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Abstract

This paper is concerned with a nonlocal (convolution) dispersal susceptible-infected-susceptible (SIS)
epidemic model with bilinear incidence and Neumann boundary conditions. First we establish the exis-
tence and uniqueness of stationary solutions by reducing the system to a single equation. Then we study
the asymptotic profiles of the endemic steady states for large and small diffusion rates to illustrate the per-
sistence or extinction of the infectious disease. The lack of regularity of the endemic steady state makes it
more difficult to obtain the limit function of the sequence of endemic steady states. We also observe the
concentration phenomenon which occurs when the diffusion rate of the infected individuals tends to zero.
Our analytical results demonstrate that limiting the movement of susceptible individuals is not effective in
eliminating the infectious disease unless the total population size is relatively small.
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1. Introduction

Since the pioneer work of Kermack and McKendrick [24], various diffusive epidemic models
have been proposed to describe the spatial spread of infectious diseases, earlier studies include
Bailey [3], Bartlett [4], Busenberg and Travis [7], de Monttoni et al. [17], Kendall [22], Mollison
[30], Noble [32], and so on. We refer to the monograph of Murray [31] and surveys by Fitzgibbon
and Langlais [19], Ruan [38], Ruan and Wu [39] and the references cited therein. In order to
understand the effects of movement of infected individuals and heterogeneity of the environment
on the spatial spread of infectious diseases, Capasso [8] and Webb [45] proposed susceptible-
infectious (SI) epidemic models with diffusion and spatial heterogeneity and investigated the
dynamical properties of these SI epidemic models with diffusion and spatial heterogeneity. To
include the loss of immunity, Kuperman and Wio [26], Beardmore and Beardmore [6] and Huang
et al. [20] constructed susceptible-infectious-susceptible (SIS) epidemic models with diffusion
and studied the dynamics of these models such as the existence of traveling waves.

In most of the above mentioned models, the coefficients are constants. To incorporate spatial
heterogeneity, Allen et al. [1] proposed a frequency-dependent SIS reaction-diffusion model with
space dependent coefficients and investigated the impact of spatial heterogeneity of environment
and movements of individuals on the persistence and extinction of infectious diseases. Since
then, the model proposed in [1] has attracted much attention. For example, Peng and Liu [35]
studied global stability of the steady states, Peng [34] and Peng and Yi [36] gave the asymptotic
profiles of endemic steady states. Moreover, Cui et al. [12] investigated the impacts of diffusion
and advection on asymptotic profiles of endemic steady states and concluded that advection can
help to speed up the elimination of infectious diseases. Cui and Lou [14] considered the effects
of diffusion and advection rates on the stability of the disease-free steady state. Cui et al. [13]
and Kuto et al. [27] considered the concentration behavior of endemic steady states, see also Cui
[11], Zhang and Cui [52], Tong and Lei [44], Sun and Cui [43], Zhang and Cui [53] and so on.

For bilinear incidence, Deng and Wu [15,16] considered an SIS diffusive epidemic model and
studied the existence and global attractivity of the steady states in term of the basic reproduction
number. For the same model, Wu and Zou [47] further investigated the asymptotic profiles of
the endemic steady states for small and large diffusion rates; Wen et al. [46] and Castellano and
Salako [9] improved some results of [47] when the diffusion rates go to zero. See Li et al. [28]
and Lei et al. [29] for related studies.

Now it is well-understood that nonlocal convolution operators can better capture long-range
dispersal of species including humans (Andreu-Vaillo et al. [2] and Fife [18]). Nonlocal epidemic
models have been extensively studied since the classical work of Kendall [22,23], in which he
generalized the Kermack-McKendrick model to a space-dependent integro-differential equation
and used the integral term 8S(x, 1) ffooo K(x —y)I(y, t)dy to describe how infectious individu-
als I (y, t) at location y disperse to infect susceptible individuals S(x, t) at location x. See also
the studies of Busenberg and Travis [7], de Monttoni et al. [17], and Noble [32]. For further
results on nonlocal epidemic models, we refer to the monograph of Rass and Radcliffe [37] and
a survey by Ruan [38].

Recently, Yang, Li and Ruan [51] considered a nonlocal dispersal SIS epidemic model with
Neumann boundary conditions in €2 in which the Laplacian operator is replaced by a nonlocal
convolution operator. They showed the existence, uniqueness and stability of steady states and
obtained the asymptotic profiles of endemic steady states for large diffusion rates. For the same
model under the Dirichlet boundary condition with €2 = R"”, Yang and Li [50] established the
existence, uniqueness and global attractivity of the disease-free and endemic steady states. For
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other nonlocal dispersal epidemic models, we refer to Kuniya and Wang [25], Xu et al. [49] and
references cited therein.

Motivated by Deng and Wu [15], Wu and Zou [47], and Yang et al. [51], in this paper we aim to
investigate the dynamics and asymptotic profiles of the following nonlocal (convolution) disper-
sal susceptible-infected-susceptible (SIS) epidemic model with bilinear incidence and Neumann
boundary conditions

% =ds [o J(x =[S, 1) = S(x,0)]dy — B(x)ST +y(x)1, xeQ, t>0,
U =d oI (x— U0 —1(x,Dldy +Bx)ST =y ()], xeQ, t>0, (L.1)
S(x,0) = So(x), I(x,0)=Ip(x), xeQ,

where 2 C R” is a bounded domain; S(x, ¢) and [ (x, t) represent the density of susceptible and
infectious individuals at location x € 2 and time ¢ > 0, respectively; positive constants dg and
dj are diffusion coefficients for susceptible and infectious individuals, respectively; 8(x) and
y (x) are positive continuous functions on €2 which denote the transmission rate of susceptible
individuals and the recovery rate of infectious individuals at x € €2, respectively. The convolution
integrals describe the nonlocal dispersal of individuals. More specifically, fQ J(x =y)S(y, t)dy
and f o J (x —¥)I(y, t)dy represent the rates at which susceptible and infectious individuals are
arriving at position x from other places, while fQ J(x —y)S(x,t)dy and fQ Jx —y)I(x,t)dy
are the rates at which susceptible and infectious individuals are leaving location x for other
locations, respectively. Since integrals are taken over the domain €2, we assume that diffusion
takes places only in €2. Individuals may not enter or leave the domain 2. This is analogous to the
homogeneous Neumann boundary condition in the literature, we also call it Neumann boundary
condition, meaning that all the involved integrals are taken over the domain €2 (see the definition
in Andreu-Vaillo et al. [2]). Throughout the whole paper, we assume that the dispersal kernel
function J satisfies

) JOHeCR"), JO)>0, J(x)=J(—x) =0, fR" J(x)dx:l,fQJ(x—y)dyf1f0rany
erandeJ(x—y)dy$l,

and the initial data satisfy

(H1) So(x) and Ip(x) are nonnegative continuous functions in Q, and the total number of initial
infectious individuals is positive; that is, fQ Ip(x)dx > 0;

(H2) [o(So(x)+ Ip(x))dx =N > 0.

Compared with the frequency-dependent SIS epidemic model considered in Yang, Li and
Ruan [51], the bilinear incidence in (1.1) induces new challenges and phenomena. To find the
steady states of system (1.1), the method of upper and lower solutions cannot be applied directly
to get the endemic steady state. We transform its stationary system to a single equation and
then combine the method of upper and lower solutions with some auxiliary problems to obtain
the existence of endemic steady states. It should be pointed out that we also need to overcome
the difficulty caused by the fact that the nonlocal eigenvalue problems do not admit principal
eigenvalues in general (see [5,40-42]). All these difficulties bring challenges for us. Finally, we
consider the asymptotic profiles of endemic steady states corresponding to system (1.1), which
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imply that the infectious disease is persistent or goes to extinction when the diffusion rates are
large or small. The lack of regularity of the endemic steady state makes the limit function of
the sequence of endemic steady states hard to get. In particular we would like to point out that
it is difficult and complex to obtain the asymptotic profile of the endemic steady state of (1.1)
as df — 0. We also observe the concentration phenomenon in which the infected individuals
concentrate on the sites

S:{x*eﬁ.y(x*)_ . )/(X)}’

N = min
Bxs)  xed Bx)

and this special phenomenon takes place because of the bilinear incidence. Moreover, as dg goes
to zero and dy is fixed, we find that the infectious disease may vanish through taking the limit of
the endemic steady state of (1.1).

This paper is organized as follows. In Section 2, we list the main results of this paper includ-
ing not only the existence, uniqueness and global stability of the disease-free steady state and
endemic steady state of system (1.1) but also the asymptotic profile of the endemic steady state
of system (1.1) for small and large diffusion rates. In Section 3, we give some preliminary re-
sults involving the properties of principal eigenvalues corresponding to the nonlocal eigenvalue
problems. In Section 4, we present proofs of the main results stated in Section 2. In Section 5,
we give some biological implications of our analytical results and provide some strategies for
disease control.

2. Main results

In this section, we state the main results of this paper. Define

Mlul(x) :=d; / J(x =) uy) —u(x))dy — y (x)u(x).

Q

It is well-known that M can generate a uniformly continuous semigroup, denoted by {7 (¢)};>0.
Denote

N o
L[g](x) := ﬁﬂ(X)fT(l)qﬁdt-
0

We define the basic reproduction number of system (1.1) as follows
Ro=r(L),
where r (L) represents the spectral radius of L.
First we present the existence and stability of the disease-free steady state and endemic steady

state of (1.1).

Theorem 2.1. Suppose Ro > 1. Then system (1.1) admits a unique endemic steady state
(Sx), I(x)) € C(2) x C(Q).
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Theorem 2.2. Suppose ds = dj. Then the following statements hold:

() If Ry < 1, then all positive solutions of (1.1) converge to the disease-free steady state
|Q|,0> ast — +oo in C(Q) x C(Q);
(ii) If Ro > 1, then all positive solutions of (1.1) converge to the endemic steady state (S, I) as
t > +o0in C(Q) x C(Q).

Next we state results on the asymptotic profile of the endemic steady state for large and small
diffusion rates.

Theorem 2.3. Suppose that Ry > 1. For any fixed d; > 0, there exists a sequence {ds,} with
ds, — 0 as n — 400 such that the corresponding endemic steady state of (1.1) satisfies
(Sp, 1) = (S*,I*) in C(Q) x C(R), where S* is a positive function and I* is a nonnegative
constant. Furthermore, either

: _ N 1 x)
W 5%,1 = (565 g — sy Jo F ).

or

(ii) I* =0 and S* is the solution of the following problem

Jodx =S = S@)dy+¢¥(=pS+y)=0, xeQ,
fQde =N

where  is some positive continuous function on Q2 satisfying

d / T — )W) — P dy + P (BS* — 1) =0, xeq. @1

Q

Theorem 2.4. Suppose Ry > 1 and dj is fixed. If dg — O, then the corresponding endemic steady
state of (1.1) satisfies

s I)_)<V(X) N 1 [y

,— 2 dx ) in C(Q) x C(Q),
poial el ) B )’" (B> @)

provided one of the following assumptions holds:

(i) B is a positive constant with N — L [0y (x)dx > 0;
BJa

2
(i) N — [q gg; dx > ldIfoQJ(x—y)< /ﬁ - /ﬁ) dydx;

(iii) \ﬁl > gg; on Q.

Theorem 2.5. Assume N > fQ ﬁg; dx. There exists an endemic steady state (S, I) of (1.1) for

0 < ds < 1 satisfying
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y(x) N 1 y(x)

B(x)" 12| IQIQ B(x)

(5. 1) — ( dx) as ds 0

uniformly on Q.

Taking the same definition as Wu and Zou [47], we denote the high-risk region and low-risk
region respectively by

Qt = {x eQ: ﬁﬁ(x) —y(x) >0}
12|

and

Q_—{xeﬁ'iﬂ(x)— (x)<()}
- 1l v '

The domain €2 is called a high-risk domain if fg(%ﬂ(x) —y(x))dx > 0 and a low-risk domain

if fg(%ﬁ(x) — y(x))dx < 0. Inspired by Wu and Zou [47,48], we focus on the asymptotic
profile of the endemic steady state as d; — 0. As stated in the following theorem, we observe the
concentration phenomenon which shows that restricting the movement of infected individuals
only cannot eradicate the infectious disease. Set

0(x) = & Omin = min @,
xe@ B(x)

Bx)’

and
S={x, €Q:0(xs) = Opin} -
Clearly, S is nonempty. We say I — p weakly in the sense of
/I(X)g(x) dx — /;(x),u(dx) forall ¢(-) € C(), 2.2)
Q Q

where © is a Radon measure with nonempty support contained in S.

Theorem 2.6. Suppose that Q" is nonempty and ds is fixed. If d; — 0, then the corresponding
endemic steady state (S, I) of (1.1) satisfies S — O, uniformly on Q and fQ Idx — k > 0 with
k=N — |Q16nin. Moreover, the following conclusions hold:

(1) If S = {xo}, then I — 0 locally uniformly on Q \ {x0} and I — (N — |2|6nin)dé(x0) weakly
in the sense of (2.2), where §(xq) is the Dirac measure centered at xo;

(ii) If S = K for some closed subset K C Q with positive measure, then we have I — 0 uni-
formly on Q\ K and I — I uniformly on K, where I is the unique positive solution of
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Je I =iy dy = [o I = ndy () + 52— DHI=0, xek,
=0, xeQ\ K, (23)
[ Tdx =N = |20min.

in which the positive constant « is uniquely determined by the third equation of (2.3) and K
is the interior of K.

Remark 2.7.

(i) If S ={xy,---,x;} for some j > 2, then following a similar argument as in the proof of The-

_ _ J
orem 2.6 we have § — 6,,,;,, uniformly on @ and I — 0 locally uniformly on €\ (U {x,-}),
i=1

J
and I(x) = ) ¢;8(x;) weakly in the sense of (2.2) as d; — 0, where constants ¢; > 0
i=1

J
satisfy > ¢; = N — |Q2]6min.
i=1

J1 )2 -
(i) IfS = (U K,'> U (U {xi}) with K; being some closed subset of 2 and having a positive
i=1 i=0

measure for some j; > 1 and j, > 0, then S — 6,,;, uniformly on _S_Z as dy — 0 and we
guess that I converges to some nonnegative function uniformly on 2. On the assumption

. - . .
that / — I uniformly on Q as dj — 0, we readily obtain that / =0 on Q\ |J K; and
i=1

v v . J1
either I =0 or / > 0 on K;. Assuming that / > 0 on |J K; for some 1 < jl* < j1, then by
i=1
Theorem 2.6, in such K;, [ satisfies

I y y . i,
> flg_](x—y)I(y)dy—fQJ(x—y)dyI(x)+—ﬂ;x)(a—l)l——o, xe K,
i—1 i S i—1

1= 1=

v jl o
I=o, xeQ\ UK,

i=1
it .
and ) fK Idx =N —|Q0nin.
i=1

As a consequence, in this case, it is vital to show that I — I uniformly on Qasd; — 0.

Theorem 2.8. Suppose that Q" is nonempty.

(1) Ifdi — 0 and Z—g — d € (0, +00), then the corresponding endemic steady state (S, I) of

(1.1) converges to (S*, I*) in C(Q) x C(Q), where I* is the unique nonnegative solution

of
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+

N 1—-d _
—ﬁ—y—ﬂ I"dx| —dBI*=0, xeQ

|£2] |£2]
Q

and

, N (-d
€2 €2

I*dx —dI*.

(i) Ifds — 0 and j—; — 0, then the corresponding endemic steady state (S, I) of (1.1) satisfies
S — Omin uniformly on Q and fQIdx — k>0 with k = N — |Q|0pin. Moreover, the
following conclusions hold:

(@) If S = {xo}, then I — 0 locally uniformly on Q \ {xo} and I — (N — |2|0min)8(x0)
weakly in the sense of (2.2), where §(xq) is the Dirac measure centered at x.

(b) If S = K for some closed subset K C Q with positive measure, then we have I — 0
uniformly on Q\ K and I — v uniformly on K with v = %.

(i) If N < fQ % dx, then the corresponding endemic steady state (S, I) of (1.1) converges

0 (8%,0) in C(Q) x C(Q) as dy — 0 and % — 0, where §* = min {19*, g} and O, is the
unique positive number satisfying

{ N . )/(X)} y(x)
max ¢ —, min < ¥ < max
12| xeq B(x) xe@ B(x)

and

+
N=0, [1—(1— Y ) }u: min{ﬁ*,z}dx.
(- 7)o e

Moreover, there exist constants 0 < dy < 1, C1 and C, such that

d d d
C1=2 < || < C2=> forall 0<dy, = < d. 2.4)
dp dr d

@v) If N > fQ % dx, then there is 0 < dy < 1 such that for every 0 < dy < dy and ds.1 > 0,
(1.1) has an endemic steady state (S, I) with ds = ds 1 and

N 1
S, 1 — Z,——— Y dx
B 1€ IQIS2 B

uniformly on Q as d; — 0 and lim % =0.
d[—)() 1

For Theorem 2.8 (ii), we give the following remark.
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Remark 2.9.

(i) fS={xy,---,x;} for some j > 2, then a similar discussion as in the proof of Theorem 2.8

_ _ J
(i) yields that S — 6,,i, uniformly on 2 and I — 0 locally uniformly on € \ (U {x,-}),
i=1

J
and I (x) — Y ¢;8(x;) weakly in the sense of (2.2) as dg — 0 and j—g — 0, where constants
i=1

J
ci > 0satisfy > ¢; =N — |Q|0min-
i=1

J1 J2 -
(i) IfS = (U K,'> U (U {xi}) with K; being some closed subset of 2 and having a positive
i=1 i=0

measure for some j; > 1 and j» > 0, then S — 6,,;,, uniformly on Q as ds — 0 and Z—; — 0.
However, due to the effect of nonlocal dispersal and bilinear incidence, it is difficult to get
the limit of 7 in this case and we leave it for the further study.

Theorem 2.10. The following statements hold:

(1) Suppose that 2 is a high-risk domain. If dg — +00 and dj — +00, then the endemic steady
state of (1.1) satisfies

Joyx)dx N [qy(x)dx\ | - ;

(i1) Suppose that Q2 is a high-risk domain. If ds is fixed, then there exists a sequence {dj,}
with dj, — +00 as n — 400 such that the corresponding endemic steady state (Sy, I,,) =
(§*,I*) in C(Q) x C(RQ) as n — 400, where I* is a positive constant and S* is the positive
solution of

[ds Jo I (x =S =S dy +(=BS+)1* =0, xeQ, 2.5)

JoSdx =N —1*|Q|.

Moreover, there exists a sequence {ds, } with ds, — 0 as n — +o00 such that the correspond-
ing solution (S}, 1) of (2.5) satisfies (S;;, I}) — (S*, I*) in C() x C(Q) as n — +o0,
where S* is a positive function and I* is a nonnegative constant satisfying either

§* [y (v N 1 r y&)
@ 5.1 = (565 1~y Jo F5 ).
or
(b) I* =0 and S* is the solution of the following problem

Jo Jx =S —SaNdy+ ¢y (—=BS+y)=0, xeQ,
JoSdx=N,

where  is some positive continuous function on 2 satisfying
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&y [0 =) - wendy + v ES - =0, xe
Q

(iii) Assume that Ry > 1. Iffl] is ﬁxe_d and dg — +00, then the endemic steady state of (1.1)
(S, 1) — (S§*,I*) in C(2) x C(RQ), where I* is the unique positive solution of

N,
d,f](x—y)(l(y)—l(x))dy—l—l —ﬂ—)f L ldx | =0 (2.6)
1€2] IQI
Q
and
N — [ I*dx

S§* =
|€2]

3. Preliminaries

By the standard semigroup theory of linear bounded operators (Pazy [33]), it follows that
there exists a unique nonnegative solution of system (1.1) (see Kao, Lou and Shen [21]). Set
X =C(Q).

Proposition 3.1. Suppose that (So(-), Io(-)) € X x X. Then system (1.1) admits a unique solution
(S(x,1),I(x,1)) forall x € Q and t € (0, Tpayx) with Tyax > 0 satisfying either T,,4x = 400 or
lim [[(SC,2), I (-, 1)l xxx = +00.

t—=>Tnax

We claim that T,,, = +o00o. In fact, by the maximum principle, we have S(x,r) > 0,

I(x,1) > 01in € x [0, Tyax). Choose M| = max { max So(x), max ;Exg . We can see that 0 and
)

M are lower and upper solutions of the first equatlon of (1. 1) respectlvely It follows from the
comparison principle that S(x, ) < M in Q x [0, Ty ). Note that

WD — dp fo I (x = Wy, 1) —ux, Oldy + (BOM; —y (Du(x, 1), x€Q, t>0,
u(x,0) = Iy(x), xeQ

has a unique solution u(x,) for all x € Q and 7 > 0. The comparison principle yields that
I(x,1) <u(x,t)forallx € Qandt > 0.

By the assumption (H2), adding up the two equations of (1.1) and integrating on €2 yields that
the total population size is constant; that is,

/(S(x,t) +1(x,t))dx =N forallt>0.

We give the existence and uniqueness of the disease-free steady state of system (1.1). That is, we
consider the following stationary problem
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ds [o I (x = )(S() = S(x)dy — Bx)SI +y(x)[ =0, xeq, G.1)
di [oJ (= )UT () = 1(x)dy + B(x)ST —y(x) =0, x €. '
The stationary solutions of (3.1) also satisfy
/(S(x) +1(x))dx=N. (3.2)
Q

Lemma 3.2. System (1.1) admits a unique disease-free steady state (%, 0).

Proof. Letting I be identically equal to zero in (3.1) yields

/ J(x = y)(S() = S dy =0 in Q.
Q

It follows from Andreu-Vaillo et al. [2, Proposition 3.3] that S(x) is a constant. Combining
Jo S(x)dx = N, we know that S(x) = % on Q. The proof is completed. O

Consider the eigenvalue problem

N
Alul(x) :=d; / J(x =) (y) —ux))dy + — Bx)u(x) —y (Du(x) = —ru(x). (3.3)

[9]
Q
Define
U [ T = @) — ()P dydx + [o(y (x) — N B(x)@?(x) dx
2]
Ap(dp):= inf 5 .
weL;(()Q) Jo @?(x)dx
@

We list some results including the relation between Ro and A ,(d;). The proof of the following
several lemmas can be found in Yang, Li and Ruan [51].

Lemma 3.3. Set

N
mx) = —d; / I =y dy+ 5B = )
Q

Suppose there is some xo € Int(2) satisfying that m(xo) = maxm(x), and the partial derivatives
Q

of m(x) up to order n — 1 at xg are zero. Then A, (dy) is the unique pi:incipal eigenvalue of (3.3)
and its corresponding eigenfunction ¢ is positive and continuous on 2.

Remark 3.4. 1., (d) is continuous on J, B(x) and y (x), see the proof in Coville [10].
In the following, we always denote «(x) := %,B(x) —y(x).

304



Y.-X. Feng, W.-T. Li, S. Ruan et al. Journal of Differential Equations 335 (2022) 294-346

Lemma 3.5. Suppose that X ,(dy) is the principal eigenvalue of (3.3). Then the following state-
ments hold:

(i) If a(x) is constant, then A, (dy) = —a(x) for every dj > 0;
(i) If a(x) is nonconstant, then L,(dy) is strictly monotone increasing in dj. In addition,
Ap(dr) — min(—a(x)) as dy — 0 and 1, (d;) — _\lﬁl an(x) dx as dj — +o0.
xe

Lemma 3.6. 1, (d;) has the same sign as 1 — Ry.
Lemma 3.7. The following statements hold:

(1) Suppose a(x) is constant. Then a(x) has the same sign as Ry — 1;
(i) Suppose a(x) is nonconstant.
(@) If a(x0) > 0 for some xy € Q and fQ a(x)dx < 0O, then there exists some dy > 0 such
that Ry > 1 forall 0 <d; <d, and Ry < 1 ford; > d,;
(b) Ifoot(x)dx >0, then Ry > 1 for any dj > 0. Further, if a(x) <0 for all x € 2, then
Ry < 1 foralld; > 0.

In order to establish the existence and uniqueness of the endemic steady state of (1.1), we
show the following preliminary results.

Lemma 3.8. The pair (S, I) is a nonnegative solution of (3.1) if and only if it is a nonnegative
solution of the following problem:

d1fQJ(x—y)(I(y)—I(x))dy~|—I[%,B—y—( ——)%fgldx—ﬂ ]:0, xeQ,

N d 1 d
S:@—(l—ﬁ)@fgldx—ﬁl, xeQ.
(3.4)

Proof. It can be easily verified that (S, I) is a nonnegative solution of (3.1) if and only if it is a
nonnegative solution of the following problem:

dsS+d;l =K, XEQ,
di [ (x =T @) —1x)dy +1(BS—y)=0, xe, (3.5)
Jo(S(xX)+1(x))dx =N
where K is some positive constant independent of x € 2. So it suffices to show that problems
(3.4) and (3.5) are equivalent. We first assume that (S I) is a nonnegative solution of (3.5). By

virtue of the first equation of (3.5), we obtain S = dd’ ! Substituting it into the third equation
of (3.5) yields that

1
Kz@ dsN—(ds—dl)/Idx

Thus, we have

305



Y.-X. Feng, W.-T. Li, S. Ruan et al. Journal of Differential Equations 335 (2022) 294-346

K 1 1
7611 N (1 dI) /Id _d_II
ds 12 [€2] ds

Substituting this S into the second equation of (3.5) yields the first equation of (3.4).
Now assume that (.S, I) is a nonnegative solution of (3.4). It follows from the second equation

of (3.4) that
d N d 1
—II:——(I——I)—/Idx—S.
ds Q| ds ) 19| J

Substituting this into the first equation of (3.4) yields the second equation of (3.5). Integrating
both sides of the second equation of (3.4) gives the third equation of (3.5). We derive from the
second equation of (3.4) that

ds/J(x—y)(S(y)—S(X))dy=—d1/J(x—y)(l(y)—I(X))dy,

Q Q

which implies that dgS + d; I is a constant. Combining the third equation of (3.5), we know that
this constant must be positive. The proof is completed. O

Lemma 3.9. If I € C(Q) is a nonnegative solution of the first equation of (3.4), then we have

d1> 1 / d;
1— dx —|——I(x)<— orall x € Q.
( |€2] |€2] i

Proof. If I = 0, then the conclusion is quickly obtained. If / is not identically zero on €2, suppose
on the contrary that the conclusion is false. It follows from the continuity of I that there exists

xo € Q such that I (xo) = max / (x) > 0. In view of the above assumption, there must be
xeQ

dr 1 / N
1— Idx +—I
( )|sz| (0= 1qp

We derive from the first equation of (3.4) that

d f J (o — W) — 1(xo)) dy

Q

B(x0) dI,B( 0)1( )]

+1(XO)[ B (x0) — J/(XO)—<1——> 2 I(x)dx —

|€2]
which implies that

/ (o= (I () — I (x))dy > 0.

Q
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This contradicts the fact that

/J(XO—Y)(I(Y)—I(XO))dySO
Q

due to I (xp) = max I (x). The proof is completed. O
xeQ

By virtue of Lemma 3.9,if I € C (Q)isa nonnegative solution of the first equation of (3.4),
then § defined by the second equation of (3.4) is positive. In order to obtain the existence of
positive solutions of (3.4), we introduce a lemma from Yang, Li and Ruan [51] firstly. Consider

BME)?I) =d [oJ(x —y)(u(y,t) —u(x,1)dy + (r(x) — c(x)u)u, xeQ, t>0, (3.6)
u(x,0) =uo(x), x €€, '
where d is a positive constant and ug(x) is a bounded continuous function.

Lemma 3.10. Assume that r(-), c(-) € C(Q) and c(x) >0on Q. Then the positive stationary
solution uy. of (3.6) is unique if and only if A, (d) < 0, in which

@ it Halal 6= N@O) e dydx - [oreteds
p - .

(peL;(()Q) Jo 92> (x)dx
%4

Moreover, u, is globally asymptotically stable.

Set

N i\ B dip

and define

Fe,1):=dy f T =) = ) dy + If(x, ).
Q

Lemma 3.11. Suppose that Ry > 1 and ds > dj. Then there exists (t, I;) € ]1_@' x X such that
F(z, I;) =0. In addition, some t* > 0 exists such that I.(x) > 0 for all x € Q and t € [0, %),
and I+ = 0. Furthermore, I, is decreasing and continuous on t in (0, T*).

Proof. Since Ry > 1, we know from Lemma 3.6 that 1 ,(d;) < 0. Then there exists 7* > 0 such
that X, <O forall T €[0,1*), and 5»,* = 0 in which

s e S afolG-0e0) —em)dyds+ [y [y - g+ (1- &) | P ax

gae(pL;SQ) Jo 92 (x)dx
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It follows from Lemma 3.10 that F(t, ) = 0 admits a unique positive solution I; € X for each
given 7 € [0, t*) and F(t*, I;x) = 0 with I+ = 0. In fact, following the same discussion as I
below, we obtain either I;+ = 0 or I+ > 0 for the nonnegative solution of F(t*, I;x) = 0. If
I+ > 0, it follows from Lemma 3.10 that X,* < 0, which is a contradiction.

Assume 11, 72 € (0, 7¥) and 71 < 10. We derive from ds > dj that F(ty, Ir,) > 0, which
implies that I, is a lower solution of F(zq, ) = 0. Obviously, a sufficiently large number is
an upper solution. By the method of upper and lower solutions and the uniqueness of a posi-
tive solution of F(r1, /) =0, we have I, > I,. Since I is decreasing with respect to 7, we

have I;(x) < Ip(x) < max Io(x) implying that /; is uniformly bounded, where Io(x) satisfies
xeR

F(0, Iy) = 0. Denote

d
a(X)=—éﬁ(X), Hr(X)=d1/J(x—y)1r(y)dy,

Q
=- - N -y — (124D
Gelx) = dIQ/J(X My + 1B =y () <1 ds) a
Then, we have
I,(x) = -G (x) _\/G%()C) —4g(x)Hr(x).

2a(x)

A simple compactness argument gives that

lim I; (x) = I (x) uniformly on , forany % e (0,7%),
T—>T

in which 7 is some nonnegative function. In addition, [ satisfies F (T, I ) = 0. As a consequence,
we know either / =0 or I > 0. In fact, if I is neither strictly positive nor identically vanishing;

that is, there exists some xq € $2 such that  (xp) = min I(x) = 0, then we derive from F(%, 1) =0
xeR

that [, J (xo — )1 (y)dy = 0. Thus, I(x) = 0 for all x € 2, which is a contradiction.
On the other hand, the positivity of I; implies that Ac =0, in which A is defined by

3»1 = inf
peL*(Q)
0

U [ Jo = (9O — ()2 dy dx + Be(p) ]
pF

Jo9?*(x)dx

and

_ N LA\ BW i )
B (¢) -—Q/[)/(x) |Q|ﬂ(x)+<1 ds> 2 f+ds,3(X)1r(X)]<p (x)dx.

If [ =0, letting T — 7 yields thNat X; =0, whicp contradicts the fact that )1; <0Odueto T e
(0, t™). Thus, I > 0. Note that [ satisfies F(7,I) = 0. The uniqueness of a positive solution
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of F(7,u) =0 gives that [ = I;. As a result, I; is continuous on t in (0, 7*). The proof is
completed. O

Now we give two results inspired by Castellano and Salako [9].
Lemma 3.12. Suppose that d; > 0 and ds > 0 are fixed. The following conclusions hold:
(1) Let (S, I) be a nonnegative solution of (3.1). Then the function
k=dsS+diI xeQ 3.7

is a constant function. Furthermore, by letting

- S -
S=— and I[=

I
. (3.8)
K K
(x, S‘, f) satisfies
- 1 .
5= (1 _ d11) , (3.9)
K ~ ~
d—S/[(l—d11>+d51] dx=N (3.10)
Q
and
i [ =) =Ty + [ (1=di) =y]T=0. veq. .
0<1I< d—ll, x € Q. .

@) If (k, S, I) solves (3.9), (3.10) and (3.11), then (S, 1) = (xS, k1) is a nonnegative solution
of (3.1).

Proof. (i) Note that « satisfies

/J(x —Wk(y) —k(x)]dy =0.

Q

It follows from Andreu-Vaillo et al. [2, Proposition 3.3] that « (x) is a constant. Dividing both
sides of (3.7) by «, we obtain (3.9). (3.10) is derived by (3.2). And substituting S =« S = ;—S(l —

dj f) in the second equation of (3.1) yields (3.11). o
(ii) It readily follows by inspection that (S, I) = (xS, xI) is a nonnegative solution of (3.1)
whenever («, S, I) solves (3.9), (3.10) and (3.11). The proof is completed. O

Let ! > 0 be a real number. Consider

dI/J(x—y)[u(y)—u(x)]dy—i—[lﬂ(l —dju) —ylu=0, xeQ. (3.12)
Q
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N

Lemma 3.13. Suppose Ry > 1 and | > e Then (3.12) admits a unique positive solution u;

satisfying 0 < u; < % In addition,

1
lim w=-— and lim l(l—dmﬂ:% (.13)

[—+00 I [—+400
uniformly on Q.

Proof. By virtue of Lemma 3.10, (3.12) admits a unique positive solution if and only if 4; < 0,
in which

e it 2JatodC=NE0) e dydx = [oUBE) — v (x))eP(x) dx

pelX(R) Jo ¥*(x)dx
#0

Since Rp > 1, we have A,(d;) < 0. Then, A; <0 due to [ > le Therefore, (3.12) admits a
unique positive solution u;. Set

mi(x) = —dp f J(x — y)dy +1B(x) — y(x).
Q

Finding a sequence {v,} with
lvn —millLoo(@) — 0 as n — +o0,

the eigenvalue problem

d f (= )en () dy + vn(X)gn () = —Agn(x) in Q
Q

admits a principal eigenpair (A}, ¢, (x)). There exists n1 > 0 large enough such that
1
)»7 < 5)\] — |lvn —m1||LOO(Q) forall n>nj.

Constructing u(x) = ¢, (x) for some § > 0 and taking a direct computation, we have
di / J(x = y)uy) —u(x))dy +Z<ll3 e dzlﬁz)

= —8AT @ (x) + 8¢, (x) (my (x) — v (x)) — dyIB(x)8> @2 (x)

1 2 2
Z =5 M0 (x) — dilp(x)5%¢;, (x)

ZO’
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provided 8 small enough. Obviously, (} is an upper solution. Take § > O sufficiently small such
that u < d on Q. The method of upper and lower solutions and the uniqueness of the positive
solution of (3.12) give that 0 < §¢, <u; < dl on  for each n > ni.

We claim that uy(x) ;é for all x € Q. On the contrary, assume that there is x¢o € Int(£2) such
that u; (xg) = dz . Thus, (3. 12) yields that

1
d—IV (x0) =d / J (xo — y) (w1 (y) —uy (x0)) dy <0,
Q

which is a contradiction. On the other hand, if xo € 92, we can find a point sequence {x,} C
Q such that x, — xo and u; (x,) = u; (x9) as n — +o00. The same arguments can lead to a
contradiction.

Set

)/(X) Cdi JoJ(x —y)dy

gi(x)=pB(x)— ;

We derive from (3.12) that

§1x) + /g2 0) + 4di B Y [ T (x — Y (y)dy
2418 (x)

up(x) =

s

which implies that u; — d— uniformly on Q as [ — +o0.
Note that the function w; =[(1 — dju;) satisfies

y (u(x) —dp [o J(x — )i (y) —u(x)]dy
Bx)u(x)

wy(x) =

which implies that w;(x) — gg ) uniformly on Q as / — +o0. The proof is completed. O

4. Proof of main results

Proof of Theorem 2.1. In view of Lemmas 3.8 and 3.9, it suffices to prove that there exists a
unique continuous positive solution of the first equation of (3.4). Since Ry > 1, we know from
Lemma 3.6 that A, (d;) < 0. We proceed with the proof by considering the following three cases
in turn.

Case 1. dg = d;. We derive from Lemma 3.10 that the claim is true.

Case Il. dg > d;. By Lemma 3.11, there exists (t, I;) € [0, t*) x X such that F(t,I;) =0
By virtue of the definition of F, I; is a solution of the first equation of (3.4) if T = fQ I dx.
Since

0</fodx and r*>/lf*dx=0,
Q Q
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where fo(x) satisfies F (0, fo) =0, it follows from the continuity and monotonicity of I; on
that there exists a unique 7 € (0, t*) such that 79 = fQ I, dx. Thus, the first equation of (3.4)
admits a unique continuous positive solution.

Case II1. ds < d;. We apply the method of upper and lower solutions. Recall that

m(x) = —d; f Jx—y)dy+ @ﬂ(m y ().
Q

The continuity of m(x) on Q implies that there exists some x( € Q such that m(xp) = maxm(x).

xeR
Define

m(xo), x € By (1),
mp(x) = {mu1(x),  x€(Byy(2)\ By (1)),
m(x), xeQ\ By (2),

where By, (%) ={xreQ:lx—xol < %}, my 1 (x) satisfies m, 1 (x) < m(xg), and m,, 1 (x) is con-
tinuous in 2. Indeed, m,, 1 (x) exists if only we take n large enough, denoted by n > ng > 0. It
follows from Lemma 3.3 that the eigenvalue problem

d / TGt = PO dy + ma(¥)(x) = A (x)

Q

admits a principal eigenpair, denoted by (A’;, (dr), ¢n). As a consequence of Remark 3.4, some
ni > ng exists such that

1
Aydp) < E)up(dl) — |lmy —m||po (@) forany n > n;.

Normalizing ¢, by ||, |l1x@) =1 and letting I = 8¢, for some § > 0, a direct computation
yields that

dr\ B 1B
dIQ/J(x—y)Q(y)—L(x))dyu 5B - ( s>|ﬁ/”x_d_s'

=5¢n(X)[—)~';§(d1)+(n’t(X)—mn(X))]—52¢n(X)[(l— _>IQ| /¢n(X)dX+ ﬁdm(X)]

1 2 di\ B diB
E—EAp(d1)3¢n(x)—5 ¢n(x)|:<1_%>@/¢n( )dx +—¢n( )]
Q
>0,
N

provided 8 small enough. Let / = o Then, we have
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- - [ N a\ B [ - dip -
dIQ/J(x—y)(l(y)—l(x))dy-l-l[ﬁﬂ—)/—<l—d—s)ﬁ9/1dX—d—S]]

N
= - (x)_ <Os
LANATST

which implies that 7 is an upper solution. Take 8 > O sufficiently small such that / < I on .
The method of upper and lower solutions implies that the first equation of (3.4) admits a positive
solution I € L%(Q).

Denote

d
a(X)=—éﬂ(X), H(X)=d1/1(x—y)1(y)dy,

Q
Gx)=—d; | J dy+ A WA
(x)=-— 1! (x—y) }’+ﬁﬂ—)’—< —%>@§[ x.

By the first equation of (3.4), we have

)= —G(x) —/G2(x) — 4a(x)H (x)
Y= 2a(x) ’

which implies that  (x) is continuous on Q. By virtue of the second equation of (3.4), we obtain
S(x) is continuous on £2.
Finally, we prove the uniqueness of the positive solution of (3.4). Define

ﬁ(x,u):d;/](x—y)I(y)dy—d;/](x—y)dyu+f(x,u), ueR,
Q Q

in which

~ N d d
Ju) = @ﬁ—y—<1——l>£/ldx—dl—ﬂu

A direct computation gives that

ﬁu(x’”)Z—dI/J(x—y)dva%ﬁ—y—(1—ﬂ>£/1dx_2d_1ﬁu_
@ Q

Obviously, F(x, 1) =0 and

Foe,)=—d; | J(x —y)—2dy+ 21 - =12

. J / 1(y) diB . 2dB
! 1(x) ds ds

Q
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1(y) dip

—_—dI/J(x—y)—dy—_
1 d

J (x) s

1

< 0.

Then, the Implicit Function Theorem implies that there exists a unique function u(x) defined on
a neighborhood of x such that F(x,u(x)) = 0. Note that F(x, I (x)) =0. By the uniqueness of
u(x), we have I (x) = u(x) on the above neighborhood of x. The arbitrariness of x implies the
uniqueness of positive solution of (3.4). The proof is completed. O

Remark 4.1. For the case dg > dj, it is worth mentioning that the method of upper and lower
solutions is not applicable due to the term fQ I (x) dx. In fact, the iterative sequence of functions
constructed by the upper and lower solutions is not monotone in this case.

Proof of Theorem 2.2. Suppose Ry < 1. By the same discussion as in the proof of [S1, Theorem
3.10], we know that S(x,7) + I (x,t) — % uniformly on 2 as t — +o00. For any small ¢, there

exists T > O such that S(x, 1) < ‘Nﬁl +e—I(x,t)forallx € Qandr>T. By the second equation
of (1.1), we have

a—:§d1/J(x—y)(I(y,t)—I(x,t))dy+I|:(%+8),3—y—,31:|, xeQ, te(T,+00).
Q

It follows from the comparison principle that 7 (x,t) < I (x,1) forall x € Q and ¢ > T, where I
is the solution of

L — dy [ Jx =W (y.1) = I (x, 1)) dy
+i[(|%|+e);3—y—ﬁi], xeQ 1e(T, 400), (@Al
[(x,T)=1(x,T), xeQ.

Since Ro < 1, we have A, (d;) > 0, which implies that A ,(d;, &) > 0 if & is small enough, where
Ap(d;, €) is obtained by replacing \Nﬁl in A,(dy) by % + &. Thus, i(x, t) — 0 uniformly for
x € Q as t = 400, which implies that /(x,¢) — 0 uniformly for x € Q as r — 4o00. As a
consequence, S(x,t) — % uniformly for x € Qast — +00.

If Ry =1, then A,(d;) =0 and A,(d;, &) < 0. By virtue of Lemma 3.10, I(x,) — I (x)
uniformly on Q as t — 400, where I, (x) is the positive steady state of (4.1). There exists some

xo € Q such that f* (x9) = max I, (x).By (4.1), we have I; (x0) < % +¢. Since ¢ is small enough,
xeR

without loss of generality, we assume ¢ < 1. Then, L(x) is uniformly bounded with respect to
small &. Suppose &1 < &7 and let I;' (x) and I (x) be the corresponding positive steady states
of (4.1). A simple calculation yields that
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- - ~ N -
dp / Jx —»)UT2 ) = 12 (x)dy + 12 [(@ + 81) B—vy— ﬁliz}
Q

= (e1 — &2) I
<0.

It follows from the uniqueness of the positive steady state of (4.1) that f ) < f 2(x). As a
result, I>|< (x) is monotone with respect to €. One can derive frorn Lemma 3.10 that I* (x) > 0as
& —>0duetoA,(d;) =0.Thus, I (x,t) - Oand S(x, 1) — \QI uniformly for x € Qast — 4o0.

Now we are in a position to consider the case Ry > 1 implying A,(d;) < 0. Note that there
exists 7 > 0 such that

N N
@_E_I(x 1) < S(x, t)<@—|—s—l(x t) forall x € and ¢t > T.

By the second equation of (1.1), I satisfies

N al
1[<__8)ﬁ - ,BI]<—t—dI/J(x—y)(I(y,t)—I(X,t))dy
Q

(G pr-s]

for all x € Qandt>T. The comparison principle yifilds that 1 (x,t) < I(x,t) < I(x,t) for all
x € Qandr > T, where I is the solution of (4.1) and [/ is the solution of

%_t:dlfgj(x_)’)(i(y 1) —I(x,0)dy
“[(mw )ﬂ—y—ﬁf], xe€Q, 1€ (T,+00), (4.2)
f(x,T):[(x,T)’ ceQ.

Note that A, (d;, £¢) < 0 with £ > 0 small enough. As a consequence of Lemma 3.10, we have
f(x, t) —> fs(x) and f(x, t) — I;(x) uniformly on Q as t — +o0,

where I; (x) and I; (x) are respectively the unique steady states of (4.2) and (4.1). The same
argument as in the proof of [51, Theorem 3.10] gives that I (x, ) — I1(x) uniformly on €2 as
t — +o00, where I (x) satisfies

B—y— ,8[1)=0 in Q.

d1fJ(x — Ui (y) —11(X))dy+11<|9|
Q

Thus, S(x,t) — % — I (x) uniformly on Q as  — +o00. The uniqueness of the positive solution
of the first equation of (3.4) yields I (x) = I (x). Hence,

N _
S(x,t) —> @ — I (x) = S(x) uniformly on 2 as ¢t — +o0.
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The proof is completed. O

Proof of Theorem 2.3. In view of Ry > 1, we derive from Theorem 2.1 that there exists a unique
endemic steady state (S, /) of (1.1) for any ds > 0 with Ry independent of ds.
Since S is continuous on €2, there exist xg, yo € 2 such that S(x¢) = min S(x) and S(yg) =
Q

xe
max S(x). By the first equation of (3.1), we have —B(x¢)S(xg) + ¥ (x0) <0 and —B(y9)S(y0) +
xe

y () > 0. Then, there hold

S(rg) > L0 Y (x 0) Y
- ,3()60) er B(x)
and
S(y0) < ¥ (y0) < max y(x)
T B0 T e BX)
Thus, we have
.y (x) y(x)
<S 4.3
T Y TSR @3

Note that [, I dx < N. Thus, a sequence {ds,} with ds, — 0 as n — 400 exists such that the
corresponding endemic steady state (S, I,) satisfies fQ I, dx — k for some k > (0. We claim
that

k -
I, — @ uniformly on Q as n — +o0.

Easily, one can get
F Nﬁ ds, +(d d)ﬂ/Id—mZ,Bk — 400
=(—B— - — x — as n .
n |Q| Y Sn 1 Sn |Q|Q n 1 |Q|

Then for any ¢ > 0, there exists n1 > 0 such that

d
ﬁ(k_g)_F <%(k+5) forall n > nj.

Note that

ds,d; / TG =) Un () = I () dy + I (Fy — di 1) =0, x € Q.
Q

Thus, I, is a lower solution of

dip

|Q|(k+e) d,ﬂi]zo, xeQ, (44

ds,d; / T =) — Fydy+ 1 [

Q
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and an upper solution of

ds,d; / J(x — y)(I(y) - 1(x)) dy + i [ﬁ(k —&)— dI,Bi:| =0, xeQ. 4.5)
Q
Obviously, ‘gf and k\QI are the solutions of (4.4) and (4.5), respectively. Then, we have
k—e k+e -
<I, < forall x € 2 and n > nj.

|€2] |€2]

The arbitrariness of ¢ > 0 implies that [, — Ikﬁl uniformly on Q as n — +o0.
If k > 0, the first equation of (3.1) gives

ds, [qJ(x =S, (M dy +v1,
ds, [o J(x —y)dy + B,

S, = , (4.6)

which implies that S, — % in C(Q) as n — +o0. By (3.2), we have

kN 1 [y

— = dx uniformly on Q as n — +o0.
1] 12 <2 J Bx)

I, —>

Now, we are in a position to consider the case k = 0. Up to a subsequence if needed, one of
the following three statements must hold:

I
(a) Wl oo @) "ll‘;soo(m — 0asn — +oo;
n
1 1nll Loo ()
(b) e

I . ) ..
©) I "llfsoom) — Cp with Cy being a positive constant as n — -+00.

— Jo0asn — +0o0;

If (a) holds, then fg I" — 0asn — +00. Let I,, = d% Then, fn satisfies

—wﬂi]=a
12 Q| ds "

n

A N A I,d
dI/J(x—y)(ln(y)—ln(x))dy+1n[ B—y+dr—ds)5 P Jalndx
Q

x € Q.

We show that f,, — I in C(§2) as n — 400, where [ is the unique positive solution of

/J(x—y)(I(Y)—I(X))dY—H(@ﬂ Y= d1ﬁ1>=0, xeQ. 4.7
Q

Since Rg > 1, we have A,(d;) < 0. The existence and uniqueness of the positive solution I of
(4.7) are obtained by Lemma 3.10. There exists n¢ > 0 large enough such that
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1
(l—dsn)'B /Indx>0 for all n > nyg.

Q| ds,
Q
Thus, I, is an upper solution of (4.7) for each given n > ng. Recall that

m(x):—dI/J(x— )dy—i—@ﬂ(x) y (x).
Q

Finding a sequence {m,} with
lm, —mllreo@) — 0 as n — 400,
the eigenvalue problem

d / T = 9)gn () dy + mu(¥)gn (x) = —Agn(x) in 2
Q

admits a principal eigenpair (A}, (dr), a(x)). There exists nj > 0 large enough such that

1
X’;,(d;) < E)Lp(dl) — |lmy —m||po(q) forall n>nj.

Constructing z (x) = 8¢p (x) for some § > 0 and taking a direct computation, we have

/J(x — () — I dy + 1<@ﬁ y— diﬁl)
Q

= =) (d1)@n () + 80 (x) (m(x) — m, (x)) — d1 B(x)8% 0y (x)

1
> =S hp(dndgn(x) - drB(x)8%¢2(x)
>0

provided § small enough. Take & > O sufficiently small such that I <1, on Q. Seti=
max{no, n1}. The method of upper and lower solutions and the uniqueness of the positive so-
lution of (4.7) give that §¢, < I< I on 2 for each n > 7. Since

1
(d; — S)|g|d /Indx—>0 as n— +o0o,

for any ¢ > 0, there exists n* > 1 such that

B

0<(d;—d
< — S”)|Q|d

/Indx<s for all n > n*.
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We can see that fn is a lower solution of

ﬂ_y+g—dlﬂf)=0, x € Q. (4.8)

N
/J(x—y>(1(y>—1(x))dy+1(|9|
Q

Following the same discussion as in the proof of Theorem 2.2, we get that (4.8) admits a unique
posmve solution 15 > I and 18 —~Tase—0. Combining 8¢, < I < I,,, we obtain I,l — [ in
C(2) as n — 400. But

I .
(d; —ds,)— p 2 dx d;ﬁfldx>0,
IQI ds, IQIQ

.. Iyl o0 .. .
a contradiction. Hence, the case ”"Itlffm’ — 0 as n — 400 is impossible to occur.

n

Next, we prove that if the case (b) or (c) holds, then m —~TinC () as n — 400 with
I being some positive function. Note that the first equation of (3.1) gives that

Jo (6 = NSu()dy +y (x) 2
Jo J(x = y)dy + p(x) 2 (x)

Sn(x) =

Substituting this S,(x) into the second equation of (3.1) and then dividing both sides by
11,1l L= () yield that

I, =G+ VG2 (x) + da(x)Hy(x) 4.9)
AR 2a(x) ’ '
where
a(X)=d1ﬁ(X)/J(x—y)dy,
d I,
Hn(x)=d1#/1(x—y)dyff(x—w&dy
111l Lo () 111l Lo ()
Q Q
2
d
Gay= — 25| g, /J(x—y)dy —ﬁ(x)/f(x—y)Sn(y)dy
111l Lo
Q Q
In(y)
+yx) | Jx—=y)dy | —diB(x) | J(x —y)—""—
1]l Lo ()
Q Q
Since
1S, <max Y™ nd H— =1
M = e B Tl |
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there exist nonnegative functions S$* and I such that up to a subsequence,

S, — S* and — I weaklyin L*(Q) as n — +oo.

.
111 Loo ()
If the case (b) or (c) holds, by (4.9), we obtain that

Iy

— " 5T in C(Q) as n — 4o0.
111l oo ()

Since ||i||LOC(Q) =1, we have I > 0 but Iv§é 0. We claim that 7 > 0 in . In fact, if case (b)
holds, it follows from (4.9) that [ satisfies

fJ(x—y)dyizm—i(x)/J(x—yﬁ(y)dy:o. (4.10)
Q Q

There exists some x| € Q such that I (x1) = max I (x) > 0. By virtue of (4.10), we obtain
x€eQ

/J(xl — WU () = Ix)]dy =0.
Q
Since J(0) > 0, we have i(y) = i(xl) in Bs(x1) where Bs(x1) is a ball with radius § centered at

x1. Now for any x, € B% (x1),

/ J(x2 =Y (y) = [ (x2)1dy =0.

Q

Thus, we obtain

=TI, Yye |J By.

X€B; (x2)
2

Repeating the above procedures yields I (y) = I (x1) for all y € Q. Since ||i Lo (@) =1, we have
I =1.1f case (c) holds, then we derive from (4.9) that I satisfies

v d .
dlﬂ(x)/J(x Ny - o / JGr—y) dy/ I =iy dy
Q Q

Q
2
. d .
+im) C—’ /J(x—y)dy —dlﬁ(X)/J(x—y)I(y)dy
0 Q Q
—@ J(x—y)S*(y)der@ J(x—y)dy | =0,
0 Co
Q
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from which we have fQ J(xo — y)i (y)dy = 0 on the assumption that there exists some xq € Q

such that I (x9) = 0. Hence, the same arguments as above give I = 0, which is a contradiction.
Thus, [ >0in .
At present, suppose that case (b) holds. By the above arguments, we know in this case,

Iy

— 1 5 1in C(Q) as n — +o0.
111 oo ()

By the first equation of (3.1), we have

Jo 7 (e = 1)) dy + y ()

1 HLOO(Q) PSR
S () = Ll
4% _ In(x)
Mg Jo /O =Yy + B

Letting n — 400 in the above equality gives Sy, (x) — Eg; in C(Q) as n — +00. By (3.2), we
have

N
Iy —» — — — re) dx uniformly on € as n — +o0.

€2 IQI B(x)

IfN— [q EE;‘; dx # 0, a contradiction occurs due to I, — 0 uniformly on Q as n — +o0. If

N—[q gg; dx =0, we have

Sp ) ) — [P N L[y,
po el i@l e

which is the conclusion (i) of Theorem 2.3.
Finally, we assume the case (c) holds. As above, we know that S, (x) — S*(x) weakly in
L%(Q) as n — +o0. Dividing both sides of the first equation of (3.1) by ds, gives

I, (x) ||In||L°°(Q)
nllLo@  ds,

[ 16 =305 = S, dy - S, )
Q

Li(x) |l
ullLe  ds,

+yx) =0,

which implies that

@ Il
Jo Jx = Su(y)dy + v (x) I o) dLsn -

nllLoo (@)

In|lpoc
Jo I (x =)y + By et Tz

Il oo (@)

Su(x) =

Thus, S, (x) — $*(x) in C(Q) as n — +o00. Note that
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Ii(x)  ullLee(e)

—>C0i in C(Q) as n— 4oo.
nllLe  ds,

Then the conclusion (ii) of the theorem holds with ¢ = Col. The proof is completed. O

Proof of Theorem 2.4. At first, we assume that (i) holds. Dividing both sides of the first equa-
tion of (3.4) by I and integrating it on €2 yield that

d;//](x—y) <%—1> dydx—i—N,B—/y(x)dx—ﬂ/l(x)dx:O.
Q Q Q Q

Since J is symmetric, we have

2
10 _1 (o 1w
//J(x_y)<m_l>dydx_2//”x y)( 1(x) 1<y)> dydx 0.
Q Q Q Q

Then

fl(x)dsz—/y;x) dx. @.11)
Q Q

By Theorem 2.3, there exists a sequence {ds,} with ds, — 0 as n — 400 such that the corre-
sponding endemic steady state satisfies I, — I* in C(2) as n — +00, where [* is a nonnegative
constant. It follows from (4.11) that

N 1
I"> — — — @dx>0.
(2] |2 B
Q
As a result, the first conclusion of Theorem 2.3 holds.

Next, as for assumptions (ii) and (iii), suppose on the contrary that the second conclusion of
Theorem 2.3 holds. Set w,, = d%. By the proof of Theorem 2.3, we derive

1 v L |70
n o and 111 Loo ()

_— — Cp as n — +o0.
11 |l Loo (2 ds,

Thus,

I, I 1nll (@) — Col :=% as n— +o0

" e ds,

In view of the positivity of C¢ and I, which is stated in the proof of Theorem 2.3, we have w > 0.
In addition, w satisfies

dI/J(x—y)(tf)(y)—ﬁ)(x))dy-I—ﬁ) %,3—)/4—% wdx —d;jpw | =0. (4.12)
Q Q
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Dividing both sides of the equation (4.12) by S and integrating it on 2 give that

Jr ) /(N y(x))
- dyde= [ (2 — d
//ﬂ() Gy (B0) = D) dydx J el ™ B )

A direct computation yields that

— W dyd
//ﬂ()() () = ) dydx

1 i(y) (x)
=——d J(x — — dyd
2 ’Qf! (- \/mx)uv(x) \/ﬁ(y)ﬁ)(y) Y

1
—d J(x — y)—————dvydx +d J(x —y)—dvyd
IQfQ/ (=) e dyd IQfo (x y)m)yx

2

1 w(y) w(x)
=——d J(x — — dyd
2’[[ =) \/mx)w(x) \/ﬁ(y)zb(y) Y
Q Q
1 1 1 2
—d J(x — ——|—) ayd
w3 [ oo y)(\/ﬂ(y) Vﬁ(x)> Y
Q Q
2
<ld,//J(x_y) I
=2 B\ B
Q Q

which contradicts the assumption (ii).

On the other hand, when b = min { % — %} > 0, w is an upper solution of
Q

/J(x—y)(u(y)—u(x))dy—l—ﬁu b—i—r%| udx —dju | =0. (4.13)
Q

Choose a sufficiently small constant € such that 0 < € < min { minw, d . Then € is a lower
Q

solution of (4.13). Using the same arguments as in the proof of [46, Theorem A], it can be verified
that the method of upper and lower solutions implies that (4.13) admits a positive solution u
satisfying € <u < W on Q. Set

G<x>=—d1/J<x—y>dy+ﬁ<x> b+|%| u(rydx | |
Q
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H(x):dsz(x — yuy)dy.
Q

Note that

_ =G = VG2(x) +4d1 (1) H (x)

u(x) 2B ()

We know that u is continuous on 2. Then there exist xo, x| € 2 such that u(xp) = minu(x) and
Q

u(x1) =maxu(x). By (4.13), we get
Q

b 1 -
— 4+ — [ u(x)dx <u(xp) <u(x) forall x € Q,
dr 12| J

b 1 -
—+—/u(x)dxzu(x1)zu(x) for all x € €,
d IQIQ

which imply that u = - + ﬁ fqu(x)dx. Substituting this u into (4.13) yields b = 0, which
implies a contradiction due to b > 0. Thus, we exclude the second conclusion in Theorem 2.3.
The proof is completed. O

Proof of Theorem 2.5. Since N > fQ %dx, Lemma 3.7 gives Ry > 1 for all small d;. Fix such
a d;. By Lemma 3.13, equation (3.12) admits a unique positive solution 0 < u; < % for every
[ > % Define

N —1[,(1 —dju)dx
lfQuldx ’

ds, =

In view of (3.13) and the assumption N > [, %dx, there exists /o > 1 such that ds, > 0 for
[ > Iy. Set

S;=I1(1 —dju;) and I; = N—/Sldx e for every [ > Iy.
Jouidx
Q

Direct verification yields that (S, ;) is an endemic steady state of (1.1) for every [ > ly. More-
over,

N 1 -
S, Iy) — Y Q- @/%dx uniformly on € as [ — +o0.
Q

ﬂ 9
And ds; — 0 as [ — 4-o0. The proof is completed. O
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Proof of Theorem 2.6. Since Q* is nonempty, Lemma 3.7 implies that Ry > 1 for all small ;.
Then by Theorem 2.1, the endemic steady state (S, I) exists for small d;. Since fQ Idx <N,
there exists some sequence {d;, } with d;, — 0 as n — 400 such that the corresponding solution
(S, I,) of (3.1) satisfies fQ I, dx — k as n — 400 for some nonnegative constant k.

Since dj, — 0 as n — 4-00, we can assume that d;, < dg for all n. Set

- S ~
Kn=dsSy +dp, 1I,, S,=—" and I,=".
Kn Kn
We derive from (3.10) that
dsN dsN dsN
Ky = s = S <5 for all n.

JoU —di, I, +dsh)dx Q1+ ds —dy,) [qlndx ~ 12
Combining with (4.3) yields

.y () dsN
dg min <K, < —— forall n. 4.14)
xeQ B(x) |€2]

We claim that lim «, =dgs m1n EE %) - Assume on the contrary that this is false. Then there

n—+00
exists a subsequence {dln,} of {d 1,,} such that

dsN
dsmin 7Y Z 9 lim x, < BV (4.15)
xeQ Bx) I—>+o0 |€2]
Set w; = dln[ in,. Then w; satisfies
d, / J(x = y)wi(y) —wi(x)]dy + [ﬁ (1 —wy) — } wr, X €. (4.16)

Q

Note that 0 < w; < 1 by the second inequality of (3.11). Let

B(x)k
gi(x) = i "=y () —di, | J@—y)dy.
Q
We derive from (4.16) that
> 4Bk,
) + /g2 )+ L0 q, T — ywi)dy
wy(x) = , (4.17)
2/3(x)Knl
ds

+ _
which implies that w; — (1 — dg—é’) in C(R2) as [ — +00. On the other hand,
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di, N N
w;dx = In,dxfdlnl— d;l——>0 as [ — 4o00.
o Knl o an d mlnﬂ—

As a result, we have (1 — dsy(x)) =0 for all x € Q implying that ¢ < dgmin re) ) . This con-

B (x) o Bx)
tradicts (4.15). Hence, lim &, = ds min gg*; Recalling (4.3) yields
n——+o00
min v () <S,(x)< < — min v () as n— 400,
xe B(x) ds  xe@ B(x)
which implies that S, — min /};(g in C(Q) as n — +o00. As a result, k = |S2|m1n /’;g;
eQ
If £k =0, then 22—3 min ﬂg; = IQI for all x € Q, contradicting the assumption that §2+ is

nonempty. Hence, k > 0
Now we aim to prove (i). Since fQ I, dx < N, passing to a subsequence if necessary, we have
I, — pn weakly as n — 400 in the sense of

/1,,(x)§(x)dx—> /g‘(x)u(dx) for all ¢(x) € C(), (4.18)
Q

Q

where 1 is a Radon measure. Using the same argument in the proof of [48, Theorem 4.5], we
can prove that the support of u is contained in S. Now, assuming «(2) =0 and letting ¢ =1 in
(4.18) yield that

lim /Indxzfu(dx)zu(ﬁ)zO,

n——+0o

Q Q

which is a contradiction due to hm fQ I, dx =k > 0. Hence, ,u(Q) > (. Since B(x)S,(x) —

n——+00
¥ (x) = B(x)Omin —y (x) uniformly on Q as n — 400 and B(x)bin — y(x) <Oforx e Q\ {xo},
there exists n, > 0 large enough such that 8(x)S,(x) —y(x) <0 forx € 2\ {xo} and all n > n,.
We derive from the first equation of (3.1) that

ds Jo J(x = Y)Sp(y) — Su(x)]dy
B(x)Sn(x) =y (x)

In(x) =

which implies that 7, (x) — 0 locally uniformly on Q\ {xo} as n — +o00. Note that

g—>0n—>-+o0 e—>0n—4o00

Bg (xg) Q Q\ B, (x0) (4.19)
=N — |Q|9min-

lim lim I,(x)dx =N — lim /Sn(x)dx— lim lim / I, (x)dx
n—-+00

Given ¢ € C(Q), for any small & > 0, it is obvious to see that
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/ 1 ()E () dx = / L (LG dx + f 1)L () dx

Q Q\B:(x0) Be (x0)
o v (4.20)

_ f L OC (O dx + £ (xe) f 1) dx,
Q\ B (x0) B (x0)

where B (xg) is a ball centered at xo with radius ¢ and x, € B.(xg). Taking n — +o0o first and
& — 0 second in equality (4.20) and combining (4.19), we derive

f 1()E ) dx = (N = [Qin)E (0) a5 1 — +00.
Q
Thus, I,(x) — (N — |2]60min)d (x9) weakly as n — 400 in the sense of (4.18).

Finally, we focus on the proof of (ii). By the same discussion as in the proof of (i), we have
I,,(x) — O uniformly on 2\ K as n — +o00. In view of the first equation of (3.4), we have

/J(x = U (y) — I(x))dy
Q .21

L BOL [@ (ﬁ B y(x)) B (d_s B 1) Jo Indx —1,,] o
ds Ldi, \I22| Bx) dj, 12|
Obviously, g— = Opin forall x € K. Set
d N d I.d
anz_S(__emin) <_S_l> fQ . x-
dp, \ 12| dr, [€2]

In view of (3.2) and (4.3), we obtain «;,, > 0 for all n. Since fQ J(x —y)I,(y)dy > 0 for all
x € 2, by (4.21), we have

ds
,3( ) J(x —y)dy+oa, — I,(x) <0 forall x € K,

which implies that

<d—5/ ! /J(x— )dydx—l——/l(x)dx
Ikl BW)
K Q

ds

< 4
= minp() | IK]
xeR

(4.22)

As a result, {o,} is a bounded sequence and then {&,} owns a convergent subsequence, still
denoted by itself.
Since I,(x) — 0 uniformly on Q\ K as n — +00, we have fQ\l% Jx —y),(y)dy - 0

uniformly on Q as n — +00. Then there exists some constant M, > 0 such that
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/ J(x =) (y)dy <M, forall n. (4.23)
\K Lo@)

For all x € K, rewrite (4.21) as

/ TG = ) Un(y) — () dy + / TG = () dy
K Q\K
(4.24)
poon, | ds
s | B

Q\K

Jx—y)dy+a,—1, | =0.
There exists x;' € K such that [,,(x)) = maI? I, (x). By (4.24), we have
xe

By | ds

~ BOD ()
ds B(x;)

/ J(x}—y)dy +ay i / J(xy =1 (y)dy <0.
Q\k Q\K

Hence, combining (4.22) with (4.23), there exists some constant M* > 0 such that I, (x) < M*.
That is, || 1, ||L k) < M*. Then there exists a subsequence of {/,}, still denoted by itself, and a

nonnegative function I such that I, — I weakly in L2(K) as n — +o0. It is well-known that

/J(x—y)ln(y)dy—>/.](x —y)f(y)dy uniformly on 2 as n — +o00.

K K

Thus,
/J(x—y)ln(y)dy—>/1(x —y)f(y)dy uniformly on € as n — 4o0.
Q K

Set

G,(x)= —/J(x —y)dy + @an.
ds

Q

By virtue of (4.21), we have

~G(x) = \JG2) + 422 [0 1 (x = ) In(3) dy

1}1 (’()
/S(X)
— 2_

, xeK.

We can see that I, (x) — i(x) uniformly on K as n — +o0. In addition, i(x) satisfies
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d .
[J(x—y)(l(y)—l(x))dwwu) a—— | Jx—y)dy—I(x)|=0, (425)
d B(x)

K Q\K

where « is the limit of «, as n — +o00. If there exists some xp € K such that 0 = I (x2) =
m1n I(x) then we derive from (4.25) that fK J(xp— y)I(y) dy =0. Thus, I(x) =0forallx € K,

contradlctmg I e Idx =k > 0.Hence, [ (x) > 0forall x € K. The uniqueness of the positive so-
lution of (4.25) can be obtained by the Implicit Function Theorem as in the proof of Theorem 2.1.
Now denote the nonnegatlve solution of (4.25) by Iy. By Lemma 3.10, there exists a maximal
value o, > 0 such that I .(x) =0 for all x € K. The positivity of I gives o > 4. And (4.22)

gives o < o™ := #ﬁm + % By using the same arguments as in the proof of Lemma 3.11, we

xXeQ
derive that I, is strictly increasing and continuous on « € (&, @*). In view of (4.25), it is easy
to get

. v N
I+>minl,«(x) > — in K.
* —xeK“()—|K|

Thus, [ la, dx <k and [ Io= dx > k. Then there exists a unique & such that [¢ I, dx = k. As
a result, the limit of / is independent of any chosen subsequence. The proof is completed. O

Next, we are devoted to the case dg — 0 and d; — 0. To this end, we first state the following
lemma from Wu and Zou [47].

Lemma 4.2. Assume that Q" is nonempty and d is a positive constant. Then the following equa-
tion

N 1-dp [ . BT — G
@ﬁ—y—T/I dx dgr =0, xeQ (4.26)

has a unique nonnegative solution.

Proof of Theorem 2.8. Since Q7 is nonempty, Lemma 3.7 implies that Ry > 1 for all small d;.
Then by Theorem 2.1, the endemic steady state (S, /) exists for small dj.

(1) By (3.2), there exist two sequences {d;, } and { } with dj, — O and 3 ’" —dasn — 400
such that fQ I, dx — k € [0, N]. In the following, we prove that

/I,,dx—>/1*dx as n — 400,
Q

where I* is the unique nonnegative solution of (4.26). Since I,, is continuous on Q, there exists

some x,, € Q such that I, (x,) = max I, (x). We derive from the first equation of (3.4) that
xeR
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N dl,, ,B(xn) dI,,,B(xn)
@:B(xn) -y () — (1 - d_S,l> 1] J I, dx — T

In(x,) = 0. 4.27)

. d . d
Since # — d asn — +00, some ng € N exists such that % < ﬁ <d+1forall n > ng. Then,
n

by (4.27), we have

dj B(xn)
1 n) = S,, n n) — 1- - Ind
) = G B P =) ( dsn> E A
=ia\a )

which implies that |1, ]|z Q) < % (% + 1) for all n > ng. Thus, there is some subsequence

of {I,}, still denoted by itself, converges weakly to some nonnegative function in L?(2) as
n — +o0. In view of the first equation of (3.4), we have

—Gy(x) — /G2(x) — 4ay (x) Hy (x)

I,(x) = 20,0 , (4.28)
in which
d
an(x>=—#, Hn<x)=d1,l/J(x—y>1n<y)dy,
Sn &
o B N Bx)
Glx) = dl,,Q/J(x y)dy+|Q|ﬂ(X) y () ( )|sz| 1) dx.

Letting n — 400 in (4.28) yields that

L HB@) —y (o) — (1 —d) 28\ " e
n_}r_{loo n(x) = 4B uniformly on €2.
Furthermore,
. 1(N kNt
k= lim Indx=/— ————( —d)— ) dx.
n—-+00 2] B 12|
Q

In view of Lemma 4.2, we have k = fQ I*dx. Setting k = fQ I* dx in the previous arguments
yields

lim I, = =T*

n——+00

Np—y—(—dyh [orrdx\"
ap
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By the second equation of (3.4), we have

N (-4 N . . -
Sp > — — I"dx —dI” uniformly on Q2 as n — 4o0.
1€2] 12|
(ii) Note that
N N
min 2 < < forall 0<d; <ds.  (4.29)
QB ~ds | [ —diD +dsTdx IS
By the same arguments as in the proof of Theorem 2.6, we can obtain = 5 mln ggx; and § —
mm £E ; uniformly on Q as dg — 0 and d’ — 0. Then, [o I dx — k withk = N |Q| mm /);8

If k = 0, then % > mln ,Bg; = IQI for all x € Q, contradicting the assumption that S2+ is

nonempty. Hence, k > O By the same proof of Theorem 2.6 (i), we obtain (a).
Next we prove (b). Followmg the same proof of Theorem 2.6 (i), we have I (x) — O uniformly
onSZ\Kast—>Oand —>O Set

| N -
, I=— and I =dsl.
K

KZdSS+d[I, S:

x|t

Then,

A d
ds / J(x—y)I(y)dy:dS—S / J(x —y)I(y)dy — O uniformly on Q
K

Q\K Q\k

asds — 0 and — 0. Then there exist two positive constants d, and M, such that

A d
ds / J(x — Iy dy <M, forall 0<ds, d—’ <d,. (4.30)
s
Q\K 1(Q)
By (3.11), we have [ satisfies

Kb -V kB .
——I|(I=0in Q. 4.31)

‘s

/J(x —y)[l(y)—I(X)]dy+[

Q

Clearly, % = Oin for all x € K. Since fQ J(x — y)f(y) dy > 0 for all x € 2, we derive from
(4.31) that

K
—dS/J(x—y)dy—i—ﬂ(x) s e "ﬁ( )I(x)<0 forall x € K,
5 ds
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which implies that

O<d£5—9mm<d5/ 1 /1( — 1 K/i( '
<-—=<— | — x—=y)dydx + —— x)dx
j—; | IK ff(x)Q IKIdsK
) (4.32)
1 N d
<d,— + forall 0 < dg, — < d,.
mlgﬂ()f) |K|€2] ds
xXe

J< —Omin . . .. .
Thus, [IST has a convergent subsequence still denoted by itself, and denote the limit of it by

ds
v. For all x € K, rewrite (4.31) as

dsfux—y)[i(y)—i(xndy+ds / J(x =) I(y)dy

K Q\K
4.33)
K
£ _g . R
+ —dS/J(x—y)dyjtﬁdsdim—ﬁl =0
a1 dS

, d
Q\K 5

There exists x, € K such that / (xy) = mal)(( i (x). We derive from (4.33) that
xe

~ £ —emin A
w — | —ds f J(xx —y)dy + ﬁ(x*)dST I(xs)
s ds

Q\K

— dg / (e — iy dy <0,

Q\K

§0, combining (4.29) vyith (4.30) and (4.32) gives that some constant M* > 0 exists such that
I(xy) < M*. Thatis, || I|| (k) < M* for all 0 < ds, j—; < d,. Thus,

dS/J(x—y)f(y)dy:dg / J(x—y)f(y)dy—}—ds/J(x—y)f(y)dy—)O uniformly on Q

Q Q\K K
as dg — 0 and %—)O.Set

K
- emin

g0 = —dS/ (= y)dy + poy B
Q

dg
We derive from (4.33) that
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800 + /82 () +4 L0 ds [ J(x — )i () dy

K,B X

’

which implies that I(x)— 7~ uniformly on K as ds — 0 and Zl—; — 0. Then, I = L}‘—SIA — v uni-

formly on K as dg — 0 and Z_; — 0. Therefore, fK vdx =N — |Q|6pin. Thatis, v = %.
Now we have v is uniquely determined by this. As a result, the limit of / is independent of any
chosen subsequence.

The proofs of (iii) and (iv) are inspired by Castellano and Salako [9].

(iii) Set

. S ~ I
k=dsS+djl, S=— and I =—.
K K

We first claim that

90:= liminf / (1 —d,i) dx > 0. (4.34)

max{d1, Z—f }%OQ

a8

In

Otherwise, there exist two sequences {dl,,} and { } with d;, — 0 and Z% —0asn— +o0

such that
lim (1 —d, in) dx =0.

n—-+00

Q
Combining with dj, I, < 1 yields that

. Kn . N
lim — = lim = +400. 4.35)

n—00 dSn n=>+00 fQ (1 - dlnin) dx + Z% fQ dlnin dx

Recalling S, = H’Z‘T’f (1 —dj, in) and (4.3), we have

d - d
ﬁmipy(x) < (1 —dj 1, ) < ﬁmaxy(x)
Kn xeQ ,B(x) Kn xe

which implies dj, in — 1 uniformly on Q as n — +o0o due to (4.35). Note that S,, satisfies

d ~
di, = / I = IS = S @) dy + (=S, +7) (di, ) =0 in 2,

n
Q

from which we get

di, z fQ J(x = )8y (y)dy +y (0)dy, I @
S [0 TG = y)dy + By, I (x)

Sn(x) =
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Therefore, S, — umformly on Q as n — +oo and then

n——+o00

N > lim Sndxzfgdx as n — 400,

contradicting the assumption that N < [, %dx. Thus, (4.34) holds.
Note that

. K . N N
lim sup T lim sup — — < o
max{dl,j—f}%() ) max{dI,Z—f}HO fQ (1 - d11> dx +ds fQ Idx

Then there exist constants 0 < dgp < 1 and C4 > 0 such that < C, forall 0 < dy, d—s < dyp.
Hence,

ds d
i g =G forall xe Q and 0 <d, d‘j < d, (4.36)

which implies that / — 0 uniformly on € as d; — 0 and Z—f — 0.
Next we prove (2.4). Claim that ¢ :=  liminf  ||d; I 1<) > 0. Assume on the contrary
max{dy, ﬁ —0
that it is false. Then there exist two sequences {d[,,,} and { } with dj,, — 0 and S"’ —0as
m — +o0 such that dj,, I, — 0 as m — +o0. Observe that
y(x) d Km

min <8, <S8, +tmyp —Zm (4.37)
reo fx) — " dsm " ds, T

Up to a subsequence, we have - d — ¥ as m — 400 for some ¥, € |:m1n L C*] Note that

d Im m satisfies (4.16). By the same arguments as in the proof of Theorem 2.6, we can prove that

+ -
dy I, — (1 — 072’—/3) as m — +o00. Combining with d;, I,, — 0 as m — 400, we conclude

m

+
that (1 - W) = 0; that is, 9> < min gg’” This together with (4.37) yields
yx) = Y (x)
S,y — min uniformly on € and Iy dx — N — || min as m — +0o0.
xeQ ,3 x) xeQ ,3( )
Q
In view of (4.36), we have I,, — 0 uniformly on Q as m — +o0. Therefore, \gl = m1p ﬂg;,

which contradicts the assumption that Q% is nonempty. As a re§ult, the claim ¢ > O holds,
which implies that there exists a constant C* > 0 such that ||d; ]| ) > C* for all 0 < dj,
Z—f < dp. Thus,

Kk ds >C*d5mi v ()

Il Lo (@) = il Lo —||d11||Loo Q) > C*—
@ @ = D= dsd; = df xea &)
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for all 0 < dj, Z—S < dp. This together with (4.36) gives (2.4).

In fact, we obtain from the above arguments that up to a subsequence < i~ v e |:m1n C*i|,
xeQ

- +
and up to a further subsequence, d;I — (l — ﬁy—ﬁ) uniformly on Q as d; — 0 and — 0.In

+
addition, (1 - l;’—ﬁ> > 0 due to ¥ > 0. This gives ¥ > m1n ng; Note that up to a
L (2)
subsequence,
K = y\" . = ds
S=—0-dDHh—-v|1-|1—— uniformly on @ as df — 0 and — — 0. (4.38)
dg 98 dy

+ )
If ¥ > max ﬁgx;’ that is, (1 - #) =1- l;/—ﬁ on 2, then we get that up to a subsequence

S — £ as d1 — 0 and ds — 0. Since / — 0 uniformly on Qasd; — 0 and dS — 0, we have

/3
N — o5 dx =0, contradlctmg the assumption N < [, 5 dx. Hence, & < max ;);Ex; holds. In

view of [ S+ Idx = N, we obtain

+
N:fﬁ[p(l—%) ]dx:/min{ﬂ,%}dx. (4.39)
Q

; 4 i ; ; ; r(x) r(x)
Observe that fQ min {19, 3} dx 1is strictly decreasing with respect to ¥ € <m1n B mag( ﬁ(x)>

Then ¥ is uniquely determined by the equation N = fQ min {19, %} dx, which implies that the

limit of S in (4.38) is independent of any chosen subsequence. In the end, by virtue of (4.39) and

mm ZE i < < max ZE i,we conclude that N < 9.

(1v) Since N > fQ g dx,by Lemma 3.7, there exists 0 < dy < 1 such that Ry > 1 and d_l, > %

for every 0 < dj < dp. For every 0 < dy < dp, with [] = %, we derive from Lemma 3.13 that
(3.12) admits a unique positive solution 0 < u; < d_l,' Note that w; =[; (1 — djuy) satisfies

1
I / Jx = wr(y) —wr)ldy + (v — pwpu; =0 in Q. (4.40)

There exist x1, x» € € such that wr(xy) = min wy(x) and wy(x2) = maxwy(x). By (4.40),
eQ eQ

y(x1) — B(xpDwr(x1) <0and y(x2) — ﬁ(xz)wl(xz) > 0. Then we haVe

(x)

min < wy <max rx) forall 0 <d; <dy (4.41)

xeQ B(x) xe@ B(x)
and
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1 1
dImmM— mi M<1—dlu1§—rnaxy(x)—d maxy(x)

o B 1 xes B I veo ) T iee B

forall 0 <d; < dp,

from which we get dju; — 1 uniformly on Q as d; — 0. Multiplying (4.40) by d; yields

d
ﬁ / J(x = wi(y) —wr(x)ldy + (v — pwp)diuy =0 in Q, (4.42)
Q

and (4.42) gives that

611_,1 Jo J(x = y)wi(y)dy 4+ y (x)djus(x)

wy(x) =
: Czl_,lfsz J(x —y)dy+ B(x)drus(x)

Recalling (4.41) and dju; — 1 as d;j — 0, we conclude that w; — % uniformly on Qasd; — 0
and

N—/wuix—)N—/%dx>O as df — 0.
Q Q

Hence, there exists 0 < d; < dp such that N — fQ wy dx > 0 for every 0 < dj < d;. Define

_N—wi1dx

ds = forevery 0 <d; <d;.
S.1 l1fQu1dx very U <dj <da

Then, ds ;1 > 0 forevery 0 < d; < d; and

dsg _N—Jowrdx _ (N — [qw;dx)
d[ - lIdemIdx - fgdluldx

— 0 as d;j — 0.

Now define

diup

Sy = dI;.=|N-— d 7
I wy an I /wI X deILt]dx

Q

forevery 0 <d; <d.

It is easily verified that (S7, I7) is an endemic s_teady state of (1.1) with ds = ds ;. In addition,
recalling dju; — 1 and w; — % uniformly on € as d; — 0 gives

1 -
S;— r and I; — ———/de uniformly on © as dy — 0.
p 1 1) B
Q
The proof is completed. O

Now, we are in a position to investigate the asymptotic profile of the endemic steady state for
large diffusion rates.
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Proof of Theorem 2.10. In view of Lemma 3.7 and Theorem 2.1, there exists a unique endemic
steady state (S, I). We first give the proof of (i). Choose sequences {ds,} and {d;,} such that
ds, — 400 and d;, — 400 as n — 4-o00. Denote (S, I,) the corresponding positive solution of
(3.1). Up to a subsequence if needed, one of the following three statements must hold:

-5 0

(Al) dS)l
(A2) i — +o0;

(A3) Z% — C with C being a positive constant.

n

Since 1, is continuous, there exists some x, € 2 such that 1, (xn) = max I, (x). By the first
xeQ
equation of (3.4), we have

I (xp) <

/I dx.
d IQI 12|

If case (A2) or (A3) holds, then |1, || 1=@) < M with M being some positive constant. Recall
1Sz 1l o) < max V( ) . Then by the same arguments as in the proof of [51, Theorem 4.1], the

proof of (i) can be obtalned.
If case (A1) holds, without loss of generality, we assume dg, > dj, for all n. Set

~ S ~
ky =ds, Sp +di, I, Snz—n and Inz—".

Kn Kn

The second inequality of (3.11) gives I, >0 uniformly on  due to dj, — +o00. Recalling
1801l Loy = mm m (3.10) and (3.7) yields

y(x) Kn N N

AW T ds T (k) sl xR

Since || S, [l L () is bounded, there exists a subsequence of {S,} still denoted by {S,}, such that
S, — §* weakly in L2(2) as n — +oo for some nonnegative function S*. By the first equation
of (3.1), we have

/ J(x =S (y) = Sa(x)]dy + %[—ﬁ(X)Sn(X) +y (@)1 (x) =0. (4.43)
S_Z n

This gives that

Jo J(x = )Su(y)dy + j—s’:l[—ﬂ(X)Sn(x) + ¥ ()1, (x)
Jo J(x —y)dy

Sn(x) =

)

implying that S, — $* in C(Q) as n — +o00. And letting n — 400 in (4.43) leads to

337



Y.-X. Feng, W.-T. Li, S. Ruan et al. Journal of Differential Equations 335 (2022) 294-346

/ J(x = YIS*(y) — $*(x)]dy =0.

Q

Then S* is a constant.
On the other hand, up to a subsequence if needed, one of the following three statements must
hold:

B1) iyl Inll (@) — 0;
(B2) knlllnllLoe) — ooy
(B3) kpllinllLe (@) — C with C being a positive constant.

Note that — Iy satisfies
1Nl oo ()
I, I, - I,
ay, [ 16—y | 2 D dy+["”’3<1—d1,11n>—y} N
’ nllLe@)  IHnllLe() ds, I Inll oo ()
and [';Lﬁ(l —dj, in) — y] ii" < C for some positive constant C. Then the same
Sn [l Loo (2 Loo(Q)

I

- — C, in C(Q) as n — +oo
a1l Loo ()

arguments as in the proof of [51, Theorem 4.1] give that

o =1, we have C, = 1. If

for some nonnegative constant C,. Observing that || —
(e ”LOO(Q) L®(R)

case (B2) holds, then

. I,
/Indx=K,,||In||Loo(Q)/%dx—>+oo as n — +o0o,

Z |1l Lo ()

which is a contradiction. If case (B1) or (B3) holds, then

Inan”in”Loo(Q) —)Cl as n — +o0,

11l Lo (@)

where Cj is a nonnegative constant. The remaining proof is the same as in the proof of [51,
Theorem 4.1]. So we omit it.

Now we are devoted to the proof of (ii). Recalling (4.3) gives that there exist a sequence
{d;,} with dj, — 400 as n — 400 and some nonnegative function S$* such that S, (x) — S*(x)
weakly in L(Q) as n — +o0. Since dj, — +00 as n — 400, we can assume that dj, > 1 for
all n. In view of the second equation of (3.4), we have

1,(x) ds | N _(y_dn) ! /Id S, (x)
X)=—F| "= — - — X — X
" dr, | 19| ds |Q|S2 " "

N 1 f N
<—=—+— | Iydx < —(1+ds),
Q) " 9]
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implying that || 1, || Lo (@) < |Nﬁ|(1 + dy) for all n. Recalling (4.3) and using a similar argument
as in the proof of [51, Theorem 4.1], up to a subsequence, we know that I, — I* as n — 400,
where I* is a nonnegative constant. Note that

/J(x —y)sn(y>dy—>ff<x—y)S*(y)dy as n — 400,
Q Q

By the first equation of (3.1), we obtain

5.0 < 82 TG = NSOy +y () 1)
T s fo T (x = y)dy 4 B(x) [ (x)

’

which implies that S, (x) — S*(x) in C (Q) as n — +00. The same argument as in the proof of
[51, Theorem 4.1] gives that S*(x) > 0 and I* > 0. Obviously, (S*(x), I*) satisfies (2.5).

There exists a sequence {ds, } with ds, — 0 as n — 400 such that the corresponding solution
(S, I¥) of (2.5) satisfies one of the following three cases:

(D1) dli—>0asn—>+oo;

*
n

(D2) dli: — 400 as n — +0o0;

(D3) d]i: — C* with C* being some positive constant as n — —+00.
If (D1) holds, dividing both sides of the first equation of (2.5) by I;* and letting n — +o00
yield that (S;;, I¥) — (S*, I*) in C() as n — 400, where (8*, I*) satisfies the conclusion (i)

of Theorem 2.3. If (D2) holds, the same discussion in the proof of [51, Theorem 4.1] yields
Sy, L) — (%, O) in C() as n — +oo0. Integrating the first equation of (2.5) gives

/ (—B)S;(x) + ¥ (x)) dx =0.

Q

Letting n — 400 yields

/ (-%ﬂ(ﬂ + )/(X)> dx =0,

Q
which is a contradiction. For the case (D3), noting that

o B fo I = N8Iy + v ()
Bx) + %fg J(x —y)dy

we have (S), [\) — (§*, I*) in C(Q) as n — +o0, where (8*, I*) satisfies the conclusion (ii)

of Theorem 2.3. The proof of (ii) is completed.
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Finally we prove (iii). Since fQ I dx < N, there exists some sequence {ds, } with ds, — 400
as n — o0 such that the corresponding endemic steady state (S,,, I,,) satisfies fQ I, dx — k for
some constant £k > 0 as n — +00.

Set

I,

- S -
kn =ds, Sp +di 1, Snz—" and [, = —.
Kn Kn

By the second inequality of (3.11), up to a subsequence, we derive that there exist some constant
k>0and a nonnegative function I, such that fQ Ldx — k and I, > I, weakly in L2($2) as

n— +oo.If k > 0, (3.10) gives that

Kn N
oo = — - — 0 as n — 4o0.
50 Jo|(1=diD) +ds,1,] dx
Note that
/J(x —WIL,(y)dy — / J(x —y).(y)dy in C(Q) as n — +oo. (4.44)
Q

We derive from the first equation of (3.11) that

dp Jo J(x — ) I (y)dy

Iy(x) = —o . ,
i fod =) dy = [0 = dr]) =y (o)

which implies that I, — I, in C(Q) as n — +oo0. In addition, 0 < I, < dl satisfies

d / J(x = W(y) — L(x)1dy — y (x) Ix(x) = 0. (4.45)
Q

There exists x; € Q such that I, (x;) = max I.(x). Then, I.(x;) < 0 due to (4.45). Hence,
xeQ

I, (x)=0forall x € Q, contradicting k> 0. As aresult, k =0. (3.8) and (3.10) give that

N— [o1.d N—k
S _ Jo nd* as n — +o0. (4.46)
ds,  [q(1—dl,)dx 1$2

Observe that N — k = hm fQ Spdx > |Q| min ;Exg > 0. Set

)= P 4 / J(x — y)dy.

Q

We obtain from the first equation of (3.11) that
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gn(x) + \/g,l(x) + M Jo I =0, () dy

2dlKnﬁ(X) ’
ds,

L(x) =

which combined with (4.44) 1mphes that I, — I, in C(2) as n — +o0. Then, I, = 0 due to
k = 0. Now we have dl =, X - = 0 in C() as n — +o00. In view of the second equation of

3.4), S, —> ]\"le in C(Q) as n — +oo.
We claim that £ > 0. Set

Ap(x) = —ﬂ(x) (x)—< ——) Fx) In(x)dx—ﬂﬁ(X)ln(x).
[€2| s,/ 182 J ds,

Since I, satisfies the first equation of (3.4), the positivity of I, implies that O is the principal
eigenvalue of the following eigenvalue problem

di / J(x = Ve (y) = n(0)]dy + An(X)@n(x) = —A@a(x) in L. (4.47)
Q

It is well-known that if A, is the principal eigenvalue of (4.47), then A,, = A, where A" is defined
by

S dj’ Jo o J(x = (@) —ex)2dydx — [o Ap(x)@*(x)dx
e (peL;(()Q) Jo 92 (x)dx
¢

Thus, A;; = 0. If k = 0, combining with 7~ — 0 in C () as n — +oo and letting n — 400 in

the equality A, = 0 yield A,(d;) =0. ThlS contradlcts Ap(dr) <0dueto Ry > 1.
I

Set w, = —=2—. Then w,, satisfies
AR
Kkn P ~ .
dr | J(x—y)[wa(y) —wp(x)] dy + 7 dily) —y |w, =0 in Q. (4.48)
Q n
We claim that
N —
/J(x— )dy—W,B(x)+y(x)>O for all x € 2. (4.49)
Q

If there exists x, €  such that

N —k
d / I = y)dy = LS A0 +y () =0,
Q

then (4.48) gives
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N —k "
dI/J(x*—y)wn(y)derﬂ(x*) [——+K—

Q 12 ds, 1 - d]In(x*))] wy (x4) =0. (4.50)

Note that [|w, ||~ (q) = 1. There exist a subsequence of {w,}, still denoted by itself, and a non-
negative function w, such that w, — w, weakly in L%(Q) as n —> +o0. Combining (4.46) and
I, — 0as n — +o00, we conclude from (4.50) that fQ J (x4« — y)ws(y) dy = 0. By the same argu-
ments as in the proof of Theorem 2.3, we get w.(y) = 0 almost everywhere in €2, contradicting
the fact that ||wy|| L (q) = 1. Hence, (4.49) holds. We derive from (4.48) that

di [q J(x = y)wa(y)dy

wy(x) = < s
di Jo (& = y)dy = “FE (1 —d; 1, () + y (x)

which gives that w, — w, in C (§_2) as n — +o00. In addition, w, satisfies

N —k
dj / J(x — Y [w(y) — wx(x)]dy + [Wﬁ(x) - J/(X):| wy(x) =0. (4.51)
Q

On the other hand, up to a subsequence if needed, one of the following three statements must
hold:

ED &yl L) = 0;
(E2) knlldnllLoo(@) — 4005
(E3) «nlllnllLoo(@) — C2 with C2 being a positive constant.

If case (E1) holds, then

- I _
Ly = k|l Iy | Lo (@) ———— — 0 in C(Q) as n — +o0,
111l Lo ()

contradicting k > 0. If case (E2) holds, then

- I,
/I,,dx :K,,||In||Loo(Q)/~7ndx—> +00 as n — +00,
J z 111 Loo ()

which is a contradiction. If case (E3) holds, then

~ 1, _
Iy = kn || Iy || Lo (@) ————— — Cowy in C(Q) as n — +o0.
111l Loo ()

By (4.51), I'* := Cow, satisfies
N
dI/](x — W) — I (x)]dy + —/3 -y — i I*dx | I*=0. (4.52)

€2 €2
Q Q
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Finally we prove the uniqueness of the positive solution of (2.6). Suppose that /1 and I are
two positive solutions of (2.6). Since J is symmetric, we have

f/J(x—y)(ll(y)—11(X))12(x)dydx=//f(x—y)(lz(y)—Iz(x))ll(X)dydx~
Q Q Q Q

Then a simple computation yields that

f[](x)dx—/lz(x)dx @Il(x)lz(x)dsz

1€2]
Q Q Q
which implies that
/Il(x) dx = / L(x)dx. (4.53)
Q Q

The positivity of I yields that O is the principal eigenvalue of the following eigenvalue problem

N
dI/J(X C VWG — P dy + ¥ é . %/ndx S
Q Q

Let ¥ be an eigenfunction corresponding to the principal eigenvalue of the above eigenvalue
problem. Then, we have

Y(x)=ch(x)=c2hh(x), x €,

in which ¢; (i = 1, 2) are some constants. Following (4.53), one can get that

Jo¥@)dx [ ¥ (x)dx
= CZ = = .
Jolix)dx  [o I(x)dx

which implies that 11 (x) = I>(x) for all x € Q. As a consequence, the positive solution of (2.6)
is unique. The proof is completed. O

5. Discussion

Taking nonlocal dispersal and heterogeneity into account, in this paper we proposed a nonlocal
(convolution) dispersal SIS epidemic model. On the basis of the existence and uniqueness of the
endemic steady state, we focused on the impact of small and large diffusion rates of susceptible
or infectious individuals on the disease transmission. In the following, we give some biological
implications of our analytical results and provide some strategies for disease control.
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Theorem 2.3 tells us that limiting the movements of susceptible individuals cannot help
to eliminate the infectious disease modeled by (1.1) unless the total population satisfies N <
Jo gg; dx. Theorem 2.6 presents a particular phenomenon that the infectious individuals con-
centrate on the site

S= {x* cQ: v (%) = min r ) }
B(xx)  xeQ B(x)

by limiting the movement of infectious individuals. Theorem 2.8 indicates that limiting the move-
ment of susceptible individuals sufficiently smaller than that of infectious individuals can help
to eliminate the infectious disease modeled by (1.1) if N < fQ % dx. As a result, when the
total population N is large, limiting the movement of susceptible or infectious individuals does
not work effectively, which reveals that the infectious disease outbreak in an area with relatively
small total population size is easier to be controlled, and looking for other strategies to control the
disease is crucial when N is large. But if no other measures are taken effect, limiting the move-
ment of infectious individuals can prevent the infectious disease from spreading throughout the
whole region. Theorem 2.10 demonstrates that enlarging infinitely the movement of susceptible
individuals makes the density of susceptible individuals positive and spatially homogeneous, and
the density of infectious individuals positive and spatially heterogeneous. Enlarging infinitely the
movement of infectious individuals yields analogous conclusions. So, large diffusion rate of sus-
ceptible or infectious individuals is inadvisable. In practice, when an infectious disease such as
COVID-19 breaks out in a region, people are required to reduce their activities in order to prevent
spreading the disease to other areas.

It is also interesting to consider the asymptotic profile of the endemic steady state of the SIS
epidemic model taking into account the constant recruitment of the susceptible individuals with
nonlocal dispersal, as the diffusion rate of infectious individuals tends to zero. However, we find
that the analytical process will be rather difficult and complicated. Particularly, different dispersal
kernel functions describing the dispersal strategies for susceptible and infectious individuals are
more realistic and worth consideration. In this case, (1.1) may not be reduced to a single equation
to get the existence of positive stationary solutions by the method of lower and upper solutions.
We look forward to finding a new method to prove the existence of stationary solutions of systems
with nonlocal dispersal and leave this for further study.
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