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We check formally that the Hubeny-Rangamani-Takayanagi prescription for holographic entanglement
entropy—when applied to a static black brane spacetime and to a wide class of subregions that do not lie on
a constant time slice—gives rise to volume-law entropy in the limit of large subregion. By volume-law
entropy, we mean that the entanglement entropy scales with the volume of the projection of the boundary
subregion onto a static time slice with respect to the boundary thermal state (with the same coefficient as in
the volume law on the static time slice). Our result applies to subregions that have reflection symmetry as
well as strips, and we also present field-theoretic arguments in support of our holographic findings.
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I. INTRODUCTION

The entanglement entropy of a subregion of a field
theory in a thermal state has an extensive component that
scales with the volume of the subregion, when the sub-
region is large. In holography, previous work by Liu-Mezei
[1,2] has shown that the Hubeny-Rangamani-Takayanagi
(HRT) surface [3–5] is consistent with this volume scaling
in static situations. See also [6–9] for related techniques. In
time-dependent situations, it is widely expected that the
HRT surface continues to be consistent with the volume
law, at least for an appropriate class of nonthermal states. In
this paper, we take the first steps toward generalizing the
Liu-Mezei technique to a particular kind of nonstatic
situation: we will consider entangling subregions that break
staticity in thermal states (and not states with general time
dependence).
The rest of the paper is organized as follows. In Sec. II,

we describe our intuition from the field theory side. In
Sec. III, we check the volume law for strips lying on a
boosted time slice on the boundary of a black brane
spacetime. In Sec. IV, we present a more general argument
for any subregion that has reflection symmetry. Finally, in

Sec. V, we conclude. Some of the more technical results are
relegated to the Appendixes.

II. EXPECTATION FROM THE FIELD
THEORY SIDE

Intuitively, we expect that the entanglement entropy of
the boosted thermal state is proportional to the volume of
the projection of the subregion onto a “static time slice”
(i.e., a slice on which the stress-energy tensor of the field
theory is diagonal). To see this, we can consider a system of
qubits at equal separation in space, each of which is in a
maximally mixed state (so, in particular, the qubits are not
entangled among them). Furthermore, let us suppose that
the qubits are stationary, so their worldline is perpendicular
to the t ¼ 0 slice, as depicted in Fig. 1.

Now consider two subregions (depicted in red in Fig. 1),
one of which is on the unboosted time slice and the other
one is on a boosted time slice, such that the projection of
the boosted subregion onto the unboosted time slice is the
unboosted subregion. Simply by counting the number of
qubits contained in the subregions, we see that the
entanglement entropy of the two subregions are equal to
each other. In other words, the entanglement entropy of a
boosted subregion scales with the volume of the projection
onto a static time slice, with the same coefficient as in
volume-law entropy on the static time slice.
Next, we back up this intuition with a few simple

computations. Consider a field theory in the thermal state
ρ ¼ e−βH

Z with Z ¼ Trðe−βHÞ. This is the state on the t ¼ 0

slice.We nowboost the state in the z direction by conjugating
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ρ with the unitary operator implement the boost. Using the
Poincaré algebra, we find the new state on the t ¼ 0 slice to
be ρboosted ¼ e−βHboosted

Z withHboosted ¼ γH − vγPz, where v is

the boost velocity, γ is the dilation factor γ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
, and

Pz is the translation generator along the z direction.
It will be convenient to rewrite the boosted state in the

Gibbs form,

ρboosted ¼
e−βboostedðH−vPzÞ

Z
; ð1Þ

with βboosted ¼ γβ the “boosted temperature,” and with vPz
playing the role of a work term similar to the product of the
chemical potential and the number of particles. Thus, the
state on the t ¼ 0 slice is a grand canonical ensemble with
the unconventional feature that the temperature is v
dependent.
Computing the von Neumann entropy SvN ≡ −Trðρ ln ρÞ

of the state, we find

SvN ¼ βboostedhH − vPziboosted þ lnZ ð2Þ

and recognize the formula for the Gibbs entropy.

A. Free massless scalar field

We now specialize to the free massless scalar field in
dþ 1 dimensions and compute the first term of (2). The
expectation value hH − vPziboosted is

hH − vPziboosted ¼ V
Z

ddk
ð2πÞd

jkj − vkz
eβboostedðjkj−vkzÞ − 1

; ð3Þ

where V is the proper volume on the t ¼ 0 slice. Using
spherical coordinates in momentum space,

hH − vPziboosted ¼
V

ð2πÞd
Z

dΩd−1

×
Z

dkkd−1
kð1 − v cos θÞ

eβboostedkð1−v cos θÞ − 1
; ð4Þ

where θ is the polar angle. By doing the change of variable
q ¼ βboostedkð1 − v cos θÞ, one can show that the integral
above is v independent. So we find

hH − vPziboosted ¼ hHiunboosted: ð5Þ

The second term of (2) can be computed in a
similar manner and yields very similar results. So, the
entropy is Sthermal ∼ βboostedhH − vPziboosted, which is also
βboostedhHiunboosted. So the v dependence in the thermal
entropy is through a Lorentz boost factor contained in the
boosted temperature. That boost factor can be combined
with the proper volume V on the t ¼ 0 slice to give the
projected volume onto the time slice on which the stress
tensor is diagonal. Thus, we have checked the intuition
described in Fig. 1 in the setting of a free scalar field.

B. Conformal perfect fluid

Next, instead of a massless free scalar field, let us
specialize Eq. (2) to the case of a conformal fluid in
dþ 1 dimensions. The stress-energy tensor of such a fluid
takes the form

hTμνi ¼ αTdþ1ðημν þ ðdþ 1ÞuμuνÞ ð6Þ

for some constant α, and where uμ is the four velocity of the
fluid. This stress tensor is that of a conformal field theory
(CFT) dual to a boosted Schwarzschild-anti–de Sitter
(AdS) black hole, so we would expect that lessons learned
here might carry over to other holographic scenarios. In
addition, the Hamiltonian and translation generator are
given in terms of the stress-energy tensor by the standard
formulas

H ¼
Z

Ttt ddx; ð7Þ

Pz ¼
Z

Tzt ddx: ð8Þ

We now compute the hH − vPziboosted in (2). We have

hH−vPziboosted¼
Z

ðhTttiboosted−vhTztiboostedÞddx; ð9Þ

where hTμνiboosted can be obtained from (6) with the four
velocity taken to be ut ¼ γ, uz ¼ −γv (note the negative
sign) and all other spatial components vanishing,

hTttiboosted ¼ αTdþ1ð−1þ ðdþ 1Þγ2Þ; ð10Þ

hTztiboosted ¼ αTdþ1ðdþ 1Þγ2v: ð11Þ

We then find

FIG. 1. The worldlines of the qubits are in blue. The unboosted
and boosted subregions are in red.
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hH − vPziboosted ¼ αTdþ1d
Z

ddx: ð12Þ

Now let us compare the answer above with hHiunboosted.
We have

hHiunboosted ¼
Z

hTttiunboosted ddx; ð13Þ

where hTttiunboosted is given by (6) with ut ¼ 1 (and all
other components vanishing),

hTttiunboosted ¼ αTdþ1d: ð14Þ

We therefore find

hH − vPziboosted ¼ hHiunboosted; ð15Þ

just like in the free scalar field case. Beyond this point,
the steps are the same as for the free scalar field case:
the von Neumann entropy is ∼βboostedhH − vPziboosted ¼
βboostedhHiunboosted. The γ factor from the boosted inverse
temperature can be combined with the volume factor,
yielding the projected volume.

C. Projected volume versus other volumes

A priori, one might naively think that the entropy of a
subregion lying on a boosted time slice (in the thermal
state) should scale with the proper volume of the subregion
on that time slice. To see why, let us consider a subregion A
lying on an unboosted time slice and the unitary operatorU
which implements the boost. U is the exponential of a local
integral of the stress-energy tensor (i.e., the boost gener-
ator), so it might seem that U is the tensor product of local
unitaries,

U ¼? UA ⊗ UĀ; ð16Þ

where UA is the exponential of the integral over the
subregion A, and UĀ is the exponential of the integral
over the complement Ā. If the equation above is true, then
we would conclude that U has no effect on the entangle-
ment entropy, and thus the volume law is still with respect
to the proper volume on the (now boosted) slice.
However, we know thatU does not have the local unitary

form as written above (see [10,11] for recent studies of the
effects on modular Hamiltonians of the failure of such
unitaries to be local). An intuitive way to understand whyU
does not factorize is by noting that the stress-energy tensor
moves local operators around, and as such the “factoriza-
tion” is a mixed combination of A and Ā. Thus, we think
that the scaling of the entropy with the projected volume
rather than the proper volume is a consequence of a
nonlocal boost unitary.

D. How universal is the projected volume scaling?

It is easy enough to find counterexamples to the
projected volume statement if we consider states other
than a thermal state. For example, a quenched state—where
entropy evolves in time—is easily seen to be a counter-
example. Hence, we believe the projected volume law
should only hold in a thermal state while holding true for
subregions of arbitrary shape. However, this projected
volume law should receive corrections after moving away
from a thermal state.
It might be surprising that such a universal behavior can

be true, given that entanglement entropy for a CFT on the
torus is nonuniversal and depends on the operator contents
of the theory [12]. However, we note that the projected
volume law is a statement only for very large subregions
(larger than the thermal scale). So, effectively, we are in a
high-temperature regime where it is conceivable that
universal statements can be made.

E. Other comments

We also note the argument in [13], where the authors
used strong subadditivity to argue in a special case that the
entanglement entropy on a null strip is equal to the
entanglement entropy of its projection.

III. A SIMPLE HOLOGRAPHIC EXAMPLE:
STRIPS ON A BOOSTED TIME SLICE

We now move on to discuss holography. In this setting,
we can also expect the scaling of the entropy with the
projected volume to come out, basically because of the
coordinate singularity at the horizon of a black hole
spacetime.
We note that what we are after is a finite contribution to

the entropy, as illustrated from the field theory examples of
the previous section. As such, we do not need to use an
explicit renormalization scheme to deal with the UV-
divergent part (i.e., the vacuum part) of the entanglement
entropy. Holographically, we impose a fixed near-boundary
cutoff at some small value of the Fefferman-Graham
coordinate z ¼ ϵ and send the size of the boundary
subregion to infinity while keeping ϵ fixed.

A. Boosted black brane

We first consider a simple example: a strip boundary
subregion in a 3þ 1-dimensional boosted black brane (i.e.,
the strip lies on a boosted time slice on the boundary). The
metric of the Schwarzschild black brane is

ds2 ¼ L2

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dx2 þ dy2
�
; ð17Þ

with fðzÞ ¼ 1 − z3

z3h
, and zh is the z coordinate of the

horizon. Throughout this paper, we will set zh ¼ 1 for
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convenience. We could work with boosted coordinates, but
it will be simpler to work with the static coordinates above.
The strip is delimited by the two lines at x ¼ �R, t ¼ �t0
for some half-width R and time t0. We parametrize the HRT
surface as tðzÞ, xðzÞ. The induced metric on a codimension-
2 spacelike surface anchored at the strip is

ds2 ¼ L2

z2

��
1

f
− ft02 þ x02

�
dz2 þ dy2

�
; ð18Þ

and the area functional A of the surface (evaluated over a
segment of length Δy along the y direction) is

A ¼ 2Δy
Z

zm

δ
dz

L2

z2
ffiffiffiffi
Q

p
; ð19Þ

Q ¼ 1

f
− ft02 þ x02; ð20Þ

where δ is a near-boundary cutoff, and zm is the z
coordinate of the “tip” of the HRT surface. The
Lagrangian above is independent of t and of x, hence
there are two conserved momenta,

pt ¼
∂L
∂t0 ¼ −

�
L
z

�
2 ft0ffiffiffiffi

Q
p ; ð21Þ

px ¼
∂L
∂x0 ¼

�
L2

z2

�
x0ffiffiffiffi
Q

p : ð22Þ

We can solve algebraically for x0 and t0 as functions of z,

x0 ¼ pxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
t þ fðL4

z4 − p2
xÞ

q ; ð23Þ

t0 ¼ −
pt

f
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
t þ fðL4

z4 − p2
xÞ

q ; ð24Þ

where we have assumed x0 < 0 and t0 < 0. These assump-
tions should hold true over half the HRT surface, and
on the other half we have x0 > 0 and t0 > 0. Note that
these assumptions imply px < 0 and pt > 0. We can
then integrate the two equations above to get the HRT
surface,

xðzÞ ¼ Rþ
Z

z

0

dz0
pxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
t þ fðz0ÞðL4

z04 − p2
xÞ

q ; ð25Þ

tðzÞ ¼ t0 −
Z

z

0

dz0
pt

fðz0Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
t þ fðz0ÞðL4

z04 − p2
xÞ

q : ð26Þ

The two constants R and t0 are determined by the momenta
px and pt. To see that, we evaluate the two functions above

at z ¼ zm and use the fact that xðzmÞ ¼ tðzmÞ ¼ 0. To see
that the x and t coordinates of the tip of the HRT surface are
zero, we note that both the boundary subregion and the bulk
metric are symmetric under the double reflection x → −x
and t → −t. Therefore, the tip of the HRT surface must be
preserved under that reflection, hence it is located at
x ¼ t ¼ 0. We then obtain

R ¼ −
Z

zm

0

dz0
pxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
t þ fðz0ÞðL4

z04 − p2
xÞ

q ; ð27Þ

t0 ¼
Z

zm

0

dz0
pt

fðz0Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
t þ fðz0ÞðL4

z04 − p2
xÞ

q : ð28Þ

In the two equations above, zm itself is of course deter-
mined by pt and px, via the condition that x0 blows up at
z ¼ zm. Explicitly, this condition is

p2
t þ fðzmÞ

�
L4

z4m
− p2

x

�
¼ 0: ð29Þ

Let us solve for pt as a function of zm and px from the
above, and plug into the two previous equations. Note that
the above forces a lower bound on jpxj,

jpxj ≥
L2

z2m
: ð30Þ

We will call the right-hand side above the negative of the
critical value of px and denote it by jpx;critj. We then obtain

R ¼ −
Z

zm

0

dz0
pxffiffiffiffiffiffiffiffiffiffiffi
Hðz0Þp ; ð31Þ

t0 ¼
Z

zm

0

dz0

fðz0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−fðzmÞðL4

z4m
− p2

xÞ
q

ffiffiffiffiffiffiffiffiffiffiffi
Hðz0Þp ; ð32Þ

with

HðzÞ≡ fðzÞ
�
L4

z4
− p2

x

�
− fðzmÞ

�
L4

z4m
− p2

x

�
: ð33Þ

The two equations above tell us how R and t0 are related to
px and zm. The area functional becomes

A ¼ 2Δy
Z

zm

δ
dz0

L4

z04
1ffiffiffiffiffiffiffiffiffiffiffi
Hðz0Þp : ð34Þ

Next, we take the large-R limit, with the ratio R=t0 kept
fixed. We want to keep this latter ratio fixed so that the strip
remains on the same boosted time slice as we make the
half-width larger and larger. We expect that zm ≈ zh ¼ 1 in
the large-R limit (indeed it is well known that the horizon
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acts as a barrier to extremal surfaces [14,15]). So, for the
rest of this section, zm will be taken to be close to the
horizon. We also need to find the approximate value of px.
To do so, we need to think about how the function HðzÞ
looks like.
For generic values of zm, zh, and px, the function HðzÞ

has two zeros, one of which is at z ¼ zm, and a minimum
between the two zeros. Let z ¼ zM denote the location of
this minimum. In addition to the lower bound (30), px is
also constrained by the fact that we should only consider
values of px for which zm is the smaller of the two zeros.
Indeed, in the other case, we have that HðzÞ is negative
when z approaches zm. ButHðzÞ occurs under a square root
in the R integral (31), so the integrand is not real near the
upper limit of integration (and the integral has to be real).
We plot HðzÞ for a few representative values of the
parameters in Fig. 2.
From the plot ofHðzÞ and Eq. (31), we see that the large-

R regime corresponds to the regimewhere zM is close to zm.
In this regime, we can check this divergence of R by
replacing the HðzÞ in (31) with its expansion to second
order around the minimum,

HðzÞ ¼ HðzMÞ þH2ðz − zMÞ2 þ…; ð35Þ

where

H2 ¼
1

2
f00ðzMÞ

�
L4

z4M
− p2

x

�
−
4L4

z5M
f0ðzMÞ þ

10L4

z6M
fðzMÞ:

ð36Þ
The precise value of H2 will not be important for our
purposes. The R integral then takes the form

R ≈ −
Z

zr

zr−δ
dz0

pxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HðzMÞ þH2ðz0 − zMÞ2

p ; ð37Þ

where zr is the zero of the quadratic expression (35), which
is smaller than zM, and δ is some small number.1 Evaluating
the integral, we find

R ≈
px

2
ffiffiffiffiffiffi
H2

p log jHðzMÞj: ð38Þ

So, R diverges when HðzMÞ ¼ 0, which is to say that the
zero at z ¼ zm is also a minimum of HðzÞ. To find out
which value of px corresponds to that, we solve for px from
the equation H0ðzmÞ ¼ 0, and find

px ¼ px;crit: ð39Þ

So, px has to be the critical value for R to diverge.
We now replace the px in the R integral (31) by the

critical value

R ≈
Z

zm

0

dz0
jpx;critjffiffiffiffiffiffiffiffiffiffiffi
Hðz0Þp : ð40Þ

Also, we can approximate the area functional (34) by
setting some of the z0 dependence in the integrand to zm
(which is near the horizon),

A ≈ 2Δy
Z

zm

δ
dz0

L2

z2m

jpx;critjffiffiffiffiffiffiffiffiffiffiffi
Hðz0Þp : ð41Þ

Comparing the two previous equations, and dividing by
4GN , we see that the entanglement entropy S is

S ≈ s2RΔy; ð42Þ

with the entropy density s given by

s ¼ L2

4GNz2h
ð43Þ

(where we restored zh for clarity). Thus, we have obtained
the statement of volume-law entropy, with the volume
given by 2RΔy. We note that this is the volume of the
projection of the strip onto a static time slice, which is
independent of the boost angle (or the ratio R=t0) and not
the proper volume of the strip. We also note that, in the
analysis above, we did not need to find out how the ratio
R=t0 depends on zm and px: for all values of the boost
angle, we have that zm ≈ zh and px ≈ px;crit in the large-R
limit. The exact boost angle of the strip will depend on how

0.85 0.90 0.95 1.00
z

0.1

0.2

0.3

0.4

H(z)

FIG. 2. Plot of HðzÞ versus z for three different choices of
parameters. For all three curves, we set L ¼ 1, zm ¼ 0.9, and
zh ¼ 1. The values of px differ from curve to curve: px ¼ −1.7
(blue), px ¼ −1.3 (yellow), and px ¼ ðL=zmÞ2 ≈ −1.234 (green).
The blue curve is in the unphysical parameter region, since zm is
the larger of the two zeros. The yellow and green curves are in the
physical parameter region. At the critical value of px, the two
roots of HðzÞ are zm and zh, as can be seen by inspecting the
green curve.

1We note that although δ is small, it is not an infinitesimal
quantity. We are expanding in the regime where zM − zr is small.
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close zm is to zh, in comparison with how close px is
to px;crit.

B. The special case of the
Bañados-Teitelboim-Zanelli black hole

Finally, we discuss the special case of the Bañados-
Teitelboim-Zanelli (BTZ) black hole, where boundary
subregions are simply intervals. In this case, a more explicit
treatment can be given when compared to the higher-
dimensional cases, since geodesics anchored at the two end
points of a boosted boundary interval can be found
explicitly.
Our strategy to find these geodesics will be to map from

the Poincaré patch, where geodesics are easy to write
down, to BTZ by a coordinate transformation. The three-
dimensional Poincaré patch metric is

ds2 ¼ L2

z2
ð−dt2 þ dx2 þ dz2Þ: ð44Þ

The geodesic connecting the point ðt ¼ 0; x ¼ 0Þ on the
boundary of AdS space to the point ðt ¼ t0; x ¼ x0Þ on the
boundary of AdS space can be given in parametric form by

zðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1 − uÞð−t20 þ x20Þ

q
; ð45Þ

tðuÞ ¼ ut0; ð46Þ

xðuÞ ¼ ux0; ð47Þ

where u is a parameter ranging from 0 to 1. To obtain the
expressions above, we can start by a geodesic on the
t ¼ 0 time slice in the Poincaré patch and boost it (along
the boundary direction x). The result is guaranteed to be a
geodesic because boosting along x is an isometry of
the spacetime. By eliminating the parameter u, we can
also describe the geodesics by the two functions tðxÞ
and zðxÞ.
In the remainder of this subsection, we set L ¼ 1 for

convenience (but we will restore L in the next section). We
map to AdS-Rindler (otherwise known as the planar BTZ
black hole), by the coordinate transformation

x� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r−2

p
e�σ� ; ð48Þ

z ¼ eσ

r
; ð49Þ

where x� ≡ t� x and σ� ≡ τ � σ. The AdS-Rindler
metric is

ds2 ¼ −ðr2 − 1Þdτ2 þ dr2

r2 − 1
þ r2dσ2; ð50Þ

and the image of the geodesic (45)–(47) is found to be

τðσÞ ¼ arctanh

×

�
sinh τR sinh ðσ − σLÞ þ sinh τL sinh ðσR − σÞ
cosh τR sinh ðσ − σLÞ þ cosh τL sinh ðσR − σÞ

�
;

ð51Þ

rðσÞ ¼ sinh ðσR − σLÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cschðσ − σLÞcschðσR − σÞ
2½cosh ðσR − σLÞ− cosh ðτR − τLÞ

s
:

ð52Þ

In the expression above, ðτL; σLÞ and ðτR; σRÞ are the
boundary coordinates of the two end points of the geodesic,
respectively. Beyond this point, we will use translation
symmetry to set −τL ¼ τR ≡ τ0 and −σL ¼ σR ≡ R. Using
the explicit formulas for the geodesics above, we can write
down the area of the HRT surface (i.e., the length of the
geodesic). After some straightforward but tedious maths,
we obtain

Area ¼ 2 sinh ð2RÞ
Z

rcutoff

rtip

dr
r

×

��
cosh2R−

sinh22R
r2ðcosh2R− cosh2τ0Þ

�
2

− 1

�
−1=2

;

ð53Þ

with rtip the r coordinate of the tip of the HRT surface,
given in terms of R and τ0 by

rtip ¼
ffiffiffi
2

p
coshRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cosh 2R − cosh 2τ0
p ð54Þ

and rcutoff some large near-boundary cutoff radial coordi-
nate. The two expressions above specify the area as a
function of R and τ0 or, equivalently, as a function of R and
the ratio τ0

R. To check the projected volume law, we can plot
numerically the area as a function of R, at various fixed
values of the ratio τ0

R. We show the plots in Fig. 3. As can be
seen Fig. 3, the area scales linearly with R, with a slope that
is independent of the ratio τ0

R. In this way, we have checked
numerically the projected volume law.

IV. A MORE GENERAL ARGUMENT

In this section, we consider more general subregions. We
will consider the d ¼ 3 case to keep the notation simple and
generalize to arbitrary dimensions in Appendix B.

A. The d = 3 case

We still work with static coordinates in the bulk, but with
polar coordinates instead of Cartesian ones,
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ds2 ¼ L2

z2

�
−fdt2 þ dz2

f
þ dρ2 þ ρ2dϕ2

�
; ð55Þ

and we consider a boundary subregion described by
ρ ¼ Rρ̃ðϕÞ and t ¼ Rt̃ðϕÞ, where R is a scaling parameter,
which we will take to be large. The boundary subregion
needs not lie on a static time slice or even a boosted time
slice, but we will require that it is symmetric under
ðt; x; yÞ → ð−t;−x;−yÞ.
The HRT surface is described by ρðz;ϕÞ and tðz;ϕÞ. The

area functional is

A ¼
Z

zm

δ
dz

Z
2π

0

dϕL ¼
Z

zm

δ
dz

Z
2π

0

dϕ
L2

z2
ffiffiffiffi
Q

p
ð56Þ

with

Q¼ −fðt0ρ;ϕ − ρ0t;ϕÞ2 þ ρ2
�
−ft02 þ 1

f
þ ρ02

�
− t2;ϕ þ

ρ2;ϕ
f
:

ð57Þ

The trick is to study the variation of A with respect to R. By
a standard Hamilton-Jacobi argument, we have that this
variation is

dA
dR

¼
Z

dϕ

�
Πz

ρ
dρ
dR

����zm
δ

þ Πz
t
dt
dR

����zm
δ

−HðzmÞ
dzm
dR

�
; ð58Þ

whereΠz
ρ ≡ ∂L

∂ρ0 andΠ
z
t ≡ ∂L

∂t0 are the conjugatemomenta. The
prime denotes differentiation with respect to z. Explicitly,

Πz
ρ ¼

L2

z2
ffiffiffiffi
Q

p ½fðt0ρ;ϕ − ρ0t;ϕÞt;ϕ þ ρ2ρ0�; ð59Þ

Πz
t ¼ −

L2

z2
ffiffiffiffi
Q

p ½fðt0ρ;ϕ − ρ0t;ϕÞρ;ϕ þ ρ2ft0�; ð60Þ

and H≡ Πz
ρρ

0 þ Πz
t t0 − L is the Hamiltonian density.

Explicitly,

H ¼ L2

z2
ffiffiffiffi
Q

p
�
−
ρ2

f
−
ρ2;ϕ
f

þ t2;ϕ

�
: ð61Þ

In Eq. (58), the first two terms on the right-hand side come
from the change in the shape of the HRT surface as R is
varied, and the last term comes from the change in zm asR is
varied. Technically, the right-hand side of (58) includes also
the term

R
dz

R
dϕ∂ϕðΠϕ

ρ
dρ
dR þ Πϕ

t
dt
dRÞ, but this latter term

vanishes by periodicity in ϕ.
From the explicit expressions (73) and (74), we see that

those conjugate momenta vanish when evaluated at z ¼ zm.
This is because partial derivatives of ρ or t with respect to ϕ
vanish at the tip of the HRT surface, by regularity, and also
because ρðz ¼ zmÞ vanishes. For the same reasons, we see
that the Hamiltonian density H vanishes when evaluated at
z ¼ zm. So Eq. (58) simplifies to

dA
dR

¼ −
Z

dϕ

�
Πz

ρ
dρ
dR

����
δ

þ Πz
t
dt
dR

����
δ

�
: ð62Þ

1. The near-boundary expansions

Because the right-hand side above is evaluated at the
near-boundary cutoff z ¼ δ, we see that it is enough to
know how the HRT surface looks like near the boundary to
know dA

dR. Let us expand ρðz;ϕÞ and tðz;ϕÞ near the
boundary (i.e., as series in z),

ρ ¼ Rρ̃ðϕÞ þ c1ðR;ϕÞzþ c2ðR;ϕÞz2 þ…; ð63Þ

t ¼ Rt̃ðϕÞ þ d1ðR;ϕÞzþ d2ðR;ϕÞz2 þ…; ð64Þ

where we will refer to the coefficients ci and di as the
Fefferman-Graham (FG) coefficients. We claim that the
first coefficients c1 and d1 vanish. To see this, we will need
to solve the equations of motion perturbatively near the
boundary. From the area functional (56) in the d ¼ 3 case,
we find the equations of motion,

−
2

z
Q
∂Q
∂ρ0 −

1

2

∂Q
∂z

∂Q
∂ρ0 þQ

∂
∂z

∂Q
∂ρ0

−
1

2

∂Q
∂ϕ

∂Q
∂ρ;ϕ þQ

∂
∂ϕ

∂Q
∂ρ;ϕ ¼ 0; ð65Þ

−
2

z
Q
∂Q
∂t0 −

1

2

∂Q
∂z

∂Q
∂t0 þQ

∂
∂z

∂Q
∂t0

−
1

2

∂Q
∂ϕ

∂Q
∂t;ϕ þQ

∂
∂ϕ

∂Q
∂t;ϕ ¼ 0: ð66Þ

1 2 3 4 5
0

5

10

15

20

Area

FIG. 3. Plot of the area of the HRT surface versus R, for three
fixed values of τ0R (namely, τ0R ¼ 0.1 for the blue curve, τ0R ¼ 0.9 for
the orange curve, and τ0

R ¼ 0.99 for the green curve). The rcutoff
has been set to 100.
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If we plug the near-boundary expansions (63) and (64) into
the equations of motion above and demand that the
equations of motion are satisfied at each order in z, we
find that the order z−1 yields

−
2

z
Qð0Þ

�∂Q
∂ρ0

�ð0Þ
¼ 0; ð67Þ

−
2

z
Qð0Þ

�∂Q
∂t0

�ð0Þ
¼ 0; ð68Þ

where the superscript (0) means the term is zeroth order
in z. We have

Qð0Þ ¼ −ðd1Rρ̃;ϕ − c1Rt̃;ϕÞ2 þ R2ρ̃2ð1þ c21 − d21Þ
− R2 t̃2;ϕ þ R2ρ̃2;ϕ; ð69Þ
�∂Q
∂ρ0

�ð0Þ
¼ 2R2½c1ðρ̃2 − t̃2;ϕÞ þ d1ρ̃;ϕ t̃;ϕ�; ð70Þ

�∂Q
∂t0

�ð0Þ
¼ 2R2½c1ρ̃;ϕ t̃;ϕ − d1ðρ̃2 þ ρ̃2;ϕÞ�: ð71Þ

The solution to (67) and (68) is, as claimed,

c1 ¼ d1 ¼ 0: ð72Þ

We now plug the near-boundary expansions for ρ and t
above into Πz

ρ and Πz
t and use the fact that the first-order

coefficients vanish. We then find, in the δ → 0 limit,

Πz
ρ ¼

3L2Rðd3ρ̃;ϕ t̃;ϕ þ c3ρ̃2 − c3t̃2;ϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̃2 − t̃2;ϕ þ ρ̃2;ϕ

q þ � � � ; ð73Þ

Πz
t ¼

3L2Rðc3ρ̃;ϕ t̃;ϕ − d3ρ̃2 − d3ρ̃2;ϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̃2 − t̃2;ϕ þ ρ̃2;ϕ

q þ � � � ; ð74Þ

where the … stands for terms that either diverge or go to
zero as δ → 0. In other words, we have only written down
the term that remains finite in the δ → 0 limit, because
intuitively we expect this finite contribution to give rise to
volume-law entanglement entropy. To further stress the
point that we are interested only in the finite contributions
to the entanglement entropy, we are not including divergent
terms associated with the vacuum entropy that should be
regularized. We note also that the quantity ρ̃2 − t̃2;ϕ þ ρ̃2;ϕ is
positive since the subregion is spacelike.

2. The large-R expansion

In the large-R limit, we guess that ρ and t can be
expanded in 1=R as

ρ ¼ Rρ̃ðϕÞ − ρ0ðz;ϕÞ þ
ρ1ðz;ϕÞ

R
þ ρ2ðz;ϕÞ

R2
þ � � � ; ð75Þ

t ¼ t ¼ Rt̃ðϕÞ − t0ðz;ϕÞ þ
t1ðz;ϕÞ

R
þ t2ðz;ϕÞ

R2
þ � � � ð76Þ

(without noninteger powers of R). ThenQ can be expanded
in a series in 1=R without any noninteger powers,

Q ¼ R2Qð−2Þ þ RQð−1Þ þQð0Þ þ 1

R
Qð1Þ þ 1

R2
Qð2Þ þ � � �

ð77Þ

and similarly for the area functional

A ¼ RAð−1Þ þAð0Þ þ 1

R
Að1Þ þ 1

R2
Að2Þ þ � � � : ð78Þ

We treat the expansions above as an ansatz. For the purpose
of the volume law, we will need only the coefficients ρ0 and
t0. In Appendix A, we take a closer look at the general
structure of the higher-order perturbation theory in 1=R, as
well as check explicitly that the ansatz above matches with
the exact HRT surface in the strip case. The area functional
to leading order in 1=R takes the form

RAð−1Þ ¼ R
Z

zm

δ
dz

Z
2π

0

dϕ
L2

z2

ffiffiffiffiffiffiffiffiffiffiffi
Qð−2Þ

q
; ð79Þ

with

Qð−2Þ ¼ −fð−t00ρ̃;ϕ þ ρ00 t̃;ϕÞ2 þ ρ̃2
�
−fðt00Þ2 þ

1

f
þ ðρ00Þ2

�

− t̃2;ϕ þ
ρ̃2;ϕ
f

: ð80Þ

The equations of motion take the form

∂L
∂t00 ¼

L2

z2
fffiffiffiffiffiffiffiffiffiffiffi
Qð−2Þp ½ρ00ρ̃;ϕ t̃;ϕ − t00ðρ̃2;ϕ þ ρ̃2Þ� ¼ aðϕÞ; ð81Þ

∂L
∂ρ00¼

L2

z2
1ffiffiffiffiffiffiffiffiffiffiffi
Qð−2Þp ½fρ̃;ϕ t̃;ϕt00þρ00ðρ̃2−ft̃2;ϕÞ� ¼ bðϕÞ; ð82Þ

where aðϕÞ and bðϕÞ are some functions of ϕ only, and not
of z. Taking the ratio of the two equations above, and
solving for t00, we find

t00 ¼ FðϕÞρ00; ð83Þ

with

FðϕÞ ¼
ρ̃;ϕ t̃;ϕbðϕÞ − ðρ̃2f − t̃2;ϕÞaðϕÞ
aðϕÞρ̃;ϕt̃;ϕ þ bðϕÞðρ̃2;ϕ þ ρ̃2Þ : ð84Þ
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Evaluating the conjugate momenta at the tip of the HRT
surface, and using the equation above together with
regularity at the tip ðρ00 → ∞Þ and the fact that fðzmÞ is
close to zero for large R, we then conclude that

aðϕÞ ¼ 0; ð85Þ

bðϕÞ ¼ L2

z2m
ρ̃; ð86Þ

and we find that ρ0 satisfies the differential equation

Aðϕ; zÞρ00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bðϕ; zÞρ020 þ Cðϕ; zÞ

p ¼ L2

z2m
ρ̃; ð87Þ

with

Aðϕ; zÞ ¼ L2

z2
ρ̃2ð1 − ξÞ; ð88Þ

Bðϕ; zÞ ¼ ρ̃2ð1 − ξÞ; ð89Þ

Cðϕ; zÞ ¼ ρ̃2 þ ρ̃2;ϕ
f

ð1 − ξÞ; ð90Þ

where we defined

ξ≡ ft̃2;ϕ
ρ̃2 þ ρ̃2;ϕ

: ð91Þ

Solving for ρ00, we find

ρ00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ̃2;ϕ

ρ̃2

s
1ffiffiffi
f

p z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4mð1 − ξÞ − z4

p : ð92Þ

At this point, a few remarks are in order about the nature
of our large-R expansion. We note that, in principle, zm in
the expression above is itself a function of R (the size of the
boundary subregion determines how deep the surface
penetrates into the bulk), so the ρ0 above is not exactly
a quantity zeroth order in 1=R. It is tempting to resolve this
subtlety by replacing zm by its zeroth-order part, which is
the horizon location zh ¼ 1. Doing so, however, is unsat-
isfactory because the size of the subregion is infinite when
zm is at the horizon (as can be seen by integrating ρ00 and
checking that there is a divergence near the horizon). It
would be preferable to deal with large but finite subregions.
We prefer to think about the large-R expansion in this

way: we hypothesize that there is a way to split the R
dependence of ρðz;ϕÞ and tðz;ϕÞ into a dependence
through zm and a dependence not through zm. Then the
large-R expansion consists of expanding the R dependence
not through zm, while leaving zm unexpanded. In

Appendix A, we illustrate more concretely how such zm
arises in the case of strips.
For the purpose of the volume law, however, it seems

harmless to replace zm by the horizon value 1, so we set zm
to 1 now.
Expanding in z around z ¼ 0, we find the leading-order

term to be

ρ00 ¼
1

ρ̃

ρ̃2 þ ρ̃2;ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̃2 þ ρ̃2;ϕ − t̃2;ϕ

q z2 þ � � � : ð93Þ

Integrating, we find the coefficient c3 in the large-R limit
to be

c3 ¼ −
1

3ρ̃

ρ̃2 þ ρ̃2;ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̃2 þ ρ̃2;ϕ − t̃2;ϕ

q ; ð94Þ

and the coefficient d3 is found to be

d3 ¼ −
1

3ρ̃

ρ̃;ϕ t̃;ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̃2 þ ρ̃2;ϕ − t̃2;ϕ

q : ð95Þ

3. The volume law

Plugging back the answers for c3 and d3 in (94) and (95)
into the conjugate momenta Πz

ρ and Πz
t in (73) and (74), we

obtain

Πz
ρ ¼ −L2Rρ̃; ð96Þ

Πz
t ¼ 0: ð97Þ

Plugging the two results above back into dA
dR, we then find

dA
dR

¼
Z

2π

0

dϕL2Rρ̃ðϕÞ2: ð98Þ

Finally, consider the volume of the projection of the
subregion onto a static time slice. The boundary of that
projected subregion is described by ρðϕÞ ¼ Rρ̃ðϕÞ (with
t ¼ 0). The volume of that projected subregion is found
to be

Volume ¼
Z

2π

0

dϕ
Z

Rρ̃ðϕÞ

0

ρdρ

¼ 1

2
R2

Z
2π

0

dϕρ̃ðϕÞ2: ð99Þ

Differentiating with respect to R,

d
dR

Volume ¼ R
Z

2π

0

dϕρ̃ðϕÞ2: ð100Þ
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Comparing the above with (98) for dAdR, we then see that
dA
dR is

proportional to dVolume
R , up to a factor of L2, which is an

entropy density. In other words, the area A of the HRT
surface indeed scales with the volume of the projected
subregion.

V. CONCLUSION

In this paper, we have taken the first steps toward
establishing a version of volume-law entanglement entropy,
by using HRT surfaces in the eternal black brane spacetime
which are anchored at boundary subregions which break
staticity of the thermal states. We consider strips as well as
general subregions which are reflection symmetric. We
emphasize that this work is not a rigorous proof, but the
findings agree with intuition from field theory as well as
more rigorous computations in field theory.
A special case of our result of particular physical interest

is that of the boosted black brane, which is the gravity dual
to nonequilibrium steady states (or NESSs). In particular,
the entanglement structure of NESSs was studied in [16]
(without using holography) or in [17] (using the boosted
black brane).
A natural direction for future work is to generalize to

subregions without reflection symmetry. Then the tech-
niques used here do not apply since reflection symmetry
guarantees that the tip of the HRT surface stays at the same
boundary coordinates as R is varied. This in turn allows for
the Hamilton-Jacobi argument at the beginning of Sec. IV
that relates dA

dR to the near-boundary behavior of the HRT
surface. In the absence of reflection symmetry, we need a
more general technique, perhaps a “matching technique”
similar to the one used in [1,2]. A different approach would
be to use Gauss’s identity for the first variation of the area
as in Appendix A of [18]. The primary difficulty in Gauss’s
identity approach is computing the vector field ηa of [18]
explicitly in the large-R limit which seems nontrivial at
this time.
A different direction for future work is a generalization to

other bulk spacetimes. In particular, it would be interesting
to study the volume law in the context of the hydrodynamic
black hole solution [19,20]. Here again, a more general
technique than the one employed in this paper will be
necessary. We also expect that there will be corrections to
the projected volume law in this case due to the fact that
entropy can be generated in these scenarios. This can be
seen from the derivative expansion of a hydrodynamic
black hole where the zeroth-order term is a boosted black
hole. The projected volume law should be true to zeroth
order in this case with subsequent corrections.
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APPENDIX A: MORE ON THE
LARGE-R EXPANSION

Next, we perform a consistency check of the large-R
expansion by showing that it is consistent with the exact
HRT surface for a strip in 3þ 1 bulk dimensions and also
quantify the error of the large-R approximation in this case.
The exact shape of the HRT surface in that case is given by
Eqs. (25) and (26), reproduced here for convenience,

xðzÞ ¼ Rþ
Z

z

0

dz0
pxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
t þ fðz0ÞðL4

z04 − p2
xÞ

q ; ðA1Þ

tðzÞ ¼ t0 −
Z

z

0

dz0
pt

fðz0Þ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
t þ fðz0ÞðL4

z04 − p2
xÞ

q : ðA2Þ

To compare with the large-R approximation, we first need
to convert from Cartesian coordinates to polar coordinates
using the well-known relation x ¼ ρ cosϕ and y ¼ ρ sinϕ.
Equation (A1) becomes

ρðz;ϕÞ ¼ Rρ̃ðϕÞ þ
Z

z

0

dz0
pxρ̃ðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
t þ fðz0ÞðL4

z04 − p2
xÞ

q ; ðA3Þ

with ρ̃ðϕÞ ¼ secϕ. Let us take the derivative with res-
pect to z0,

ρ0ðz;ϕÞ ¼ pxρ̃ðϕÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
t þ fðzÞðL4

z4 − p2
xÞ

q : ðA4Þ

The expression above is exact. In the large-R limit, as is
argued in Sec. III, we have pt ≈ 0 and px ≈ − L2

z2m
, and the

above becomes

ρ0ðz;ϕÞ ≈ −ρ̃ðϕÞ 1ffiffiffi
f

p z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z4m − z4

p : ðA5Þ

Note that we do not expand zm into a series in 1=R, which is
in accordance with the rule described in Sec. IV. The point
now is to check that the above is the same as −ρ00, with ρ00
given by Eq. (92), when we specialize that equation to a
strip. We note that the function t̃ðϕÞ is independent of ϕ for
a strip, so the quantity ξ in (92) vanishes. Furthermore, the

factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ̃2;ϕ

ρ̃2

r
in that equation simplifies to ρ̃ when we
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take ρ̃ðϕÞ ¼ secϕ as is appropriate for a strip. Then we see
that the equation above is indeed the same as −ρ00.
We can similarly check that t0 as obtained from (A2)

matches with −t00 as obtained from (B24). Both expressions
are easily seen to vanish.
Generically, these calculations show that we are not

missing any “intermediate” terms in the large-R expansion
such as

ffiffiffiffi
R

p
, R1=4, etc., at least for strips. Perhaps the

absence of noninteger powers of 1=R can be argued more
carefully from results such as [21].
Next, we take a closer look at the general structure of the

higher-order perturbation theory in 1=R. Consider first the
term Að0Þ in the action. We find that it is given in terms
of Q by

Að0Þ ¼ 1

2

Z
dz

Z
dϕ

L2

z2
Qð−1Þffiffiffiffiffiffiffiffiffiffiffi
Qð−2Þp ; ðA6Þ

with

Qð−1Þ ¼ F1ðz;ϕÞρ01 þ F2ðz;ϕÞt01 þ F3ðz;ϕÞ ðA7Þ

and

F1ðz;ϕÞ ¼ −2ρ̃2ρ00 þ 2ft̃;ϕðt̃;ϕρ00 − ρ̃;ϕt00Þ; ðA8Þ

F2ðz;ϕÞ ¼ 2fρ̃2t00 − 2fρ̃;ϕðt̃;ϕρ00 − ρ̃;ϕt00Þ; ðA9Þ

F3ðz;ϕÞ ¼ 2t0;ϕt̃;ϕ − 2ρ0ρ̃

�
1

f
− ft020 þ ρ020

�
−
2

f
ρ0;ϕρ̃;ϕ

þ 2fðt̃;ϕρ00 − ρ̃;ϕt00Þð−t00ρ0;ϕ þ t0;ϕρ00Þ: ðA10Þ

Note that, in the action Að0Þ, the F1, F2, F3, and Qð−2Þ are
known functions. Because the action above is linear in the
first derivatives ρ01 and t01, we might worry that there is an
inconsistency, unless the quantities

L2

z2
F1ðz;ϕÞffiffiffiffiffiffiffiffiffiffiffi

Qð−2Þp ðA11Þ

and

L2

z2
F2ðz;ϕÞffiffiffiffiffiffiffiffiffiffiffi

Qð−2Þp ðA12Þ

turn out to be independent of z (which is what the equations
of motion predict). And indeed they are, because they are
equal to −2bðϕÞ and −2aðϕÞ with aðϕÞ and bðϕÞ as
defined in Eqs. (81) and (82). So the perturbation theory is
self-consistent, but we have learned that we need to go to
the next order in the action to find ρ1 and t1.
So then, consider the termAð1Þ in the action. It is given in

terms of Q by

Að1Þ ¼
Z

dz
Z

dϕ
L2

z2
1

Qð−2Þ3=2

�
1

2
Qð0ÞQð−2Þ −

1

8
Qð−1Þ2

�
;

ðA13Þ

where Qð−2Þ and Qð−1Þ have previously been written down,
and Qð0Þ is found to be

Qð0Þ ¼ −t20;ϕ − 2t1;ϕ t̃;ϕ − 4ρ0ρ̃ðft00t01 − ρ00ρ
0
1Þ þ ρ̃2ð−ft021 þ 2ft00t

0
2 þ ρ021 − 2ρ00ρ

0
2Þ þ

�
1

f
− ft020 þ ρ020

�
ðρ20 þ 2ρ1ρ̃Þ

− fðt00ρ0;ϕ − t0;ϕρ00 − t̃;ϕρ01 þ t01ρ̃;ϕÞ2 þ 2fðt̃;ϕρ00 − t00ρ̃;ϕÞðt01ρ0;ϕ − t1;ϕρ00 þ t00ρ1;ϕ − t0;ϕρ01 þ t̃;ϕρ02 − t02ρ̃;ϕÞ

þ ρ20;ϕ þ 2ρ1;ϕρ̃;ϕ
f

: ðA14Þ

By inspection, the equations of motion for ρ1 and t1 do
not involve ρ2 and t2, so we can solve for ρ1 and t1 from
those equations of motion. This is another check that the
perturbation theory is consistent. The differential equations
that determine ρ1 and t1 have the form of a coupled system
of second-order ordinary differential equations, the solution
of which can be written down analytically in integral form
but we will not do so because it is not illuminating. Also,
the equations of motion from the action A1 for ρ2 and t2
turn out to be the same consistency check as the one we
have seen coming from Að0Þ. This is another piece of
evidence that the perturbation is consistent.

APPENDIX B: VOLUME-LAW SCALING
IN ARBITRARY DIMENSIONS

In this appendix, we generalize the computation in
Sec. IV to arbitrary d. The metric is now

ds2 ¼ L2

z2

�
−fðzÞdt2 þ dz2

fðzÞ þ dρ2 þ ρ2dΩ2
d−2

�
; ðB1Þ

with

fðzÞ ¼ 1 − zd; ðB2Þ
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and we consider a boundary subregion described by ρ ¼
Rρ̃ðϕÞ and t ¼ Rt̃ðϕÞ, where R is a scaling parameter that
we will take to be large. The boundary subregion needs not
lie on a static time slice or even a boosted time slice, but—
as in the case of strips in Sec. IV—we will require that it is
symmetric under the reflection ðt; x; yÞ → ð−t;−x;−yÞ. We
write the metric on the (d − 2)-sphere as

dΩ2
d−2 ¼

Xd−2
i¼1

gidθ2i ; ðB3Þ

with g1 ¼ 1, g2 ¼ sin2 θ1, g3 ¼ sin2 θ1 sin2 θ2, etc.
The HRT surface is described by two functions ρðz; θiÞ

and tðz; θiÞ. The induced metric on the surface is

ds2 ¼ L2

z2
½Adz2 þ 2Bidzdθi þDijdθidθj�; ðB4Þ

where

A ¼ −fðzÞt02 þ 1

fðzÞ þ ρ02; ðB5Þ

Bi ¼ −ft0t;i þ ρ0ρ;i; ðB6Þ

Dij ¼ −ft;it;j þ ρ;iρ;j þ ρ2giδij; ðB7Þ

and t;i ≡ ∂t
∂θi. The area functional is

A ¼
Z

zm

δ

Z
dΩd−2

�
L
z

�
d−1 ffiffiffiffi

Q
p

; ðB8Þ

with

Q ¼ ρ2ðd−2Þ det ðdΩ2
d−2Þ

�
−ft02 þ 1

f
þ ρ02

þ 1

ρ2
X
i

1

gi

�
ρ2;i
f
− t2;i − fðρ0t;i − t0ρ;iÞ2

�

−
1

ρ4
X
i<j

ðρ;it;j − t;iρ;jÞ2
gigj

	
: ðB9Þ

The dA
dR is now given by (again by using the Hamilton-

Jacobi argument)

dA
dR

¼ −
Z

dΩd−2

�
Πz

ρ
dρ
dR

����
δ

þ Πz
t
dt
dR

����
δ

�
; ðB10Þ

where the conjugate momenta are

Πz
ρ ¼

�
L
z

�
d−1 1ffiffiffiffi

Q
p ρ2ðd−2Þ det ðdΩ2

d−2Þ

×

�
ρ0 −

1

ρ2
X
i

ft;i
gi

ðρ0t;i − t0ρ;iÞ
�
; ðB11Þ

Πz
t ¼

�
L
z

�
d−1 1ffiffiffiffi

Q
p ρ2ðd−2Þ det ðdΩ2

d−2Þ

×

�
−ft0 þ 1

ρ2
X
i

fρ;i
gi

ðρ0t;i − t0ρ;iÞ
�
: ðB12Þ

We note that the right-hand side of (B10) also includes the
term

R
dz

R
dΩd−2∂iðΠi

ρ
dρ
dR þ Πi

t
dt
dRÞ. But we can easily see

that this term vanishes by virtue of Πi
ρ vanishing when θi is

evaluated at 0 or π.
Next, we plug the near-boundary expansions (63) and

(64) into the above. Let us assume that, in the large-R limit,
the leading terms in the expansion for ρ0 and t0 are the dth
FG coefficients,

lim
R→∞

ρ0 ¼ cdðR;ϕÞdzd−1 þ � � � ; ðB13Þ

lim
R→∞

t0 ¼ ddðR;ϕÞdzd−1 þ � � � ; ðB14Þ

and that the FG coefficients of lower order than the dth ones
are 1=R suppressed. We will justify this assumption
a posteriori when we look at the large-R equation of
motion later. The conjugate momenta can then be written in
terms of the FG coefficients as

Πz
ρ ¼ Ld−1Rd−2ρ̃d−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðdΩ2

d−2Þ
q dffiffiffiffi

Q̃
p

×

�
cdρ̃2 −

X
i

t̃;i
gi
ðcdt̃;i − ddρ̃;iÞ

�

þ � � � ; ðB15Þ

Πz
t ¼ Ld−1Rd−2ρ̃d−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðdΩ2

d−2Þ
q dffiffiffiffi

Q̃
p

×

�
−ddρ̃2 þ

X
i

ρ̃;i
gi

ðcdt̃;i − ddρ̃;iÞ
�

þ � � � ; ðB16Þ

where

Q̃ ¼ ρ̃4 þ ρ̃2
X
i

ðρ̃2;i − t̃2;iÞ
gi

−
X
i<j

ðρ̃;it̃;j − t̃;iρ̃;jÞ2
gigj

: ðB17Þ

We note that Q̃ is a positive-definite quantity due to
spacelikeness of the boundary subregion. [Indeed, if we
compute the metric induced by d-dimensional Minkowski
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space onto the surface ρ ¼ ρ̃ðθiÞ, t ¼ t̃ðθiÞ, we find that the
determinant of the induced metric is proportional to Q̃.]
Next, in order to obtain the coefficients cd and dd that

appear above, we have to solve the equations of motion in
the large-R limit. We guess that the expansions of ρ and t in
1=R are

ρ ¼ Rρ̃ðθiÞ − ρ0ðz; θiÞ þOð1=RÞ; ðB18Þ

t ¼ Rt̃ðθiÞ − t0ðz; θiÞ þOð1=RÞ: ðB19Þ

The area functional at large R is

A ¼ Rd−2
Z

zm

δ
dz

Z
dΩd−2

�
L
z

�
d−1 ffiffiffiffiffiffi

Q00p
; ðB20Þ

with

Q00 ¼ ρ̃2ðd−2Þ det ðdΩ2
d−2Þf−ft020 þ 1

f
þ ρ020

þ 1

ρ̃2
X
i

1

gi

�
ρ̃2;i
f
− t̃2;i − fðt00ρ̃;i − ρ00t̃;iÞ2�

−
1

ρ̃4
X
i<j

ðρ̃;it̃;j − t̃;iρ̃;jÞ2
gigj

	
: ðB21Þ

The equations of motion are

−
�
L
z

�
d−1 fffiffiffiffiffiffi

Q00p ρ̃2ðd−2Þ det ðdΩd−2Þ

×

�
t00 þ

1

ρ̃2
X
i

ρ̃;i
gi

ðt00ρ̃;i − ρ00 t̃;iÞ
�
¼ aðθiÞ; ðB22Þ

�
L
z

�
d−1 1ffiffiffiffiffiffi

Q00p ρ̃2ðd−2Þ det ðdΩd−2Þ

×

�
ρ00 þ

f
ρ̃2

X
i

t̃;i
gi
ðt00ρ̃;i − ρ00 t̃;iÞ

�
¼ bðθiÞ; ðB23Þ

for some functions a and b of the (d − 2) angles. Taking the
ratio of the two equations above, and solving for t00, we find

t00 ¼ GðθiÞρ00; ðB24Þ

with

G ¼
bðθiÞPi

t̃;iρ̃;i
gi

− aðθiÞðρ̃2f −
P

i
t̃2;i
gi
Þ

aðθiÞPi
t̃;iρ̃;i
gi

þ bðθiÞðρ̃2 þP
i
ρ̃2;i
gi
Þ
: ðB25Þ

By invoking regularity of the HRT surface at the tip, we
find a and b to be

aðθiÞ ¼ 0; ðB26Þ

bðθiÞ ¼
�
L
zm

�
d−1

ρ̃d−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðdΩ2

d−2Þ
q

; ðB27Þ

and we find that ρ00 satisfies the algebraic equation

γρ00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αðρ00Þ2 þ β

p ¼
�

z
zm

�
d−1

; ðB28Þ

with

α ¼ 1 −
f
ρ̃2

P
i
ρ̃2;i
gi

P
j
t̃2;j
gj
− ðPi

ρ̃;i t̃;i
gi
Þ2 þ ρ̃2

P
i
t̃2;i
giP

i
ρ̃2;i
gi
þ ρ̃2

; ðB29Þ

β ¼ 1

ρ̃2
ρ̃2 þP

i
ρ̃2;i
gi

f
−

P
i<j

ðρ̃;i t̃;j−t̃;iρ̃;jÞ2
gigj

þ ρ̃2
P

i
t̃2;i
gi

ρ̃4
; ðB30Þ

γ ¼ 1 −
f
ρ̃2

X
i

t̃2;i
gi
þ

ðPi
ρ̃;i t̃;i
gi
Þ2f

ρ̃2ðPi
ρ̃2;i
gi
þ ρ̃2Þ

: ðB31Þ

Solving for ρ00 yields

ρ00 ¼
ffiffiffi
β

p
zd−1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2d−2m γ2 − αz2d−2
p : ðB32Þ

Expanding the above around z ¼ 0,

ρ00 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ρ̃2
P

i
ðρ̃2;i−t̃2;iÞ

gi
− 1

ρ̃4
P

i<j
ðρ̃;i t̃;j−t̃;iρ̃;jÞ2

gigj

r
h
1 − 1

ρ̃2
P

i
t̃2;i
gi
þ 1

ρ̃2ð
P

i

ρ̃2
;i
gi
þρ̃2Þ

ðPi
ρ̃;i t̃;i
gi
Þ2
i �

z
zm

�
d−1

þ � � � : ðB33Þ

From the above, we see that the near-boundary expansion
for ρ00 indeed starts with the (d − 1)th power, as previously
claimed. zm is near the horizon, which we will set to 1
again. Integrating over z, we obtain the coefficient cd,

cd ¼ −
1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ρ̃2
P

i
ðρ̃2;i−t̃2;iÞ

gi
− 1

ρ̃4
P

i<j
ðρ̃;i t̃;j−t̃;iρ̃;jÞ2

gigj

r
h
1 − 1

ρ̃2
P

i
t̃2;i
gi
þ 1

ρ̃2ð
P

i

ρ̃2
;i
gi
þρ̃2Þ

ðPi
ρ̃;i t̃;i
gi
Þ2
i ðB34Þ

and also the coefficient dd,

dd ¼
P

i
ρ̃;i t̃;i
gi

ρ̃2 þP
i
ρ̃2;i
gi

cd: ðB35Þ
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Plugging the coefficients above into the conjugate
momenta Πz

ρ and Πz
t , we find that they simplify to

Πz
ρ ¼ −Ld−1Rd−2ρ̃d−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðdΩ2

d−2Þ
q

; ðB36Þ

Πz
t ¼ 0: ðB37Þ

Plugging the above into dA
dR, we find

dA
dR

¼ Ld−1Rd−2
Z

dΩd−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðdΩ2

d−2Þ
q

ρ̃ðθiÞd−1: ðB38Þ

Let us now compare with the projected volume. This
latter is

Volume ¼
Z

dΩd−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðdΩ2

d−2Þ
q Z

Rρ̃

0

ρd−2dρ

¼
Z

dΩd−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðdΩ2

d−2Þ
q ðRρ̃Þd−1

d − 1
: ðB39Þ

Differentiating with respect to R yields

dVolume
dR

¼ Rd−2
Z

dΩd−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðdΩ2

d−2Þ
q

ρ̃d−1; ðB40Þ

which is the same as dA
dR up to the factor of entropy density

Ld−1. Thus, we have managed to verify the volume-law
entropy in arbitrary dimensions.
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