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Abstract
1.	 Biogeochemical ecology of organisms typically focuses on C, N, and P despite c. 

25 elements needed for organismal function. Embracing novel suites of elements 
in biomass is a first step in linking elements to organismal and ecological functions, 
improving our ability to predict how species interact with their environment. This 
research area has been fruitful for terrestrial plant ecologists, yet few studies have 
considered animal ecology within a framework encompassing elements beyond C, 
N, and P.

2.	 Freshwater mussels (Unionidae) are highly endangered filter-feeding bivalves that 
can be important to ecosystem function. Interspecific trait variation influences 
soft tissue elemental composition that has been linked to ecosystem biogeochem-
ical cycling using traditional C:N:P stoichiometric approaches. However, whether 
interspecific trait variation influences shell elemental composition is not well stud-
ied, especially for elements other than C, N, and P.

3.	 We quantified B, C, Ca, Cu, Fe, K, Mg, Mn, N, P, and Zn and constructed isometric 
log-ratios (nutrient balances) for shells of seven species comprising diverse mor-
phologies and two life history strategies to test whether shell elemental composi-
tion is influenced by these biological traits. Additionally, we evaluated whether 
the growth rate hypothesis applies to shell P concentration and elements associ-
ated with P in nutrient balances.

4.	 Bulk and trace elemental composition varied taxonomically and with biological 
traits. Nutrient balances for [C | P] and [C, Ca | P] were influenced by life his-
tory strategy. Shell P composition was negatively related to growth rates. 
Coincidentally, [C | P] and [C, Ca | P] were greater in the species with the highest 
growth rate (Lampsilis ornata), suggesting greater concentrations of C and Ca rela-
tive to P in shells of faster growing mussels. We hypothesise this observed pattern 
results from greater P allocation to soft tissue in fast growing mussels compared 
to slow growing mussels studied previously, but explicit tests of this hypothesis in 
a strict stoichiometric framework are needed.

5.	 Overall, we demonstrate how quantifying elements beyond C, N, and P, may be 
useful in uncovering elemental diversity associated with trade-offs in elemental 
allocation among biological traits. Whether such elemental diversity correlates to 
evolutionary history or contributes to the biogeochemical template of freshwater 
habitats remains to be seen but should be explored.
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1  | INTRODUC TION

Elements are essential for organisms and their metabolic pro-
cesses. Organisms acquire elements from their environment 
to maintain their body elemental composition (Sterner & 
Elser, 2002), which varies among species due to different traits 
(e.g. life-history, morphological, and physiological) and evo-
lutionary history (Allgeier et  al.,  2020; Atkinson et  al.,  2020). 
Knowledge of the elemental composition of species allows ap-
plication of mass-balance principles to make predictions about 
elemental acquisition, assimilation, allocation, and release that 
influences ecological and evolutionary dynamics (Atkinson 
et  al.,  2017; Jeyasingh & Weider,  2007). Cataloguing elements 
comprising organisms reflects constraints faced in their environ-
ment and contributes to understanding of elemental plasticity 
and the ability of species to cope with environmental change 
(Van De Waal et  al.,  2010; Williamson et  al.,  2016). Ecological 
stoichiometry has revealed substantial diversity in elemental 
composition among taxonomic groups and within populations 
by focusing on the relative proportions of the three important 
elements, carbon (C), nitrogen (N), and phosphorus (P) in relation 
to their physiological functions (Elser et al., 1996). Considering 
elements in organisms beyond just C, N, and P, is a first step to-
ward understanding links among multiple elements comprising 
biomass and the abiotic environment (Baxter, 2015a; Kaspari & 
Powers, 2016).

While much work has focused on the elemental composition 
of autotrophs such as algae (Cunningham & John, 2017) and ter-
restrial plants (Huang & Salt, 2016), a lack of studies considering 
aspects of animal ecology within a framework embracing elements 
beyond C, N, and P still exists (Yoshida et al., 2014). Animal stud-
ies typically use lab- reared specimens or tissues collected shortly 
after death (Goos et  al.,  2017; Jeyasingh et  al.,  2020; Rudman 
et al., 2019). However, endangered animals that cannot be sacri-
ficed, handled, or reared in labs warrant other means of obtain-
ing elemental data to better understand aspects of their ecology. 
Bivalve molluscs provide opportunities to study natural elemental 
variation using relatively accessible and ecologically relevant mor-
phological traits because fresh spent shells can be found in aquatic 
habitats where they are abundant and substantial shell material 
exists in museums and research labs.

Freshwater mussels (Family: Unionidae) are a species-rich 
group (c. 300 mussel species in North America) of filter-feeding 
bivalves. Mussels are long-lived (4–100  years), highly endan-
gered, (Böhm et  al.,  2020; Strayer & Dudgeon,  2010; Williams 
et al., 1993) and important to ecosystem productivity and bio-
geochemical cycling in freshwater (Vaughn & Hoellein,  2018) 
and adjacent riparian ecosystems (Allen et  al.,  2012; Lopez 
et  al.,  2020). Mussels occur as dense, spatially and temporally 

stable aggregations where taxonomic diversity is typically high. 
Within mussel aggregations, densities range from c. 10–100 
individuals/m2 (Sansom et  al.,  2018). Shell production of ag-
gregations typically ranges from 0.1–10 g dry mass m−2  year−1, 
but can be as high as c. 1,000  g dry mass m−2  year−1 (Strayer 
& Malcom,  2007). Spent shells result from natural mortal-
ity (Strayer,  2014), predation (van Ee et  al.,  2020), or through 
disturbance-driven mass mortality events (DuBose et al., 2019) 
and are therefore abundant where mussels occur. Spent shell 
material adds complexity to the benthos (Gutiérrez et al., 2003), 
engineering habitat for other organisms (Hopper et  al.,  2019; 
Spooner & Vaughn, 2006). Furthermore, spent shells may slowly 
release or directly supply biologically important elements 
(Strayer,  2014), adding spatial variation in elements that con-
tribute to the abiotic habitat template (Kaspari & Powers, 2016) 
underlying freshwater systems.

The shape, size, thickness, and colour of shells vary greatly 
among mussel species, but basic structures and formation appear 
similar (Checa,  2000). Each valve has three layers. The external 
layer is the periostracum and varies in colour and colour pattern; it 
can be entirely smooth, covered in knobs, pustules, spines, or have 
wrinkles and undulations depending on the species (Haag, 2012; 
Williams et  al.,  2008). Periostracum functions as a covering that 
protects the calcareous internal layers from abrasion and mineral 
dissolution in acidic waters. Vertical prisms of calcium carbonate 
form a thin intermediate layer. The third and largest portion of the 
shell, called the nacre, is made from thin plates of calcium carbon-
ate acquired from ingested food and ambient water (Compere & 
Bates, 1973; Pynnönen, 1991). Both outer layers are secreted by 
glands at the margin of the soft mantle tissue and cause areal ex-
pansion of the shell, while the nacre is produced from the entire 
mantle (Checa, 2000). Shell thickness increases by successive de-
posits of nacre on the entire inner surface. Despite generalities in 
the calcareous composition and formation, intra- and interspecific 
differences could arise via variation in elements required by essen-
tial or complementary functions during biomineralisation of shell 
layers that result in aforementioned shell variations (Checa, 2000). 
Using functional classification systems accounting for morpho-
logical variation and performance associated with habitat types 
(Watters, 1994) may offer a starting point to understand interspe-
cific elemental diversity of mussel shells as it relates to organismal 
function.

Mussels also exhibit exceptional diversity in life history and 
physiological traits (Haag, 2012) that may influence shell elemental 
composition. For instance, mussels span a fast-to-slow life history 
continuum reflecting r-selected to K-selected reproductive strate-
gies with end points characterising trade-offs between increased 
energy investment early in life at the expense of later and lower in-
vestment in reproduction and growth (Haag, 2012). The strong and 
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ubiquitous negative relationship between growth rate and longev-
ity for mussels suggests that growth rate represents species’ po-
sitions along the fast-to-slow life history continuum (Haag, 2009). 
Growth rates may influence shell elemental composition due to 
trade-offs in elemental allocation to growth or to reproductive ef-
fort among different life-history strategies. More specifically, the 
growth rate hypothesis states that the rate of protein synthesis is 
constrained by allocation of P to ribosomal RNA in cells, resulting 
in faster growing organisms having higher tissue P concentrations 
(Elser et al., 2003). Complex physiological adjustments associated 
with growth rates may shift demand for elements (e.g., P) and in-
terspecific differences in shell elemental composition could arise 
from responses that impact the processing of suites of elements 
and associated energy demands required to meet elemental de-
mand. Indeed, growth rates influence mussel soft tissue stoichiom-
etry (Atkinson et al., 2020), but whether this relationship exists for 
shells has not been addressed. Thus, studying naturally occurring 
suites of elements making up mussel shells is a first step toward 
a more informed understanding of links between all elements in-
volved in organismal function (Baxter, 2015b).

While elemental composition of species’ shells could be 
influenced by life-history strategies and morphology based 
on elemental requirements underlying physiological and stoi-
chiometric trade-offs governing interspecific trait variation 
(Jeyasingh et  al.,  2014), possible underlying physiological 
mechanisms are currently not well understood. As a first step 
in gaining a deeper understanding of elements in species’ bio-
mass, we tested whether elemental composition differs along 
taxonomic, morphological, and life history axes. Additionally, we 
constructed nutrient balances using multivariate data to examine 
how interspecific trait variation influences covariation among el-
ements (Parent et al., 2013). Finally, we tested whether shell P 

composition and suites of correlated elements were influenced 
by growth rates. We hypothesised that shell P composition rel-
ative to other elements would be negatively related to growth 
rates and elements used in biomineralisation (e.g., C and Ca) 
should be positively related to growth rates because mussels 
should allocate relatively more P to faster growing soft tissues 
(e.g., mantle tissue) that secrete the shell.

2  | METHODS

2.1 | Shell collections, life history, and 
morphological classifications

To test the hypothesis that mussels would express interspecific dif-
ferences in elemental composition we used fresh spent shells (shiny 
nacre, intact hinge ligament, soft tissue present) of seven species 
representing four phylogenetic tribes collected from the Sipsey 
River, Alabama, U.S.A. during 2016 (Figure 1). While contemporary 
and historical shell material have proven useful for reconstructing 
historical environmental conditions (Fritts et  al.,  2017) and been 
used extensively in pollution studies (Brown et  al.,  2005; Wilson 
et al., 2018), shells from the Sipsey River offer a starting point for 
quantifying the natural elemental composition of shells, as it is rela-
tively undisturbed river with low background nutrient concentra-
tions and has a diverse, intact native mussel community (Atkinson 
et al., 2019; Haag & Warren, 2010). Because we were interested in 
whether trade-offs linked with interspecific trait variation influence 
elemental composition of species, we classified species’ life history 
strategies according to Haag (2012), used published growth rates (k) 
for species in our system (Haag & Rypel, 2011) and shell functional 
morphology classifications following Watters (1994; Figure 1).

F I G U R E  1   Exterior (top) showing interspecific variation of periostracum and interior (bottom) view of representative shells for Amblema 
plicata, n = 5 (a), Lampsilis ornata, n = 6 (b), Obovaria unicolor, n = 5 (c), Cyclonaias asperata, n = 6 (d), Tritigonia verrucosa, n = 4 (e), Fusconaia 
cerina, n = 5 (f), and Pleurobema decisum, n = 7 (g) collected from the Sipsey River, Alabama, U.S.A. Phylogenetic tribes are listed above the 
top panel. Functional morphological (Watters, 1994) and life history strategy (Haag, 2012) classifications are listed below

(a) (b) (c) (d) (e) (f) (g)
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2.2 | Shell and water elemental composition

A single valve of each specimen was washed with distilled water 
and gently scrubbed with a soft-bristled brush to remove adhered 
sediments and remaining soft tissue. We measured the longest 
axis of each shell (mm) and then dried them at 60℃ for 48 hr. We 
homogenised dried shell fragments taken from the ventral shell 
margin using a ball mill grinder (Retsch MM400, Verder Scientific 
Inc. Newton, PA, U.S.A.) and weighed subsamples to the nearest 
0.1 mg for all seven species (Figure 1). Shell fragments included the 
proteinaceous external layer of the shell (periostracum) given in-
traspecific variation in colour and textures may result from differ-
ent elemental composition (Figure 1). These samples should reflect 
conditions during the final c. 2–3 years of life. We measured %C 
and %N using a Carlo Erba CHNS-O EA1108-Elemental Analyzer 
(Isomass Scientific Inc., Calgary, Alberta, Canada). We did not sep-
arate organic and inorganic C, but organic C can constitute a small 
percentage (c. 0.53%) of bivalve shell mass (Walz, 1979). Next, we 
sent 0.5  g sub-samples to Waters Agricultural Laboratories, Inc. 
(Camilla, GA, U.S.A.). Samples were digested in 4 ml of nitric acid 
and 6  ml of hydrochloric acid before they were diluted to 50  ml 
with deionised water, then analysed on a Spectro Arcos II ICP-OES. 
To explore differences between elements in water and shells we 
collected water samples (n = 6) in 2019 and 2020 from near where 
shells were collected. We used previously published dissolved or-
ganic C measurements (Hopper et al., 2021) and measured NH4–
N, NO3–N, NO2–N, and soluble reactive phosphorus (PO4–P) on 
a SEAL AQ300 Discrete Analyzer (SEAL Analytics, WI, U.S.A.). 
We combined these parameters as a measure of total inorganic N 
from water samples collected during 2020. Analyses for all other 
elements were run at Waters Agricultural Laboratories Inc. as for 
shells. We measured 11 elements (Figure 2): boron (B), C, calcium 
(Ca), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manga-
nese (Mn), N, P, and zinc (Zn). Elemental concentrations for shells 
were converted and expressed as absolute element mass per sam-
ple (mg/g) and water (mg/L).

2.3 | Data analysis and nutrient balance 
construction

Statistical analyses and data visualisation were performed in 
R v3.6.0 (R Core Development Team,  2019; Wickham,  2011). 
Elemental composition of animals can be influenced by ontog-
eny and sex (Metcalfe-Smith et  al.,  1996; Prater et  al.,  2019). 
We were unable to evaluate influences of body size and spe-
cies interactions reflecting interspecific ontogenetic shifts in el-
emental composition because body sizes did not overlap for all 
species when evaluated using analysis of variance (F6,31 = 30.85, 
p < 0.001). Associated information of the sex of each mussel was 
not available. Shell elemental compositional data failed test of 
multivariate normality (Mardia skewness  =  404.49, p  <  0.001, 
Mardia kurtosis  =  1.92, p  =  0.06; mvn function; package MVN; 

Razali et al., 2016). Therefore, we tested for taxonomic, morpho-
logical, and life history differences in elemental concentrations 
using non-parametric permutational multivariate analysis of vari-
ance (PERMANOVA; adonis function, vegan package Oksanen 
et  al.,  2019) and betadisper to test for homogeneity of variance 
(Anderson, 2006; Oksanen et al., 2019). All elemental data were 
subjected to tests of univariate normality (shapiro.test function) 
and homogeneity of variance (leveneTest function; car package 
Fox et al., 2018). All elements met univariate homogeneity of vari-
ance assumptions, but C, Ca, Cu, Mn, and Mg did not meet normal-
ity assumptions following log transformation. Therefore, we used 
non-parametric analysis of variances (ANOVA) on ranks (dunn.test 
function) to test for differences in concentrations of specific el-
ements among groups and assessed pairwise differences using 
Dunn's tests with Bonferroni adjusted p-values. Overall, this pro-
vides a conservative estimate of elemental differences among 
groups. Specific group comparisons were made instead of full fac-
torial comparisons as complete species, life history, and morpho-
logical combinations were not included in our dataset.

We constructed isometric log-ratio balances (ilr), commonly 
called nutrient balances, for traditional ecological stoichiometry 
metrics (C | P, N | P) and novel nutrient balances from principle com-
ponents analysis of elemental data. Nutrient balances represent or-
thogonal log contrasts of elements derived from binary partitions of 
multivariate elemental data projected into Euclidean space (Parent 
et al., 2013). The ilrs provide unbiased estimates of multivariate re-
lationships among elements, avoid violating statistical assumptions, 
and describe element interactions in biomass (Parent et al., 2013). 
Moreover, ilrs are useful for hypothesis testing using general lin-
ear models without inflating critical values due to multiple tests for 
treatment effects on multiple elements. To construct nutrient bal-
ances, we first separated all elements into bulk and trace elements 
based on the classification of Frausto da Silva and Williams (2001). 
Next, we visualised relationships among elements and examined 
variation among species using principal component analysis (PCA; 
prcomp, vegan; Oksanen et al., 2019). Elemental concentrations were 
log transformed prior to PCA. We retained PCs if their eigenvalues 
exceeded 1. We included elements with absolute loadings >0.1 on 
each PC axis to construct bulk and trace ilrs for each individual fol-
lowing Parent et al.,(2013) using the equation:

where r and s reflect the number of elements on the left- and right-
hand side of the balance and g(c+) and g(c−) are geometric means of the 
elements on the left- and right-hand side of the balance, respectively.

We constructed two traditional nutrient balances [C | P], [N | P] 
and 5 novel nutrient balances for shells of all seven species. We cal-
culated a single ilr for PC 1, and bulk and trace ilrs for PC 2 and PC 
3. The ilr for PC 1 was [C, N, P, K, B, Zn, Fe, Cu, Ca | Mn]. The Bulk ilr 
for PC 2 were [C, N | Ca, K] and the Trace ilr for PC 2 was [Cu, Mn, 
Zn | Fe, Mg]. Bulk ilr for PC 3 was [C, Ca | P] and the Trace ilr for PC 3 

ilr =

√

rs

r + s
ln
g(c+ )

g(c− )
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was [Cu, Fe, Mn, Zn, | B]. These correlations are considered to reflect 
biologically relevant differences in elemental composition among or-
ganisms (Parent et al., 2013).

First, we assessed differences in all nutrient balances among 
species, life history strategies, and morphological classification 
using multivariate analysis of variance (MANOVA). Then, we 
tested for differences among species, life history strategies, and 
shell morphological classification with univariate tests (ANOVA) 
for each ilr separately. We followed these tests with pairwise 
contrasts for groups using Tukey's HSD tests (package emmeans 
Lenth, 2018).

Finally, to test whether growth rates influenced P composition 
and associated elements, we regressed growth rates against shell P 
composition, traditional nutrient balances, and novel nutrient bal-
ances containing P given the strong biological link between growth 
rates and P (Elser et al., 2003). Complimentary univariate and mul-
tivariate analyses were intended to quantify potential sources of 

variance in individual balances (ANOVAs) and multivariate pheno-
types (MANOVAs) and reduce the likelihood of statistical artifacts 
associated with multivariate data analyses. As for elemental com-
position, we focused on group comparisons over full factorial com-
parisons because complete species, life history, and morphological 
combinations were unavailable.

3  | RESULTS

3.1 | Morphological and life history trait diversity

Shells of the seven species were classified into four separate groups. 
Amblema plicata (min. length = 58.61 mm, max. length = 73.40 mm, 
mean length  =  67.08  mm) was the only U2D2 shell type. This 
shell type consists of undulating ribs aligned obliquely to the 
burrowing axis that anchor the animal once buried and can be 

F I G U R E  2   Elements in shells of seven freshwater mussel species (Unionidae). Boxes are coloured according to phylogenetic tribe 
classifications to visualise potential phylogenetic patterns. Boxes cover the first to third quartiles; horizontal black lines within boxes indicate 
medians. Grey and white panel headings denote bulk and trace elements, respectively. Pairwise differences can be found in Table 2. Note 
different y axes
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effective across a range of sediment types (Figure  1a). Lampsilis 
ornata (min. length  =  62.05  mm, max. length  =  88.51  mm, mean 
length  =  74.72  mm), Obovaria unicolor (min. length  =  26.61  mm, 
max. length  =  38.66  mm, mean length  =  33.33  mm), Pleurobema 
decisum (min. length = 31.15 mm, max. length = 46.31 mm, mean 
length = 39.43 mm), and Fusconaia cerina (min. length = 31.10 mm, 
max. length = 46.31 mm, mean length = 36.31 mm) had unsculp-
tured shells. Species with unsculptured shells are more mobile and 
able to re-bury quickly if dislodged and often inhabit mixed sand and 
fine gravel sediment. Cyclonaias asperata (min. length = 28.09 mm, 
max. length = 38.11 mm, mean length = 33.92 mm) and Tritogonia 
verrucosa (min. length = 45.22 mm, max. length = 69.40 mm, mean 
length = 59.50 mm) each have generalised shells. Generalised shells 
have pustules dispersed across their discs that aid in anchoring 
once the mussel is buried and can be effective in sand and gravel 
mixtures.

We assigned mussel life history strategies according to Haag 
(2012). Amblema plicata, F. cerina, P. decisum, and C. asperata were 
classified as equilibrium species because their relatively long life-
span and late maturity coinciding with increasing fecundity. Lampsilis 
ornata, O. unicolor, and T. verrucosa are periodic strategists and tend 
toward faster growth rates, shorter life spans, age at maturation, and 
fecundity.

3.2 | Patterns in natural shell elemental 
composition, water, and shell nutrient balances

Elemental composition varied among species (pseudo F6,31 = 1.72, 
p  =  0.09; Figure 3), morphologies (pseudo F2,35  =  1.85 p  =  0.141) 
and between life history strategies (pseudo F1,36 = 3.99, p = 0.01; 
Figure 3) according to PERMANOVA. Among group dispersion for 
elemental compositions was not discernible for species (F6,31 = 0.73, 
p = 0.63), morphology (F2,35 = 0.94, p = 0.40) or life history strategy 
(F1,36 = 0.36, p = 0.55).

Univariate tests indicated that shell C, Cu, N, and P varied 
across species (Table  1), while shell C, Cu, and N varied with 
morphology (Table 1). Shell B, C, Cu, N, and P were all greater in 
equilibrium species compared to periodic strategists (Tables 1). 
Pairwise comparisons among species (Table 2) indicated O. uni-
color had lower shell C than A. plicata (z = 3.62, p = 0.003) and 
C. asperata (z = 2.82, p = 0.05). Cu concentrations were greater 
in A. plicata compared to L. ornata (z = 3.31, p = 0.009), O. uni-
color (z = 3.91, p = 0.001), and P. decisum (z = 3.85, p = 0.001), 
while C.  asperata had increased Cu concentrations relative to 
O. unicolor (z = 3.19, p = 0.01) and P. decisum (z = 3.08, p = 0.02). 
Similar to C, A.  plicata had greater N compared to L.  ornata 
(z = 3.76, p = 0.002), and O. unicolor (z = 3.27, p = 0.01), and C. 
asperata had greater N compared to L. ornata (z = 3.12, p = 0.02). 
Finally, L. ornata has lower concentrations of P compared to C. 
asperata (z = 3.01, p = 0.03) and P. decisum (z = −2.93, p = 0.04). 
When grouped into morphological classification, pairwise 
differences in B were not strong enough to separate statisti-
cally. U2D2 represented by A.  plicata only had greater C than 
the unsculptured group (z = 3.17, p = 0.002) that included four 
species (F.  cerina, L.  ornata, O.  unicolor, P.  decisum). The U2D2 
species, A. plicata (z = 3.94, p < 0.001), and generalised group, 
C. asperata and T. verrucosa (z = −1.51, p = 0.005), had greater 
Cu concentration than the unsculptured group. Amblema plicata 
had greater N compared to the unsculptured group (z  =  3.24, 
p = 0.002), and differences in P were not strong enough to sep-
arate in pairwise tests.

The ordination illustrated a gradient from shells of equilibrium 
strategists with greater elemental concentrations (negative loadings) 
to shells of periodic strategists with lower concentrations (positive 
loadings) and manganese was the only element to diverge from the 
others along PC 1 (Figure 3; Table S1). Of the elements in shells, Mg, 
Ca, C (as dissolved organic C), K, N (as total inorganic N), and Mn 
were found in water samples, while B, Cu, Fe, P, and Zn were below 
detection limits (Table S2).

Nutrient balances were influenced by species (approx. 
F6,31 = 1.78, p < 0.008, Wilk's λ = 0.10), life history strategy (ap-
prox. F1,36  =  4.30, p  =  0.002, Wilk's λ  =  0.50) and morphology 
(approx. F2,35 = 1.91, p = 0.04, Wilk's λ = 0.47). Subsequent univar-
iate tests indicated the traditional nutrient balance [C | P] and the 
novel nutrient balance [C, Ca | P] were strongly influenced by life 
history strategy and [C, Ca | P] differed among species (Table 3,4). 
Pairwise tests showed periodic strategists had lower [C | P] (z = 

F I G U R E  3   Principal components analysis of concentrations 
(molar) of 11 elements in shells of seven freshwater mussel species 
collected from the Sipsey River, AL. Ellipses are 95% confidences 
ellipses. Periodic strategists have dotted ellipses while equilibrium 
strategists have solid ellipses
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−2.73, p = 0.003) and [C, Ca | P] (z = −2.88, p = 0.002) compared 
to equilibrium strategists. Growth rates predicted shell P compo-
sition (r2 = 0.13, F = 6.73, p = 0.01; Figure 4a), [C | P] (r2 = 0.20, 
F = 9.99, p = 0.003; Figure 4b) and [C, Ca | P] (r2 = 0.21, F = 10.87, 
p = 0.002; Figure 4c), but not [N | P] (r2 = 0.01, F = 1.32, p = 0.26). 

However, each of these relationships was strongly influenced by 
L. ornata, and fell apart when this species was removed (mg/g P: 
r2 = 0.25, F = 1.31, p = 0.31; [C|P]: r2 = 0.00, F = 0.001, p = 0.94; 
[C, Ca | P]: r2 = 0.03, F = 0.13, p = 0.73). Thus, there appears to 
be weak evidence in support of the growth rate hypothesis in the 

TA B L E  1   Results of non-parametric analyses of variance examining elemental differences among shells of seven freshwater mussel 
species (Unionidae) from the Sipsey River, Alabama, U.S.A.

Bulk

C N P K Ca

Model df χ2 P χ2 P χ2 P χ2 P χ2 P

Species 6, 31 18.11 0.005 22.17 0.001 12.99 0.04 8.31 0.21 2.93 0.81

Morphology 2, 35 10.59 0.005 11.52 0.003 1.5 0.47 2.28 0.32 0.30 0.86

Life history 1, 36 10.79 0.001 16.75 <0.001 9.01 0.003 2.27 0.13 0.49 0.48

Trace

B Cu Fe Mn Mg Zn

Model df χ2 P χ2 P χ2 P χ2 P χ2 P χ2 P

Species 6, 31 9.47 0.14 28.7 <0.001 7.94 0.24 4.53 0.60 2.13 0.90 11.31 0.07

Morphology 2, 35 4.95 0.08 19.89 <0.001 2.38 0.30 1.67 0.43 0.53 0.76 4.97 0.08

Life history 1, 36 3.82 0.05 8.05 0.005 2.18 0.13 1.18 0.28 0.09 0.75 0.16 0.67

Note: Results from global permutational multivariate analysis of variance are reported in the text. Bolded fonts are significant at α = 0.05.

TA B L E  2   Pairwise differences (p < 0.05) following non-parametric univariate tests for elements in shells of seven species of freshwater 
mussels from the Sipsey River, Alabama, U.S.A.

Species C N P K Ca B Cu Fe Mg Mn Zn

Amblema plicata a a ab a a a a a a a a

Cyclonaias asperata a ab b a a a ac a a a a

Tritogonia verrucosa ab a ab a a a a a a a a

Fusconaia cerina ab a ab a a a a a a a a

Pleurobema decisum ab a b a a a b a a a a

Lampsilis ornata ab c a a a a bc a a a a

Obovaria unicolor b bc ab a a a b a a a a

Note: Bolded font highlights significant pairwise test for species.

TA B L E  3   Results of analyses of variance examining nutrient balance differences among shells of seven freshwater mussel species 
(Unionidae) from the Sipsey River, Alabama, U.S.A.

Traditional ecological stoichiometry balances Novel nutrient balances

All PC 1 Buk PC 2 Bulk PC 3 Trace PC 2 Trace PC3

Model df

[C | P] [N | P]

[C, Ca, N, P, 
K, B, Cu, Fe, 
Mg, Zn, | Mn] [C, N | Ca, K] [C, Ca, | P ]

[Cu, Mn, Zn | 
Fe, Mg]

[Cu, Fe, Mn, 
Zn | B]

F p F p F p F p F p F p F p

Species 6, 31 2.19 0.07 1.77 0.14 1.7 0.15 0.77 0.6 2.38 0.05 1.87 0.12 2.27 0.06

Morphology 2, 35 0.28 0.76 0.91 0.41 0.91 0.41 0.30 0.74 0.41 0.67 0.45 0.64 2.21 0.12

Life history 1, 36 8.15 0.007 0.12 0.73 0.16 0.7 0.15 0.7 10.5 0.003 3.38 0.07 2.98 0.09

Note: Global multivariate test results are reported in the main text. Bold text is used to highlight significant univariate tests at α = 0.05.
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assemblage we studied. Nevertheless, the species with the high-
est growth rate had the lowest shell P concentrations.

4  | DISCUSSION

Using key physical traits involved in organismal function, we found 
elemental diversity within a highly endangered group of filter-
feeding bivalves. We quantified divergent patterns of traditionally 
studied elements (C, N, and P) and two other biologically relevant 
elements (B, Cu) comprising shell elemental profiles for an assem-
blage of mussels. Our nutrient balance approach, typically applied 
to plants, identified relationships among bulk elements that differed 
across animal species with divergent morphologies and life history 
strategies in multivariate space. By constructing novel nutrient bal-
ances in addition to two balances based on traditional ecological 
stoichiometry, we provide empirical evidence of species-specific 
elemental relationships that illustrate associations among elements 
required for shell biomineralisation and growth. Overall, we highlight 
a useful approach to quantifying elements beyond C, N, and P for 
studying biological sources of elemental diversity in animal biomass 
and add to the growing knowledge of elemental diversity among 
animals (Allgeier et  al., 2015, 2020), and more specifically unionid 
mussels (Atkinson et al., 2020; Hopper et al., 2021; Vaughn, 2010).

Underlying causes of organismal elemental variation may be 
linked to constraints imposed by environmental availability or trait 
adaptation that alter elemental demands (Jeyasingh et  al.,  2014). 
Overall, elemental composition of shells was fairly similar within 
the local assemblage we studied, suggesting some conservatism in 
elemental recipes for unionid shells. However, shell bulk elemental 
composition, particularly for classical ecological stoichiometry ele-
ments (C, N, and P) was explained by conventional traits and taxon-
omy. This result indicates that trade-offs might exist for aspects of 
functional morphology and position along the fast-to-slow life his-
tory continuum (Haag, 2012). Whereas our study comprised individ-
uals from only one location, spatial differences in elemental profiles 
of habitats occupied by mussels across spatial scales (i.e., patches, 
reaches, catchments) could also influence shell elemental composi-
tion, warranting additional research.

We also found weak support for the growth rate hypothesis in 
mediating elements in unionid shells. Previous work found a positive 
relationship between growth rates and soft tissue P concentration 
of co-occurring species that was weakly associated evolutionary 
history (Atkinson et al., 2020). Using a subset of species (different 
individuals) from that study, we found that shell P concentrations 
showed a weak relationship with growth rates; however, the sign of 
this relationship was negative, such that the faster growing species 
had comparatively less P. Whether this indicates trade-offs in P al-
location to soft and shell tissue remains to be seen and should be 
further explored by analysing a larger subset of species varying in 
growth rates. Furthermore, explicit stoichiometric approaches that 
balance P and suites of elements acquired, assimilated, allocated, 
and released are needed (Jeyasingh et al., 2020; Prater et al., 2020). 
Given that mussel soft tissue stoichiometry is constrained by evolu-
tionary history (Atkinson et al., 2020), it seems plausible the same 
mechanisms may influence proportions of elements in shell material. 
Further efforts employing comparative phylogenetic approaches 
with broad taxonomic and body size representation spanning eco-
logical gradients are warranted to test whether elemental compo-
sition of different tissue types varies as a function of evolutionary 
history or local factors.

Shells also contained various concentrations of elements other 
than traditionally studied C, N, and P. While our study cannot de-
termine whether elements quantified herein are important to 
mussels themselves, shells could contribute to the biogeochemical 
template of aquatic ecosystems following mussel deaths. For in-
stance, trace metals that we quantified such as B, Cu, Mn, Fe, and 
Zn, comprise 0.1% of animal mass but they are functional parts of 
thousands of known enzymes that maintain various cellular and 
organismal functions (Bairoch, 2000; Waldron et al., 2009) and all 
are spatially heterogeneous in ecosystems (John et al., 2007; Leslie 
et al., 1986). Spent shells might subsidise food webs or biogeochem-
ical cycles with trace elements, but this is not well studied (but see 
Ilarri et al., 2015; McDowell & Sousa, 2019; Strayer & Malcom, 2007) 
compared to soft tissue decomposition. For example, elements 
stored in mussel soft tissue are released quickly via microbial miner-
alisation following mass die-offs, affecting ecosystem productivity 
(DuBose et al., 2019). In contrast to soft tissue that decomposes in 

TA B L E  4   Pairwise differences (p < 0.05) for nutrient balances for shells of seven species of freshwater mussels from the Sipsey River, 
Alabama, U.S.A.

Species
[C | 
P]

[N | 
P]

[B, C, Ca, Cu, Fe, K, Mg, N, 
P, Zn | Mn] [C, N| Ca, K ] [C, Ca | P] [Cu, Mn, Zn, | Fe, Mg]

[Cu, Fe, Mn, 
Zn | B].

Amblema plicata a a a a ab a a

Cyclonaias asperata a a a a ab a a

Tritogonia verrucosa a a a a ab a a

Fusconaia cerina a a a a b a a

Pleurobema decisum a a a a b a a

Lampsilis ornata a a a a a a a

Obovaria unicolor a a a a ab a a

Note: Bold entries indicate significant test results at p < 0.05.
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days, shells can linger for a significant time after death, inherently 
storing coupled bulk and trace elements (Ravera et al., 2003). While 
naturally occurring spent shells in mussel beds may not represent 
temporally distinct pulses of elemental subsidies beyond C, N, and 
P, such as Pacific salmon (Onchorhyncus spp.) carcasses following 
spawning runs (Currier et al., 2020), they are likely to affect elemen-
tal heterogeneity in benthic habitats. Because shells consist mostly 

of CaCO3 (Strayer & Malcom, 2007), most studies assume that spent 
shells do not serve as slow release nutrient pools that fuel pro-
ductivity like vertebrate skeletons that are P reservoirs (Subalusky 
et al., 2017). Indeed, Ca (315.2 mg/g ± 60.2 mean of all species) and 
C (128.7 mg/g ± 5.1 mean of all species) were dominant elements in 
shells, but we found eight additional elements, two of which varied 
among species with different morphologies and life histories. Thus, 
it seems plausible that shells may serve as spatially patchy sources 
of trace elements that serve essential or complementary functions 
to other organisms growing on or near them as they break down 
(Lukens et al., 2017; Spooner & Vaughn, 2006; Vaughn et al., 2002). 
Additionally, interspecific and intraspecific variability of Zn, Mg, B, 
and Cu in shells of some species (e.g., T. verrucosa) may reflect ele-
mental profiles driven by microhabitat conditions, but more rigorous 
tests of this are beyond the scope of this study. Whether such ele-
mental variability is unique to species warrants further investigation 
of populations dispersed along ecological gradients. Collectively, our 
cataloguing of shell elemental profiles advances our understanding 
of phenotypic diversity that may contribute to cycling and storage 
of biologically important, but understudied bulk and trace ele-
ments (Currier et al., 2020). Still, assessing the relative importance 
of unionid shells in elemental cycling, warrants additional research 
that incorporates comparative data on water, sediment, and food 
sources.

Nutrient balances characterise element interactions and have 
only recently been applied to analyses of animal elemental com-
position (e.g., Prater et  al., 2019, 2020). Life history strategy in-
fluenced [C | P] and [C, Ca | P] nutrient balances, suggesting that 
there may be a link between positions along the life history con-
tinuum and shell elements, as reflected by growth rates. Variation 
was primarily driven by greater [C | P] and [C, Ca | P] balances of 
L. ornata shells relative to other species. Another study found 
faster growing L.  ornata had greater soft tissue P, yielding lower 
C:P and N:P (Atkinson et al., 2020). Growth rates generally control 
P content of animals (Elser et al., 2003); however, this has primarily 
been evaluated in soft tissue samples of mussels. Moreover, [C|P] 
and [C, Ca | P] appear to describe a similar axis of shell elemental 
composition. When elemental data beyond C, N, and P for unionid 
shells are unavailable, the classical stoichiometric ratio for C and P 
is probably a sufficient metric for P relative to the calcareous shell 
matrix. Combined with previous work, our novel nutrient balance 
for biologically relevant elements [C, Ca | P] demonstrates that 
biomineralisation of a key trait for organismal function of unionids 
(shells) may be driven by inverse allocation of P to soft and shell tis-
sue. Thus, we hypothesise that faster growing mussels prioritise P 
allocation toward soft tissue growth resulting in relatively reduced 
P allocation to the shell compared to the CaCO3 matrix. However, 
more explicit tests of this hypothesis will require balancing ele-
ments in paired soft and shell tissue from species covering the full 
fast-to-slow continuum.

While freshwater mussels, and more generally molluscs, are 
threatened by many factors, shells are commonplace in habitats 
where they exist (Gutiérrez et al., 2003) and are stored in museum 

F I G U R E  4   Relationship between species-specific growth rates 
(from Haag & Rypel, 2011) collected from our the Sipsey River, 
U.S.A. and shell P (a), traditional stoichiometric balance [C | P] (b), 
and novel balance [C, Ca | P] (c). Points are means ±2 standard 
error. Gray dashed lines illustrate each relationship excluding 
Lampsilis ornata. Associated r2 and p values are reported in the text
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collections or malacological research labs. For abundant wide-
spread species, this presents low-risk research avenues exploring 
elemental variation among populations to understand whether and 
how elemental profiles are influenced by resource stoichiometry 
gradients, or temporal comparisons that track responses to global 
change (Black et al., 2017). As an example, elemental composition 
of macroinvertebrate communities in headwater streams shifted 
following dietary N and P enrichment that varied interspecifically 
(Prater et  al.,  2020). We anticipate that widespread habitat deg-
radation (Chiba & Roy,  2011; Strayer & Dudgeon,  2010), coupled 
with the key role of molluscs across all ecosystems (Vaughn & 
Hoellein,  2018; Zaady et  al.,  1996), may fundamentally alter cy-
cling of understudied biologically essential elements by changing 
their relative proportions stored in soft tissue and shells. Thus, we 
advocate that well preserved shell material is useful in studying 
novel aspects of mollusc trait diversity as they relate to nutritional 
and functional ecology, especially in the context of global change. 
Consideration of elemental diversity of mussels presents a basis for 
generating experiments to advance our understanding of the ecol-
ogy of this highly endangered group and, more broadly, animal trait 
diversity, and how the elemental composition of animals is linked to 
ecosystem functions.
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