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ABSTRACT

The binary neutron star (BNS) mass distribution measured with gravitational-wave observations has the potential to reveal
information about the dense matter equation of state, supernova physics, the expansion rate of the Universe, and tests of general
relativity. As most current gravitational-wave analyses measuring the BNS mass distribution do not simultaneously fit the spin
distribution, the implied population-level spin distribution is the same as the spin prior applied when analysing individual
sources. In this work, we demonstrate that introducing a mismatch between the implied and true BNS spin distributions can lead
to biases in the inferred mass distribution. This is due to the strong correlations between the measurements of the mass ratio and
spin components aligned with the orbital angular momentum for individual sources. We find that applying a low-spin prior that
excludes the true spin magnitudes of some sources in the population leads to significantly overestimating the maximum neutron
star mass and underestimating the minimum neutron star mass at the population level with as few as six BNS detections. The
safest choice of spin prior that does not lead to biases in the inferred mass distribution is one that allows for high spin magnitudes

and tilts misaligned with the orbital angular momentum.
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1 INTRODUCTION

The growing catalogue of compact binary mergers detected in
gravitational waves (Abbott et al. 2021b) has provided a novel means
to probe the properties of black holes and neutron stars (Abbott et al.
2021c; Bouffanais et al. 2021; Roulet et al. 2021; Wong et al. 2021;
Zevin et al. 2021). The neutron star mass distribution has the potential
to independently yield information on the dense matter equation of
state (EoS) via the maximum mass, Moy, beyond which the
internal pressure of the neutron star can no longer support it against
gravitational collapse to a black hole (Miller, Chirenti & Lamb 2019;
Chatziioannou & Farr 2020; Landry, Essick & Chatziioannou 2020;
Legred et al. 2021). The value of the maximum mass depends on
the yet-unknown EoS and the neutron star spin (Lasota, Haensel &
Abramowicz 1996), although astrophysical processes may prevent
the formation of neutron stars with mass up to Moy in some
scenarios. The mass distribution can also be used to constrain the
supernova physics leading to neutron star formation (Pejcha, Thomp-
son & Kochanek 2012; Vigna-Gémez et al. 2018), the astrophysical
stochastic gravitational-wave background (Zhu et al. 2013; Abbott
et al. 2018b), the rate of expansion of the Universe (Chernoff & Finn
1993; Finn 1996; Taylor & Gair 2012; Taylor, Gair & Mandel 2012),
and alternative theories of gravity beyond general relativity (Finke
et al. 2021).

* E-mail: sbisco@mit.edu

Initial measurements of the mass distribution of Galactic neu-
tron stars detected electromagnetically suggested that their com-
ponent masses follow a narrow Gaussian distribution (Thorsett &
Chakrabarty 1999), particularly for those found in binary systems
with another neutron star (Ozel et al. 2012; Kiziltan et al. 2013).
More recent measurements reveal that the overall distribution of
neutron star masses, including those found in binary systems with
other types of companions, is broader (Kiziltan et al. 2013; Ozel &
Freire 2016) and better described by a double Gaussian (Antoniadis
et al. 2016; Tauris et al. 2017; Alsing, Silva & Berti 2018; Shao et al.
2020). Including the first binary neutron star (BNS) system observed
in gravitational waves, GW 170817 (Abbott et al. 2017), Farrow, Zhu
& Thrane (2019) also find weak evidence for bimodality in the mass
distribution of the double neutron star population alone.

Gravitational-wave observations of compact binary mergers in-
volving at least one neutron star offer a complementary means to
probe the neutron star mass distribution at extragalactic distances.
While only two BNS systems have been detected in gravitational
waves, these observations already suggest that there may be a
distinction between the Galactic population accessible as pulsars
and the gravitational-wave population (Pankow 2018; Safarzadeh,
Ramirez-Ruiz & Berger 2020; Abbott et al. 2021c; Galaudage et al.
2021). GW190425 represents the most massive BNS system ever
detected, with a total mass five standard deviations away from
the mean of the Galactic population (Abbott et al. 2020b). When
analysing the full population of neutron stars detected in gravitational
waves — including neutron star—black hole mergers (Abbott et al.
2021e) — Landry & Read (2021) find that the masses are consistent
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with being uniformly distributed, although with significantly more
support for high neutron star masses compared with the Galactic
population. Thus, accurate and precise measurements of the neutron
star mass distribution from gravitational-wave observations have the
potential to elucidate the formation channels of these systems.

Such measurements utilize the framework of hierarchical Bayesian
inference (e.g. Mandel 2010; Thrane & Talbot 2019), where the
properties of the population as a whole are determined while taking
into account the uncertainty on the parameters of individual sources
and the selection effect introduced by the varying sensitivity of the
detector to sources with different properties (Loredo 2004; Mandel,
Farr & Gair 2019; Vitale et al. 2020). This requires both unbiased
parameter estimates for individual sources and physically realistic
models for the population and detector sensitivity. One potential
source of systematic error is the correlation between measurements
of the intrinsic parameters describing BNS systems, including the
masses, spins, and tidal deformabilities of the components. Wysocki
etal. (2020) and Golomb & Talbot (2021) recently demonstrated that
unphysical assumptions about the EoS (or tidal deformability) when
measuring the mass distribution independently can lead to biases
with as few as 37 events, emphasizing the importance of fitting these
distributions simultaneously.

The mass ratio and spin components aligned with the orbital angu-
lar momentum are particularly correlated for individual sources (Cut-
ler & Flanagan 1994; Hannam et al. 2013; Berry et al. 2015;
Farr et al. 2016; Ng et al. 2018). This is due to the fact that for
a given chirp mass, M = (mm,)*>/(m; + m,)'/>, binaries with
larger spins aligned with the orbital angular momentum will merge
more slowly (Campanelli, Lousto & Zlochower 2006), while binaries
with more unequal mass ratios will merge more quickly, introducing
a degenerate effect on the waveform. Gravitational-wave analyses of
individual BNS sources typically assume two different priors for the
spin distributions, a ‘low-spin’ prior and a ‘high-spin’ prior (Abbott
et al. 2017, 2020b). The ‘low-spin’ prior restricts the maximum
dimensionless spin magnitude — defined as | x | = ¢|S|/(Gm?), where
S is the spin vector of the neutron star with mass m —to | x| < 0.05,
informed by the spins of Galactic double neutron stars that will merge
within a Hubble time (Lorimer 2008; Lo & Lin 2011; Zhu et al.
2018). The ‘high-spin’ prior extends to |x| < 0.89, as allowed by
available waveform models without making any assumptions about
the consistency of the system with the observed Galactic population.
It is worth noting that pulsars have been observed with spins as high
as |x| < 0.4, even in binary systems (Hessels et al. 2006).

In this work, we demonstrate that mismodelling the spin distribu-
tion of BNSs can lead to a bias in the recovered mass distribution.
We find that for a population of sources with moderate aligned
spins extending out to |x| < 0.4, using individual-event mass es-
timates obtained with the low-spin prior without simultaneously
fitting the spin distribution hierarchically leads to significant bias
in both the inferred mass ratio distribution and the maximum
mass. Conversely, in the case of a low-aligned-spin population with
|x] <0.05, the inferred mass ratio distribution under the high-
spin prior is also biased, although this effect can be ameliorated
by allowing for the spins to be misaligned with the orbital angu-
lar momentum. In Section 2, we describe our methodology and
simulated BNS populations. In Section 3, we present the results
of our hierarchical inference and conclude with a discussion of
the implications of our findings in Section 4. We also include a
demonstration of the importance of obtaining unbiased inferences
for individual sources via the fallibility of the commonly used
‘probability—probability plot’ as a test of sampler performance in
Appendix A.
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2 METHODS

In addition to the component masses, spins, and tidal deformabilities,
quasi-circular BNS mergers are characterized by seven extrinsic
parameters, including the distance, sky location, time of coalescence,
and inclination angle between the orbital angular momentum and
observer line of sight. We simulate two populations of BNS systems
with distinct spin distributions. Both have spins aligned with the
orbital angular momentum drawn from the implied distribution on
X, assuming that the magnitudes are distributed uniformly on [0,
X max | and the directions are isotropic. The first population allows for
medium spins consistent with the maximum observed neutron star
spin (Hessels et al. 2000), xmax = 0.4, while the second population
is restricted to x max = 0.05, following the observed spins of Galactic
double neutron stars (Lorimer 2008; Lo & Lin 2011). The mass
distribution is chosen based on Farrow et al. (2019); the mass ratio
is drawn from a narrow truncated Gaussian with mean p = 1, width
o = 0.1, and lower limit g, = 0.4. The total mass distribution
is a power law with index o = —2.5 between Mo, min = 2.3 Mg
and Mo, min = 4.3 M with low-mass smoothing (see equations 7—
8 of Talbot & Thrane 2018) over §M,, = 0.4 M. We choose to
parametrize the mass distribution in terms of total mass and mass
ratio since the latter is particularly sensitive to correlations with the
spin parameters (Plirrer, Hannam & Ohme 2016; Ng et al. 2018).
For the extrinsic parameters, we assume the sources are distributed
uniformly in comoving volume between luminosity distances of di.
= 10 Mpc and dp. = 300 Mpc and isotropically on the sky. Standard
distributions are chosen for the remaining binary parameters (see e.g.
Romero-Shaw et al. 2020).

For both the populations described previously, we generate 100
events that are detectable with a LIGO Hanford-Livingston detector
network (Aasi et al. 2015) operating at the sensitivity achieved during
the third observing run (Abbott et al. 2018a, 2020a). We consider
an event to be detectable if it is observed with a network optimal
signal-to-noise ratio (SNR) p;‘g; > 9. For each event, we perform
Bayesian parameter estimation to obtain samples from the posterior
probability distributions for the binary parameters, @, describing an
individual BNS system, i:

p0;1d;) o< L(d;10;)mpe(0)), (D

where £(d;|0;) is the likelihood of observing data d; given the binary
parameters 6; (Veitch & Vecchio 2010; Romano & Cornish 2017):

2|de — hi(0))
L(d;|0; — _— . 2
(d;10;) o< exp < Ek TS, > ()

Here, h(8;) represents the gravitational waveform for the BNS signal
with parameters 0;, T is the duration of the analysed data segment,
Sy is the noise power spectral density (PSD) characterizing the
sensitivity of the detector, and k indicates the frequency dependence
of the data, waveform, and PSD. The prior in equation (1) is
denoted by mpg(f;), with the ‘PE’ subscript indicating that this is
the prior assumed during the initial parameter estimation step for
each individual event.

We use the reduced order quadrature (ROQ) implementa-
tion (Smith et al. 2016) of the IMRPhenomPv2 waveform
model (Hannam et al. 2014; Husa et al. 2016; Khan et al. 2016) in
the aforementioned likelihood in order to curtail the computational
cost of the individual-event parameter estimation. As such, we
assume that the neutron stars we simulate are point masses with
no tidal deformability. While previous works have demonstrated
the importance of simultaneously inferring the mass and tidal
deformability distributions at the risk of introducing biases when
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Table 1. Summary of the different combinations of true spin distributions
and priors applied during the initial parameter estimation step for each of the
scenarios we explore in this work. The pgraw column describes the distribution
assumed for the sensitivity injections used to incorporate selection effects as
detailed in Appendix B.

npnp(X]y X2) ”PE(Xla X2) pdraw(le X2)

Aligned, X pax = 0.4
Aligned, xmax =0.4
Aligned, xmax = 0.4
Aligned, xma = 0.05
Aligned, X pax = 0.05

Aligned, X pmax =0.8
Aligned, xmax =04
Aligned, X ma = 0.05
Aligned, X max = 0.8
Precessing, xmax = 0.8

Aligned, xmax =0.8
Aligned, Xmax = 0.4
Aligned, xmax = 0.05
Aligned, xmax = 0.8
Aligned, xmax =0.8

they are fitted independently (Wysocki et al. 2020; Golomb & Talbot
2021), we limit the scope of this work to mass—spin correlations
and leave a full exploration of the potential correlations between
the three intrinsic parameters of each neutron star to future studies.
However, we comment on the effects of correlations with tides in
Section 4. We use the PYMULTINEST (Feroz & Hobson 2008; Feroz,
Hobson & Bridges 2009; Buchner et al. 2014; Feroz et al. 2019)
and DYNESTY (Speagle 2020) nested samplers as implemented in
the BILBY (Ashton et al. 2019; Romero-Shaw et al. 2020) parameter
estimation package to obtain samples from the posterior distributions
for each event.

We choose priors 7pg(6;) that are uniform in chirp mass with a
width of 0.2Mg centred on the true value of the chirp mass for
each event and uniform in mass ratio over [0.125, 1]. This choice of
prior and mass parametrization is more convenient for sampling. The
priors on the extrinsic parameters are the same as those from which
the populations were drawn. We adopt a number of different choices
for the spin priors, as described subsequently and summarized in
Table 1.

Once we have obtained posterior samples for each of the individual
BNS events, we can combine them to measure the underlying mass
distribution of our simulated population. In this case, we are no
longer interested in the individual binary parameters, ;, but rather in
aset, A, of hyperparameters that describe the population distribution,
Tpop(@] A), which is also referred to as the hyperprior. For our choice
of population distribution, A = {&, Miot, mins Miot. max> 6 Miot, L, O}
The likelihood of observing a set of individual events {d} given
the hyperparameters A is obtained by marginalizing over the binary
parameters for each event and multiplying the resultant marginal
likelihoods:
L{dNA) = H/E(di 10:)7pop(8; [A)d0; . 3)
This joint likelihood can be constructed from the individual-event
posterior samples obtained in the first parameter estimation step via
the ‘recycling’ method (e.g. Thrane & Talbot 2019)

caanm = JT3 Zo 01 18) @

7TPE(01 j)

so that the joint likelihood is the ratio of the hyperprior and the
original PE prior, where the subscript j denotes a sum over the
individual posterior samples for each event.

This likelihood assumes that the individual events included in the
observed population are an unbiased sample of the true population
found in nature. However, we know that this is not the case for
observed gravitational-wave events, since the detectors are more
sensitive to high-mass sources (Fishbach & Holz 2017). This se-
lection effect needs to be accounted for in the likelihood in order
to obtain unbiased estimates of the hyperparameters describing the
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Table 2. Hyperparameters describing the mass distribution and the maxi-
mum and minimum values allowed in the prior applied during hierarchical
inference. The priors on all parameters are uniform.

Symbol Parameter Minimum Maximum
o Total mass power-law index 0 4
Mot min Minimum total mass (Mg) 2 3
Mot max Maximum total mass (Mg) 3.2 5
SMoq Smoothing parameter (M) 0 1

I Mass ratio mean 0.4 1

o Mass ratio standard deviation 0.01 0.5

astrophysical, rather than the observed, distribution (Loredo 2004;
Mandel et al. 2019; Thrane & Talbot 2019; Vitale et al. 2020)

LAdYA) =TT, fﬁ(df\0;LTPX§<A|0i>da,»’ (5)
a(A) = [ d8; pae(0:)7p0p(0: | A). (6)

The function pge(#;) gives the probability that an individual event
with parameters 6; will be detected. We evaluate «w(A) using a
Monte Carlo integral over a set of simulated signals drawn from the
distribution pyy, (@) following the approach described in Farr (2019).
More details on the simulated population used for determining the
detection probability can be found in Appendix B. We evaluate
the corrected likelihood in equation (5) to obtain samples from the
posterior distributions of the hyperparameters using the NESTLE sam-
pler (Barbary et al. 2021) and the GWPOPULATION package (Talbot
et al. 2019). The priors on the hyperparameters are all uniform over
the ranges given in Table 2.

So far we have not mentioned the spins in the hierarchical inference
step and have restricted the hyperparameters to include only those
governing the mass distribution. For any parameters that are not
explicitly included in the ratio in equation (4), it is implicitly
assumed that the PE prior and the hyperprior are the same (see
section 5.4 of Vitale et al. 2020). Even if we are not interested
in measuring the hyperparameters of the spin distribution, if there
is a mismatch between the underlying population distribution and
the prior applied during the initial sampling, this can introduce
biases in the hyperparameters that are being measured if there are
significant correlations between those binary parameters, as is the
case for the mass ratio and spins for BNS systems, for example.
To probe how such mismatches between the assumed and true
population distributions for the spins can introduce biases in the
mass distribution, we deliberately apply spin priors during the PE
step that differ from those used to generate the population. This is
consistent with what is currently done in population analyses, as will
be described in detail in Section 4.

For the medium-spin population, we apply both high- and low-spin
priors with x . = 0.8 and 0.05, respectively, as limited by the range
of validity of the ROQ. We also perform parameter estimation and
hierarchical inference on the mass distribution with a PE prior that
matches the true population distribution with y ,.x = 0.4 as a sanity
check to ensure that the resultant biases we see are indeed due to a
spin-prior mismatch. An example corner plot showing the posteriors
on the mass ratio and component spins obtained under each of these
priors for one individual event is shown in Fig. 1. While the true
values of all three parameters are included within the prior range for
all three choices of spin prior, the ¢ posterior peaks at lower values
when analysed with the low-spin prior compared with the other two
due to the correlation between mass ratio and spin. For the low-spin
population, we apply the high-spin prior first assuming aligned spins
and then relax this assumption to allow for precessing spins. The
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Figure 1. Corner plot showing the 1D posteriors and 50 and 90 per cent
contours for the mass ratio and component spin magnitudes for one event
recovered with aligned-spin priors for three different choices of xmax . The
true values are indicated with the black lines and are ¢ = 0.96, x; = —0.005,
and y» = —0.037, within the prior range for all three choices of prior.

combinations of true population and PE prior are summarized in
Table 1.

3 MASS-SPIN CORRELATIONS

The hyperparameter posteriors for Mo max » 4, and o obtained when
analysing the medium-spin population with true .« = 0.4 with
both the low- and high-spin priors are shown in the corner plot in
Fig. 2. The blue contours show the results obtained with the high-
spin prior. The true hyperparameter values are all recovered within
the 90 per cent credible region of the posterior, demonstrating that
analysing a population with xn.x = 0.4 with a prior out to X max
= (.8 does not lead to biases in the inferred mass distribution. This
is consistent with the fact that the analyses with the medium- and
high-spin priors shown in Fig. 1 do not lead to significant differences
in the mass ratio posteriors for individual events.

Conversely, the low-spin results shown in red are significantly
biased in both o and My ma. This can be explained by the
correlations shown in Fig. 1, which are exacerbated by the low-spin
prior and push the mass ratio posteriors for individual events towards
lower values. This leads to a preference for wider distributions in the
hierarchical inference step, since there is more support for extreme
mass ratios in the population. Underestimating the mass ratio results
in overestimating the total mass, since the chirp mass of the system

q 3/5
M = (m) Mlol (7)

is still well constrained, propagating into the overestimation of the
maximum total mass at the population level.

The inferred mass ratio and total mass distributions under the low-
spin prior are shown in Fig. 3. These are represented by the posterior
population distribution (PPD), which is the astrophysical distribution
of the binary parameters @ implied by the inferred hyperparameters

BNS mass distribution systematic error ~ 4353

True Ymax = 0.4

Y = 0.05
— Xmax — 0.8

12

I SRR S E S P OO O

» » 2 S N PN N N Q Q Q N Q
Mtot,max [MQ] M g

Figure 2. Hyperparameter posteriors on the maximum total mass and mean
and width of the mass ratio distribution for two different choices of initial
sampling prior applied to the medium-spin population. While the sources
were drawn from an aligned-spin distribution with y nm.x = 0.4, the red and
blue contours show the hierarchical inference results when they are recovered
with priors with x max = 0.05 and 0.8, respectively. The black lines denote the
true values of the hyperparameters. The value for = 1 lies at the edge of the
prior, and hence the black line is not visible for this parameter. The high-spin
prior results are consistent with the true population, while the low-spin prior
results favour a much wider mass ratio distribution and a higher maximum
total mass. The true values are excluded at >3¢ confidence.

A (Abbott et al. 2021d):

p(0]{d)) = / A p(A|{d)Tpop (B1A). ®)

The recovery of a wider mass ratio distribution and higher maximum
total mass results in overestimating the maximum mass of the
primary neutron star and underestimating the minimum mass of the
secondary, as can be seen in the bottom panel of Fig. 3. These biases
can have profound implications for both single and binary neutron
star formation mechanisms and their EoS. Few equations of state are
able to support neutron stars with m > 2.5 Mg, where 7 per cent of
the probability lies for the recovered PPD on m;. Additionally, it is
difficult to form neutron stars with m < 1 Mg under current stellar
evolution models (Vigna-G6émez et al. 2018), a region of parameter
space that contains 10 per cent of the probability for the inferred PPD
on ms.

The evolution of the bias in the hyperparameters as a function of the
number of individual events included in the analysis is shown in blue
in Fig. 4. With six events, denoted by the first vertical grey line, the
true value of o is already excluded from the 3¢ credible region. The
same occurs with 13 events for the maximum total mass parameter.
We also show the evolution of the bias in the maximum and minimum
component masses, which are represented by the 99th percentile of
the primary mass distribution and the first percentile of the secondary
mass distribution, respectively, since we do not directly parametrize
the population in terms of the component masses. We find similar
constraints on mpy,x and mpy;, to those presented in Chatziioannou &
Farr (2020), but these parameters become significantly biased with
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Figure 3. Inferred mass posterior population distributions (solid black lines) when a spin-prior mismatch is introduced for a population where the true spin
follows the aligned-spin distribution out to x max = 0.4, but the assumed population only allows xmax = 0.05. The dashed black lines show the true distributions,
while the light blue lines show individual draws from the hyperparameter posterior. Top: total mass (left) and mass ratio (right) distributions. Bottom: primary

(left) and secondary (right) mass distributions.

a similar number of events to the o and Mo max hyperparameters.
The bias in M max is driven by four events in particular, which
correspond to the distinguishable upward jumps in the top panel
of Fig. 4. These events all have true values of |x;| > 0.05, which
is outside the range allowed by the low-spin prior. This leads to a
significant bias in the mass ratio posterior towards low values, driving
the total mass upwards to keep the chirp mass constant. We emphasize
that the posteriors for these individual events do not exhibit railing
against the prior edges in either the spin or mass parameters and are
well converged. As such, they would not immediately be identified
as problematic if they corresponded to real events. These results
demonstrate that choosing a population model for the spins (even
implicitly) that does not include all the sources in the population
can significantly bias the BNS mass distribution. The width of the
90 per cent credible interval (CI) for the same parameters in the
case of no spin-prior mismatch is shown in the black dotted lines in
Fig. 4 for comparison. The true values of all the hyperparameters lie
within the 90 per cent CI, demonstrating that there is no bias when
the implied and true spin distributions match.

While we have found that analysing the population of sources
with xma = 0.4 with a prior going up to xmax = 0.8 does not
introduce a bias on the mass distribution, we now seek to investigate
whether the same conclusion holds for the low-spin population
with xmax = 0.05. The hyperparameter posteriors for the low-spin
population analysed with high-spin priors assuming both aligned
and precessing spins are shown in the corner plot in Fig. 5. The true
values of the hyperparameters are not always contained within the
90 per cent credible region for the high-aligned-spin prior shown
in red, indicating a hint of a bias when 100 individual events are
included in the population. The much larger difference in the prior
volume between the low- and high-spin priors in this case leads to a

MNRAS 511, 4350-4359 (2022)

bias even when all the observed events have spins within the allowed
prior region. Allowing for the tilts to be misaligned to the orbital
angular momentum introduces additional degrees of freedom that
break the strong degeneracy between g and y ., alleviating this bias.
The results obtained under the high-precessing-spin prior shown in
blue in Fig. 5 include the true hyperparameter values within the
90 per cent credible region. Thus, we conclude that using the high,
precessing-spin prior is the safest choice for BNS systems if the
mass and spin distributions are not modelled simultaneously during
hierarchical inference.

4 CONCLUSIONS

In this work, we have demonstrated that introducing a mismatch
between the true, underlying spin distribution for BNS systems ob-
served in gravitational waves and that assumed when characterizing
individual systems can lead to a bias in the inferred mass distribution
at the population level. If the mass and spin distributions are not
fitted simultaneously, the implied population model for the spin
distribution is the same as the prior used when conducting parameter
estimation for individual sources. To investigate the effects of such
a mismatch, we simulated two distinct populations of BNS sources,
one with medium aligned spins out to x m.x = 0.4 and the other with
low aligned spins out to x . = 0.05.

The mass distribution inferred for the medium-spin population was
significantly biased when the individual sources were analysed with
a low-aligned-spin prior but unbiased when analysed with a high-
aligned-spin prior. The bias is due to the degeneracy between the mass
ratio and aligned spin components for BNS systems, which pushes
the mass ratio posteriors for individual sources out towards more
extreme values and also drives the total mass towards higher values.
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Figure 4. The top two panels show the evolution of the hyperparameters
Miotmax and o as a function of the number of events included in the
hierarchical analysis. The bottom two panels show the evolution of the
maximum and minimum inferred component masses, represented by the
99th percentile of the m; distribution and the first percentile of the m
distribution, respectively. The solid black line shows the true value for each
hyperparameter, while the solid blue line shows the median obtained when
applying the low-spin prior to the medium-spin population. The blue shading
gives the 50 per cent and 90 per cent CIs. The dotted black lines denote the
90 per cent credible region when there is no spin-prior mismatch applied
to the medium-spin population. The vertical grey lines show the 6th and
13th events, where the true values of o and Mo max are excluded at >3o,
respectively.
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True Xmax = 0.05

aligned Xmax = 0.8
—— precessing Xmax = 0.8

[,

Mtot,ma.x [MO]

Figure 5. Hyperparameter posteriors on the maximum total mass and mean
and width of the mass ratio distribution for two different choices of initial
sampling prior applied to the low-spin population. The sources were drawn
from an aligned-spin distribution with xmax = 0.05, but both priors assume
Xxmax = 0.8. However, the red contours show the hierarchical inference
results when an aligned-spin prior is applied, while the blue allows for spin
precession. While the high-aligned-spin results are only marginally consistent
with the true hyperparameter values, allowing for precession breaks the strong
degeneracy between ¢ and x ; and ameliorates the bias.

This translates into an overestimation of the maximum neutron star
mass and an underestimation of the minimum mass, with adverse
implications for both the inference of the nuclear EoS and supernova
mechanisms. The most massive neutron stars with posterior support
in Fig. 3 are only supported by the stiffest equations of state. The
illusion of these high-mass neutron stars in the population would
falsely populate the putative lower mass gap between the heaviest
neutron stars and lightest black holes. Additionally, the false presence
of a significant subpopulation of sub-solar-mass compact objects
would affect the inferred contribution of primordial sub-solar-mass
black holes to the dark matter density (Abbott et al. 2018c, 2019c,
2021a; Nitz & Wang 2021), as neutron stars with such low masses are
not expected to form theoretically, and ground-based gravitational-
wave detectors are not sensitive to the gravitational radiation from
less massive compact objects such as white dwarfs. While in principle
tidal effects could be used to distinguish sub-solar-mass black holes
from neutron stars, in practice gravitational-wave constraints on the
tidal deformability are often weak (e.g. Abbott et al. 2020b, 2021e).

The mass distribution inferred for the low-spin population demon-
strated a hint of bias with the high-aligned-spin prior, but this was
alleviated when the individual sources were analysed with a prior
allowing for misaligned spin tilts. The extra degrees of freedom
introduced by the precessing-spin model break the strong degeneracy
between ¢ and y ;. These biases demonstrate the importance of fitting
the mass and spin distributions simultaneously, to avoid implicitly
mismodelling the spin distribution. However, if the mass distribution
must be analysed independently, we conclude that using a high-
precessing-spin prior for the individual sources is the safest choice.
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We note that the unbiased results we obtain in this demonstration
are only robust if the choice of parametrized mass model used
during the hierarchical inference step is physically realistic. If the
assumed shape of the mass distribution does not match the underlying
population, further biases can be introduced. However, this sort of
mismatch is unlikely to affect the inferred maximum and minimum
neutron star masses as significantly as the spin-prior mismatch, so
long as the parametrized population model covers the full range of
allowed neutron star masses. This potential problem can be further
ameliorated by fitting the mass distribution with several different
hierarchical models, including for example the bimodal models
favoured by current observations and simulations (e.g. Antoniadis
et al. 2016; Tauris et al. 2017; Alsing et al. 2018; Vigna-Gémez et al.
2018; Farrow et al. 2019), and comparing the statistical evidence
obtained between them to determine which provides the best fit.
Alternatively, a more flexible model that does not impose a specific
functional form on the mass distribution could be used (e.g. Mandel
et al. 2019; Wong, Contardo & Ho 2020; Li et al. 2021b; Rinaldi &
Del Pozzo 2021; Sadiq, Dent & Wysocki 2021; Tiwari 2021).

Correlations between the tidal parameters — which we have set to
zero in our analysis — and the masses and spins can also introduce
systematic errors in the inferred mass distribution if not accounted
for. For the posteriors of individual events, more extreme values of
mass ratio allow for smaller values of the tidal parameter that enters
the gravitational waveform at leading order, A (Wade et al. 2014;
Abbott et al. 2019a). Since the high-spin prior typically provides
more support for more unequal mass ratios, changing the spin prior
can also affect the inferred tidal parameters. Comparing our results
with those of Golomb & Talbot (2021), who demonstrate the effect of
mismodelling the tidal parameters on the inferred mass distribution,
we conclude that enforcing a low-spin prior when there are larger
spins in the population introduces a much more significant bias in
the inferred mass distribution. However, both types of mismatches
lead to increased support for higher neutron star masses.

In addition to the mismatches between the true and implied
population models for the spins, masses, and tides discussed ear-
lier, inadequate sampler performance when conducting parameter
estimation for individual events can also manifest as a bias in the
inferred population properties when multiple events are combined,
as demonstrated in Appendix A. However, this sort of bias can be
diagnosed and addressed by performing hierarchical inference on a
simulated population. Another potential source of systematic error
is the accuracy limitations of the waveform models used to infer
the properties of individual events. For the SNRs expected with the
current generation of detectors, this effect should be small compared
with the bias introduced by mismodelling the spin distribution (Dudi
et al. 2018; Abbott et al. 2019b; Dietrich et al. 2019; Messina et al.
2019; Abbott et al. 2020b).

The upcoming fourth observing run of the LIGO and Virgo
detectors is expected to add tens of new BNS sources to the catalogue
of compact binaries detected in gravitational waves (Abbott et al.
2018a). Based on our results, a bias in the mass distribution could be
imposed on the observed population with as few as four additional
BNS detections if a low-spin prior is applied to a population with
higher spins. We note that while current population studies do not
model the BNS mass distribution independently due to the paucity of
detections, a variety of models consider BNS sources as part of the
compact object population as a whole (Mandel et al. 2017; Fishbach,
Essick & Holz 2020; Abbott et al. 2021c; Farah et al. 2021) or as
part of the population of neutron-star-containing systems (Abbott
et al. 2021c; Landry & Read 2021; Li et al. 2021a). Most of these
models and analyses assume the BNS spin distribution is uniform in
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magnitude on the interval [0, 1) with isotropic tilts, corresponding
to the safe choice identified in Section 3. Both the MULTI SOURCE
model presented in Abbott et al. (2021¢) and the analysis of Li et al.
(2021a) fit the mass and spin distributions of the BNS subpopulation
simultaneously. The MULTI SOURCE model assumes that the spin
magnitudes follow a beta distribution with xn.x = 0.05 and the tilts
are isotropically distributed. The analysis of Li et al. (2021a) takes a
similar approach, assuming the neutron star spin magnitudes follow a
truncated Gaussian out to x max = 0.05 and fitting the tilts as a mixture
model between aligned and isotropic distributions. While assuming
small spins will not lead to a bias for the two BNS events currently
detected, this assumption should be relaxed to avoid introducing a
bias in the mass distribution with the first few events detected during
the next observing run.
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APPENDIX A: THE INSUFFICIENCY OF P-P
PLOTS AS A DIAGNOSTIC TEST

In order to obtain unbiased posteriors for the hyperparameters
describing a population of events using the likelihood in equation (5),
the individual-event posteriors must also be unbiased. A common
diagnostic tool for evaluating the performance of a stochastic sampler
is a ‘probability—probability plot’, or a P-P plot (Cook, Gelman &
Rubin 2006; Talts et al. 2018). This provides a graphical way to
verify that the true parameter values are recovered within a certain
credible interval for the expected fraction of events in a population.
If the likelihood correctly describes the distribution of data, the
true parameter values should be recovered within the 5 per cent
CI 5 per cent of the time, the 95 per cent CI 95 per cent of the time,
etc. For the Whittle likelihood in equation (2) used when performing
parameter estimation on individual gravitational-wave sources, this is
satisfied if the data are Gaussian about the assumed noise PSD. In the
case of unbiased individual-event posterior samples for a particular
parameter, the P—P plot should be approximately diagonal, as it shows
the fraction of events for which the true value of a given parameter
falls within the given credible interval as a function of that credible
interval.

An example P-P plot obtained using the PYMULTINEST sampler
for a population of 100 simulated BNS sources is shown in Fig. Al.
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Figure A1. P-P plot showing the fraction of events for which the true value
is recovered within a certain credible interval as a function of that credible
interval for a population of 100 simulated BNS sources, sampled with the
PYMULTINEST package. The lines for individual parameters stay within the
30 credible region, shaded in light grey, and the probability values quoted in
the legend are consistent with passing the P—P test. The other grey-shaded
areas show the 1 and 2o credible regions.

The extrinsic parameters are drawn from the same prior distributions
described in the main text, and the spins follow the low-aligned-
spin prior. The mass ratio is also drawn from the same population
explored earlier in the main text, namely a narrow truncated Gaussian
with © = 1 ando = 0.1. The chirp masses are drawn from a
uniform prior between 1.52 and 1.70 M. For the P-P plot to be
unbiased, the distributions from which the events are drawn must
match the priors applied during sampling, meaning that there is no
prior mismatch and no cut based on the SNR of the individual events,
as has been the case in the rest of this work. The legend shows the
probability for the fraction of events within each credible interval
to be drawn from a uniform distribution for individual parameters,
as expected from Gaussianity. For the mass ratio, this value is p =
0.742, passing the P—P test (where the threshold is p > 1/11 = 0.09).
The probability that the individual-parameter probabilities are drawn
from a uniform distribution is 0.254, consistent with random chance
for 11 parameters and indicative of unbiased sampling across the
11 parameters drawn from and recovered with this particular set of
priors.

However, when the same 100 individual events are analysed
hierarchically to recover the true values of p and o, the results
are biased at the 30 level, as shown in Fig. A2. This demonstrates
a case where the sampling algorithm passes the P-P test for a
particular population but still yields biased hierarchical inference
results, highlighting the insufficiency of P-P plots as a diagnostic tool
for individual-event parameter estimation. In this case, the recovered
hyperparameters favour a narrowly distributed population peaking
away from p = 1, indicating that the sampler is unable to thoroughly
explore the edge of the prior space where most of the probability lies
for the nearly equal-mass events included in the population. This is
due to the adapted simultaneous ellipsoidal nested sampling method
used by PYMULTINEST (Mukherjee, Parkinson & Liddle 2006; Shaw,
Bridges & Hobson 2007; Feroz & Hobson 2008; Feroz et al. 2009),
which bounds the iso-likelihood contours around clusters of live
points with N-dimensional ellipsoids. Because the probability for
mass ratio rails against the edge of the prior and the algorithm is
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Figure A2. Corner plot for the inferred mass ratio hyperparameters using
the 100 events used to generate the P—P plot in Fig. Al.

inefficient at sampling near edges, the peak of the distribution at
equal mass is undersampled.

PYMULTINEST internally works with a uniform prior for samples
from the unit hypercube, which must then be scaled to the physical
parameter space such that the scaled samples are drawn from the de-
sired physical prior distribution. In order to improve the convergence
near equal masses, we propose to use a two-stage mapping that shifts
the peak of the probability at ¢ = 1 away from the edge of the prior
in the frame of the sampler. Typically, samples from the unit cube are
rescaled on to the appropriate prior distribution for a given parameter
via the inverse of the prior’s cumulative distribution function, such
that for a sample from the unit cube, x, g(x) = CDF~!(x) (although
other methods have been proposed, e.g. Alsing & Handley 2021).
Here, we propose to add an intermediate step

u = 2min(x, 1 —x), (AT)
g = CDF\(u), (A2)

where u still takes on values within the unit interval, but instead
of glx = 1) = 1, g(x = 0.5) = 1. This transformation maps equal
mass — where the peak of the probability lies — to the centre of
the sampled space rather than the edge, which is more difficult to
sample. In Fig. A3, we show the mass ratio PPDs for the medium-spin
population described in the main text with no spin-prior mismatch
obtained with and without this modified rescaling method. Similarly
to the corner plot in Fig. A2, without the modified rescaling,
the PPD shown in red peaks at lower mass ratios and is more
narrowly distributed. The true hyperparameters are excluded from the
recovered posteriors at >3o credibility. Once the modified rescaling
is implemented for the individual-event parameter estimation, the
hierarchical inference becomes unbiased, as shown in blue. This
stealth bias introduced by the stochastic sampling algorithm that is
not caught with a P-P test demonstrates the importance of verifying
hierarchical inference analyses with synthetic populations where
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Figure A3. Inferred-mass-ratio PPDs when applying the original inverse
CDF rescaling method (red) and the modified rescaling method described in
equation (A2) (blue) to the medium-spin population described in the main
text analysed with no spin-prior mismatch. The dotted line shows the true
distribution, and the shading shows the 90 per cent credible region. Without
the modified rescaling, the mass ratio distribution is biased towards lower ¢
values and more narrowly peaked.

the true hyperparameter values are known and controllable before
conducting the analysis on real data.

APPENDIX B: SELECTION EFFECTS

In order to evaluate the selection function in equation (6), we calcu-
late the detection probability, pee(6;), using an injection campaign.
a(A) gives the fraction of signals that will be detected drawn from
a population model with hyperparameters A. We generate 194 953
total simulated signals, calculating the network optimal SNR, pggt for
each. Of these, 40 000 are above the threshold for detection, ,og;; >0,
The distribution from which the injections are drawn, pgw (@), is
uniform in total mass over the range [2, 5] M, and uses the same
prior distributions described in the main text for all the extrinsic
parameters. The mass ratio distribution is

B 1 Nglp, o)
Pdraw(‘]) =05 <167 + g o (qma:;*li) —® (qminll')> ’

o

Gmin < ¢ < {max (B1)

BNS mass distribution systematic error ~ 4359

which is the normalized superposition of a uniform distribution and
truncated Gaussian distribution with £ = 1, o0 = 0.1 between gmin
= 0.4 and gmax = 1. The truncated Gaussian is added to enhance the
number of injections with nearly equal-mass ratios, since this is the
part of the parameter space that should have the most support given
the true distribution we used for the simulated populations described
in Section 2. The spins are drawn following the aligned-spin prior
with X max = 0.99. The injections are reweighted so that x n.x matches
the corresponding value used during the first parameter estimation
step for each of the spin-prior mismatches we consider earlier. The
different combinations of true population distribution, PE prior, and
injection distribution are summarized in Table 1.
We can then estimate the detection probability as follows:

a(A) = / 00 pac ()7t 01 A), (B2)
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Ndraw
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We account for the uncertainty in the Monte Carlo integral in
equation (B6) following the method in Farr (2019) and reject parts of
the hyperparameter space during sampling that do not have enough
injections to meet the accuracy requirements therein. We note that
our population model, 7,,,(#;|A), in equation (B6) includes only
the total mass distribution, and not the mass ratio distribution, as
the latter has a negligible effect on the detectability of the source
and would require a much higher number of injections to meet the
accuracy requirements for our choice of narrow truncated Gaussian
population distribution.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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