresiduals between the exact

and inexact methods is still less than the tolerance we set.

For restarted RKSM, we let M = 50,J = 4, and e = 10~!2. We also apply the two different strategies for setting the value

of 6. The result is shown in Figure 4.

Similar with the unrestarted method, inexact restarted RKSM still performs well even though we set a relatively
large value 6 = 6,. To sum up, Lemma 1 provides an approximation to 6, x—; that guarantees near identical convergence
behavior of the exact and the inexact methods, but it might be excessively conservative for nonsymmetric matrices. This

approximation could be relaxed considerably without deteriorating the convergence of the inexact method.
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5.2 | Inexact RKSM with GMRES as inner linear solver

For large-scale practical applications, and those arising from PDEs in 3D domains in particular, iterative methods are
recommended to solve the linear system at each RKSM step. In this section, we demonstrate the behavior of inexact RKSM
where the inner linear systems are solved by GMRES.

Instead of artificially adding an error term as we did in the previous examples, we set ||£||, proportional to the tolerance
for solving linear systems by GMRES at each inner step of RKSM. This value is bounded by (61) and (62) for the unrestarted
and the restarted RKSM, respectively. We set ,, x—1 to be &, in (63).

We test 6 nonsymmetric real matrices, and these matrices are found in the SuiteSparse Matrix Collection.?® Epbl,
Goodwin054, poli3, and aerofoilB have all eigenvalues on the right half complex plane, while the other matrices have
most eigenvalues on the right half complex plane. The matrix in matRE500C is in the form A = M~'K where both M
and K are sparse, but A is not formed explicitly. Our test aims to compute several eigenvalues closest to the imaginary
axis, and they either form complex conjugate pairs or are real eigenvalues. In Table 1, we reports some properties and
parameters setting for each matrix: the matrix size n, the number of desired eigenvalues p, the maximum dimension of
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TABLE 1 Information and parameters setting for test problems

Problem Size n P {M,J} Cyclic poles Preconditioner Tol

epbl 14734 5 {70,1} 0,-0.01,-0.1 ILUTP, 1073 10713
Goodwin054 32510 5 {70,1} -1074,-1073,-1072 ILUTP, 1072 10712
big 13209 5 {70,1} 0,-10,-100 ILUTP, 103 10713
poli3 16955 20 {70,4} 0,-0.1,-1 ILUTP, 103 10713
aerofoilB 23560 20 {70,5} 0,-1,-10 ILUTP, 103 10712
matRE500C 22385 20 {70,6} -1,-5,-10 ILUTP, 103 10716

TABLE 2 Performance of the exact and the inexact unrestarted RKSM

Time (s) GMRES iteration counts
Problem Exact Inexact Exact Inexact RSKM steps
epbl 9.10 2.88 2383 831 61
Goodwin054 36.71 22.92 3625 2231 64
big 11.04 4.18 2585 914 49

TABLE 3 Performance of the exact and the inexact restarted RKSM

Time (s) GMRES iteration counts
Problem Exact Inexact Exact Inexact RSKM steps
poli3 46.03 8.91 11689 2015 191
aerofoilB 59.83 37.31 6142 3790 225
matRE500C 766.21 602.81 19927 10375 273

approximation subspace M, the maximum restarted cycle J(J = 1 for unrestarted RKSM), cyclic poles for RKSM, and the
residual tolerance.

We use the right-sided preconditioned GMRES(m) as the inner linear solver of RKSM for nonsymmetric linear sys-
tems. The maximum dimension of the subspace for GMRES is set to be mjye; = 70 and the maximum number of GMRES
restart cycles is set to be Jinner = 20. We use incomplete LU factorization with threshold and pivoting (ILUTP) precondi-
tioners34(section 10.4.4,p.327) “and Table 1 also reports the drop tolerance for ILUTP preconditioners. To simulate the behavior
of the “exact” RKSM with iterative inner linear solves, we set the tolerance of GMRES to be 10 times smaller than the
bound i in (35) and ]%[ in (53). A tuned preconditioner is used reduce the number of inner iterations in different eigen-
value algorithms; see, for example, References 17,29,35,36. We have tested the tuned versions of ILU preconditioners
based on these references, and found that it does not decrease the number of inner iterations in general. Therefore, we
did not use tuned preconditioners in the following tests.

For the first three problems, we use the exact and the inexact unrestarted RKSM, and record runtime and the total
number of GMRES iterations for all methods. The results are summarized in Table 2.

For the last three problems, we use the exact and the inexact restarted RKSM, and the results are summarized in
Table 3.

From the results in Tables 2 and 3, inexact methods need less time to converge, because they require less accurate
GMRES linear solves and hence fewer GMRES steps. If the direct solve of linear system is costly, it would be better to use
inexact RKSM for eigenvalue computation.

To understand how inexact methods save the computation time, we take an example of Goodwin054. The con-
vergence of both methods in this example is shown in Figure 5. We can see that as we relax the tolerance of
inner linear system solves with outer iteration progress, the number of GMRES iteration decreases. In Table 4, we

9SUDII'T suOWWO)) AAREAI) d[qedr|dde ayy Aq pauIaA0S 21e SAONIE V() (AN JO I[N 10} ATeIQIT UHUQ AJ[IA UO (SUORIPUOD-PUB-SWLID)/ WO A1m ATeIqIau[uo//:sdny) suonipuo) pue swid ], oyl 39S “[2707/01/67] U0 Areiqry uiuQ Ad[IM ‘LEFT BIW/Z001 01/10p/wod Ko Areiqrjaur[uoy/:sdpy woyy papeorumod ‘S ‘20T ‘90516601



XU AND XUE 23 of 25
WILEY
100 F . 4000
</ 3500 - 1
Pt
1
h,
i @ 3000 1
g s N 5
o 1071 / ] 8
£ —Exact RK AV S 2500 - ]
5 v
2 —-==Inexact RK % — Exact RK
2 el S 2000 - . 1
8 -——ligll, g —-—-Inexact RK -~
c -~ CD "
N B € ./ w1500 - 1
b 1070 U il <
Y% =
YA S 1000 - ]
“““““““““““““““““““““ ‘\/"
VAW \/
B _’/A\// \‘/ vy 500 |- ]
10.15 | | | | | | 0 | | | | | |
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Number of iterations Number of iterations

FIGURE 5 Performance of exact and inexact RKSM for Goodwin054 problem

TABLE 4 Itemized computation time (s) for Goodwin054

Item Exact Inexact
Preconditioner construction 2.66 2.67
GMRES 33.00 19.23
Orthogonalization (outer step) 0.26 0.24
Total time 36.71 22.92

record the computation time for the processes of constructing preconditioners, applying GMRES, and orthogonal-
ization for RKSM new basis vectors, all of which are majority of time consumption processes for RKSM. We can
see that in this example, applying GMRES takes majority of time. With the inexact method, the total computa-
tion time is saved significantly. In this example, inexact RKSM only take 62.42% of the time used by the exact
method.

6 | CONCLUSION

In this article, we studied inexact RKSM and inexact restarted RKSM for eigenvalue computation. For large-scale prob-
lems, errors are introduced by iterative solutions of the inner linear systems at each RKSM step to enlarge the rational
Krylov subspaces. We reviewed the invariant subspace perturbation result and derived a theoretical upper bound on
the norm of allowable errors in the shift-invert matrix-vector product at each RKSM step in an effort to keep the
convergence behavior of inexact RKSM similar to that of exact RKSM. Since the theoretical bound is inversely pro-
portional to the current eigenresidual norm, it is possible to relax the tolerance of inner linear system solves with
the outer iteration progress. Numerical experiments show that inexact methods have similar convergence to exact
methods, but the former entails lower computational cost thanks to the relaxed accuracy for solving the inner linear
systems.

CONFLICT OF INTEREST
This study does not have any conflicts to disclose.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ASUDOI'T SuOWWO)) AAREAI) d[qedr|dde oy Aq pauIaA0S 21e SAONIE V() (ASN JO I[N 10} ATeIqIT AUHUQ AJ[IA UO (SUORIPUOD-PUB-SWLIY/ WO A[1m" ATeIqIauI[uo//:sdny) suonipuo) pue swid ], oyl 39S “[2702/01/62] uo Areiqry duiuQ Ad[IM ‘LEFT BIW/Z001 01/10p/wod KapimAreiqriaur[uoy/:sdyy woyy papeoumod ‘S ‘20T ‘90516601



24 of 25 Wl LEY XU AND XUE

ORCID
Shengjie Xu ‘© https://orcid.org/0000-0003-2025-4043
Fei Xue © https://orcid.org/0000-0002-2491-9359

REFERENCES

1.

AN

~

10.

11.

12.

13.
14.

15.

16.

17.
18.

19.
20.

21.
22.
23.
24.

25.

26.
27.
28.
29.

30.

31.

32.

33.

34.
35.

Lanczos C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J Res Nat Bur
Stand. 1950;45:255-82.

Saad Y. Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices. Linear Algebra Appl.
1980;34:269-95.

Sorensen DC. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J Matrix Anal Appl. 1992;13(1):357-85.

Wu K, Simon H. Thick-restart Lanczos method for large symmetric eigenvalue problems. SIAM J Matrix Anal Appl. 2000;22(2):602-16.
Stewart GW. A Krylov-Schur algorithm for large eigenproblems. STAM J Matrix Anal Appl. 2001;23(3):601-14.

Bai Z, Demmel J, Dongarra J, Ruhe A, van der Vorst H, editors. Templates for the solution of algebraic eigenvalue problems: a practical
guide. Volume 11 of software, environments, and tools. Philadelphia, PA: Society for Industrial and Applied Mathematics (STAM); 2000.
Ruhe A. Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl. 1984;58:391-405.

Druskin V, Knizhnerman L, Simoncini V. Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation.
SIAM J Numer Anal. 2011;49(5):1875-98.

Druskin V, Simoncini V. Adaptive rational Krylov subspaces for large-scale dynamical systems. Systems Control Lett. 2011;60(8):546-60.
Benner P, Saak J. Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: a state of the
art survey. GAMM-Mitt. 2013;36(1):32-52.

Giittel S. Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection. GAMM-Mitt.
2013;36(1):8-31.

Druskin V, Lieberman C, Zaslavsky M. On adaptive choice of shifts in rational Krylov subspace reduction of evolutionary problems. SIAM
J Sci Comput. 2010;32(5):2485-96.

Jarlebring E, Voss H. Rational Krylov for nonlinear eigenproblems, an iterative projection method. Appl Math. 2005;50(6):543-54.
Giittel S, Van Beeumen R, Meerbergen K, Michiels W. NLEIGS: a class of fully rational Krylov methods for nonlinear eigenvalue problems.
SIAM J Sci Comput. 2014;36(6):A2842-64.

Van Beeumen R, Meerbergen K, Michiels W. Compact rational Krylov methods for nonlinear eigenvalue problems. SIAM J Matrix Anal
Appl. 2015;36(2):820-38.

Simoncini V. Variable accuracy of matrix-vector products in projection methods for eigencomputation. SIAM J Numer Anal.
2005;43(3):1155-74.

Freitag MA, Spence A. Shift-invert Arnoldi’s method with preconditioned iterative solves. STAM J Matrix Anal Appl. 2009;31(3):942-69.
Lehoucq RB, Meerbergen K. Using generalized Cayley transformations within an inexact rational Krylov sequence method. SIAM J Matrix
Anal Appl. 1999;20(1):131-438.

Kiirschner P, Freitag MA. Inexact methods for the low rank solution to large scale Lyapunov equations. BIT. 2020;60(4):1221-59.

Van Beeumen R, Meerbergen K, Michiels W. A rational Krylov method based on Hermite interpolation for nonlinear eigenvalue problems.
SIAM J Sci Comput. 2013;35(1):A327-50.

Ruhe A. Rational Krylov: a practical algorithm for large sparse nonsymmetric matrix pencils. STAM J Sci Comput. 1998;19(5):1535-51.
Ruhe A. Rational Krylov algorithms for nonsymmetric eigenvalue problems. II. Matrix pairs. Linear Algebra Appl. 1994;197:283-95.
Giittel S. Rational Krylov methods for operator functions [PhD thesis]. Technische Universitit Bergakademie Freiberg; 2010.

Golub GH, Van Loan CF. Matrix computations. 3rd ed. Baltimore, Maryland: Johns Hopkins Studies in the Mathematical Sciences. Johns
Hopkins University Press; 1996.

Demmel J, Kégstrom B. The generalized Schur decomposition of an arbitrary pencil A — AB: robust software with error bounds and
applications. I. Theory and algorithms. ACM Trans Math Softw. 1993;19(2):160-74.

Stewart GW, Sun JG. Matrix perturbation theory. Boston, MA: Computer Science and Scientific Computing. Academic Press, Inc; 1990.
Stewart GW. On the sensitivity of the eigenvalue problem Ax = ABx. STAM J Numer Anal. 1972;9:669-86.

Stewart GW. Matrix algorithms. Volume II. Eigensystems. Philadelphia, PA: Society for Industrial and Applied Mathematics (STAM); 2001.
Xue F, Elman HC. Fast inexact implicitly restarted Arnoldi method for generalized eigenvalue problems with spectral transformation.
SIAM J Matrix Anal Appl. 2012;33(2):433-59.

Mehrmann V, Schroder C, Simoncini V. An implicitly-restarted Krylov subspace method for real symmetric/skew-symmetric eigenprob-
lems. Linear Algebra Appl. 2012;436(10):4070-87.

Sorensen DC. Implicitly restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations. In: DE Keyes, A Sameh &
V Venkatakrishnan, eds. Parallel numerical algorithms (Hampton, VA, 1994). ICASE/LaRC Interdisciplinary Series in Science and
Engineering. Volume 4. Dordrecht: Kluwer Academic Publishers; 1997. p. 119-65.

Bhatia R. Matrix analysis. Graduate Texts in Mathematics. Vol 169. New York, NY: Springer-Verlag; 1997.

Davis TA, Hu Y. The university of Florida sparse matrix collection. ACM Trans Math Softw. 2011;38(1):1:1-1:25.

Saad Y. Iterative methods for sparse linear systems. 2nd ed. Philadelphia, PA: Society for Industrial and Applied Mathematics; 2003.
Freitag MA, Spence A. A tuned preconditioner for inexact inverse iteration applied to Hermitian eigenvalue problems. IMA J Numer Anal.
2008;28(3):522-51.

QSUDOIT SUOWWO)) AANEAI)) d[qearjdde oy) Aq pauIoA0T a1e SOILIE () SN JO I[N 10§ ATRIqIT AUIUQ AS[IA UO (SUONIPUOD-PUB-SWLIA)/W0d AIM" ATeIqijourjuo//:sdiy) suonipuo)) pue sud ], oy 998 “[7202/01/67] uo Areiquy auruQ A3[IA ‘L EHZ BIU/Z001 0 1/10p/wod Ka[imAreiqijaur[uoy/:sdyy woly papeojumod ‘S ‘220z ‘90516601


https://orcid.org/0000-0003-2025-4043
https://orcid.org/0000-0003-2025-4043
https://orcid.org/0000-0002-2491-9359
https://orcid.org/0000-0002-2491-9359

XU AND XUE Wl LEY: 25 0f 25

36. Robbé M, Sadkane M, Spence A. Inexact inverse subspace iteration with preconditioning applied to non-Hermitian eigenvalue problems.
SIAM J Matrix Anal Appl. 2009;31(1):92-113.

How to cite this article: Xu S, Xue F. Inexact rational Krylov subspace method for eigenvalue problems. Numer
Linear Algebra Appl. 2022;29(5):e2437. https://doi.org/10.1002/nla.2437

QSUDOIT SUOWWO)) AANEAI)) d[qearjdde oy) Aq pauIoA0T a1e SOILIE () SN JO I[N 10§ ATRIqIT AUIUQ AS[IA UO (SUONIPUOD-PUB-SWLIA)/W0d AIM" ATeIqijourjuo//:sdiy) suonipuo)) pue sud ], oy 998 “[7202/01/67] uo Areiquy auruQ A3[IA ‘L EHZ BIU/Z001 0 1/10p/wod Ka[imAreiqijaur[uoy/:sdyy woly papeojumod ‘S ‘220z ‘90516601


https://doi.org/10.1002/nla.2437
https://doi.org/10.1002/nla.2437
https://doi.org/10.1002/nla.2437

	Inexact rational Krylov subspace method for eigenvalue problems 
	1 INTRODUCTION
	2 PRELIMINARIES ABOUT RKSM FOR EIGENVALUE PROBLEMS
	2.1 Exact RKSM
	2.2 Inexact RKSM

	3 TOLERANCE RELAXATION STRATEGY FOR INEXACT RATIONAL KRYLOV
	3.1 Perturbation theorem for regular pairs
	3.2 Approximation theorem for eigenpairs computation
	3.3 Error bounds for inexact RKSM solving eigenvalue problems
	3.4 Evaluation of the difference between two regular pairs
	3.5 A necessary condition for inexact RKSM to track exact RKSM

	4 RESTARTED RKSM WITH SCHUR DECOMPOSITION
	5 NUMERICAL TEST
	5.1 Compare exact and inexact RKSM with artificial errors
	5.2 Inexact RKSM with GMRES as inner linear solver

	6 CONCLUSION

	Conflict of interest
	DATA AVAILABILITY STATEMENT
	ORCID
	References

