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ABSTRACT8

The past decade has seen a dramatic increase of practical applications of the microwave gyrosyn-9

chrotron emission for plasma diagnostics and three-dimensional modeling of solar flares and other10

astrophysical objects. This break-through turned out to become possible due to apparently minor,11

technical development of Fast Gyrosynchrotron Codes, which enormously reduced the computation12

time needed to calculate a single spectrum, while preserving accuracy of the computation. However,13

the available fast codes are limited in that they could only be used for a factorized distribution over14

the energy and pitch-angle, while the distributions of electrons over energy or pitch-angle are limited15

to a number of pre-defined analytical functions. In realistic simulations, these assumptions do not16

hold; thus, the codes free from the mentioned limitations are called for. To remedy this situation, we17

extended our fast codes to work with an arbitrary input distribution function of radiating electrons.18

We accomplished this by implementing fast codes for a distribution function described by an arbi-19

trary numerically-defined array. In addition, we removed several other limitations of the available fast20

codes and improved treatment of the free-free component. The Ultimate Fast Codes presented here21

allow for an arbitrary combination of the analytically and numerically defined distributions, which22

offers the most flexible use of the fast codes. We illustrate the code with a few simple examples.23
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1. INTRODUCTION26

Radiation produced by moderately relativistic electrons gyrating in the ambient magnetic field,27

commonly called gyrosynchrotron (GS) emission, makes a dominant contribution to the microwave28

emission of solar and stellar flares and is important in other astrophysical objects. This emission29

process is well understood theoretically; the exact formulae for the emissivities and absorption coef-30

ficients (Eidman 1958, 1959; Melrose 1968; Ramaty 1969) are broadly applicable for arbitrary con-31

ditions provided that the magnetic field changes in space only smoothly (otherwise, if the magnetic32

field contains sharp changes, a different kind of emission, diffusive synchrotron radiation, is produced,33

Fleishman 2006a; Li & Fleishman 2009) and no quantum effect is important. The problem with those34

exact formulae is that they are extremely slow computationally, especially, when high harmonics of35

the gyrofrequency are involved. The computation speed often matters, but becomes critical in two36

practically important cases. One of them is three-dimensional (3D) modeling when emission in many37

(up to a few hundred thousand) elementary model volumes (voxels) has to be computed (Nita et al.38

2015). Another one is the model spectral fitting, when multiple trial spectra are computed to identify39

a theoretical spectrum that best matches the observed one (Fleishman et al. 2020). The solution40

to this problem was obtained by development of Fast GS Codes by Fleishman & Kuznetsov (2010)41

following Petrosian (1981) and Klein (1987).42

The development of the Fast GS Codes enabled a break-through in massive 3D modeling of the43

microwave emission from solar (e.g., Fleishman et al. 2016, 2017; Gordovskyy et al. 2017; Kuroda44

et al. 2018; Fleishman et al. 2018; Gordovskyy et al. 2019; Motorina et al. 2020; Fleishman et al.45

2021b) and stellar (Waterfall et al. 2019, 2020) flares. Most of these studies employed a dedicated46

modeling tool, GX Simulator (Nita et al. 2015, 2018), designed specifically to simulate emissions from47

solar flares and active regions (Fleishman et al. 2021a). A limitation of the Fast GS Codes (Fleishman48

& Kuznetsov 2010) and, thus, of the GX Simulator, is in the allowable distribution function of the49

nonthermal electrons. The codes assumed a factorized distribution over the energy and the pitch-50

angle, where the user might select from several predefined analytical options. Although this was51

sufficient for many practical applications, such an approach cannot account for the whole variety of52

cases relevant to the physics involved in the particle acceleration and transport in solar flares.53

New microwave imaging spectroscopy data (e.g., Gary et al. 2018) and new numerical simulations54

(e.g., Arnold et al. 2021) call for a more general treatment free from the mentioned limitation.55

Specifically, the ability to compute the GS emission produced by a nonthermal electron distribution56

represented by an arbitrary numerical array is needed. In the general case such array would describe57

a non-factorized anisotropic particle distribution with an arbitrary energy spectrum.58

There are ample evidence that real distributions of the nonthermal particles cannot be properly59

described in a factorized form. This is clear from the fact that a particle isotropisation time depends60

on energy for most of the possible scattering processes—both collisional (due to Columb collisions)61

and collisionless (e.g., due to waves). Thus, even if the electron distribution is somehow created in a62

factorized form, it will immediately become non-factorized due to transport effects.63

Numerical solutions of transport equations naturally come in the form of arrays. Therefore, exten-64

sion of the available fast codes to a more general case of the array-defined distributions is demanded65

by the current state-of-the-art of science.66

This paper describes such a new extension of the fast codes that permits electron distributions to be67

described by an arbitrary numerical array. In addition to the ability to work with an arbitrary array-68
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defined distributions, the new codes also include several new useful features. The current version of69

the fast codes includes all relevant physical processes, which we were able to foresee; thus, we call70

them Ultimate Fast GS Codes.71

2. FEATURES72

Here, we briefly describe the key features implemented in the previous releases of the codes, and73

introduce the new capabilities of the Ultimate Fast GS Codes.74

2.1. Previously implemented features75

The key feature of the fast GS codes is the approximate continuous algorithm to compute the76

gyrosynchrotron emissivities and absorption coefficients for the ordinary and extraordinary electro-77

magnetic modes. This algorithm is described in detail by Fleishman & Kuznetsov (2010); it is based78

on replacing the summation over cyclotron harmonics s by integration over them. After that, the79

expressions for the emissivity and absorption coefficient are reduced to two-dimensional integrals over80

the particle energy and pitch-angle, and integration over pitch-angle is performed using the Laplace81

integration method (Petrosian 1981). High accuracy of this integration is ensured by a close proxim-82

ity of the integrand to the Gaussian function, for which the Laplace method gives the exact result.83

The code provides two slightly different implementations of the continuous algorithm, optimized ei-84

ther for speed or for accuracy. In general, the continuous approximation improves the computation85

speed by orders of magnitude (in comparison to the exact formulae), while providing a reasonably86

high accuracy at high frequencies (at f � fB, where fB = eB/(2πmc) is the electron cyclotron87

(gyro) frequency; e and m are the charge and mass of the electron, respectively, c is the88

speed of light, and B is the magnetic field strength). However, by construction, this algorithm89

does not reproduce the harmonic structure of the emission at low frequencies.90

To remedy the above limitation (if necessary), the code provides the capability to compute the91

gyrosynchrotron emission parameters at low frequencies using the exact formalism by Melrose (1968);92

the boundary frequency, below which the exact computation is applied, is specified by the user (in93

units of the cyclotron frequency). In turn, the exact gyrosynchrotron code can use either the exact94

values of Bessel functions, or the approximation by Wild & Hill (1971), which provides either a95

higher accuracy or a higher computation speed, respectively. The exact gyrosynchrotron formulae96

(at a single frequency) can also be used to obtain correction factors for the fast continuous algorithm,97

which further improves the accuracy of that algorithm.98

Although both the exact gyrosynchrotron formulae and the continuous approximation99

can be applied to arbitrary electron distribution functions, the first implementation of100

the fast code, for simplicity, used only analytical distribution functions specified in the101

factorized form: f(E, µ) = u(E)g(µ), where E is the electron kinetic energy, µ = cosα,102

and α is the electron pitch-angle. The code contains a number of built-in model distributions103

over energy (such as thermal, kappa, power law, double power law, etc.) and over pitch-angle (loss-104

cone, beam-like, etc.) which can be arbitrarily combined to create a diverse (but, as said above, still105

limited) set of two-dimensional electron distributions.106

The code accounts for the contribution of the free-free (FF) emission mechanism, i.e., the emissivity107

(jσ) and absorption coefficient (κσ) for the emission mode σ are computed as jσ = jGS
σ + jFFσ and108

κσ = κGS
σ + κFF

σ . The free-free emission mechanism includes contributions of the electron-ion and109

electron-neutral collisions (the latter may dominate in the chromosphere).110
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The code computes the emission intensity I from an inhomogeneous source by numerical integra-111

tion of the one-dimensional (thus, no radiation scattering is included) radiation transfer equations112

along the line of sight, separately for each frequency.1 For the most part of a line of sight z, away113

from regions with quasi-transverse magnetic field, the electromagnetic emission modes propagate in-114

dependently from each other and with different group velocities (Fleishman et al. 2002), so that the115

radiation transfer equations for these modes have the form116

dIR,L(z)

dz
= jR,L(z)− κR,L(z)IR,L(z), (1)

where the indices R and L refer to the right and left elliptically polarized components, respectively;117

at each location, these components correspond to either ordinary or extraordinary electromagnetic118

mode, depending on the direction of the magnetic field vector relatively to the line of sight. If the119

emission crosses a layer of transverse magnetic field (i.e., where the projection of the magnetic field120

vector on the line of sight changes sign), partial mode conversion can occur, which is described by121

the relations122

IoutR =QTI
in
R + (1−QT)I inL ,

IoutL =QTI
in
L + (1−QT)I inR , (2)

where (Cohen 1960; Zheleznyakov & Zlotnik 1964)123

QT = 2−f
4
T/f

4

, f 4
T =

π2

4c ln 2

f 2
pf

3
B

|dθ/dz|
, (3)

fp = e
√
ne/(πm) is the electron plasma frequency, ne = n0 +nb is the total number density124

of the thermal (n0) and nonthernal (nb) free electrons, and the gradient of the viewing angle125

along the line of sight dθ/dz is computed numerically. The depolarization frequency fT is defined in126

such a way that for f = fT we obtain QT = 0.5 and the emission exiting the transverse magnetic field127

layer becomes unpolarized regardless of the emission polarization before that layer. In addition to the128

above formalism (which we call “exact” coupling), the code implements, for the testing, the “weak”129

(QT ≡ 0) and “strong” (QT ≡ 1) coupling modes (equivalent to f � fT and f � fT, respectively).130

2.2. New capabilities131

The key enhancement of the Fast GS Codes reported here is the possibility to use arbitrary electron132

distribution functions. These functions are specified via two-dimensional arrays fij = f(Ei, µj), along133

with the corresponding energy and pitch-angle grids. The values of the distribution function134

f(E, µ) between the grid nodes, as well as its partial derivatives over the energy and135

pitch-angle, are computed using two-dimensional interpolation (see Appendix A). This136

approach allows using non-factorized electron distribution functions (and the distribu-137

tions that cannot be reduced to linear combinations of factorized ones), including, e.g.,138

distributions with energy-dependent anisotropy of the electrons or, complementary, en-139

ergy distributions that depend on the pitch-angle; see examples in Fig. 2 below. The140

1 This capability was not yet available in the first code release by Fleishman & Kuznetsov (2010), while implemented
later, as described, e.g., by Nita et al. (2015).
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gyrosynchrotron emission parameters are computed using exactly the same approach as in the previ-141

ous releases (i.e., either the fast continuous algorithm by Fleishman & Kuznetsov 2010, or the exact142

formalism by Melrose 1968, or a combination of them); The computation speed and the resulting143

accuracy have been found to be comparable to those for similar analytical distribution functions.144

The code retains the full functionality of the previous versions. In particular, it can use either145

array-defined or analytical distribution functions, or a combination of them. In the latter case,146

the gyrosynchrotron emissivities and absorption coefficients are computed separately for the array-147

defined and analytical components of the electron distribution, and then added together: jGS
σ =148

jGS, ana
σ + jGS, arr

σ , κGS
σ = κGS, ana

σ + κGS, arr
σ (the computation speed decreases accordingly).149

Other improvements include a more accurate treatment of the free-free emission component, ac-150

cording to the new formalism by Fleishman et al. (2021c); in particular, there is a possibility to151

choose the element abundances typical of either the solar corona or the chromosphere. The code152

provides the capability to use either a user-defined array of frequencies where the emission is com-153

puted, or an automatically computed (logarithmically spaced) array. The list of built-in analytical154

electron distributions has been expanded. Finally, some bugs have been fixed and several numerical155

algorithms have been optimized.156

There are several practical considerations, which are helpful to take into account while using the157

ultimate codes. For the numerically-defined distributions there is not too much room for improving158

accuracy of the integration (primarily, over energy) because the number and values of integration159

nodes are dictated by the array itself. This means that the user has to take care of the accuracy160

while generating the array from their specific numerical model. In particular, for a power-law like161

distributions, it is preferable that the energy nodes are logarithmically spaced. In this case, the162

trapezoidal integration in the log-space will give the best results (exact in case of a true power-law),163

which is the default integration option of the codes.164

3. CODE IMPLEMENTATION165

The key new capability—the ability of using an arbitrary non-factorized numerical dis-166

tribution function as described above—has been implemented in two entirely independent codes167

that employ either FORTRAN or C++ to cross-validate them similarly to Fleishman & Kuznetsov168

(2010), but we release only one of them, C++, to avoid any confusion of the perspective users. The169

Ultimate Fast GS Codes have been implemented as executable libraries (dynamic link libraries for170

Windows and shared libraries for Linux or MacOS) callable from IDL or Python. The C++ source171

code together with the compiled libraries, complete description, and examples of the use cases are172

available on GitHub2; version 1.0.0 is archived in Zenodo (Kuznetsov & Fleishman 2021). The code173

can compute the emission parameters either for a single line of sight, or for a set of lines of sight174

simultaneously (using the capabilities of multi-processor systems).175

The new codes have been integrated into the 3D modeling and simulation tool GX Simulator176

(Nita et al. 2015, 2018); the new capabilities of this tool and possible applications will be presented177

elsewhere. The Ultimate Fast GS Codes can also be used as a standalone application provided that178

the user properly supplies the necessary input parameters.179

2 https://github.com/kuznetsov-radio/gyrosynchrotron

https://github.com/kuznetsov-radio/gyrosynchrotron


6 Kuznetsov & Fleishman

Figure 1. (a) Time evolution of the electron distribution function. (b) Energy dependence of the particle
scattering time for two scattering models: scattering due to collisions (in a plasma with the electron density of
1010 cm−3 and temperature of 107 K) and scattering on turbulence (with the parameters reported by Musset
et al. 2018); the vertical dotted line marks the low-energy cutoff of the nonthermal electron distribution used
in this work.

4. APPLICATION: ENERGY-DEPENDENT LOSS-CONE DISTRIBUTION180

To illustrate the capabilities of the new codes, we have applied them to a particular type of non-181

factorizable electron distribution. We assume that energetic electrons are injected at large pitch angles182

and have initially a highly-anisotropic “pancake”-like distribution with a sharp peak at α = 90◦.183

Considering the pitch-angle scattering only, we can write the kinetic equation for the distribution184

function as (Fleishman & Toptygin 2013)185

∂f

∂t
=

∂

∂µ

(
Dµµ

∂f

∂µ

)
, (4)

where the angular diffusion coefficient Dµµ has the form186

Dµµ =
ν

2
(1− µ2) (5)

and ν = 1/τ is the scattering rate, which is reciprocal to the isotropization time τ . The distribution187

function changes with time as shown in Figure 1a, and becomes nearly isotropic at t ≥ τ . Since the188

scattering rate ν = ν(E) is energy-dependent, the resulting pitch-angle distribution will be energy-189

dependent, too. For different conditions, this process can produce qualitatively different shapes of190

the electron distribution which are investigated below.191

4.1. Collisional scattering192

Scattering due to collisions with the ambient particles has the following characteristics (e.g., Trub-193

nikov 1965; Fleishman & Toptygin 2013):194

τc =
m2v3

4πn0e4 ln Λ
, ln Λ = ln

8× 106T
√
n0

, (6)

where v is the electron velocity, and n0 and T are the plasma density and temperature,195

respectively; i.e., the low-energy electrons are scattered more efficiently. An example for the energy196
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Figure 2. Electron distribution functions affected by collisions (a) or magnetic turbulence (b).

dependence of the collisional scattering time τc(E) (for n0 = 1010 cm−3 and T = 107 K) is shown in197

Figure 1b.198

We have applied the pitch-angle scattering model (4) with the scattering time given by (6) and199

shown in Figure 1b to an electron distribution function that initially was described by the following200

(factorized) analytical expression:201

f0(E, µ) ∝ E−δ exp

(
− µ2

∆µ2

)
(7)

in the energy range from Emin = 0.1 MeV to Emax = 10 MeV, with δ = 4 and ∆µ = 0.04; this202

function represents a power-law distribution over energy and a symmetric loss-cone (or “pancake”)203

distribution over pitch-angle. We have assumed the integration time to be t = 28.87 s, which is the204

minimum value of the scattering time in the considered energy range, or t = τ(Emin). The resulting205

electron distribution function is shown in Figure 2a. Here, the electron distribution at the low-energy206

cutoff is almost isotropic, while at higher energies it retains a considerable anisotropy (equivalent to207

a loss-cone distribution with ∆µ = 0.552).208

The corresponding microwave spectra for two different viewing angles are shown in Figures 3–4; the209

spectra were computed within the continuous approximation (the harmonic structure210

at low frequencies is ignored). For comparison, we also show the simulation results for factorized211

electron distributions with the same pitch-angle profiles at all energies: the isotropic distribution and212

the loss-cone with ∆µ = 0.552 (which are equivalent to the pitch-angle profiles of the non-factorized213

distribution function in Figure 2a at the low- and high-energy ends of the electron energy spectrum,214

respectively). One can see that the emission parameters for the non-factorized electron distribution215

are between those for the isotropic and loss-cone distributions; at higher frequencies, the emission216

parameters for the non-factorized electron distribution approach those for the loss-cone distribution.217

We note that the mentioned effect is noticeable in strong magnetic fields (B & 1000 G) only; in218
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Figure 3. Intensity and polarization spectra of microwave emission from an electron distribution with
energy-dependent anisotropy (determined by collisions, see Figure 2a); emission spectra for the isotropic
distribution and loss-cone with ∆µ = 0.552 (equivalent to the pitch-angle distributions at the low- and
high-energy cutoffs) are shown, too. Simulation parameters: magnetic field B = 1000 G, thermal electron
density n0 = 1010 cm−3, plasma temperature T = 10 MK, nonthermal electron density nb = 103 cm−3,
viewing angle θ = 30◦.

weaker fields, the deviation from the loss-cone distribution is negligible because only the high-energy219

electrons make a contribution.220

4.2. Scattering on turbulence221

In the presence of magnetic fluctuations, the mean free path λt of energetic electrons is often222

approximated by a power-law dependence on energy (e.g., Musset et al. 2018):223

λt ∝ E−α; (8)

accordingly, the isotropization time is given by224

τt =
λt
v
. (9)

Therefore, the high-energy electrons are scattered more efficiently. Musset et al. (2018) analyzed the225

X-ray and microwave source sizes in the 21 May 2004 flare (which were assumed to be determined by226
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Figure 4. Same as in Figure 3, for the viewing angle of θ = 85◦.

scattering of nonthermal electrons on turbulence) and estimated the corresponding scattering mean227

free path values as λ ' 1400 km at E ' 25 keV and λ ' 100 km at E ' 400 keV; this corresponds228

to a power-law index of α ' 0.95 in Equation (8) if we associate the estimated mean free path229

λ with the turbulent one λt. The energy dependence of the turbulent scattering time τt is shown230

in Figure 1b.231

We have applied the pitch-angle scattering model (6) with the scattering described by Equations232

(8–9) and estimations by Musset et al. (2018) (with the resulting scattering time shown in Figure233

1b) to evolve the electron distribution function described initially by Equation (7) in the energy234

range from Emin = 0.1 MeV to Emax = 10 MeV, with δ = 4 and ∆µ = 0.2 (note that the initial235

angular distribution is wider than in the previous example). We have adopted the integration time236

of t = 1.56 × 10−5 s, which is the minimum value of the scattering time in the considered energy237

range, or t = τ(Emax). The resulting electron distribution function is shown in Figure 2b. Here, the238

electron distribution at the high-energy end is almost isotropic, while at lower energies it retains a239

considerable anisotropy (equivalent to a loss-cone distribution with ∆µ = 0.231).240

The corresponding microwave spectra, again computed within the continuous approxima-241

tion, for two different viewing angles are shown in Figures 5–6; for comparison, we also show the242

simulation results for factorized electron distributions with the same pitch-angle profiles at all en-243

ergies: the isotropic distribution and the loss-cone with ∆µ = 0.231 (which are equivalent to the244
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Figure 5. Intensity and polarization spectra of microwave emission from an electron distribution with
energy-dependent anisotropy (determined by turbulence, see Figure 2b); emission spectra for the isotropic
distribution and loss-cone with ∆µ = 0.231 (equivalent to the pitch-angle distributions at the high- and
low-energy cutoffs) are shown, too. Simulation parameters: magnetic field B = 180 G, thermal electron
density n0 = 1010 cm−3, plasma temperature T = 10 MK, nonthermal electron density nb = 106 cm−3,
viewing angle θ = 30◦.

pitch-angle profiles of the non-factorized distribution function in Figure 2b at the high- and low-245

energy ends, respectively). One can see that the emission parameters for the non-factorized electron246

distribution are again between those for the isotropic and loss-cone distributions; at higher frequen-247

cies, emission parameters for the non-factorized electron distribution approach those for the isotropic248

distribution. The mentioned effect is well visible for the typical coronal magnetic field strengths249

(B ∼ 100 G).250

4.3. Spectral indices251

Figures 7 and 8 demonstrate the spectral indices of microwave emission computed using the above252

models. The spectral index is defined as253

δµ = −f
I

∂I

∂f
. (10)
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Figure 6. Same as in Figure 5, for the viewing angle of θ = 85◦.

The electron distribution functions and other source parameters in Figures 7 and 8 are the same as in254

Figures 3–4 and 5–6, respectively. In all cases, the spectral index computed from the kinetic solution255

differs measurably from those from the factorized approximations.256

In the collision-dominated case (Figure 7), the spectral indices for the non-factorized distribution257

at high frequencies are not much different from those for the loss-cone distribution, because the high-258

energy electrons (which are still anisotropic, despite of collisions) make a dominant contribution to the259

microwave emission. The largest deviation from the loss-cone case occurs at intermediate frequencies260

(slightly above the spectral peak). We also note that, with frequency, for small viewing angles the261

spectral index for the non-factorized distribution approaches that for the loss-cone distribution from262

above, while for large viewing angles the spectral index for the non-factorized distribution approaches263

that for the loss-cone distribution from below.264

In contrast, in the turbulence-dominated case (Figure 8), the spectral indices for the non-factorized265

distribution at high frequencies are more similar to those for the isotropic distribution. At small266

viewing angles, the optically thin spectral index for the non-factorized distribution is smaller (i.e.,267

the spectrum is less steep) than that for the isotropic distribution, although this difference decreases268

with frequency. At large viewing angles, the differences between the considered electron distributions269

become very small but still noticeable: for the non-factorized distribution, the optically thin spectral270

index is larger (i.e., the spectrum is steeper) than those for the loss-cone and isotropic distributions.271
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Figure 7. Spectral indices of microwave emission computed for the same electron distributions (including
the distribution with energy-dependent anisotropy determined by collisions) and source parameters as in
Figures 3–4; the viewing angles are θ = 30◦ (a) and 85◦ (b).

Figure 8. Spectral indices of microwave emission computed for the same electron distributions (including
the distribution with energy-dependent anisotropy determined by turbulence) and source parameters as in
Figures 5–6; the viewing angles are θ = 30◦ (a) and 85◦ (b).

5. DISCUSSION AND CONCLUSIONS272

In this paper we extend our fast GS codes (Fleishman & Kuznetsov 2010) to the case, where the273

distribution of the nonthermal electrons can be defined numerically in the form of two-dimensional274

arrays, describing the dependence of the nonthermal electrons on the energy and pitch-angle. Along275

with this feature, we made several other improvements and additions. In particular, we improved276

treatment of the free-free component following the theory of Fleishman et al. (2021c) and permitted277

arbitrary user-defined list of frequencies where to compute the microwave emission.278

The main development is the ability of the new codes to deal with the numerically defined dis-279

tributions of the nonthermal electrons. This development paves the way for direct use of numeric280

solutions of acceleration/transport equations/codes to compute the observables such as the flux and281

polarization of the microwave emission.282
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Such solutions are now routinely obtained in numerical simulations of various levels of complexity—283

from ‘toy’ models, e.g. within a simple ‘escape time’ approximation (Fleishman 2006b) to sophisti-284

cated models, such as kglobal (Arnold et al. 2021), that take many important physical effects into285

account and permit arbitrary nonfactorized anisotropic distribution of the nonthermal electrons to286

be considered. The new codes offer the computation speed comparable to that of Fleishman &287

Kuznetsov (2010) supporting comparably fast computation of the microwave emission from rather288

large models.289
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APPENDIX373

A. ON THE INTERPOLATION374

The numerically-defined electron distribution function is specified by a 2D array of values fij =375

f(Ei, µj) at the nodes of a regular grid given by E0, E1, . . . , EM−1 and µ0, µ1, . . . , µN−1. To compute376

the gyrosynchrotron emission, we need to know the function values f , together with its derivatives377

over energy f ′E and pitch-angle f ′µ and (for the continuous gyrosynchrotron approximation) the second378

derivative over pitch-angle f ′′µµ, at arbitrary points (E, µ) in the energy-pitch-angle space. For this,379

we use two different interpolation methods.380

2D cubic spline interpolation —The classical implementation of 1D cubic spline interpolation (see,381

e.g., Press et al. 2002) implies that at any interval xi ≤ x < xi+1, the interpolated function f(x)382

is given by a local cubic polynomial depending on the specified function values at the adjacent grid383

nodes f(xi) and f(xi+1) and on the second derivatives of the function at the same nodes f ′′(xi) and384

f ′′(xi+1); the second derivatives at all nodes are computed globally (before the interpolation) using385

the specified function values at the nodes, by solving a system of equations. Accordingly, the first and386

second derivatives of the interpolated function f ′(x) and f ′′(x) are given by local quadratic and linear387

polynomials, respectively. In our code, the 2D spline interpolation is implemented in the following388

way: at the initialization step, before the interpolation, we construct a number of 1D splines, i.e.389

1. For each column of the input array (i.e., for E = Ei), we construct a spline describing the pitch-390

angle dependence of the distribution function f = f(Ei, µ), and compute the second derivative391

values f ′′µµ(Ei, µj) at the grid nodes.392

2. For each row of the input array (i.e., for µ = µj), we construct a spline describing the energy393

dependence of the distribution function f = f(E, µj), and compute the second derivative values394

f ′′EE(Ei, µj) at the grid nodes.395

3. Using the results of the previous step, for each column of the input array, we construct a spline396

describing the pitch-angle dependence of the second derivative of the distribution function over397

energy f ′′EE = f ′′EE(Ei, µ) and compute the fourth derivative values f ′′′′EEµµ(Ei, µj) at the grid398

nodes.399

At the boundaries of the array, the first derivatives of the 1D spline functions are assumed to be400

equal those derived using three-point Lagrange interpolation—this approach was found to provide401

the most accurate results.402

At each point (E, µ), such that Ei ≤ E < Ei+1 and µj ≤ µ < µj+1, the interpolation is performed403

in two steps. Firstly, we interpolate over pitch-angle µ, i.e., compute the values of the distribution404

function and its derivatives at the points (Ei, µ) and (Ei+1, µ):405

1. Using the values f(Ei, µj), f(Ei, µj+1), f
′′
µµ(Ei, µj), and f ′′µµ(Ei, µj+1), and the 1D spline for-406

mulae, we compute the interpolated values of the distribution function f(Ei, µ), as well as of407

its derivatives over pitch-angle f ′µ(Ei, µ) and f ′′µµ(Ei, µ).408

2. Using the values f ′′EE(Ei, µj), f
′′
EE(Ei, µj+1), f

′′′′
EEµµ(Ei, µj), and f ′′′′EEµµ(Ei, µj+1), and the 1D409

spline formulae, we compute the interpolated values of the second derivative of the distribution410

function over energy f ′′EE(Ei, µ), as well as of its derivatives over pitch-angle f ′′′EEµ(Ei, µ) and411

f ′′′′EEµµ(Ei, µ).412
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Similarly, we compute the corresponding interpolated values at E = Ei+1: f(Ei+1, µ), f ′µ(Ei+1, µ),413

f ′′µµ(Ei+1, µ), f ′′EE(Ei+1, µ), f ′′′EEµ(Ei+1, µ), and f ′′′′EEµµ(Ei+1, µ). Then we perform interpolation over414

energy E, i.e.415

1. Using the values f(Ei, µ), f(Ei+1, µ), f ′′EE(Ei, µ), and f ′′EE(Ei+1, µ), and the 1D spline formulae,416

we compute the interpolated values of the distribution function f(E, µ) and of its derivative417

f ′E(E, µ).418

2. Using the values f ′µ(Ei, µ), f ′µ(Ei+1, µ), f ′′′EEµ(Ei, µ), and f ′′′EEµ(Ei+1, µ), and the 1D spline for-419

mula, we compute the interpolated values of the first derivative of distribution function over420

pitch-angle f ′µ(E, µ).421

3. Using the values f ′′µµ(Ei, µ), f ′′µµ(Ei+1, µ), f ′′′′EEµµ(Ei, µ), and f ′′′′EEµµ(Ei+1, µ), and the 1D spline422

formula, we compute the interpolated values of the second derivative of distribution function423

over pitch-angle f ′′µµ(E, µ).424

Linear-quadratic 2D interpolation —In contrast to the previous case, this is a local approach, when the425

interpolated function values are determined by its values at several (four or six) adjacent nodes. The426

distribution function f(E, µ) itself is computed using bilinear interpolation. The derivatives f ′E(E, µ)427

and f ′µ(E, µ) are computed using a linear interpolation in one variable and a Lagrange interpolation428

on three closest points in another variable (where the derivative is needed).429

By default, we use the 2D cubic spline interpolation, because it usually provides a higher accuracy430

and speed (due to a higher smoothness of the interpolated function, the numerical routines converge431

faster). However, due to its global nature, this approach can produce undesirable artifacts (“wiggles”432

on the interpolated function) when applied to distributions with very sharp gradients; in particular, a433

maser instability can occur even if the numerically-defined distribution function has no positive slope434

(but has a very steep negative slope somewhere). In this respect, the linear-quadratic interpolation435

is more stable.436

Another important feature related to interpolation is the grid spacing. Since the electron dis-437

tributions in the solar corona can cover a wide range of energies, logarithmically-spaced grids438

(Ei+1/Ei = const) are usually used to describe them. To improve the interpolation accuracy, in439

such cases we interpolate not the dependence of f vs. E, but the dependence of log f vs. logE; for440

a power-law distribution, both the spline and linear-quadratic interpolation methods provide exact441

results in this case. A disadvantage of this approach is that the distribution function array must not442

contain zero values. We offer a user the opportunity to switch between the log f vs. logE (suitable443

for logarithmically-spaced grids, used by default) and f vs. E (suitable for equidistant grids) interpo-444

lation regimes, according to their model. For the pitch-angle distributions, no variable substitutions445

are used, i.e., an equidistant grid over µ would provide the best results. We note that the values of446

µ should cover the entire range of possible values (i.e., µ0 = −1 and µN−1 = 1); otherwise, extrap-447

olation beyond the specified range can occur during computations, which will reduce the accuracy448

greatly.449




