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We consider entanglement across a planar boundary in flat space. Entanglement entropy is usually
thought of as the von Neumann entropy of a reduced density matrix, but it can also be thought of as half the
von Neumann entropy of a product of reduced density matrices on the left and right. The latter form allows
a natural regulator in which two cones are smoothed into a Euclidean hourglass geometry. Since there is no
need to tensor factor the Hilbert space, the regulated entropy is manifestly gauge invariant and has a
manifest state-counting interpretation. We explore this prescription for scalar fields, where the entropy is
insensitive to a nonminimal coupling, and for Maxwell fields, which have the same entropy as d —2

scalars.
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I. INTRODUCTION

Consider a field theory in its Minkowski ground state
and divide space into L U R where

L ={x<0}, R={x>0}. (1)

Entanglement entropy is usually defined as the von

Neumann entropy of the reduced density matrix associated
with the region R (or equivalently the region L),

pr = Tr.(10){0]),
§ = =Trg(pg log pr). (2)

But this definition is problematic in a continuum field
theory for a number of reasons. For one thing the Hilbert
space of a field theory does not factorize into H; ® Hpg, so
it is not clear that the entropy (2) is well-defined or can
be thought of as counting states. This is closely related
to the fact that for a field theory entanglement entropy is
UV divergent and requires regularization. For a recent
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discussion of these matters see [1]. One way to address UV
issues would be to define the field theory on a lattice. But
even this is not fully satisfactory for a gauge theory, where
the connection variables live on links and the decomposi-
tion into L U R is not gauge invariant. For work on this
issue see [2—17].

It would be desirable to have a regulated definition of
entanglement entropy in field theory that is manifestly
gauge invariant and has a manifest state-counting inter-
pretation. Here we make a simple proposal in this direction.
For motivation consider a field theory in 1 4 1 dimensions
with coordinates (z,x). On the ¢t = 0 time slice a Lorentz
boost is generated by

K = /oo dx.XT()(). (3)

[Se]

This can be formally decomposed as K = Kz — K; where

KR :/ d.X.X'T()(),
0
0

KL :/ dx(—x)TOO
—0

are defined to boost the right and left half-spaces forward in
time. For a field theory in its ground state the modular
operator is given by [1,18]

A = 27K — e_ZH(KR_KL)‘ (4)
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The modular operator can be formally decomposed as

A:/)Zl ®pRv (5)

where p; and pyp are the reduced density matrices describ-
ing the left and right half-spaces. The modular operator is
well-defined in the continuum but it is not directly useful
for studying entanglement. Instead, to study entanglement
we would like to work with the operator

V:KL+KR_/ d.)C|X|T00, (6)
which boosts both the left and the right half-spaces forward
in time. Then formally we would have

eV = pr ® pr. (7)

If we could define a partition function

Z(B) = Tre™? =Te(p}/”" ® 7). (8)

we could compute entanglement entropy using
1 0
Sentanglement =- P51 (_ log Z(ﬁ)) (9)
2 p=2n

The partition function (8) can be thought of as putting the
field theory on two Euclidean cones of angle f joined at
their tips. The factor of 1/2 in (9) compensates for the
double-counting of having two cones and gives an entropy
that formally agrees with (2).

The operator V has UV problems near x = 0, but this is
easy to regulate. Introduce a small parameter € and choose a
function r.(x) with

|x| for |x| > €
re(x) = . (10)
smooth and nonzero for [x| < €

In our explicit calculations we will generally take

re(x) = Vx> + €%, but other choices are possible. Given
a choice of r.(x) we can define

V.= /oo dx r.(x)To,

[Se]

Z.(p) = Tre V-, (11)

Note that the trace here is over the full Hilbert space, with
no need to factor into H; ® Hp. The regulated partition
function Z.(f) can be used to compute a regulated
entanglement entropy

s=5(pgp-1)| oz 02

This has a manifest state-counting interpretation, as (half
of) the von Neumann entropy of the density matrix

pR——— (13)

Note that this prescription is manifestly gauge invariant and
avoids any discussion of factoring the Hilbert space. The
prescription is somewhat arbitrary, of course. But in field
theory some regulator is necessary if entropy of entangle-
ment is to be discussed at all, and the regulator we have
introduced has the appealing features we just described.
Geometrically the regulated partition function has the
interpretation of putting the field theory on a Euclidean
spacetime with metric

ds? = dx* + (r.(x))*d6?,

—o<x<oo, Ox04p.

(14)

The regulator smooths the two cones into an hourglass
shape as shown in Fig. 1.' The hourglass geometry
corresponds to studying the theory with a position-
dependent proper temperature

1
- Pre(x)

The proper temperature is high near the waist of the
hourglass and (as in Rindler space) falls off at large |x|,
where T'poper ~ 1/27|x| when f = 2.

We will work with regulators r.(x) that are smooth near
x =0, so that we avoid UV problems in defining
the operator V. or equivalently so that the hourglass
geometry is smooth. This may not be a necessary require-
ment. One is free to consider nonsmooth regulators such as
re(x) = |x| + €. Such regulators introduce curvature sin-
gularities on the hourglass geometry, which presumably
make nonminimal couplings such as R?¢? ill-defined; but if
such problems can be dealt with or avoided, then non-
smooth regulators are allowed and may provide a conven-
ient calculational tool.

It is worth contrasting the hourglass prescription with
a well-known approach in the literature, where entangle-
ment entropy is defined by putting the field theory on a
cone and varying with respect to the deficit angle [21].
The cone approach can be thought of as directly attempting
to make sense of (2). The cone partition function is
UV divergent but can be regulated in a gauge-invariant
manner. However, the resulting entropy, defined as
Secone = (BOp = 1)(—10g Z;ope ), cannot necessarily be given
a state-counting interpretation. This is particularly clear

Tproper (x ) . ( 1 5)

"This regulator was first introduced by Solodukhin, who
applied it to the thermal atmosphere of a Banados-Teitelboim-
Zanelli black hole [19,20].
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FIG. 1.

for scalar fields with nonminimal couplings to curvature.
Such fields respond to the curvature at the tip of the cone,
even though the nonminimal coupling does not affect the
ground-state wave function in flat space and therefore
should not affect entanglement. A closely related example
is a Maxwell field which can lead to a negative entropy
when put on a cone [22,23].

In what follows we illustrate these properties in a series
of examples. To warm up we begin by studying a general
conformal field theory (CFT) and a free massive scalar in
two dimensions, reproducing standard results. Then we
consider nonminimal scalars and Maxwell fields in two
dimensions, where the hourglass prescription makes an
important difference: it leads to an entropy which is
independent of £ (for nonminimal scalars) and which
vanishes (for Maxwell fields in two dimensions). We
consider scalar theories in higher dimensions in Sec. VI,
treat Maxwell fields in higher dimensions in Sec. VII, and
conclude in Sec. VIIL

II. 2D CFT

To get started we show that the hourglass prescription
reproduces the standard results for entanglement in a two-
dimensional (2D) CFT [24,25].

For a discussion that runs parallel to what follows, we
consider a CFT on a spatial interval 0 < ¢ < z. The finite
interval provides an infrared cutoff. The Virasoro gener-
ators are given by

L, = / " do(cos(mo)Toy + isin(ma)Tyy).  (16)
0

The vacuum state is annihilated by the SL(2,R) algebra
generated by L, Ly, L_;. We divide space in half,
with L =(0,7z/2) and R = (z/2,7z). The modular
Hamiltonian—the operator which annihilates the vacuum,
leaves the midpoint fixed, and looks locally like a boost
near the midpoint—is given by [26,27]*

*More generally if we divided space at 6 = a we could have
first performed an SL(2,R) transformation to move a to z/2.

A double cone, smoothed near the origin into an hourglass geometry.

b4 1
K:/ dg(_COSG)TOOZ_E(Ll+L—1)' (17)
0
The operator V is then given by

V= /”dg| c0s 0| Tgp. (18)
0

We can regulate this by defining

Vv, = / " dor.(0)Top. (19)

The exact form of r.(c) will not matter, but an explicit
example to keep in mind is

re(6) = Vcos? 6 + €. (20)

The partition function Z.() = Tre™#V¢ corresponds to
putting the theory on a Euclidean spacetime with metric

ds* =do* + (r.(0))?d0?, O0<o<m, OxO0+p. (21)

Defining

o do’
= [ —=, 22
= )5 -
the metric becomes conformally flat, with

ds* = (r.(c))*(dy* + d&?). (23)

We can drop the conformal factor to obtain a CFT on a
cylinder, but the length of the spatial interval has changed

from = to
7 do’
L.= . 24
‘ /0 re(o’) 24)

For any reasonable regulator r.(c) the length diverges
logarithmically as ¢ — 0, L. ~2log(1/¢). In particular,
this is true for the choice (20). Let us pause to see how this
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comes about. The divergence arises from behavior near the
entangling surface ¢ = 7/2 where

<a—%>2 + e (25)

The divergence in L, arises from the integration region ¢ <
l|o — 5| < 1 where r.(c) & |6 — 5 |. The contribution of this
region is

re(o) ®

d
L€z2/—0ﬂ~210g(1/6). (26)
-3

I
§+€

Any reasonable regulator will lead to the same result, since
the only role of the regulator in this calculation is to provide
a cutoff near the entangling surface.

On a cylinder we have thermal entropy given by’

ncl,
3B

Setting # = 2z and dividing by 2 as in (12) we find that the
entanglement entropy is

S = (27)

C C

:—LN
Se 127° 6

1
log— 28
0g- (28)
in agreement with [24,25]. An alternative perspective is to
rescale by a factor z/L,. This keeps the size of the spatial
interval fixed at 7, but with an effective inverse temperature

_ T "B
be= Leﬂ 2log(1/e€)

(29)
Note that B, vanishes as ¢ — 0. In this perspective
entanglement entropy for a 2D CFT is simply the high-
temperature limit of ordinary thermal entropy.

III. MASSIVE SCALAR IN 2D

Next we consider a simple example of a nonconformal
theory: a free massive scalar in two noncompact dimen-
sions. For this problem we set

vV, = /_ " dxro(x)Too (30)

and make the explicit choice r.(x) = Vx> +¢’. The

partition function Z.(8) = Tre™"< corresponds to a
Euclidean geometry

3This follows from the Cardy formula, or more directly from
the result that in the limit of a long cylinder the partition function
per unit length is —logZ/L, = — 55 [281.

ds* = dx* + (r.(x))?d0?, —o0 <x < 0,

0~ 0+p.
(31)

Setting x = e sinh y makes the metric conformally flat,

ds* = e*cosh’y(dy* + df*), —co<y<oo, Omx0+p.

(32)

The action for a free massive scalar on this geometry is

o p
S:/ dy/ de <1(8\¢)2+1(89¢)2+lmzezcoshzy(,bz)
o Jo 20 2 2
(33)
so that*
Z.(p) = det™V/2 (=92 — 95 + m>c*cosh?y).  (34)

Interpreting the 0 direction as a thermal circle and passing
to a Hamiltonian description, we have a Bose partition
function given by

—logZ, = Zlog (1 —e~Pon), (35)

Here the frequencies w,, are obtained from a Schrodinger
problem with potential’ V(y) = m?e? cosh? y,

(=02 + m?e*cosh?y )y, = Wiy, (36)

Classically the ground state sits at the minimum of the
potential and has @y = me. For small me the partition
function will be dominated by highly excited states (recall
that we are interested in f ~ 2x). To analyze this we follow
’t Hooft [33] and approximate the spectrum as continuous,
with

_logZ, = /°° dn log (1 — e~
0

o - d
= A dwﬁlog(l — e Pon)

0
1

= —ﬂ dﬁ()fl((l))eﬂwi_1

@

(37)

To get a rough approximation for n(w), the number of
states with frequency less than w, note that the Schrodinger
problem has turning points at y = & log % So we can

“In writing the partition function in this way we are making an
implicit choice for the path integral measure [29-31], one that
corresponds to the optical geometry of [32].

*We are denoting the Schrodinger potential V to distinguish it
from the operators V and V., we have introduced.
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approximate it as a particle in a box with size L = 2 log %
For such a particle w, = or

Lo 2w 2
R Y (38)

T T me’

Using this in (37) gives

1
—logZ, = - %log% + (finite). (39)

Then the entanglement entropy (12) is
S, = “log— + (finite) (40)
=—log— inite).
c 6 8 ne

This simple approximation captures the leading log diver-
gence in the entanglement entropy. Note that the coefficient
of the log is universal and agrees with (28). In Appendix A
we rederive these results from a more systematic Wentzel-
Kramers-Brillouin (WKB) approximation.

IV. NONMINIMAL SCALAR IN 2D

In the examples we have considered so far the hourglass
prescription reproduces the standard expressions for the
entanglement entropy. We now consider an example where
the hourglass prescription makes a difference: a scalar field
in two dimensions with a nonminimal coupling to curva-
ture. The Euclidean action is

S = / dzx\/g(% 90,00, + %§R¢2 + %m%pz) . (41

In the conformally flat coordinates introduced in (32) the
hourglass geometry is

ds* = e*cosh?y(dy* + df?), -co<y<oo, OxO+p
(42)
with curvature
2
R=——— . 43
€2 cosh* y (43)

Thus

® B 1 1 1
s= "oy ["a0(S 00 + 5002 + V00,
o 0 2 2 2
(44)
where the effective potential

28

— 22000h2
V(y) = m*e*cosh?y — coshZy”

(45)

1_

0.8 1

0.6 1

V()

5 10
y

FIG. 2. Effective potential for a nonminimal scalar with me =
2x 107 and & = —0.2.

In a Hamiltonian description
—logZ = log (1 —eon), (46)

where the frequencies are determined by the Schrodinger
equation

(=05 +V()w, = oy, (47)

From this description it is clear that the hourglass
prescription gives a regulated entanglement entropy S,
whose leading behavior as ¢ — 0 is insensitive to the
nonminimal coupling. That is, the hourglass prescription
gives S, = tlog-L + (finite) just as in Sec. III. The reason
is that the nonminimal coupling produces a bump or dip in
the potential of height ~¢ and width ~1 as shown in Fig. 2.
But roughly speaking it is still a particle in a box of size
~2log %, and as € — 0 the bump can be neglected relative
to the size of the box. So by adopting the hourglass
prescription for the entropy we find that the leading
behavior of n(w), and therefore the leading behavior of
the entropy S, is insensitive to the value of the nonminimal
coupling parameter £ We derive this result from a more
systematic WKB approximation in Appendix A.

Of course this behavior was to be expected. The non-
minimal coupling modifies the stress tensor and controls
how the theory couples to gravity. But in flat space the
nonminimal coupling has no effect on the ground state
wave function of the field and should have no effect on
entanglement. The hourglass prescription agrees with this
expectation. By contrast, the prescription of putting the
theory on a cone and varying with respect to the deficit
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angle leads to an entropy whose leading behavior depends
on & Scone = (% - 5) log# [34].

V. MAXWELL FIELD IN 2D

Next we explore the issues associated with gauge
symmetry by considering a Maxwell field in two dimen-
sions. Since there are no local degrees of freedom, we
expect the entropy to vanish. We will see that the hourglass
prescription agrees with this expectation. We show this in
two separate choices of gauge: first in a physical gauge,
where the absence of local degrees of freedom makes the
entropy vanish, and then in a covariant gauge, where the
entropy vanishes due to a cancellation between gauge and
ghost degrees of freedom.

A. Physical gauge

We first consider Maxwell theory in physical or unitary
gauge. We work in Lorentzian signature, in flat two-
dimensional Minkowski space, and begin by writing the
Maxwell action in first-order form,

S = /de <—Ex8,Ax - %Eﬁ — A (OE, — p)>. (48)

Here (A,, A, ) is the gauge field, E, is the electric field, and
p is a specified charge density. Integrating out E, using its
equation of motion E, = 9,4, — 0,A, recovers the usual
second-order action. But in first-order form we see that A,
is a Lagrange multiplier enforcing the Gauss con-
straint 0, E, = p.

We would like to make explicit that the hourglass
prescription is consistent with having flux across the
entangling surface. To this end we introduce equal and
opposite charges +Q at fixed positions,

p=0Q6(x+L)-0Qx~1L), (49)

and solve the Gauss constraint by6

E={¢
0

The energy density is T, = %E)ZC so the operator V defined
in (6) is

—-L<x<L
. (50)
otherwise

L 1
V= / dx |x|T,, = = L*Q*. (51)
. 2

Note that, given the absence of local degrees of freedom,
there is no need to introduce a UV regulator e.

*More generally we could allow electric flux to extend to
infinity. We prefer to think of L as an infrared cutoff and keep the
flux confined to —L < x < L.

Since there are no degrees of freedom, there is nothing to
quantize. The partition function is rather trivially given by

Z(p) = Tre#V = ¢ PL?QY/2, (52)

As a result the entropy

s=3(s55-1) 'H]t(—logzw)) (53)

vanishes. It is no surprise that in a theory with no local
degrees of freedom there is no entanglement.

B. Covariant gauge

For a different perspective, which will be useful below
when we treat gauge fields in higher dimensions, we
consider Maxwell theory in covariant gauge. Of course,
we expect to obtain the same result, namely that the entropy
vanishes. But in covariant gauge this will be due to a rather
nontrivial cancellation between ghost and gauge degrees
of freedom. Our main challenge in this section will be
understanding the boundary conditions that make this
cancellation possible. Since the boundary conditions
described here will not be important in the rest of the
paper, the reader who is satisfied that entanglement entropy
vanishes in 2D Maxwell theory is invited to skip ahead to
the next section.

We work on a two-dimensional Euclidean manifold with
boundary. Locally near the boundary we choose coordi-
nates so that ds> = dn® + d* where - is an inward-
pointing normal vector and % is tangent to the boundary.
The covariant gauge-fixed action is

Sg = / dzx\/g_]<lF2 + ! (V,A")? + i@,b@”c)
v )
+ / diAJ". (54)
oM

We have included ghost fields b, ¢ and introduced a
conserved current J' (really just a charge) on the boundary
of the manifold. We fix boundary conditions that are
compatible with the boundary current we have introduced,
namely

An|8M = O’
Fnt|é)./\/t = anAt|0./\/1 =7,
5;1b|aM = 8nC|z)M =0. (55)

In the literature these are variously known as absolute [35],
electric [36], and type I [37] boundary conditions. To
proceed we make a Hodge decomposition

A =d¢; +*dpr + Ay (56)
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into longitudinal and transverse scalars ¢;, ¢y plus a
harmonic form Ay that satisfies’
(ds+ 6d)Ay =0, bAy =V, Ay =0. (57)

The boundary conditions (55) translate into

Onrlom =0, (58)
brlom =0, (59)
Apinlom =0, (60)
NnAnilop = J', (61)
9nblop = Onclogpg = 0. (62)

To see that these are the appropriate conditions to impose,
note that according to the Hodge decomposition (56) the
normal component of the gauge field A, and the field
strength F are given by

An = an¢L + at¢T + Aan
F = «V2¢p, + dAy,. (63)

On the boundary the conditions (58), (59), (60) make the
first line vanish while the conditions (59), (60), (61) ensure
that F,, from the second line is equal to J’. Thus the
boundary conditions (55) are satisfied.

It is important that the boundary conditions we have
imposed respect the BRST symmetry (a is a Grassmann
parameter)

S iaaﬂc,

b =aV,Ar,  S,c=0. (64)

To see how this works, note that under BRST

8,A, = iad,c,
S.F =0,
8,0,b = ad, V¢, . (65)

On the boundary the first line vanishes by the Neumann
condition on ¢, the second line trivially vanishes, and the
third line vanishes since ¢, and therefore V¢, obey
Neumann boundary conditions. So the boundary conditions
(55) are preserved by BRST.

With boundary conditions in place let us analyze the one-
loop determinants which arise in covariant gauge. We will
return to consider the harmonic piece below. So leaving

"Here 6 = *d*, not to be confused with the Becchi-Rouet-
Stora-Tyutin (BRST) variation §, we introduce below. On a
closed manifold a harmonic form would satisty dAy = 6Ay =0
but on a manifold with boundary (57) is the best we can do.

aside Ay, under the Hodge decomposition (56) the vector
wave operator becomes

(dd + 6d)A = dV2 ¢y, + +dV¢py. (66)

In place of A, we integrate over ¢; with Neumann
boundary conditions and ¢y with Dirichlet boundary
conditions. The Neumann boundary conditions on ¢,
allow a zero mode; we suppress this zero mode on the
grounds that a constant ¢; gives A, = 0 and hence does not
appear in the measure for integrating over A,. The ghosts
obey Neumann boundary conditions with zero modes
which we likewise suppress. Thus the one-loop determi-
nants are

det~'/2(=V3)det !/2(=V3)det (-V}) (67

arising from ¢;, ¢y, and the ghosts, respectively. The
cancellation is not obvious unless the Dirichlet and
Neumann Laplacians V3, and V3 happen to be (aside
from the zero mode) isospectral. Fortunately the hourglass
geometry is conformal to a cylinder, and on a cylinder the
Dirichlet and Neumann Laplacians are isospectral.8 This
makes it seem the determinants (67) should cancel. One
should still worry about the conformal transformation from
the hourglass to the cylinder. But this is a local change in
integration measure which, as discussed in [31], produces a
Liouville action that does not affect the entropy.9 So for our
purposes the fluctuation determinants cancel.

We still have to treat the harmonic part of the gauge field.
We do this explicitly on the hourglass geometry

ds? =d + (r,(0) 6P, ~L<x<L. Ox0+p. (68)

where we have introduced L as an infrared cutoff. As in
(49) we place a charge +Q on the left boundary and —Q on
the right boundary. The harmonic gauge field is then

Ay = const + Q /X dx'r.(x) (69)

0

with corresponding field strength
F =dAp = Qr.(x)dx A db. (70)

This satisfies the harmonic condition (dé + 6d)Ay = 0,
8Ay = 0 or equivalently V, F* =0, V, A}, = 0 as well as
the boundary conditions (60) and (61). The constant term

8Explicitly the Dirichlet and Neumann modes on a cylinder are
related by sin <> cos.

Intuitively the change in integration measure, being local,
shifts the effective action by a term proportional to # and hence
does not affect the entropy.
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in (69) corresponds to a Polyakov loop that will not be
important for our purposes. The Euclidean action is

1 L -L
S =580" [ aeriw) 0 [ avr)

L

1% /)L dx'r.(x) (71)

arising from the bulk, left boundary and right boundary,
respectively. In total we have

1 L 1
SE:_EﬁQz/ dx’re(x’)a—EﬂQsz as € = 0.
L

(72)

One final subtlety is that Q here is the Euclidean charge
which couples to Ay. To relate it to the charge in Lorentzian
signature we must Wick rotate Q% — —Q?. After this
replacement we have

Z(p) = e 5t = e PQ'L?/2 (73)
in agreement with (52).

VI. SCALAR FIELDS IN HIGHER DIMENSIONS

We now turn to theories in higher dimensions. In this
section we treat scalar fields with mass parameter m and
nonminimal coupling parameter £. We introduce d — 2
additional transverse dimensions which we compactify
on a torus of size L X --- X L _,. Our goal is to study
the dependence of the entropy on all of these parameters.

To do this efficiently it is convenient to introduce a
Schwinger proper-time representation for the partition
function. We will calculate the entropy while keeping in
place a short-distance cutoff on proper time, s, = 1/A2.
This cutoff regulates UV divergences and will allow us to
take the singular limit of the hourglass geometry, ¢ — 0, in
which the hourglass reduces to a double cone. (The singular
limit can be seen by reversing the arrow in Fig. 1.) The
singular limit with a proper time cutoff provides a con-
venient way to package the dependence on the various
parameters in the problem. We should say in advance that
there are no physical surprises in the results. For example,
we find that, as expected, the entropy has a leading power-
law UV divergence proportional to the volume of the
transverse torus. But we do find an interesting mathemati-
cal connection, that the entropy is proportional to the late-
time behavior of the heat kernel on an hourglass geometry.

We start from the Euclidean action

5= [ axva(ya0,00.0 + yire + 3mg) (04

with metric

ds?* = dx* + (r.(x))*d6* + dz% et dz§_2
ds% ds?

d-2
9z0+ﬂ, leZl—l-Ll (75)

-0 <x <o0o,

This describes a two-dimensional hourglass regulated by e
times a transverse torus of volume vol;, = L;---L;_,. An
explicit choice is r.(x) = Vx* + € but this is not essential
to the results.

In a proper-time representation we have

1 © 2 2
—logZ = ——/ @ Trems(-V+ersm?) (76)
2 Jiar s

Here A plays the role of a UV cutoff. In short order this will
allow us to simplify the geometry by sending ¢ — 0. The
mass acts as an IR cutoff. Strictly speaking we need such a
cutoff because, although the torus cuts off IR divergences in
the transverse directions, there are also IR divergences on
the hourglass.

The heat kernel appearing in (76) K(s) =
Tre=sV*HRtm) can be decomposed as
K(s) = Ky(s)K42(s). (77)

where

K, (s) = Tre=s(-ViteR)

Ky »(s)= Tre—s(-Viz)

heat kernel on hourglass,

heat kernel on transverse torus.

(78)

The torus heat kernel is well-known. Its leading behavior at
large volume (or small s) is

vol |

Ky-a(s) = ()2

at large volume. (79)

This large-volume behavior is quite universal and would hold
for any transverse geometry. Here we focus on the large-
volume behavior of the entropy. We also focus on the leading
UV divergence. This means we can set m = 0 so that

log Z — 1/00 ds  vol|
84770 Jun's (dms)d-202

K>(s). (80)
Corrections to this result, involving finite-mass and finite-
volume effects, are analyzed in Appendix B.

The next challenge is to analyze K, (s). This turns out to
be surprisingly easy. Setting x = e sinh y as in (32) we have

ds? = €% cosh? y(dy* + d6?) = e2ds3. (81)

Note that € only enters as an overall conformal factor, so the
Laplacians are related by
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1=
V2= ?vg (82)
and the heat kernels are related by
K (s) = Ky (s/€?). (83)

Thus sending € — 0 in (80) gives

log Z — 1/00 ds
84~ 73 /a2 S (4xs)ld=2)/2

YL (o). (84)

We have the somewhat surprising result that logZ is
proportional to the late-time behavior of the heat kernel
on a unit hourglass (¢ = 1).

Although the short-time behavior is more familiar, we
are able to obtain the late-time behavior of K, (s) from the
following observation. The result (84) holds in any number
of dimensions, in particular in d = 2. Restoring the mass to
serve as an IR cutoff, in two dimensions we have

1 [ d -
—logZ = ——/ —se_sm2K2(OO> (85)
2 1/A2 N
m . . =~
= <logX + flmte) K> (). (86)

Comparing the (universal) coefficient of the log divergence
to our previous result (39), we identify,10

~ T

Ky(oo) = 15 (87)

It would be interesting to recover this result directly from an
analysis of the spectrum of the hourglass Laplacian. Note
that, as shown in Sec. IV, this result is independent of the
nonminimal coupling &.

With this in hand the rest of the calculation is immediate.
From (84) we have

T VO]J_/\d_2
—logZ = —— 88
o8 3B (d — 2)(4n) @2 (88)
and
1/ 8
Sscaarzf ﬁ_1>‘ —IOgZﬁ
1 2( 1) oz
1 vol Ad2
= . 89
6 (d —2)(4r)\d-2/2 (89)

'°As in footnote 9 this argument could miss terms arising from
the path integral measure that are proportional to f and do not
affect the entropy.

VII. MAXWELL IN HIGHER DIMENSIONS

Finally we consider a Maxwell field in higher dimen-
sions. In covariant gauge the Euclidean action is

S = / ddx\/§<i ﬂyF””+;(V”A”)2+i8ﬂb8”c>. (90)

As in the scalar case we work on the geometry (75) which is
a product of an hourglass and a transverse torus,

ds® = dx> + (r(x))?d0* + dz} + - + dz3_,
ds% d;zr

d-2
9%9—’-/}, lezl—i_Ll (91)

—00 <X < 00,

It is convenient to break x* up into coordinates x* = (x, )
on the hourglass and coordinates x' = z’ on the torus. The
gauge field has polarizations A, tangent to the hourglass
and polarizations A; tangent to the torus. Integrating by
parts the action decomposes as

1
S—/ddx\/g[EA“(—gaﬁVMV”—|—Raﬂ)Aﬁ

S A8,V VA — i, V| (92)

The partition function is then

—logZ= - / ) Q(Tre“"(‘f’ﬂ/’vﬂv"*’e”ﬁ) + Tre=(=0uVa V"))
2 1/A% S

4 [° Bppesvn, (93)
/A2 S

As in (77) the heat kernels in this expression factorize, and
the torus polarizations make the same contribution as d — 2
scalars. Thus

1 [ d
logz=—3 [ RIS K9 +(d=2) )

© d
[ ko)) (94)
1/A2 S

In Sec. V B we showed that the Maxwell entropy vanishes
in two dimensions. This means that as far as the entropy is
concerned the first and third terms cancel and we are left
with the entropy of d — 2 scalar fields. From (89) we have

1 VOlJ_Ad_z

SMaxwell = 6 W . (95)
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VIII. CONCLUSIONS

In this paper we have explored a prescription for defining
entanglement entropy in quantum field theory. There are
two broad perspectives one can take on the prescription.

From a canonical or thermal perspective, the prescription
avoids any factoring of the Hilbert space. Instead, the
entropy is defined in terms of the full Hilbert space and has
a straightforward state-counting interpretation, as half of
the von Neumann entropy of the density matrix (13),

:Le—ﬂvf 96
re=zme (96)

This density matrix has a thermal interpretation, correspond-
ing to the position-dependent proper temperature (15),

1
proper(x) = ﬁrg(x) .

T (97)

From a covariant or path integral perspective the entropy
can be obtained from the partition function on the product
of an hourglass geometry with a transverse space. This
provides a powerful calculational tool which is most
effective when taking the singular limit of the hourglass
geometry ¢ — 0 with a proper time cutoff in place. Rather
curiously the overall coefficient in the entropy is related to
the late-time behavior of the heat kernel on a unit hourglass.

In relating these two perspectives it is important that
(just as an ordinary thermal system) the hourglass has a
freely acting Killing vector %. This means local geometric
quantities such as the curvature will be independent of
and local terms in the effective action will be proportional
to . As in footnote, such terms can shift the energy E =
% (—log Z) but do not contribute to the entropy. Instead,
just as in an ordinary thermal system, only worldlines
which wind around the Euclidean time direction contribute
to the entropy. This stands in contrast to the prescription
mentioned in the Introduction, of putting the field theory on
a cone and varying with respect to the deficit angle. The
Killing vector on a cone has a fixed point. This means local
terms in the effective action can, and in the case of the
Einstein-Hilbert term do, contribute to the entropy [38].

To conclude, let us mention a few directions for
future work:

(i) The leading divergence of the entropy can be thought

of as counting degrees of freedom per unit area. For
example, for a scalar field from (89) we have

S A2
= . 8
vol | 6(d —_ 2) (4ﬂ)(d—2)/2 (98)

We expect that this quantity should be positive in any
unitary theory. Intuitively it should decrease under

renormalization group flow. Does it satisfy a
c-theorem?

(i) We have restricted our attention to planar entangling
surfaces. It would be interesting to consider other
possibilities. For a generic entangling surface in
even dimensions it is reasonable to expect a log
divergent term in the entanglement entropy. It would
be interesting to calculate the coefficient of the log
for a spherical entangling surface in 341 and
compare to the results of [13].

(iii) In a holographic setting one could in principle use
the hourglass prescription to calculate entanglement
in the boundary theory. Can one identify the bulk
dual of this calculation, say along the lines of [39]?

ACKNOWLEDGMENTS

D.K. is grateful to Edward Witten for valuable dis-
cussions at the beginning of this work. The work of
T. A. and N. I. were supported in part by JSPS KAKENHI
Grants No. 21J20906 (T. A.) and 18K03619 (N.L.). The
work of N.I. was also supported by MEXT KAKENHI
Grant-in-Aid for Transformative Research Areas A
“Extreme Universe” No. 21H05184. D. K. is supported
by U.S. National Science Foundation Grant No. PHY-
2112548.

APPENDIX A: WKB FOR SCALAR FIELDS

We first consider a minimally coupled scalar field. The
WKB quantization condition for the Schrodinger problem
(36) is

cosh™! (w/me) 5 55 5 1
2 dy\/a) —m*e*cosh”y = n+§ z. (Al)
0

Setting u = "€ coshy, a = € this becomes
[0} (0]

+1 Za)/ld 1—u?
n+—-=-— u .
2 ), u* —a?

The integral can be evaluated as the difference of
two complete elliptic integrals and can be expanded for
small a,

/1 du\/ulz__b;zz —K(V1-a)-EW1=ad)

(A2)

1
=log—+log4 — 1+ O(a?). (A3)
a
Thus the leading behavior of n(w) for small a is
2w w
= Zlog—. A4
() = 10g 2 (A4
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The same leading behavior was obtained from the particle-
in-a-box approximation in (38).

Next we consider scalar fields with nonminimal cou-
plings. For the potential (45) the WKB quantization
condition becomes

n—+— 2 2 (AS)

2 3 u-—a

1 20 [w du\/(ui—uz)(bﬂ—u%)

max(a.u_) U

The variables u and a are defined as above and the turning
points are at

1 8&a?
2 T

u? *E:I:
) w

(A6)

(u_ is only a turning point if u_ > a). Note that when a is

small, u_ ~ @a.

To evaluate the integral in (A5) for small a with u_ ~ a
we introduce a parameter z with @ < z << u,. (A system-
atic choice is z ~\/a.) We break the integral into two
regions, I = I + I, where

Z
I =
max (a,u_

u? — a? '
d _ 2
I = /u+ u\/ (u? —u? ) (A7)
u? —a?
For small a we can approximate

7 /Z du u? —u?

27 >

! * max (a,u_ u2 - a2

ur d

L~ / Ryt (A8)

These integrals can be evaluated to obtain''

Izlogé—i—logét—l—%(l—%) log <1_E>2
1 (1)
4 (0] w

+ (terms which vanish as a — 0). (A9)
Note that the nonminimal coupling only appears in the
finite terms. So for a nonminimal scalar the leading
behavior of n(w) is still given by (A4).

"There are two possible lower limits, @ and u_, but the result
(A9) is correct for both possibilities.

APPENDIX B: FINITE MASS AND
VOLUME EFFECTS

In this appendix we revisit the expression for a scalar
field given in (76),

d
—logZ———/ ks
2 /A2 S

s(=V2+ER+m?) . (B 1)

The leading UV divergent contribution to the entropy,
given in (89), is extensive in the volume of the transverse
torus and is insensitive to the mass. Our goal here is to
understand corrections to this leading behavior arising from
finite-mass and finite-volume effects.

Thanks to the factorization (77), the rescaling (83), and
the late-time behavior (87), we have'?

ds 2
—logZ = SR . B2
og 6/} S —e a2 (s) (B2)
The heat kernel for the transverse torus is
Kyo(s) =K(s,Ly) - K(s,Lgs), (B3)

where the heat kernel for a circle (a periodic dimension of
size L) can be written as a sum over momentum modes,

— i e—.v(Znn/L)Z.

n=—0oo

(B4)

By Poisson resummation this can be written as a sum over
winding modes,

K(s,L) (B5)

—L2 2 /4s
Here n is the number of times the particle worldline wraps
around the circle. This winding form will be more useful
for our purposes.

We begin by considering corrections due to finite mass.
To do this we keep the UV cutoff A in place and hold the
mass fixed but take the torus to be large, L; — oo for all i.
Then only the zero-winding modes in (B5) contribute, and
we have

r  vol,
@ ( 4”)(@,’—2) /2

o dS 2
I, = / A5 e,
1/a2 892

"Note that the late-time behavior is completely insensitive to
the nonminimal coupling parameter ¢&.

—logZ = — 1, (B6)

where

(B7)
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TABLE 1. 1, in various dimensions, neglecting terms which
vanish as A — 0.

d 1,

2 2loghd —y

3 2A = 2\/mm

4 A? = 2m*log® + (y — 1)m?

5 IAP = 2Am? 45\ /am’

6 IAY = A’m? + m*log2 + (3 - Lym*

It is straightforward to expand I; in powers of m/A, as
illustrated in Table I. The entropy § (88 — 1)|5_o,(—log Z)
is given by

1 VOIL

§= 12 (4ﬂ)(d—2)/2

I, (BS)

As expected the entropy is extensive in the volume of the
torus, with a leading divergence ~A%2 and a series of
corrections suppressed by powers of m/A.

Now let us consider corrections due to finite-volume
effects. That is, we consider terms in (B5) with nonzero
winding. Since these terms are exponentially suppres-
sed at small s, they are UV finite which means we can

send A — o0."® For concreteness we set d = 3, meaning a
single circle of size L, and find the winding contribution

2

z [ods L &
_10gZWinding = _@A ?e—sm — Z L2 /4s (B9)
v n=1

The integral and sum are straightforward. Overall we find

—log Z,_3 = (extensive result from (B6))

+§log(1 —elmy,

As expected, the winding contributions are exponentially
suppressed at large Lm. At small Lm there is a
divergence ~log Lm. This is nothing but the IR diver-
gence associated with the hourglass. The same divergence
is present in d = 2 as can be seen in (39). To make this
connection precise note that the IR divergence arises
from the n =0 term in the momentum sum (B4), and
that setting n = 0 in that sum is equivalent to dimen-
sional reduction to d = 2.

(B10)

PThe various limits are a bit subtle. To study finite mass effects
we kept m and A fixed and sent L; — 0. To study finite volume
effects we instead keep m and L; fixed and send A — .
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