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A B S T R A C T 

The binary neutron star (BNS) mass distribution measured with gravitational-wave observations has the potential to reveal 
information about the dense matter equation of state, supernova physics, the expansion rate of the Universe, and tests of general 
relativity. As most current gra vitational-wa ve analyses measuring the BNS mass distribution do not simultaneously fit the spin 

distribution, the implied population-level spin distribution is the same as the spin prior applied when analysing individual 
sources. In this work, we demonstrate that introducing a mismatch between the implied and true BNS spin distributions can lead 

to biases in the inferred mass distribution. This is due to the strong correlations between the measurements of the mass ratio and 

spin components aligned with the orbital angular momentum for individual sources. We find that applying a low-spin prior that 
excludes the true spin magnitudes of some sources in the population leads to significantly o v erestimating the maximum neutron 

star mass and underestimating the minimum neutron star mass at the population level with as few as six BNS detections. The 
safest choice of spin prior that does not lead to biases in the inferred mass distribution is one that allows for high spin magnitudes 
and tilts misaligned with the orbital angular momentum. 

Key w ords: gravitational w aves – methods: data analysis – stars: neutron – neutron star mergers. 
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 INTRODUCTION  

he growing catalogue of compact binary mergers detected in
ra vitational wa v es (Abbott et al. 2021b ) has pro vided a no v el means
o probe the properties of black holes and neutron stars (Abbott et al.
021c ; Bouffanais et al. 2021 ; Roulet et al. 2021 ; Wong et al. 2021 ;
evin et al. 2021 ). The neutron star mass distribution has the potential

o independently yield information on the dense matter equation of
tate (EoS) via the maximum mass, M TOV , beyond which the
nternal pressure of the neutron star can no longer support it against
ravitational collapse to a black hole (Miller, Chirenti & Lamb 2019 ;
hatziioannou & Farr 2020 ; Landry, Essick & Chatziioannou 2020 ;
egred et al. 2021 ). The value of the maximum mass depends on

he yet-unknown EoS and the neutron star spin (Lasota, Haensel &
bramowicz 1996 ), although astrophysical processes may prevent

he formation of neutron stars with mass up to M TOV in some
cenarios. The mass distribution can also be used to constrain the
upernova physics leading to neutron star formation (Pejcha, Thomp-
on & Kochanek 2012 ; Vigna-G ́omez et al. 2018 ), the astrophysical
tochastic gra vitational-wa ve background (Zhu et al. 2013 ; Abbott
t al. 2018b ), the rate of expansion of the Universe (Chernoff & Finn
993 ; Finn 1996 ; Taylor & Gair 2012 ; Taylor, Gair & Mandel 2012 ),
nd alternative theories of gravity beyond general relativity (Finke
t al. 2021 ). 
 E-mail: sbisco@mit.edu 
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Initial measurements of the mass distribution of Galactic neu-
ron stars detected electromagnetically suggested that their com-
onent masses follow a narrow Gaussian distribution (Thorsett &
hakrabarty 1999 ), particularly for those found in binary systems
ith another neutron star (Ozel et al. 2012 ; Kiziltan et al. 2013 ).
ore recent measurements reveal that the o v erall distribution of

eutron star masses, including those found in binary systems with
ther types of companions, is broader (Kiziltan et al. 2013 ; Özel &
reire 2016 ) and better described by a double Gaussian (Antoniadis
t al. 2016 ; Tauris et al. 2017 ; Alsing, Silva & Berti 2018 ; Shao et al.
020 ). Including the first binary neutron star (BNS) system observed
n gravitational waves, GW170817 (Abbott et al. 2017 ), Farrow, Zhu
 Thrane ( 2019 ) also find weak evidence for bimodality in the mass

istribution of the double neutron star population alone. 
Gra vitational-wa ve observations of compact binary mergers in-

olving at least one neutron star offer a complementary means to
robe the neutron star mass distribution at extragalactic distances.
hile only two BNS systems have been detected in gravitational
aves, these observations already suggest that there may be a
istinction between the Galactic population accessible as pulsars
nd the gra vitational-wa v e population (P ank ow 2018 ; Saf arzadeh,
amirez-Ruiz & Berger 2020 ; Abbott et al. 2021c ; Galaudage et al.
021 ). GW190425 represents the most massi ve BNS system e ver
etected, with a total mass five standard deviations away from
he mean of the Galactic population (Abbott et al. 2020b ). When
nalysing the full population of neutron stars detected in gravitational
aves – including neutron star–black hole mergers (Abbott et al.
021e ) – Landry & Read ( 2021 ) find that the masses are consistent
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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ith being uniformly distributed, although with significantly more 
upport for high neutron star masses compared with the Galactic 
opulation. Thus, accurate and precise measurements of the neutron 
tar mass distribution from gravitational-wave observations have the 
otential to elucidate the formation channels of these systems. 
Such measurements utilize the framework of hierarchical Bayesian 

nference (e.g. Mandel 2010 ; Thrane & Talbot 2019 ), where the
roperties of the population as a whole are determined while taking 
nto account the uncertainty on the parameters of individual sources 
nd the selection effect introduced by the varying sensitivity of the 
etector to sources with different properties (Loredo 2004 ; Mandel, 
arr & Gair 2019 ; Vitale et al. 2020 ). This requires both unbiased
arameter estimates for individual sources and physically realistic 
odels for the population and detector sensitivity. One potential 

ource of systematic error is the correlation between measurements 
f the intrinsic parameters describing BNS systems, including the 
asses, spins, and tidal deformabilities of the components. Wysocki 

t al. ( 2020 ) and Golomb & Talbot ( 2021 ) recently demonstrated that
nphysical assumptions about the EoS (or tidal deformability) when 
easuring the mass distribution independently can lead to biases 
ith as few as 37 events, emphasizing the importance of fitting these
istributions simultaneously. 
The mass ratio and spin components aligned with the orbital angu- 

ar momentum are particularly correlated for individual sources (Cut- 
er & Flanagan 1994 ; Hannam et al. 2013 ; Berry et al. 2015 ;
arr et al. 2016 ; Ng et al. 2018 ). This is due to the fact that for
 given chirp mass, M ≡ ( m 1 m 2 ) 3 / 5 / ( m 1 + m 2 ) 1 / 5 , binaries with
arger spins aligned with the orbital angular momentum will merge 

ore slowly (Campanelli, Lousto & Zlochower 2006 ), while binaries 
ith more unequal mass ratios will merge more quickly, introducing 
 degenerate effect on the wa veform. Gra vitational-wa ve analyses of
ndividual BNS sources typically assume two different priors for the 
pin distributions, a ‘low-spin’ prior and a ‘high-spin’ prior (Abbott 
t al. 2017 , 2020b ). The ‘low-spin’ prior restricts the maximum
imensionless spin magnitude – defined as | χ | = c| S | / ( Gm 

2 ), where
S is the spin vector of the neutron star with mass m – to | χ | ≤ 0 . 05,
nformed by the spins of Galactic double neutron stars that will merge
ithin a Hubble time (Lorimer 2008 ; Lo & Lin 2011 ; Zhu et al.
018 ). The ‘high-spin’ prior extends to | χ | � 0 . 89, as allowed by
 vailable wa v eform models without making an y assumptions about
he consistency of the system with the observed Galactic population. 
t is worth noting that pulsars have been observed with spins as high
s | χ | � 0 . 4, even in binary systems (Hessels et al. 2006 ). 

In this work, we demonstrate that mismodelling the spin distribu- 
ion of BNSs can lead to a bias in the reco v ered mass distribution.

e find that for a population of sources with moderate aligned 
pins extending out to | χ | ≤ 0 . 4, using indi vidual-e vent mass es-
imates obtained with the low-spin prior without simultaneously 
tting the spin distribution hierarchically leads to significant bias 

n both the inferred mass ratio distribution and the maximum 

ass. Conversely, in the case of a low-aligned-spin population with 
 χ | ≤ 0 . 05, the inferred mass ratio distribution under the high-
pin prior is also biased, although this effect can be ameliorated 
y allowing for the spins to be misaligned with the orbital angu-
ar momentum. In Section 2, we describe our methodology and 
imulated BNS populations. In Section 3, we present the results 
f our hierarchical inference and conclude with a discussion of 
he implications of our findings in Section 4. We also include a
emonstration of the importance of obtaining unbiased inferences 
or individual sources via the fallibility of the commonly used 
probability–probability plot’ as a test of sampler performance in 
ppendix A. 
 METHODS  

n addition to the component masses, spins, and tidal deformabilities, 
uasi-circular BNS mergers are characterized by seven extrinsic 
arameters, including the distance, sky location, time of coalescence, 
nd inclination angle between the orbital angular momentum and 
bserver line of sight. We simulate two populations of BNS systems
ith distinct spin distributions. Both have spins aligned with the 
rbital angular momentum drawn from the implied distribution on 
z assuming that the magnitudes are distributed uniformly on [0, 
max ] and the directions are isotropic. The first population allows for
edium spins consistent with the maximum observed neutron star 

pin (Hessels et al. 2006 ), χmax = 0.4, while the second population
s restricted to χmax = 0.05, following the observed spins of Galactic
ouble neutron stars (Lorimer 2008 ; Lo & Lin 2011 ). The mass
istribution is chosen based on Farrow et al. ( 2019 ); the mass ratio
s drawn from a narrow truncated Gaussian with mean μ = 1, width

= 0.1, and lower limit q min = 0.4. The total mass distribution
s a power law with index α = −2.5 between M tot, min = 2 . 3 M �
nd M tot, min = 4 . 3 M � with low-mass smoothing (see equations 7–
 of Talbot & Thrane 2018 ) o v er δM tot = 0 . 4 M �. We choose to
arametrize the mass distribution in terms of total mass and mass
atio since the latter is particularly sensitive to correlations with the
pin parameters (P ̈urrer, Hannam & Ohme 2016 ; Ng et al. 2018 ).
 or the e xtrinsic parameters, we assume the sources are distributed
niformly in comoving volume between luminosity distances of d L 
 10 Mpc and d L = 300 Mpc and isotropically on the sky. Standard

istributions are chosen for the remaining binary parameters (see e.g. 
omero-Shaw et al. 2020 ). 
For both the populations described previously, we generate 100 

vents that are detectable with a LIGO Hanford–Livingston detector 
etwork (Aasi et al. 2015 ) operating at the sensiti vity achie ved during
he third observing run (Abbott et al. 2018a , 2020a ). We consider
n event to be detectable if it is observed with a network optimal
ignal-to-noise ratio (SNR) ρnet 

opt ≥ 9. For each event, we perform 

ayesian parameter estimation to obtain samples from the posterior 
robability distributions for the binary parameters, θ , describing an 
ndividual BNS system, i : 

( θ i | d i ) ∝ L ( d i | θ i ) πPE ( θ i ) , (1) 

here L ( d i | θ i ) is the likelihood of observing data d i given the binary
arameters θ i (Veitch & Vecchio 2010 ; Romano & Cornish 2017 ): 

 ( d i | θ i ) ∝ exp 

( 

−
∑ 

k 

2 | d k − h k ( θ i ) | 2 
T S k 

) 

. (2) 

ere, h ( θ i ) represents the gravitational waveform for the BNS signal
ith parameters θ i , T is the duration of the analysed data segment,
 k is the noise power spectral density (PSD) characterizing the 
ensitivity of the detector, and k indicates the frequency dependence 
f the data, waveform, and PSD. The prior in equation (1) is
enoted by πPE ( θ i ), with the ‘PE’ subscript indicating that this is
he prior assumed during the initial parameter estimation step for 
ach individual event. 

We use the reduced order quadrature (ROQ) implementa- 
ion (Smith et al. 2016 ) of the IMRPhenomPv2 waveform 

odel (Hannam et al. 2014 ; Husa et al. 2016 ; Khan et al. 2016 ) in
he aforementioned likelihood in order to curtail the computational 
ost of the indi vidual-e vent parameter estimation. As such, we
ssume that the neutron stars we simulate are point masses with
o tidal deformability. While previous works have demonstrated 
he importance of simultaneously inferring the mass and tidal 
eformability distributions at the risk of introducing biases when 
MNRAS 511, 4350–4359 (2022) 
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Table 1. Summary of the different combinations of true spin distributions 
and priors applied during the initial parameter estimation step for each of the 
scenarios we explore in this work. The p draw column describes the distribution 
assumed for the sensitivity injections used to incorporate selection effects as 
detailed in Appendix B. 

πpop ( χ1 , χ2 ) πPE ( χ1 , χ2 ) p draw ( χ1 , χ2 ) 

Aligned, χmax = 0.4 Aligned, χmax = 0.8 Aligned, χmax = 0.8 
Aligned, χmax = 0.4 Aligned, χmax = 0.4 Aligned, χmax = 0.4 
Aligned, χmax = 0.4 Aligned, χmax = 0.05 Aligned, χmax = 0.05 
Aligned, χmax = 0.05 Aligned, χmax = 0.8 Aligned, χmax = 0.8 
Aligned, χmax = 0.05 Precessing, χmax = 0.8 Aligned, χmax = 0.8 
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Table 2. Hyperparameters describing the mass distribution and the maxi- 
mum and minimum v alues allo wed in the prior applied during hierarchical 
inference. The priors on all parameters are uniform. 

Symbol Parameter Minimum Maximum 

α Total mass power-law index 0 4 
M tot,min Minimum total mass ( M �) 2 3 
M tot,max Maximum total mass ( M �) 3.2 5 
δM tot Smoothing parameter ( M �) 0 1 
μ Mass ratio mean 0.4 1 
σ Mass ratio standard deviation 0.01 0.5 
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hey are fitted independently (Wysocki et al. 2020 ; Golomb & Talbot
021 ), we limit the scope of this work to mass–spin correlations
nd leave a full exploration of the potential correlations between
he three intrinsic parameters of each neutron star to future studies.
o we ver, we comment on the effects of correlations with tides in
ection 4. We use the PYMULTINEST (Feroz & Hobson 2008 ; Feroz,
obson & Bridges 2009 ; Buchner et al. 2014 ; Feroz et al. 2019 )

nd DYNESTY (Speagle 2020 ) nested samplers as implemented in
he BILBY (Ashton et al. 2019 ; Romero-Shaw et al. 2020 ) parameter
stimation package to obtain samples from the posterior distributions
or each event. 

We choose priors πPE ( θ i ) that are uniform in chirp mass with a
idth of 0 . 2 M � centred on the true value of the chirp mass for

ach event and uniform in mass ratio o v er [0.125, 1]. This choice of
rior and mass parametrization is more convenient for sampling. The
riors on the extrinsic parameters are the same as those from which
he populations were drawn. We adopt a number of different choices
or the spin priors, as described subsequently and summarized in
able 1 . 
Once we have obtained posterior samples for each of the individual

NS events, we can combine them to measure the underlying mass
istribution of our simulated population. In this case, we are no
onger interested in the individual binary parameters, θ i , but rather in
 set, � , of hyperparameters that describe the population distribution,
pop ( θ | � ), which is also referred to as the hyperprior. For our choice
f population distribution, � = { α, M tot, min , M tot, max , δM tot , μ, σ } .
he likelihood of observing a set of individual events { d } given

he hyperparameters � is obtained by marginalizing o v er the binary
arameters for each event and multiplying the resultant marginal
ikelihoods: 

 ( { d}| � ) = 

∏ 

i 

∫ 
L ( d i | θ i ) πpop ( θ i | � )d θ i . (3) 

his joint likelihood can be constructed from the indi vidual-e vent
osterior samples obtained in the first parameter estimation step via
he ‘recycling’ method (e.g. Thrane & Talbot 2019 ) 

 ( { d}| � ) ∝ 

∏ 

i 

∑ 

j 

πpop ( θ i,j | � ) 

πPE ( θ i,j ) 
, (4) 

o that the joint likelihood is the ratio of the hyperprior and the
riginal PE prior, where the subscript j denotes a sum o v er the
ndividual posterior samples for each event. 

This likelihood assumes that the indi vidual e vents included in the
bserved population are an unbiased sample of the true population
ound in nature. Ho we ver, we kno w that this is not the case for
bserved gra vitational-wa ve events, since the detectors are more
ensitive to high-mass sources (Fishbach & Holz 2017 ). This se-
ection effect needs to be accounted for in the likelihood in order
o obtain unbiased estimates of the hyperparameters describing the
NRAS 511, 4350–4359 (2022) 
strophysical, rather than the observed, distribution (Loredo 2004 ;
andel et al. 2019 ; Thrane & Talbot 2019 ; Vitale et al. 2020 ) 

 ( { d}| � ) = 

∏ 

i 

∫ 
L ( d i | θ i ) πpop ( � | θ i )d θ i 

α( � ) , (5) 

( � ) = 

∫ 
d θ i p det ( θ i ) πpop ( θ i | � ) . (6) 

he function p det ( θ i ) gives the probability that an individual event
ith parameters θ i will be detected. We e v aluate α( � ) using a
onte Carlo integral over a set of simulated signals drawn from the

istribution p draw ( θ ) following the approach described in Farr ( 2019 ).
ore details on the simulated population used for determining the

etection probability can be found in Appendix B. We e v aluate
he corrected likelihood in equation (5) to obtain samples from the
osterior distributions of the hyperparameters using the NESTLE sam-
ler (Barbary et al. 2021 ) and the GWPOPULATION package (Talbot
t al. 2019 ). The priors on the hyperparameters are all uniform o v er
he ranges given in Table 2 . 

So far we have not mentioned the spins in the hierarchical inference
tep and have restricted the hyperparameters to include only those
o v erning the mass distribution. For any parameters that are not
xplicitly included in the ratio in equation (4), it is implicitly
ssumed that the PE prior and the hyperprior are the same (see
ection 5.4 of Vitale et al. 2020 ). Even if we are not interested
n measuring the hyperparameters of the spin distribution, if there
s a mismatch between the underlying population distribution and
he prior applied during the initial sampling, this can introduce
iases in the hyperparameters that are being measured if there are
ignificant correlations between those binary parameters, as is the
ase for the mass ratio and spins for BNS systems, for example.
o probe how such mismatches between the assumed and true
opulation distributions for the spins can introduce biases in the
ass distribution, we deliberately apply spin priors during the PE

tep that differ from those used to generate the population. This is
onsistent with what is currently done in population analyses, as will
e described in detail in Section 4. 
For the medium-spin population, we apply both high- and low-spin

riors with χmax = 0.8 and 0.05, respectively, as limited by the range
f validity of the ROQ. We also perform parameter estimation and
ierarchical inference on the mass distribution with a PE prior that
atches the true population distribution with χmax = 0.4 as a sanity

heck to ensure that the resultant biases we see are indeed due to a
pin-prior mismatch. An example corner plot showing the posteriors
n the mass ratio and component spins obtained under each of these
riors for one indi vidual e vent is sho wn in Fig. 1 . While the true
alues of all three parameters are included within the prior range for
ll three choices of spin prior, the q posterior peaks at lower values
hen analysed with the low-spin prior compared with the other two
ue to the correlation between mass ratio and spin. For the low-spin
opulation, we apply the high-spin prior first assuming aligned spins
nd then relax this assumption to allow for precessing spins. The
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Figure 1. Corner plot showing the 1D posteriors and 50 and 90 per cent 
contours for the mass ratio and component spin magnitudes for one event 
reco v ered with aligned-spin priors for three different choices of χmax . The 
true values are indicated with the black lines and are q = 0.96, χ1 = −0.005, 
and χ2 = −0.037, within the prior range for all three choices of prior. 
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Figure 2. Hyperparameter posteriors on the maximum total mass and mean 
and width of the mass ratio distribution for two different choices of initial 
sampling prior applied to the medium-spin population. While the sources 
were drawn from an aligned-spin distribution with χmax = 0.4, the red and 
blue contours show the hierarchical inference results when they are recovered 
with priors with χmax = 0.05 and 0.8, respectively. The black lines denote the 
true values of the hyperparameters. The value for μ = 1 lies at the edge of the 
prior, and hence the black line is not visible for this parameter. The high-spin 
prior results are consistent with the true population, while the low-spin prior 
results fa v our a much wider mass ratio distribution and a higher maximum 

total mass. The true values are excluded at > 3 σ confidence. 
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ombinations of true population and PE prior are summarized in 
able 1 . 

 MASS–SPIN  CORRELATIONS  

he hyperparameter posteriors for M tot,max , μ, and σ obtained when 
nalysing the medium-spin population with true χmax = 0.4 with 
oth the low- and high-spin priors are shown in the corner plot in
ig. 2 . The blue contours show the results obtained with the high-
pin prior. The true hyperparameter values are all reco v ered within
he 90 per cent credible region of the posterior, demonstrating that 
nalysing a population with χmax = 0.4 with a prior out to χmax 

 0.8 does not lead to biases in the inferred mass distribution. This
s consistent with the fact that the analyses with the medium- and
igh-spin priors shown in Fig. 1 do not lead to significant differences
n the mass ratio posteriors for individual events. 

Conversely, the low-spin results shown in red are significantly 
iased in both σ and M tot,max . This can be explained by the
orrelations shown in Fig. 1 , which are exacerbated by the low-spin
rior and push the mass ratio posteriors for indi vidual e vents to wards
o wer v alues. This leads to a preference for wider distributions in the
ierarchical inference step, since there is more support for extreme 
ass ratios in the population. Underestimating the mass ratio results 

n o v erestimating the total mass, since the chirp mass of the system 

 = 

(
q 

(1 + q) 2 

)3 / 5 

M tot (7) 

s still well constrained, propagating into the o v erestimation of the
aximum total mass at the population level. 
The inferred mass ratio and total mass distributions under the low- 

pin prior are shown in Fig. 3 . These are represented by the posterior
opulation distribution (PPD), which is the astrophysical distribution 
f the binary parameters θ implied by the inferred hyperparameters 
 (Abbott et al. 2021d ): 

( θ |{ d} ) = 

∫ 
d � p( � |{ d} ) πpop ( θ | � ) . (8) 

he reco v ery of a wider mass ratio distribution and higher maximum
otal mass results in o v erestimating the maximum mass of the
rimary neutron star and underestimating the minimum mass of the 
econdary, as can be seen in the bottom panel of Fig. 3 . These biases
an have profound implications for both single and binary neutron 
tar formation mechanisms and their EoS. Few equations of state are
ble to support neutron stars with m ≥ 2 . 5 M �, where 7 per cent of
he probability lies for the reco v ered PPD on m 1 . Additionally, it is
ifficult to form neutron stars with m � 1 M � under current stellar
volution models (Vigna-G ́omez et al. 2018 ), a region of parameter
pace that contains 10 per cent of the probability for the inferred PPD
n m 2 . 
The evolution of the bias in the hyperparameters as a function of the

umber of indi vidual e vents included in the analysis is shown in blue
n Fig. 4 . With six events, denoted by the first v ertical gre y line, the
rue value of σ is already excluded from the 3 σ credible region. The
ame occurs with 13 events for the maximum total mass parameter.
e also show the evolution of the bias in the maximum and minimum

omponent masses, which are represented by the 99th percentile of 
he primary mass distribution and the first percentile of the secondary

ass distribution, respectively, since we do not directly parametrize 
he population in terms of the component masses. We find similar
onstraints on m max and m min to those presented in Chatziioannou &
arr ( 2020 ), but these parameters become significantly biased with
MNRAS 511, 4350–4359 (2022) 

art/stac347_f1.eps
art/stac347_f2.eps


4354 S. Biscoveanu, C. Talbot and S. Vitale 

M

Figure 3. Inferred mass posterior population distributions (solid black lines) when a spin-prior mismatch is introduced for a population where the true spin 
follows the aligned-spin distribution out to χmax = 0.4, but the assumed population only allows χmax = 0.05. The dashed black lines show the true distributions, 
while the light blue lines show individual draws from the hyperparameter posterior. Top: total mass (left) and mass ratio (right) distributions. Bottom: primary 
(left) and secondary (right) mass distributions. 
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 similar number of events to the σ and M tot,max hyperparameters.
he bias in M tot,max is driven by four events in particular, which
orrespond to the distinguishable upward jumps in the top panel
f Fig. 4 . These events all have true values of | χ1 | > 0 . 05, which
s outside the range allowed by the low-spin prior. This leads to a
ignificant bias in the mass ratio posterior towards low values, driving
he total mass upwards to keep the chirp mass constant. We emphasize
hat the posteriors for these indi vidual e vents do not exhibit railing
gainst the prior edges in either the spin or mass parameters and are
ell conv erged. As such, the y would not immediately be identified

s problematic if they corresponded to real events. These results
emonstrate that choosing a population model for the spins (even
mplicitly) that does not include all the sources in the population
an significantly bias the BNS mass distribution. The width of the
0 per cent credible interval (CI) for the same parameters in the
ase of no spin-prior mismatch is shown in the black dotted lines in
ig. 4 for comparison. The true values of all the hyperparameters lie
ithin the 90 per cent CI, demonstrating that there is no bias when

he implied and true spin distributions match. 
While we have found that analysing the population of sources

ith χmax = 0.4 with a prior going up to χmax = 0.8 does not
ntroduce a bias on the mass distribution, we now seek to investigate
hether the same conclusion holds for the low-spin population
ith χmax = 0.05. The hyperparameter posteriors for the low-spin
opulation analysed with high-spin priors assuming both aligned
nd precessing spins are shown in the corner plot in Fig. 5 . The true
alues of the hyperparameters are not al w ays contained within the
0 per cent credible region for the high-aligned-spin prior shown
n red, indicating a hint of a bias when 100 indi vidual e vents are
ncluded in the population. The much larger difference in the prior
olume between the low- and high-spin priors in this case leads to a
NRAS 511, 4350–4359 (2022) 
ias even when all the observ ed ev ents hav e spins within the allowed
rior region. Allowing for the tilts to be misaligned to the orbital
ngular momentum introduces additional degrees of freedom that
reak the strong de generac y between q and χz , alleviating this bias.
he results obtained under the high-precessing-spin prior shown in
lue in Fig. 5 include the true hyperparameter values within the
0 per cent credible region. Thus, we conclude that using the high,
recessing-spin prior is the safest choice for BNS systems if the
ass and spin distributions are not modelled simultaneously during

ierarchical inference. 

 CONCLUSIONS  

n this work, we have demonstrated that introducing a mismatch
etween the true, underlying spin distribution for BNS systems ob-
erved in gravitational waves and that assumed when characterizing
ndividual systems can lead to a bias in the inferred mass distribution
t the population level. If the mass and spin distributions are not
tted simultaneously, the implied population model for the spin
istribution is the same as the prior used when conducting parameter
stimation for individual sources. To investigate the effects of such
 mismatch, we simulated two distinct populations of BNS sources,
ne with medium aligned spins out to χmax = 0.4 and the other with
ow aligned spins out to χmax = 0.05. 

The mass distribution inferred for the medium-spin population was
ignificantly biased when the individual sources were analysed with
 low-aligned-spin prior but unbiased when analysed with a high-
ligned-spin prior. The bias is due to the de generac y between the mass
atio and aligned spin components for BNS systems, which pushes
he mass ratio posteriors for individual sources out towards more
xtreme values and also drives the total mass towards higher values.
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Figure 4. The top two panels show the evolution of the hyperparameters 
M tot,max and σ as a function of the number of events included in the 
hierarchical analysis. The bottom two panels show the evolution of the 
maximum and minimum inferred component masses, represented by the 
99th percentile of the m 1 distribution and the first percentile of the m 2 

distribution, respectively. The solid black line shows the true value for each 
hyperparameter, while the solid blue line shows the median obtained when 
applying the low-spin prior to the medium-spin population. The blue shading 
gives the 50 per cent and 90 per cent CIs. The dotted black lines denote the 
90 per cent credible region when there is no spin-prior mismatch applied 
to the medium-spin population. The v ertical gre y lines show the 6th and 
13th events, where the true values of σ and M tot,max are excluded at > 3 σ , 
respectively. 

Figure 5. Hyperparameter posteriors on the maximum total mass and mean 
and width of the mass ratio distribution for two different choices of initial 
sampling prior applied to the low-spin population. The sources were drawn 
from an aligned-spin distribution with χmax = 0.05, but both priors assume 
χmax = 0.8. Ho we ver, the red contours show the hierarchical inference 
results when an aligned-spin prior is applied, while the blue allows for spin 
precession. While the high-aligned-spin results are only marginally consistent 
with the true hyperparameter v alues, allo wing for precession breaks the strong 
de generac y between q and χz and ameliorates the bias. 
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his translates into an o v erestimation of the maximum neutron star
ass and an underestimation of the minimum mass, with adverse 

mplications for both the inference of the nuclear EoS and supernova
echanisms. The most massive neutron stars with posterior support 

n Fig. 3 are only supported by the stiffest equations of state. The
llusion of these high-mass neutron stars in the population would 
alsely populate the putative lower mass gap between the heaviest 
eutron stars and lightest black holes. Additionally, the false presence 
f a significant subpopulation of sub-solar-mass compact objects 
ould affect the inferred contribution of primordial sub-solar-mass 
lack holes to the dark matter density (Abbott et al. 2018c , 2019c ,
021a ; Nitz & Wang 2021 ), as neutron stars with such low masses are
ot expected to form theoretically, and ground-based gravitational- 
ave detectors are not sensitive to the gravitational radiation from 

ess massive compact objects such as white dwarfs. While in principle
idal effects could be used to distinguish sub-solar-mass black holes 
rom neutron stars, in practice gra vitational-wa ve constraints on the
idal deformability are often weak (e.g. Abbott et al. 2020b , 2021e ).

The mass distribution inferred for the low-spin population demon- 
trated a hint of bias with the high-aligned-spin prior, but this was
lleviated when the individual sources were analysed with a prior 
llowing for misaligned spin tilts. The extra degrees of freedom 

ntroduced by the precessing-spin model break the strong de generac y 
etween q and χz . These biases demonstrate the importance of fitting
he mass and spin distributions simultaneously, to a v oid implicitly

ismodelling the spin distribution. Ho we ver, if the mass distribution
ust be analysed independently, we conclude that using a high- 

recessing-spin prior for the individual sources is the safest choice. 
MNRAS 511, 4350–4359 (2022) 
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We note that the unbiased results we obtain in this demonstration
re only robust if the choice of parametrized mass model used
uring the hierarchical inference step is physically realistic. If the
ssumed shape of the mass distribution does not match the underlying
opulation, further biases can be introduced. Ho we ver, this sort of
ismatch is unlikely to affect the inferred maximum and minimum

eutron star masses as significantly as the spin-prior mismatch, so
ong as the parametrized population model co v ers the full range of
llowed neutron star masses. This potential problem can be further
meliorated by fitting the mass distribution with several different
ierarchical models, including for example the bimodal models
a v oured by current observations and simulations (e.g. Antoniadis
t al. 2016 ; Tauris et al. 2017 ; Alsing et al. 2018 ; Vigna-G ́omez et al.
018 ; Farrow et al. 2019 ), and comparing the statistical evidence
btained between them to determine which provides the best fit.
lternatively, a more flexible model that does not impose a specific

unctional form on the mass distribution could be used (e.g. Mandel
t al. 2019 ; Wong, Contardo & Ho 2020 ; Li et al. 2021b ; Rinaldi &
el Pozzo 2021 ; Sadiq, Dent & Wysocki 2021 ; Tiwari 2021 ). 
Correlations between the tidal parameters – which we have set to

ero in our analysis – and the masses and spins can also introduce
ystematic errors in the inferred mass distribution if not accounted
or. For the posteriors of individual events, more extreme values of
ass ratio allow for smaller values of the tidal parameter that enters

he gravitational waveform at leading order, ˜ 	 (Wade et al. 2014 ;
bbott et al. 2019a ). Since the high-spin prior typically provides
ore support for more unequal mass ratios, changing the spin prior

an also affect the inferred tidal parameters. Comparing our results
ith those of Golomb & Talbot ( 2021 ), who demonstrate the effect of
ismodelling the tidal parameters on the inferred mass distribution,
e conclude that enforcing a low-spin prior when there are larger

pins in the population introduces a much more significant bias in
he inferred mass distribution. Ho we ver, both types of mismatches
ead to increased support for higher neutron star masses. 

In addition to the mismatches between the true and implied
opulation models for the spins, masses, and tides discussed ear-
ier, inadequate sampler performance when conducting parameter
stimation for individual events can also manifest as a bias in the
nferred population properties when multiple events are combined,
s demonstrated in Appendix A. Ho we ver, this sort of bias can be
iagnosed and addressed by performing hierarchical inference on a
imulated population. Another potential source of systematic error
s the accuracy limitations of the waveform models used to infer
he properties of individual ev ents. F or the SNRs expected with the
urrent generation of detectors, this effect should be small compared
ith the bias introduced by mismodelling the spin distribution (Dudi

t al. 2018 ; Abbott et al. 2019b ; Dietrich et al. 2019 ; Messina et al.
019 ; Abbott et al. 2020b ). 
The upcoming fourth observing run of the LIGO and Virgo

etectors is expected to add tens of new BNS sources to the catalogue
f compact binaries detected in gravitational waves (Abbott et al.
018a ). Based on our results, a bias in the mass distribution could be
mposed on the observed population with as few as four additional
NS detections if a low-spin prior is applied to a population with
igher spins. We note that while current population studies do not
odel the BNS mass distribution independently due to the paucity of

etections, a variety of models consider BNS sources as part of the
ompact object population as a whole (Mandel et al. 2017 ; Fishbach,
ssick & Holz 2020 ; Abbott et al. 2021c ; Farah et al. 2021 ) or as
art of the population of neutron-star-containing systems (Abbott
t al. 2021c ; Landry & Read 2021 ; Li et al. 2021a ). Most of these
odels and analyses assume the BNS spin distribution is uniform in
NRAS 511, 4350–4359 (2022) 
agnitude on the interval [0, 1) with isotropic tilts, corresponding
o the safe choice identified in Section 3. Both the MULTI SOURCE

odel presented in Abbott et al. ( 2021c ) and the analysis of Li et al.
 2021a ) fit the mass and spin distributions of the BNS subpopulation
imultaneously. The MULTI SOURCE model assumes that the spin
agnitudes follow a beta distribution with χmax = 0.05 and the tilts

re isotropically distributed. The analysis of Li et al. ( 2021a ) takes a
imilar approach, assuming the neutron star spin magnitudes follow a
runcated Gaussian out to χmax = 0.05 and fitting the tilts as a mixture

odel between aligned and isotropic distributions. While assuming
mall spins will not lead to a bias for the two BNS events currently
etected, this assumption should be relaxed to a v oid introducing a
ias in the mass distribution with the first fe w e vents detected during
he next observing run. 
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PPENDIX  A:  THE  INSUFFICIENCY  OF  P–P  

LOTS  AS  A  DIAGNOSTIC  TEST  

n order to obtain unbiased posteriors for the hyperparameters 
escribing a population of events using the likelihood in equation (5),
he indi vidual-e vent posteriors must also be unbiased. A common
iagnostic tool for e v aluating the performance of a stochastic sampler
s a ‘probability–probability plot’, or a P–P plot (Cook, Gelman &
ubin 2006 ; Talts et al. 2018 ). This provides a graphical way to
erify that the true parameter values are recovered within a certain
redible interval for the expected fraction of events in a population.
f the likelihood correctly describes the distribution of data, the 
rue parameter values should be reco v ered within the 5 per cent
I 5 per cent of the time, the 95 per cent CI 95 per cent of the time,
tc. For the Whittle likelihood in equation (2) used when performing
arameter estimation on individual gra vitational-wa ve sources, this is 
atisfied if the data are Gaussian about the assumed noise PSD. In the
ase of unbiased indi vidual-e vent posterior samples for a particular
arameter, the P–P plot should be approximately diagonal, as it shows 
he fraction of events for which the true value of a given parameter
alls within the given credible interval as a function of that credible
nterval. 

An example P–P plot obtained using the PYMULTINEST sampler 
or a population of 100 simulated BNS sources is shown in Fig. A1 .
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Figure A1. P–P plot showing the fraction of events for which the true value 
is reco v ered within a certain credible interval as a function of that credible 
interval for a population of 100 simulated BNS sources, sampled with the 
PYMULTINEST package. The lines for individual parameters stay within the 
3 σ credible region, shaded in light grey, and the probability values quoted in 
the legend are consistent with passing the P–P test. The other grey-shaded 
areas show the 1 and 2 σ credible regions. 
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Figure A2. Corner plot for the inferred mass ratio hyperparameters using 
the 100 events used to generate the P–P plot in Fig. A1 . 
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he extrinsic parameters are drawn from the same prior distributions
escribed in the main text, and the spins follow the low-aligned-
pin prior. The mass ratio is also drawn from the same population
xplored earlier in the main text, namely a narrow truncated Gaussian
ith μ = 1 and σ = 0.1. The chirp masses are drawn from a
niform prior between 1.52 and 1 . 70 M �. For the P–P plot to be
nbiased, the distributions from which the events are drawn must
atch the priors applied during sampling, meaning that there is no

rior mismatch and no cut based on the SNR of the individual events,
s has been the case in the rest of this work. The legend shows the
robability for the fraction of events within each credible interval
o be drawn from a uniform distribution for individual parameters,
s expected from Gaussianity. For the mass ratio, this value is p =
.742, passing the P–P test (where the threshold is p > 1/11 = 0.09).
he probability that the individual-parameter probabilities are drawn

rom a uniform distribution is 0.254, consistent with random chance
or 11 parameters and indicative of unbiased sampling across the
1 parameters drawn from and reco v ered with this particular set of
riors. 
Ho we ver, when the same 100 indi vidual e vents are analysed

ierarchically to reco v er the true values of μ and σ , the results
re biased at the 3 σ level, as shown in Fig. A2 . This demonstrates
 case where the sampling algorithm passes the P–P test for a
articular population but still yields biased hierarchical inference
esults, highlighting the insufficiency of P–P plots as a diagnostic tool
or indi vidual-e v ent parameter estimation. In this case, the reco v ered
yperparameters fa v our a narrowly distrib uted population peaking
way from μ = 1, indicating that the sampler is unable to thoroughly
xplore the edge of the prior space where most of the probability lies
or the nearly equal-mass events included in the population. This is
ue to the adapted simultaneous ellipsoidal nested sampling method
sed by PYMULTINEST (Mukherjee, Parkinson & Liddle 2006 ; Shaw,
ridges & Hobson 2007 ; Feroz & Hobson 2008 ; Feroz et al. 2009 ),
hich bounds the iso-likelihood contours around clusters of live
oints with N -dimensional ellipsoids. Because the probability for
ass ratio rails against the edge of the prior and the algorithm is
NRAS 511, 4350–4359 (2022) 
nefficient at sampling near edges, the peak of the distribution at
qual mass is undersampled. 

PYMULTINEST internally works with a uniform prior for samples
rom the unit hypercube, which must then be scaled to the physical
arameter space such that the scaled samples are drawn from the de-
ired physical prior distribution. In order to impro v e the convergence
ear equal masses, we propose to use a two-stage mapping that shifts
he peak of the probability at q = 1 away from the edge of the prior
n the frame of the sampler. Typically, samples from the unit cube are
escaled on to the appropriate prior distribution for a given parameter
ia the inverse of the prior’s cumulative distribution function, such
hat for a sample from the unit cube, x , q ( x ) = CDF 

−1 ( x ) (although
ther methods have been proposed, e.g. Alsing & Handley 2021 ).
ere, we propose to add an intermediate step 

 = 2 min ( x, 1 − x) , (A1) 

 = CDF 
−1 ( u ) , (A2) 

here u still takes on values within the unit interval, but instead
f q ( x = 1) = 1, q ( x = 0.5) = 1. This transformation maps equal
ass – where the peak of the probability lies – to the centre of

he sampled space rather than the edge, which is more difficult to
ample. In Fig. A3 , we show the mass ratio PPDs for the medium-spin
opulation described in the main text with no spin-prior mismatch
btained with and without this modified rescaling method. Similarly
o the corner plot in Fig. A2 , without the modified rescaling,
he PPD shown in red peaks at lower mass ratios and is more
arrowly distributed. The true hyperparameters are excluded from the
eco v ered posteriors at > 3 σ credibility. Once the modified rescaling
s implemented for the indi vidual-e vent parameter estimation, the
ierarchical inference becomes unbiased, as shown in blue. This
tealth bias introduced by the stochastic sampling algorithm that is
ot caught with a P–P test demonstrates the importance of verifying
ierarchical inference analyses with synthetic populations where
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igure A3. Inferred-mass-ratio PPDs when applying the original inverse 
DF rescaling method (red) and the modified rescaling method described in 
quation (A2) (blue) to the medium-spin population described in the main 
ext analysed with no spin-prior mismatch. The dotted line shows the true
istribution, and the shading shows the 90 per cent credible region. Without
he modified rescaling, the mass ratio distribution is biased towards lower q
alues and more narrowly peaked. 

he true hyperparameter values are known and controllable before 
onducting the analysis on real data. 

PPENDIX  B:  SELECTION  EFFECTS  

n order to e v aluate the selection function in equation (6), we calcu-
ate the detection probability, p det ( θ i ), using an injection campaign. 
( � ) gives the fraction of signals that will be detected drawn from
 population model with hyperparameters � . We generate 194 953 
otal simulated signals, calculating the network optimal SNR, ρnet 

opt for 
ach. Of these, 40 000 are abo v e the threshold for detection, ρnet 

opt ≥ 9.
he distribution from which the injections are drawn, p draw ( θ ), is
niform in total mass o v er the range [2 , 5] M �, and uses the same
rior distributions described in the main text for all the extrinsic 
arameters. The mass ratio distribution is 

 draw ( q) = 0 . 5 

( 

1 . 67 + 

1 

σ

N ( q| μ, σ ) 


 

(
q max −μ

σ

) − 
 

(
q min −μ

σ

)
) 

, 

q min < q < q max (B1) 
hich is the normalized superposition of a uniform distribution and 
runcated Gaussian distribution with μ = 1, σ = 0.1 between q min 

 0.4 and q max = 1. The truncated Gaussian is added to enhance the
umber of injections with nearly equal-mass ratios, since this is the
art of the parameter space that should have the most support given
he true distribution we used for the simulated populations described 
n Section 2. The spins are drawn following the aligned-spin prior
ith χmax = 0.99. The injections are reweighted so that χmax matches 

he corresponding value used during the first parameter estimation 
tep for each of the spin-prior mismatches we consider earlier. The
ifferent combinations of true population distribution, PE prior, and 
njection distribution are summarized in Table 1 . 

We can then estimate the detection probability as follows: 

( � ) = 

∫ 
d θp det ( θ ) πpop ( θ | � ) , (B2) 

draw = 

∫ 
d θp det ( θ) p draw ( θ ) ≈ N found 

N draw 
(B3) 

 found ( θ ) = 

p draw ( θ ) p det ( θ ) 

αdraw 
, (B4) 

( � ) = αdraw 

∫ 
d θ

p found ( θ ) 

p draw ( θ) 
πpop ( θ | � ) , (B5) 

( � ) ≈ 1 
N found 

∑ 

j 

πpop ( θ j | � ) 
p draw ( θj ) 

. (B6) 

e account for the uncertainty in the Monte Carlo integral in
quation (B6) following the method in Farr ( 2019 ) and reject parts of
he hyperparameter space during sampling that do not have enough 
njections to meet the accuracy requirements therein. We note that 
ur population model, πpop ( θ j | � ), in equation (B6) includes only
he total mass distribution, and not the mass ratio distribution, as
he latter has a negligible effect on the detectability of the source
nd would require a much higher number of injections to meet the
ccuracy requirements for our choice of narrow truncated Gaussian 
opulation distribution. 
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