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Abstract

This paper is concerned with a nonlocal (convolution) dispersal susceptible-infected-susceptible (SIS) 
epidemic model with bilinear incidence and Neumann boundary conditions. First we establish the exis-
tence and uniqueness of stationary solutions by reducing the system to a single equation. Then we study 
the asymptotic profiles of the endemic steady states for large and small diffusion rates to illustrate the per-
sistence or extinction of the infectious disease. The lack of regularity of the endemic steady state makes it 
more difficult to obtain the limit function of the sequence of endemic steady states. We also observe the 
concentration phenomenon which occurs when the diffusion rate of the infected individuals tends to zero. 
Our analytical results demonstrate that limiting the movement of susceptible individuals is not effective in 
eliminating the infectious disease unless the total population size is relatively small.
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1. Introduction

Since the pioneer work of Kermack and McKendrick [24], various diffusive epidemic models 
have been proposed to describe the spatial spread of infectious diseases, earlier studies include 
Bailey [3], Bartlett [4], Busenberg and Travis [7], de Monttoni et al. [17], Kendall [22], Mollison 
[30], Noble [32], and so on. We refer to the monograph of Murray [31] and surveys by Fitzgibbon 
and Langlais [19], Ruan [38], Ruan and Wu [39] and the references cited therein. In order to 
understand the effects of movement of infected individuals and heterogeneity of the environment 
on the spatial spread of infectious diseases, Capasso [8] and Webb [45] proposed susceptible-
infectious (SI) epidemic models with diffusion and spatial heterogeneity and investigated the 
dynamical properties of these SI epidemic models with diffusion and spatial heterogeneity. To 
include the loss of immunity, Kuperman and Wio [26], Beardmore and Beardmore [6] and Huang 
et al. [20] constructed susceptible-infectious-susceptible (SIS) epidemic models with diffusion 
and studied the dynamics of these models such as the existence of traveling waves.

In most of the above mentioned models, the coefficients are constants. To incorporate spatial 
heterogeneity, Allen et al. [1] proposed a frequency-dependent SIS reaction-diffusion model with 
space dependent coefficients and investigated the impact of spatial heterogeneity of environment 
and movements of individuals on the persistence and extinction of infectious diseases. Since 
then, the model proposed in [1] has attracted much attention. For example, Peng and Liu [35]
studied global stability of the steady states, Peng [34] and Peng and Yi [36] gave the asymptotic 
profiles of endemic steady states. Moreover, Cui et al. [12] investigated the impacts of diffusion 
and advection on asymptotic profiles of endemic steady states and concluded that advection can 
help to speed up the elimination of infectious diseases. Cui and Lou [14] considered the effects 
of diffusion and advection rates on the stability of the disease-free steady state. Cui et al. [13]
and Kuto et al. [27] considered the concentration behavior of endemic steady states, see also Cui 
[11], Zhang and Cui [52], Tong and Lei [44], Sun and Cui [43], Zhang and Cui [53] and so on.

For bilinear incidence, Deng and Wu [15,16] considered an SIS diffusive epidemic model and 
studied the existence and global attractivity of the steady states in term of the basic reproduction 
number. For the same model, Wu and Zou [47] further investigated the asymptotic profiles of 
the endemic steady states for small and large diffusion rates; Wen et al. [46] and Castellano and 
Salako [9] improved some results of [47] when the diffusion rates go to zero. See Li et al. [28]
and Lei et al. [29] for related studies.

Now it is well-understood that nonlocal convolution operators can better capture long-range 
dispersal of species including humans (Andreu-Vaillo et al. [2] and Fife [18]). Nonlocal epidemic 
models have been extensively studied since the classical work of Kendall [22,23], in which he 
generalized the Kermack-McKendrick model to a space-dependent integro-differential equation 
and used the integral term βS(x, t) 

∫∞
−∞ K(x − y)I (y, t)dy to describe how infectious individu-

als I (y, t) at location y disperse to infect susceptible individuals S(x, t) at location x. See also 
the studies of Busenberg and Travis [7], de Monttoni et al. [17], and Noble [32]. For further 
results on nonlocal epidemic models, we refer to the monograph of Rass and Radcliffe [37] and 
a survey by Ruan [38].

Recently, Yang, Li and Ruan [51] considered a nonlocal dispersal SIS epidemic model with 
Neumann boundary conditions in � in which the Laplacian operator is replaced by a nonlocal 
convolution operator. They showed the existence, uniqueness and stability of steady states and 
obtained the asymptotic profiles of endemic steady states for large diffusion rates. For the same 
model under the Dirichlet boundary condition with � = Rn, Yang and Li [50] established the 
existence, uniqueness and global attractivity of the disease-free and endemic steady states. For 
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other nonlocal dispersal epidemic models, we refer to Kuniya and Wang [25], Xu et al. [49] and 
references cited therein.

Motivated by Deng and Wu [15], Wu and Zou [47], and Yang et al. [51], in this paper we aim to 
investigate the dynamics and asymptotic profiles of the following nonlocal (convolution) disper-
sal susceptible-infected-susceptible (SIS) epidemic model with bilinear incidence and Neumann 
boundary conditions

⎧⎪⎨
⎪⎩

∂S
∂t

= dS

∫
�

J (x − y)[S(y, t) − S(x, t)]dy − β(x)SI + γ (x)I, x ∈ �, t > 0,
∂I
∂t

= dI

∫
�

J (x − y)[I (y, t) − I (x, t)]dy + β(x)SI − γ (x)I, x ∈ �, t > 0,

S(x,0) = S0(x), I (x,0) = I0(x), x ∈ �,

(1.1)

where � ⊂Rn is a bounded domain; S(x, t) and I (x, t) represent the density of susceptible and 
infectious individuals at location x ∈ � and time t > 0, respectively; positive constants dS and 
dI are diffusion coefficients for susceptible and infectious individuals, respectively; β(x) and 
γ (x) are positive continuous functions on � which denote the transmission rate of susceptible 
individuals and the recovery rate of infectious individuals at x ∈ �, respectively. The convolution 
integrals describe the nonlocal dispersal of individuals. More specifically, 

∫
�

J (x − y)S(y, t)dy

and 
∫
�

J (x − y)I (y, t)dy represent the rates at which susceptible and infectious individuals are 
arriving at position x from other places, while 

∫
�

J (x − y)S(x, t)dy and 
∫
�

J (x − y)I (x, t)dy

are the rates at which susceptible and infectious individuals are leaving location x for other 
locations, respectively. Since integrals are taken over the domain �, we assume that diffusion 
takes places only in �. Individuals may not enter or leave the domain �. This is analogous to the 
homogeneous Neumann boundary condition in the literature, we also call it Neumann boundary 
condition, meaning that all the involved integrals are taken over the domain � (see the definition 
in Andreu-Vaillo et al. [2]). Throughout the whole paper, we assume that the dispersal kernel 
function J satisfies

(J) J (·) ∈ C(Rn), J (0) > 0, J (x) = J (−x) ≥ 0,
∫
Rn J (x) dx = 1, 

∫
�

J (x −y) dy ≤ 1 for any 
x ∈ � and 

∫
�

J (x − y) dy �≡ 1,

and the initial data satisfy

(H1) S0(x) and I0(x) are nonnegative continuous functions in �̄, and the total number of initial 
infectious individuals is positive; that is, 

∫
�

I0(x) dx > 0;

(H2)
∫
�
(S0(x) + I0(x)) dx ≡ N > 0.

Compared with the frequency-dependent SIS epidemic model considered in Yang, Li and 
Ruan [51], the bilinear incidence in (1.1) induces new challenges and phenomena. To find the 
steady states of system (1.1), the method of upper and lower solutions cannot be applied directly 
to get the endemic steady state. We transform its stationary system to a single equation and 
then combine the method of upper and lower solutions with some auxiliary problems to obtain 
the existence of endemic steady states. It should be pointed out that we also need to overcome 
the difficulty caused by the fact that the nonlocal eigenvalue problems do not admit principal 
eigenvalues in general (see [5,40–42]). All these difficulties bring challenges for us. Finally, we 
consider the asymptotic profiles of endemic steady states corresponding to system (1.1), which 
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imply that the infectious disease is persistent or goes to extinction when the diffusion rates are 
large or small. The lack of regularity of the endemic steady state makes the limit function of 
the sequence of endemic steady states hard to get. In particular we would like to point out that 
it is difficult and complex to obtain the asymptotic profile of the endemic steady state of (1.1)
as dI → 0. We also observe the concentration phenomenon in which the infected individuals 
concentrate on the sites

S =
{
x∗ ∈ �̄ : γ (x∗)

β(x∗)
= min

x∈�̄

γ (x)

β(x)

}
,

and this special phenomenon takes place because of the bilinear incidence. Moreover, as dS goes 
to zero and dI is fixed, we find that the infectious disease may vanish through taking the limit of 
the endemic steady state of (1.1).

This paper is organized as follows. In Section 2, we list the main results of this paper includ-
ing not only the existence, uniqueness and global stability of the disease-free steady state and 
endemic steady state of system (1.1) but also the asymptotic profile of the endemic steady state 
of system (1.1) for small and large diffusion rates. In Section 3, we give some preliminary re-
sults involving the properties of principal eigenvalues corresponding to the nonlocal eigenvalue 
problems. In Section 4, we present proofs of the main results stated in Section 2. In Section 5, 
we give some biological implications of our analytical results and provide some strategies for 
disease control.

2. Main results

In this section, we state the main results of this paper. Define

M[u](x) := dI

∫
�

J (x − y)(u(y) − u(x)) dy − γ (x)u(x).

It is well-known that M can generate a uniformly continuous semigroup, denoted by {T (t)}t≥0. 
Denote

L[φ](x) := N

|�|β(x)

∞∫
0

T (t)φ dt.

We define the basic reproduction number of system (1.1) as follows

R0 = r(L),

where r(L) represents the spectral radius of L.
First we present the existence and stability of the disease-free steady state and endemic steady 

state of (1.1).

Theorem 2.1. Suppose R0 > 1. Then system (1.1) admits a unique endemic steady state 
(S(x), I (x)) ∈ C(�̄) × C(�̄).
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Theorem 2.2. Suppose dS = dI . Then the following statements hold:

(i) If R0 ≤ 1, then all positive solutions of (1.1) converge to the disease-free steady state (
N
|�| ,0

)
as t → +∞ in C(�̄) × C(�̄);

(ii) If R0 > 1, then all positive solutions of (1.1) converge to the endemic steady state (S, I ) as 
t → +∞ in C(�̄) × C(�̄).

Next we state results on the asymptotic profile of the endemic steady state for large and small 
diffusion rates.

Theorem 2.3. Suppose that R0 > 1. For any fixed dI > 0, there exists a sequence {dSn} with 
dSn → 0 as n → +∞ such that the corresponding endemic steady state of (1.1) satisfies 
(Sn, In) → (S∗, I ∗) in C(�̄) × C(�̄), where S∗ is a positive function and I ∗ is a nonnegative 
constant. Furthermore, either

(i) (S∗, I ∗) =
(

γ (x)
β(x)

, N
|�| − 1

|�|
∫
�

γ (x)
β(x)

dx
)

,

or

(ii) I ∗ = 0 and S∗ is the solution of the following problem

{∫
�

J (x − y)(S(y) − S(x)) dy + ψ(−βS + γ ) = 0, x ∈ �,∫
�

S dx = N,

where ψ is some positive continuous function on �̄ satisfying

dI

∫
�

J (x − y)(ψ(y) − ψ(x)) dy + ψ(βS∗ − γ ) = 0, x ∈ �. (2.1)

Theorem 2.4. Suppose R0 > 1 and dI is fixed. If dS → 0, then the corresponding endemic steady 
state of (1.1) satisfies

(S, I ) →
(

γ (x)

β(x)
,

N

|�| − 1

|�|
∫
�

γ (x)

β(x)
dx

)
in C(�̄) × C(�̄),

provided one of the following assumptions holds:

(i) β is a positive constant with N − 1
β

∫
�

γ (x) dx > 0;

(ii) N − ∫
�

γ (x)
β(x)

dx > 1
2dI

∫
�

∫
�

J (x − y) 
(√

1
β(y)

−
√

1
β(x)

)2
dy dx;

(iii) N
|�| >

γ(x)
β(x)

on �̄.

Theorem 2.5. Assume N >
∫
�

γ (x)
β(x)

dx. There exists an endemic steady state (S, I ) of (1.1) for 
0 < dS � 1 satisfying
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(S, I ) →
(

γ (x)

β(x)
,

N

|�| − 1

|�|
∫
�

γ (x)

β(x)
dx

)
as dS → 0

uniformly on �̄.

Taking the same definition as Wu and Zou [47], we denote the high-risk region and low-risk 
region respectively by

�+ =
{
x ∈ � : N

|�|β(x) − γ (x) > 0

}

and

�− =
{
x ∈ � : N

|�|β(x) − γ (x) < 0

}
.

The domain � is called a high-risk domain if 
∫
�
( N
|�|β(x) − γ (x)) dx > 0 and a low-risk domain 

if 
∫
�
( N
|�|β(x) − γ (x)) dx < 0. Inspired by Wu and Zou [47,48], we focus on the asymptotic 

profile of the endemic steady state as dI → 0. As stated in the following theorem, we observe the 
concentration phenomenon which shows that restricting the movement of infected individuals 
only cannot eradicate the infectious disease. Set

θ(x) = γ (x)

β(x)
, θmin = min

x∈�̄

γ (x)

β(x)
,

and

S = {x∗ ∈ �̄ : θ(x∗) = θmin

}
.

Clearly, S is nonempty. We say I → μ weakly in the sense of

∫
�

I (x)ζ(x) dx →
∫
�

ζ(x)μ(dx) for all ζ(·) ∈ C(�̄), (2.2)

where μ is a Radon measure with nonempty support contained in S .

Theorem 2.6. Suppose that �+ is nonempty and dS is fixed. If dI → 0, then the corresponding 
endemic steady state (S, I ) of (1.1) satisfies S → θmin uniformly on �̄ and 

∫
�

I dx → k > 0 with 
k = N − |�|θmin. Moreover, the following conclusions hold:

(i) If S = {x0}, then I → 0 locally uniformly on �̄ \ {x0} and I → (N − |�|θmin)δ(x0) weakly 
in the sense of (2.2), where δ(x0) is the Dirac measure centered at x0;

(ii) If S = K for some closed subset K ⊂ �̄ with positive measure, then we have I → 0 uni-
formly on � \ K and I → Ǐ uniformly on K , where Ǐ is the unique positive solution of
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⎧⎪⎨
⎪⎩
∫
K̊

J (x − y)Ǐ (y) dy − ∫
�

J (x − y)dy Ǐ (x) + β(x)
dS

(α − Ǐ )Ǐ = 0, x ∈ K̊,

Ǐ = 0, x ∈ � \ K̊,∫
K̊

Ǐ dx = N − |�|θmin,

(2.3)

in which the positive constant α is uniquely determined by the third equation of (2.3) and K̊
is the interior of K .

Remark 2.7.

(i) If S = {x1, · · · , xj } for some j ≥ 2, then following a similar argument as in the proof of The-

orem 2.6 we have S → θmin uniformly on �̄ and I → 0 locally uniformly on �̄\
(

j⋃
i=1

{xi}
)

, 

and I (x) →
j∑

i=1
ciδ(xi) weakly in the sense of (2.2) as dI → 0, where constants ci ≥ 0

satisfy 
j∑

i=1
ci = N − |�|θmin.

(ii) If S =
(

j1⋃
i=1

Ki

)⋃( j2⋃
i=0

{xi}
)

with Ki being some closed subset of �̄ and having a positive 

measure for some j1 ≥ 1 and j2 ≥ 0, then S → θmin uniformly on �̄ as dI → 0 and we 
guess that I converges to some nonnegative function uniformly on �̄. On the assumption 

that I → Ǐ uniformly on �̄ as dI → 0, we readily obtain that Ǐ = 0 on �̄ \
j1⋃

i=1
Ki and 

either Ǐ = 0 or Ǐ > 0 on Ki . Assuming that Ǐ > 0 on 
j∗

1⋃
i=1

Ki for some 1 ≤ j∗
1 ≤ j1, then by 

Theorem 2.6, in such Ki , Ǐ satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

j∗
1∑

i=1

∫
K̊i

J (x − y)Ǐ (y) dy − ∫
�

J (x − y)dy Ǐ (x) + β(x)
dS

(α − Ǐ )Ǐ = 0, x ∈
j∗

1⋃
i=1

K̊i,

Ǐ = 0, x ∈ � \
j∗

1⋃
i=1

K̊i,

and 
j∗

1∑
i=1

∫
K̊i

Ǐ dx = N − |�|θmin.

As a consequence, in this case, it is vital to show that I → Ǐ uniformly on �̄ as dI → 0.

Theorem 2.8. Suppose that �+ is nonempty.

(i) If dI → 0 and dI

dS
→ d ∈ (0, +∞), then the corresponding endemic steady state (S, I ) of 

(1.1) converges to (S∗, I ∗) in C(�̄) × C(�̄), where I ∗ is the unique nonnegative solution 
of
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⎛
⎝ N

|�|β − γ − (1 − d)β

|�|
∫
�

I ∗ dx

⎞
⎠

+
− dβI ∗ = 0, x ∈ �̄

and

S∗ = N

|�| − (1 − d)

|�|
∫
�

I ∗ dx − dI ∗.

(ii) If dS → 0 and dI

dS
→ 0, then the corresponding endemic steady state (S, I ) of (1.1) satisfies 

S → θmin uniformly on �̄ and 
∫
�

I dx → k > 0 with k = N − |�|θmin. Moreover, the 
following conclusions hold:
(a) If S = {x0}, then I → 0 locally uniformly on �̄ \ {x0} and I → (N − |�|θmin)δ(x0)

weakly in the sense of (2.2), where δ(x0) is the Dirac measure centered at x0.
(b) If S = K for some closed subset K ⊂ �̄ with positive measure, then we have I → 0

uniformly on � \ K and I → ν uniformly on K with ν = N−|�|θmin|K| .

(iii) If N <
∫
�

γ (x)
β(x)

dx, then the corresponding endemic steady state (S, I ) of (1.1) converges 

to (S∗, 0) in C(�̄) × C(�̄) as dI → 0 and dS

dI
→ 0, where S∗ = min

{
ϑ∗, γ

β

}
and ϑ∗ is the 

unique positive number satisfying

max

{
N

|�| ,min
x∈�̄

γ (x)

β(x)

}
< ϑ∗ < max

x∈�̄

γ (x)

β(x)

and

N = ϑ∗
∫
�

[
1 −

(
1 − γ

ϑ∗β

)+]
dx =

∫
�

min

{
ϑ∗,

γ

β

}
dx.

Moreover, there exist constants 0 < d0 � 1, C1 and C2 such that

C1
dS

dI

≤ ‖I‖L∞(�) ≤ C2
dS

dI

for all 0 < dI ,
dS

dI

< d0. (2.4)

(iv) If N >
∫
�

γ (x)
β(x)

dx, then there is 0 < d0 � 1 such that for every 0 < dI < d0 and dS,I > 0, 
(1.1) has an endemic steady state (S, I ) with dS = dS,I and

(S, I ) →
⎛
⎝γ

β
,

N

|�| − 1

|�|
∫
�

γ

β
dx

⎞
⎠

uniformly on �̄ as dI → 0 and lim
dI →0

dS,I

dI
= 0.

For Theorem 2.8 (ii), we give the following remark.
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Remark 2.9.

(i) If S = {x1, · · · , xj } for some j ≥ 2, then a similar discussion as in the proof of Theorem 2.8

(ii) yields that S → θmin uniformly on �̄ and I → 0 locally uniformly on �̄ \
(

j⋃
i=1

{xi}
)

, 

and I (x) →
j∑

i=1
ciδ(xi) weakly in the sense of (2.2) as dS → 0 and dI

dS
→ 0, where constants 

ci ≥ 0 satisfy 
j∑

i=1
ci = N − |�|θmin.

(ii) If S =
(

j1⋃
i=1

Ki

)⋃( j2⋃
i=0

{xi}
)

with Ki being some closed subset of �̄ and having a positive 

measure for some j1 ≥ 1 and j2 ≥ 0, then S → θmin uniformly on �̄ as dS → 0 and dI

dS
→ 0. 

However, due to the effect of nonlocal dispersal and bilinear incidence, it is difficult to get 
the limit of I in this case and we leave it for the further study.

Theorem 2.10. The following statements hold:

(i) Suppose that � is a high-risk domain. If dS → +∞ and dI → +∞, then the endemic steady 
state of (1.1) satisfies

(S, I ) →
(∫

�
γ (x)dx∫

�
β(x)dx

,
N

|�| −
∫
�

γ (x)dx∫
�

β(x)dx

)
in C(�̄) × C(�̄).

(ii) Suppose that � is a high-risk domain. If dS is fixed, then there exists a sequence {dIn}
with dIn → +∞ as n → +∞ such that the corresponding endemic steady state (Sn, In) →
(S∗, I ∗) in C(�̄) ×C(�̄) as n → +∞, where I ∗ is a positive constant and S∗ is the positive 
solution of

{
dS

∫
�

J (x − y)(S̃(y) − S̃(x)) dy + (−βS̃ + γ )I ∗ = 0, x ∈ �,∫
�

S̃ dx = N − I ∗|�|. (2.5)

Moreover, there exists a sequence {dSn} with dSn → 0 as n → +∞ such that the correspond-
ing solution (S∗

n, I ∗
n ) of (2.5) satisfies (S∗

n, I ∗
n ) → (S̃∗, Ĩ ∗) in C(�̄) × C(�̄) as n → +∞, 

where S̃∗ is a positive function and Ĩ ∗ is a nonnegative constant satisfying either

(a) (S̃∗, Ĩ ∗) =
(

γ (x)
β(x)

, N
|�| − 1

|�|
∫
�

γ (x)
β(x)

dx
)

,
or
(b) Ĩ ∗ = 0 and S̃∗ is the solution of the following problem

{∫
�

J (x − y)(S(y) − S(x)) dy + ψ(−βS + γ ) = 0, x ∈ �,∫
�

S dx = N,

where ψ is some positive continuous function on �̄ satisfying
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dI

∫
�

J (x − y)(ψ(y) − ψ(x)) dy + ψ(βS̃∗ − γ ) = 0, x ∈ �.

(iii) Assume that R0 > 1. If dI is fixed and dS → +∞, then the endemic steady state of (1.1)
(S, I ) → (S∗, I ∗) in C(�̄) × C(�̄), where I ∗ is the unique positive solution of

dI

∫
�

J (x − y)(I (y) − I (x)) dy + I

⎛
⎝Nβ

|�| − γ − β

|�|
∫
�

I dx

⎞
⎠= 0 (2.6)

and

S∗ = N − ∫
�

I ∗ dx

|�| .

3. Preliminaries

By the standard semigroup theory of linear bounded operators (Pazy [33]), it follows that 
there exists a unique nonnegative solution of system (1.1) (see Kao, Lou and Shen [21]). Set 
X = C(�̄).

Proposition 3.1. Suppose that (S0(·), I0(·)) ∈ X×X. Then system (1.1) admits a unique solution 
(S(x, t), I (x, t)) for all x ∈ � and t ∈ (0, Tmax) with Tmax > 0 satisfying either Tmax = +∞ or 

lim
t→Tmax

− ‖(S(·, t), I (·, t))‖X×X = +∞.

We claim that Tmax = +∞. In fact, by the maximum principle, we have S(x, t) > 0, 

I (x, t) > 0 in �̄ × [0, Tmax). Choose M1 = max

{
max
x∈�̄

S0(x),max
x∈�̄

γ (x)
β(x)

}
. We can see that 0 and 

M1 are lower and upper solutions of the first equation of (1.1), respectively. It follows from the 
comparison principle that S(x, t) ≤ M1 in �̄ × [0, Tmax). Note that

{
∂u(x,t)

∂t
= dI

∫
�

J (x − y)[u(y, t) − u(x, t)]dy + (β(x)M1 − γ (x))u(x, t), x ∈ �, t > 0,

u(x,0) = I0(x), x ∈ �

has a unique solution u(x, t) for all x ∈ �̄ and t > 0. The comparison principle yields that 
I (x, t) ≤ u(x, t) for all x ∈ �̄ and t > 0.

By the assumption (H2), adding up the two equations of (1.1) and integrating on � yields that 
the total population size is constant; that is,

∫
�

(S(x, t) + I (x, t)) dx = N for all t ≥ 0.

We give the existence and uniqueness of the disease-free steady state of system (1.1). That is, we 
consider the following stationary problem
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{
dS

∫
�

J (x − y)(S(y) − S(x)) dy − β(x)SI + γ (x)I = 0, x ∈ �,

dI

∫
�

J (x − y)(I (y) − I (x)) dy + β(x)SI − γ (x)I = 0, x ∈ �.
(3.1)

The stationary solutions of (3.1) also satisfy

∫
�

(S(x) + I (x)) dx = N. (3.2)

Lemma 3.2. System (1.1) admits a unique disease-free steady state ( N
|�| , 0).

Proof. Letting I be identically equal to zero in (3.1) yields

∫
�

J (x − y)(S(y) − S(x)) dy = 0 in �.

It follows from Andreu-Vaillo et al. [2, Proposition 3.3] that S(x) is a constant. Combining ∫
�

S(x) dx = N , we know that S(x) = N
|�| on �̄. The proof is completed. �

Consider the eigenvalue problem

A[u](x) := dI

∫
�

J (x − y)(u(y) − u(x)) dy + N

|�|β(x)u(x) − γ (x)u(x) = −λu(x). (3.3)

Define

λp(dI ) := inf
ϕ∈L2(�)

ϕ �=0

dI

2

∫
�

∫
�

J (x − y)(ϕ(y) − ϕ(x))2 dy dx + ∫
�
(γ (x) − N

|�|β(x))ϕ2(x) dx∫
�

ϕ2(x) dx
.

We list some results including the relation between R0 and λp(dI ). The proof of the following 
several lemmas can be found in Yang, Li and Ruan [51].

Lemma 3.3. Set

m(x) = −dI

∫
�

J (x − y)dy + N

|�|β(x) − γ (x).

Suppose there is some x0 ∈ Int(�) satisfying that m(x0) = max
�̄

m(x), and the partial derivatives 

of m(x) up to order n − 1 at x0 are zero. Then λp(dI ) is the unique principal eigenvalue of (3.3)
and its corresponding eigenfunction ϕ is positive and continuous on �̄.

Remark 3.4. λp(dI ) is continuous on J , β(x) and γ (x), see the proof in Coville [10].

In the following, we always denote α(x) := N β(x) − γ (x).
|�|
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Lemma 3.5. Suppose that λp(dI ) is the principal eigenvalue of (3.3). Then the following state-
ments hold:

(i) If α(x) is constant, then λp(dI ) = −α(x) for every dI > 0;
(ii) If α(x) is nonconstant, then λp(dI ) is strictly monotone increasing in dI . In addition, 

λp(dI ) → min
x∈�̄

(−α(x)) as dI → 0 and λp(dI ) → − 1
|�|
∫
�

α(x) dx as dI → +∞.

Lemma 3.6. λp(dI ) has the same sign as 1 − R0.

Lemma 3.7. The following statements hold:

(i) Suppose α(x) is constant. Then α(x) has the same sign as R0 − 1;
(ii) Suppose α(x) is nonconstant.

(a) If α(x0) > 0 for some x0 ∈ � and 
∫
�

α(x)dx < 0, then there exists some d∗ > 0 such 
that R0 > 1 for all 0 < dI < d∗ and R0 < 1 for dI > d∗;

(b) If 
∫
�

α(x)dx ≥ 0, then R0 > 1 for any dI > 0. Further, if α(x) < 0 for all x ∈ �, then 
R0 < 1 for all dI > 0.

In order to establish the existence and uniqueness of the endemic steady state of (1.1), we 
show the following preliminary results.

Lemma 3.8. The pair (S, I ) is a nonnegative solution of (3.1) if and only if it is a nonnegative 
solution of the following problem:

⎧⎨
⎩

dI

∫
�

J (x − y)(I (y) − I (x)) dy + I
[

N
|�|β − γ −

(
1 − dI

dS

)
β

|�|
∫
�

I dx − dI β
dS

I
]

= 0, x ∈ �,

S = N
|�| −

(
1 − dI

dS

)
1

|�|
∫
�

I dx − dI

dS
I, x ∈ �.

(3.4)

Proof. It can be easily verified that (S, I ) is a nonnegative solution of (3.1) if and only if it is a 
nonnegative solution of the following problem:

⎧⎪⎨
⎪⎩

dSS + dI I = K, x ∈ �̄,

dI

∫
�

J (x − y)(I (y) − I (x)) dy + I (βS − γ ) = 0, x ∈ �,∫
�
(S(x) + I (x)) dx = N,

(3.5)

where K is some positive constant independent of x ∈ �. So it suffices to show that problems 
(3.4) and (3.5) are equivalent. We first assume that (S, I ) is a nonnegative solution of (3.5). By 
virtue of the first equation of (3.5), we obtain S = K−dI I

dS
. Substituting it into the third equation 

of (3.5) yields that

K = 1

|�|

⎡
⎣dSN − (dS − dI )

∫
�

I dx

⎤
⎦ .

Thus, we have
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S = K − dI I

dS

= N

|�| −
(

1 − dI

dS

)
1

|�|
∫
�

I dx − dI

dS

I.

Substituting this S into the second equation of (3.5) yields the first equation of (3.4).
Now assume that (S, I ) is a nonnegative solution of (3.4). It follows from the second equation 

of (3.4) that

dI

dS

I = N

|�| −
(

1 − dI

dS

)
1

|�|
∫
�

I dx − S.

Substituting this into the first equation of (3.4) yields the second equation of (3.5). Integrating 
both sides of the second equation of (3.4) gives the third equation of (3.5). We derive from the 
second equation of (3.4) that

dS

∫
�

J (x − y)(S(y) − S(x)) dy = −dI

∫
�

J (x − y)(I (y) − I (x)) dy,

which implies that dSS + dI I is a constant. Combining the third equation of (3.5), we know that 
this constant must be positive. The proof is completed. �
Lemma 3.9. If I ∈ C(�̄) is a nonnegative solution of the first equation of (3.4), then we have

(
1 − dI

dS

)
1

|�|
∫
�

I dx + dI

dS

I (x) <
N

|�| for all x ∈ �̄.

Proof. If I ≡ 0, then the conclusion is quickly obtained. If I is not identically zero on �̄, suppose 
on the contrary that the conclusion is false. It follows from the continuity of I that there exists 
x0 ∈ �̄ such that I (x0) = max

x∈�̄

I (x) > 0. In view of the above assumption, there must be

(
1 − dI

dS

)
1

|�|
∫
�

I dx + dI

dS

I (x0) ≥ N

|�| .

We derive from the first equation of (3.4) that

dI

∫
�

J (x0 − y)(I (y) − I (x0)) dy

+ I (x0)

[
N

|�|β(x0) − γ (x0) −
(

1 − dI

dS

)
β(x0)

|�|
∫
�

I (x) dx − dIβ(x0)

dS

I (x0)

]
= 0,

which implies that ∫
J (x0 − y)(I (y) − I (x0)) dy > 0.
�
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This contradicts the fact that ∫
�

J (x0 − y)(I (y) − I (x0)) dy ≤ 0

due to I (x0) = max
x∈�̄

I (x). The proof is completed. �

By virtue of Lemma 3.9, if I ∈ C(�̄) is a nonnegative solution of the first equation of (3.4), 
then S defined by the second equation of (3.4) is positive. In order to obtain the existence of 
positive solutions of (3.4), we introduce a lemma from Yang, Li and Ruan [51] firstly. Consider

{
∂u(x,t)

∂t
= d

∫
�

J (x − y)(u(y, t) − u(x, t)) dy + (r(x) − c(x)u)u, x ∈ �, t > 0,

u(x,0) = u0(x), x ∈ �,
(3.6)

where d is a positive constant and u0(x) is a bounded continuous function.

Lemma 3.10. Assume that r(·), c(·) ∈ C(�̄) and c(x) > 0 on �̄. Then the positive stationary 
solution u∗ of (3.6) is unique if and only if λp(d) < 0, in which

λp(d) = inf
ϕ∈L2(�)

ϕ �=0

d
2

∫
�

∫
�

J (x − y)(ϕ(y) − ϕ(x))2 dy dx − ∫
�

r(x)ϕ2(x) dx∫
�

ϕ2(x) dx
.

Moreover, u∗ is globally asymptotically stable.

Set

f (τ, I ) = N

|�|β − γ −
(

1 − dI

dS

)
β

|�|τ − dIβ

dS

I

and define

F(τ, I ) := dI

∫
�

J (x − y)(I (y) − I (x)) dy + If (τ, I ).

Lemma 3.11. Suppose that R0 > 1 and dS > dI . Then there exists (τ, Iτ ) ∈ R+ × X such that 
F(τ, Iτ ) = 0. In addition, some τ ∗ > 0 exists such that Iτ (x) > 0 for all x ∈ �̄ and τ ∈ [0, τ ∗), 
and Iτ∗ = 0. Furthermore, Iτ is decreasing and continuous on τ in (0, τ ∗).

Proof. Since R0 > 1, we know from Lemma 3.6 that λp(dI ) < 0. Then there exists τ ∗ > 0 such 
that λ̃τ < 0 for all τ ∈ [0, τ ∗), and λ̃τ∗ = 0 in which

λ̃τ = inf
ϕ∈L2(�)

dI

2

∫
�

∫
�

J(x − y)(ϕ(y) − ϕ(x))2 dy dx + ∫
�

[
γ − N

|�|β +
(

1 − dI

dS

)
β

|�|τ
]
ϕ2(x) dx∫

�
ϕ2(x) dx

.

ϕ �=0
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It follows from Lemma 3.10 that F(τ, I ) = 0 admits a unique positive solution Iτ ∈ X for each 
given τ ∈ [0, τ ∗) and F(τ ∗, Iτ∗) = 0 with Iτ∗ = 0. In fact, following the same discussion as Ĩ
below, we obtain either Iτ∗ = 0 or Iτ∗ > 0 for the nonnegative solution of F(τ ∗, Iτ∗) = 0. If 
Iτ∗ > 0, it follows from Lemma 3.10 that λ̃τ∗ < 0, which is a contradiction.

Assume τ1, τ2 ∈ (0, τ ∗) and τ1 < τ2. We derive from dS > dI that F(τ1, Iτ2) > 0, which 
implies that Iτ2 is a lower solution of F(τ1, I ) = 0. Obviously, a sufficiently large number is 
an upper solution. By the method of upper and lower solutions and the uniqueness of a posi-
tive solution of F(τ1, I ) = 0, we have Iτ1 > Iτ2 . Since Iτ is decreasing with respect to τ , we 
have Iτ (x) ≤ Ĩ0(x) ≤ max

x∈�̄

Ĩ0(x) implying that Iτ is uniformly bounded, where Ĩ0(x) satisfies 

F(0, Ĩ0) = 0. Denote

a(x) = −dI

dS

β(x), Hτ (x) = dI

∫
�

J (x − y)Iτ (y) dy,

Gτ (x) = −dI

∫
�

J (x − y)dy + N

|�|β(x) − γ (x) −
(

1 − dI

dS

)
β(x)

|�| τ.

Then, we have

Iτ (x) = −Gτ(x) −√G2
τ (x) − 4a(x)Hτ (x)

2a(x)
.

A simple compactness argument gives that

lim
τ→τ̃

Iτ (x) = Ĩ (x) uniformly on �̄, for any τ̃ ∈ (0, τ ∗),

in which Ĩ is some nonnegative function. In addition, Ĩ satisfies F(τ̃ , Ĩ ) = 0. As a consequence, 
we know either Ĩ ≡ 0 or Ĩ > 0. In fact, if Ĩ is neither strictly positive nor identically vanishing; 
that is, there exists some x0 ∈ �̄ such that Ĩ (x0) = min

x∈�̄
Ĩ (x) = 0, then we derive from F(τ̃ , Ĩ ) = 0

that 
∫
�

J (x0 − y)Ĩ (y) dy = 0. Thus, Ĩ (x) = 0 for all x ∈ �̄, which is a contradiction.
On the other hand, the positivity of Iτ implies that λ̂τ = 0, in which λ̂τ is defined by

λ̂τ := inf
ϕ∈L2(�)

ϕ �=0

{
dI

2

∫
�

∫
�

J (x − y)(ϕ(y) − ϕ(x))2 dy dx + Bτ (ϕ)∫
�

ϕ2(x) dx

}

and

Bτ (ϕ) :=
∫
�

[
γ (x) − N

|�|β(x) +
(

1 − dI

dS

)
β(x)

|�| τ + dI

dS

β(x)Iτ (x)

]
ϕ2(x) dx.

If Ĩ ≡ 0, letting τ → τ̃ yields that λ̃τ̃ = 0, which contradicts the fact that λ̃τ̃ < 0 due to τ̃ ∈
(0, τ ∗). Thus, Ĩ > 0. Note that Ĩ satisfies F(τ̃ , Ĩ ) = 0. The uniqueness of a positive solution 
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of F(τ̃ , u) = 0 gives that Ĩ = Iτ̃ . As a result, Iτ is continuous on τ in (0, τ ∗). The proof is 
completed. �

Now we give two results inspired by Castellano and Salako [9].

Lemma 3.12. Suppose that dI > 0 and dS > 0 are fixed. The following conclusions hold:

(i) Let (S, I ) be a nonnegative solution of (3.1). Then the function

κ = dSS + dI I x ∈ � (3.7)

is a constant function. Furthermore, by letting

S̃ = S

κ
and Ĩ = I

κ
, (3.8)

(κ, S̃, Ĩ ) satisfies

S̃ = 1

dS

(
1 − dI Ĩ

)
, (3.9)

κ

dS

∫
�

[(
1 − dI Ĩ

)
+ dSĨ

]
dx = N (3.10)

and {
dI

∫
�

J (x − y)[Ĩ (y) − Ĩ (x)]dy +
[

κβ
dS

(
1 − dI Ĩ

)
− γ

]
Ĩ = 0, x ∈ �,

0 ≤ Ĩ < 1
dI

, x ∈ �.
(3.11)

(ii) If (κ, S̃, Ĩ ) solves (3.9), (3.10) and (3.11), then (S, I ) = (κS̃, κĨ ) is a nonnegative solution 
of (3.1).

Proof. (i) Note that κ satisfies∫
�

J (x − y)[κ(y) − κ(x)]dy = 0.

It follows from Andreu-Vaillo et al. [2, Proposition 3.3] that κ(x) is a constant. Dividing both 
sides of (3.7) by κ , we obtain (3.9). (3.10) is derived by (3.2). And substituting S = κS̃ = κ

dS
(1 −

dI Ĩ ) in the second equation of (3.1) yields (3.11).
(ii) It readily follows by inspection that (S, I ) = (κS̃, κĨ ) is a nonnegative solution of (3.1)

whenever (κ, S̃, Ĩ ) solves (3.9), (3.10) and (3.11). The proof is completed. �
Let l > 0 be a real number. Consider

dI

∫
J (x − y)[u(y) − u(x)]dy + [lβ(1 − dIu) − γ ]u = 0, x ∈ �. (3.12)
�
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Lemma 3.13. Suppose R0 > 1 and l > N
|�| . Then (3.12) admits a unique positive solution ul

satisfying 0 < ul < 1
dI

. In addition,

lim
l→+∞ul = 1

dI

and lim
l→+∞ l(1 − dIul) = γ

β
(3.13)

uniformly on �̄.

Proof. By virtue of Lemma 3.10, (3.12) admits a unique positive solution if and only if λl < 0, 
in which

λl = inf
ϕ∈L2(�)

ϕ �=0

dI

2

∫
�

∫
�

J (x − y)(ϕ(y) − ϕ(x))2 dy dx − ∫
�
(lβ(x) − γ (x))ϕ2(x) dx∫

�
ϕ2(x) dx

.

Since R0 > 1, we have λp(dI ) < 0. Then, λl < 0 due to l > N
|�| . Therefore, (3.12) admits a 

unique positive solution ul . Set

ml(x) = −dI

∫
�

J (x − y)dy + lβ(x) − γ (x).

Finding a sequence {vn} with

‖vn − ml‖L∞(�) → 0 as n → +∞,

the eigenvalue problem

dI

∫
�

J (x − y)ϕn(y) dy + vn(x)ϕn(x) = −λϕn(x) in �

admits a principal eigenpair (λn
l , ϕn(x)). There exists n1 > 0 large enough such that

λn
l ≤ 1

2
λl − ‖vn − ml‖L∞(�) for all n ≥ n1.

Constructing u(x) = δϕn(x) for some δ > 0 and taking a direct computation, we have

dI

∫
�

J (x − y)(u(y) − u(x)) dy + u

(
lβ − γ − dI lβu

)

= −δλn
l ϕn(x) + δϕn(x)(ml(x) − vn(x)) − dI lβ(x)δ2ϕ2

n(x)

≥ −1

2
λlδϕn(x) − dI lβ(x)δ2ϕ2

n(x)
≥ 0,
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provided δ small enough. Obviously, 1
dI

is an upper solution. Take δ > 0 sufficiently small such 

that u ≤ 1
dI

on �̄. The method of upper and lower solutions and the uniqueness of the positive 

solution of (3.12) give that 0 < δϕn ≤ ul ≤ 1
dI

on �̄ for each n ≥ n1.

We claim that ul(x) �= 1
dI

for all x ∈ �̄. On the contrary, assume that there is x0 ∈ Int(�) such 

that ul (x0) = 1
dI

. Thus, (3.12) yields that

1

dI

γ (x0) = dI

∫
�

J (x0 − y) (ul(y) − ul (x0)) dy ≤ 0,

which is a contradiction. On the other hand, if x0 ∈ ∂�, we can find a point sequence {xn} ⊂
� such that xn → x0 and ul (xn) → ul (x0) as n → +∞. The same arguments can lead to a 
contradiction.

Set

gl(x) = β(x) − γ (x)

l
− dI

∫
�

J (x − y)dy

l
.

We derive from (3.12) that

ul(x) =
gl(x) +

√
g2

l (x) + 4dIβ(x)dI

l

∫
�

J (x − y)ul(y) dy

2dIβ(x)
,

which implies that ul → 1
dI

uniformly on �̄ as l → +∞.
Note that the function wl = l(1 − dIul) satisfies

wl(x) = γ (x)ul(x) − dI

∫
�

J (x − y)[ul(y) − ul(x)]dy

β(x)ul(x)
,

which implies that wl(x) → γ (x)
β(x)

uniformly on �̄ as l → +∞. The proof is completed. �
4. Proof of main results

Proof of Theorem 2.1. In view of Lemmas 3.8 and 3.9, it suffices to prove that there exists a 
unique continuous positive solution of the first equation of (3.4). Since R0 > 1, we know from 
Lemma 3.6 that λp(dI ) < 0. We proceed with the proof by considering the following three cases 
in turn.

Case I. dS = dI . We derive from Lemma 3.10 that the claim is true.
Case II. dS > dI . By Lemma 3.11, there exists (τ, Iτ ) ∈ [0, τ ∗) × X such that F(τ, Iτ ) = 0. 

By virtue of the definition of F , Iτ is a solution of the first equation of (3.4) if τ = ∫
�

Iτ dx. 
Since

0 <

∫
Ĩ0 dx and τ ∗ >

∫
Iτ∗ dx = 0,
� �
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where Ĩ0(x) satisfies F(0, Ĩ0) = 0, it follows from the continuity and monotonicity of Iτ on τ
that there exists a unique τ0 ∈ (0, τ ∗) such that τ0 = ∫

�
Iτ0 dx. Thus, the first equation of (3.4)

admits a unique continuous positive solution.
Case III. dS < dI . We apply the method of upper and lower solutions. Recall that

m(x) = −dI

∫
�

J (x − y)dy + N

|�|β(x) − γ (x).

The continuity of m(x) on �̄ implies that there exists some x0 ∈ �̄ such that m(x0) = max
x∈�̄

m(x). 

Define

mn(x) =

⎧⎪⎨
⎪⎩

m(x0), x ∈ Bx0

( 1
n

)
,

mn,1(x), x ∈ (Bx0

( 2
n

) \ Bx0

( 1
n

))
,

m(x), x ∈ � \ Bx0

( 2
n

)
,

where Bx0

( 1
n

)= {x ∈ � : |x − x0| < 1
n

}
, mn,1(x) satisfies mn,1(x) ≤ m(x0), and mn,1(x) is con-

tinuous in �. Indeed, mn,1(x) exists if only we take n large enough, denoted by n ≥ n0 > 0. It 
follows from Lemma 3.3 that the eigenvalue problem

dI

∫
�

J (x − y)φ(y) dy + mn(x)φ(x) = −λφ(x)

admits a principal eigenpair, denoted by (λn
p(dI ), φn). As a consequence of Remark 3.4, some 

n1 ≥ n0 exists such that

λn
p(dI ) ≤ 1

2
λp(dI ) − ‖mn − m‖L∞(�) for any n ≥ n1.

Normalizing φn by ‖φn‖L∞(�) = 1 and letting I = δφn for some δ > 0, a direct computation 
yields that

dI

∫
�

J (x − y)(I (y) − I (x)) dy + I

⎡
⎣ N

|�|β − γ −
(

1 − dI

dS

)
β

|�|
∫
�

I dx − dIβ

dS

I

⎤
⎦

= δφn(x)[−λn
p(dI ) + (m(x) − mn(x))] − δ2φn(x)

[(
1 − dI

dS

)
β

|�|
∫
�

φn(x) dx + dIβ

dS

φn(x)

]

≥ −1

2
λp(dI )δφn(x) − δ2φn(x)

[(
1 − dI

dS

)
β

|�|
∫
�

φn(x) dx + dIβ

dS

φn(x)

]

≥ 0,

provided δ small enough. Let Ī = N . Then, we have
|�|
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dI

∫
�

J (x − y)(Ī (y) − Ī (x)) dy + Ī

[
N

|�|β − γ −
(

1 − dI

dS

)
β

|�|
∫
�

Ī dx − dIβ

dS

Ī

]

= −γ (x)
N

|�| < 0,

which implies that Ī is an upper solution. Take δ > 0 sufficiently small such that I ≤ Ī on �. 
The method of upper and lower solutions implies that the first equation of (3.4) admits a positive 
solution I ∈ L2(�).

Denote

a(x) = −dI

dS

β(x), H(x) = dI

∫
�

J (x − y)I (y) dy,

G(x) = −dI

∫
�

J (x − y)dy + N

|�|β − γ −
(

1 − dI

dS

)
β

|�|
∫
�

I dx.

By the first equation of (3.4), we have

I (x) = −G(x) −√G2(x) − 4a(x)H(x)

2a(x)
,

which implies that I (x) is continuous on �̄. By virtue of the second equation of (3.4), we obtain 
S(x) is continuous on �̄.

Finally, we prove the uniqueness of the positive solution of (3.4). Define

F̃ (x,u) = dI

∫
�

J (x − y)I (y) dy − dI

∫
�

J (x − y)dy u + f̃ (x, u), u ∈R,

in which

f̃ (x, u) =
⎡
⎣ N

|�|β − γ −
(

1 − dI

dS

)
β

|�|
∫
�

I dx − dIβ

dS

u

⎤
⎦u.

A direct computation gives that

F̃u(x,u) = −dI

∫
�

J (x − y)dy + N

|�|β − γ −
(

1 − dI

dS

)
β

|�|
∫
�

I dx − 2dIβ

dS

u.

Obviously, F̃ (x, I ) = 0 and

F̃u(x, I ) = −dI

∫
J (x − y)

I (y)

I (x)
dy + dIβ

dS

I − 2dIβ

dS

I

�
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= −dI

∫
�

J (x − y)
I (y)

I (x)
dy − dIβ

dS

I

< 0.

Then, the Implicit Function Theorem implies that there exists a unique function u(x) defined on 
a neighborhood of x such that F̃ (x, u(x)) = 0. Note that F̃ (x, I (x)) = 0. By the uniqueness of 
u(x), we have I (x) = u(x) on the above neighborhood of x. The arbitrariness of x implies the 
uniqueness of positive solution of (3.4). The proof is completed. �
Remark 4.1. For the case dS > dI , it is worth mentioning that the method of upper and lower 
solutions is not applicable due to the term 

∫
�

I (x) dx. In fact, the iterative sequence of functions 
constructed by the upper and lower solutions is not monotone in this case.

Proof of Theorem 2.2. Suppose R0 < 1. By the same discussion as in the proof of [51, Theorem 
3.10], we know that S(x, t) + I (x, t) → N

|�| uniformly on �̄ as t → +∞. For any small ε, there 

exists T > 0 such that S(x, t) ≤ N
|�| +ε−I (x, t) for all x ∈ �̄ and t > T . By the second equation 

of (1.1), we have

∂I

∂t
≤ dI

∫
�

J (x −y)(I (y, t)− I (x, t)) dy + I

[(
N

|�| + ε

)
β −γ −βI

]
, x ∈ �, t ∈ (T ,+∞).

It follows from the comparison principle that I (x, t) ≤ Ĩ (x, t) for all x ∈ �̄ and t > T , where Ĩ
is the solution of

⎧⎪⎪⎨
⎪⎪⎩

∂Ĩ
∂t

= dI

∫
�

J (x − y)(Ĩ (y, t) − Ĩ (x, t)) dy

+Ĩ
[(

N
|�| + ε

)
β − γ − βĨ

]
, x ∈ �, t ∈ (T ,+∞),

Ĩ (x, T ) = I (x,T ), x ∈ �.

(4.1)

Since R0 < 1, we have λp(dI ) > 0, which implies that λp(dI , ε) > 0 if ε is small enough, where 
λp(dI , ε) is obtained by replacing N

|�| in λp(dI ) by N
|�| + ε. Thus, Ĩ (x, t) → 0 uniformly for 

x ∈ �̄ as t → +∞, which implies that I (x, t) → 0 uniformly for x ∈ �̄ as t → +∞. As a 
consequence, S(x, t) → N

|�| uniformly for x ∈ �̄ as t → +∞.

If R0 = 1, then λp(dI ) = 0 and λp(dI , ε) < 0. By virtue of Lemma 3.10, Ĩ (x, t) → Ĩ∗(x)

uniformly on �̄ as t → +∞, where Ĩ∗(x) is the positive steady state of (4.1). There exists some 
x0 ∈ �̄ such that Ĩ∗(x0) = max

x∈�̄

Ĩ∗(x). By (4.1), we have Ĩ∗(x0) ≤ N
|�| +ε. Since ε is small enough, 

without loss of generality, we assume ε < 1. Then, Ĩ∗(x) is uniformly bounded with respect to 
small ε. Suppose ε1 < ε2 and let Ĩ ε1∗ (x) and Ĩ ε2∗ (x) be the corresponding positive steady states 
of (4.1). A simple calculation yields that
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dI

∫
�

J (x − y)(Ĩ ε2∗ (y) − Ĩ ε2∗ (x)) dy + Ĩ ε2∗
[(

N

|�| + ε1

)
β − γ − βĨ ε2∗

]

= (ε1 − ε2)βĨ ε2∗
< 0.

It follows from the uniqueness of the positive steady state of (4.1) that Ĩ ε1∗ (x) < Ĩ
ε2∗ (x). As a 

result, Ĩ∗(x) is monotone with respect to ε. One can derive from Lemma 3.10 that Ĩ∗(x) → 0 as 
ε → 0 due to λp(dI ) = 0. Thus, I (x, t) → 0 and S(x, t) → N

|�| uniformly for x ∈ �̄ as t → +∞.
Now we are in a position to consider the case R0 > 1 implying λp(dI ) < 0. Note that there 

exists T > 0 such that

N

|�| − ε − I (x, t) ≤ S(x, t) ≤ N

|�| + ε − I (x, t) for all x ∈ �̄ and t > T .

By the second equation of (1.1), I satisfies

I

[(
N

|�| − ε

)
β − γ − βI

]
≤ ∂I

∂t
− dI

∫
�

J (x − y)(I (y, t) − I (x, t)) dy

≤ I

[(
N

|�| + ε

)
β − γ − βI

]

for all x ∈ �̄ and t > T . The comparison principle yields that Î (x, t) ≤ I (x, t) ≤ Ĩ (x, t) for all 
x ∈ �̄ and t > T , where Ĩ is the solution of (4.1) and Î is the solution of⎧⎪⎪⎨

⎪⎪⎩
∂Î
∂t

= dI

∫
�

J (x − y)(Î (y, t) − Î (x, t)) dy

+Î
[(

N
|�| − ε

)
β − γ − βÎ

]
, x ∈ �, t ∈ (T ,+∞),

Î (x, T ) = I (x,T ), x ∈ �.

(4.2)

Note that λp(dI , ±ε) < 0 with ε > 0 small enough. As a consequence of Lemma 3.10, we have

Î (x, t) → Îε(x) and Ĩ (x, t) → Ĩε(x) uniformly on �̄ as t → +∞,

where Îε(x) and Ĩε(x) are respectively the unique steady states of (4.2) and (4.1). The same 
argument as in the proof of [51, Theorem 3.10] gives that I (x, t) → I1(x) uniformly on �̄ as 
t → +∞, where I1(x) satisfies

dI

∫
�

J (x − y)(I1(y) − I1(x)) dy + I1

(
N

|�|β − γ − βI1

)
= 0 in �.

Thus, S(x, t) → N
|�| −I1(x) uniformly on �̄ as t → +∞. The uniqueness of the positive solution 

of the first equation of (3.4) yields I1(x) = I (x). Hence,

S(x, t) → N − I (x) = S(x) uniformly on �̄ as t → +∞.
|�|
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The proof is completed. �
Proof of Theorem 2.3. In view of R0 > 1, we derive from Theorem 2.1 that there exists a unique 
endemic steady state (S, I ) of (1.1) for any dS > 0 with R0 independent of dS .

Since S is continuous on �̄, there exist x0, y0 ∈ �̄ such that S(x0) = min
x∈�̄

S(x) and S(y0) =
max
x∈�̄

S(x). By the first equation of (3.1), we have −β(x0)S(x0) + γ (x0) ≤ 0 and −β(y0)S(y0) +
γ (y0) ≥ 0. Then, there hold

S(x0) ≥ γ (x0)

β(x0)
≥ min

x∈�̄

γ (x)

β(x)

and

S(y0) ≤ γ (y0)

β(y0)
≤ max

x∈�̄

γ (x)

β(x)
.

Thus, we have

min
x∈�̄

γ (x)

β(x)
≤ S(x) ≤ max

x∈�̄

γ (x)

β(x)
. (4.3)

Note that 
∫
�

I dx ≤ N . Thus, a sequence {dSn} with dSn → 0 as n → +∞ exists such that the 
corresponding endemic steady state (Sn, In) satisfies 

∫
�

In dx → k for some k ≥ 0. We claim 
that

In → k

|�| uniformly on �̄ as n → +∞.

Easily, one can get

Fn ≡
(

N

|�|β − γ

)
dSn + (dI − dSn)

β

|�|
∫
�

In dx → dIβ
k

|�| as n → +∞.

Then for any ε > 0, there exists n1 > 0 such that

dIβ

|�| (k − ε) ≤ Fn ≤ dIβ

|�| (k + ε) for all n > n1.

Note that

dSndI

∫
�

J (x − y)(In(y) − In(x)) dy + In(Fn − dIβIn) = 0, x ∈ �.

Thus, In is a lower solution of

dSndI

∫
J (x − y)(Î (y) − Î (x)) dy + Î

[
dIβ

|�| (k + ε) − dIβÎ

]
= 0, x ∈ �, (4.4)
�
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and an upper solution of

dSndI

∫
�

J (x − y)(Î (y) − Î (x)) dy + Î

[
dIβ

|�| (k − ε) − dIβÎ

]
= 0, x ∈ �. (4.5)

Obviously, k+ε
|�| and k−ε

|�| are the solutions of (4.4) and (4.5), respectively. Then, we have

k − ε

|�| ≤ In ≤ k + ε

|�| for all x ∈ �̄ and n > n1.

The arbitrariness of ε > 0 implies that In → k
|�| uniformly on �̄ as n → +∞.

If k > 0, the first equation of (3.1) gives

Sn = dSn

∫
�

J (x − y)Sn(y) dy + γ In

dSn

∫
�

J (x − y)dy + βIn

, (4.6)

which implies that Sn → γ
β

in C(�̄) as n → +∞. By (3.2), we have

In → k

|�| = N

|�| − 1

|�|
∫
�

γ (x)

β(x)
dx uniformly on �̄ as n → +∞.

Now, we are in a position to consider the case k = 0. Up to a subsequence if needed, one of 
the following three statements must hold:

(a)
‖In‖L∞(�)

dSn
→ 0 as n → +∞;

(b)
‖In‖L∞(�)

dSn
→ +∞ as n → +∞;

(c)
‖In‖L∞(�)

dSn
→ C0 with C0 being a positive constant as n → +∞.

If (a) holds, then 
∫
� In dx

dSn
→ 0 as n → +∞. Let În = In

dSn
. Then, În satisfies

dI

∫
�

J (x − y)(În(y) − În(x)) dy + În

[
N

|�|β − γ + (dI − dSn)
β

|�|
∫
�

In dx

dSn

− dIβÎn

]
= 0,

x ∈ �.

We show that În → Î in C(�̄) as n → +∞, where Î is the unique positive solution of

dI

∫
�

J (x − y)(Î (y) − Î (x)) dy + Î

(
N

|�|β − γ − dIβÎ

)
= 0, x ∈ �. (4.7)

Since R0 > 1, we have λp(dI ) < 0. The existence and uniqueness of the positive solution Î of 
(4.7) are obtained by Lemma 3.10. There exists n0 > 0 large enough such that
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(dI − dSn)
β

|�|
1

dSn

∫
�

In dx > 0 for all n ≥ n0.

Thus, În is an upper solution of (4.7) for each given n ≥ n0. Recall that

m(x) = −dI

∫
�

J (x − y)dy + N

|�|β(x) − γ (x).

Finding a sequence {mn} with

‖mn − m‖L∞(�) → 0 as n → +∞,

the eigenvalue problem

dI

∫
�

J (x − y)ϕn(y) dy + mn(x)ϕn(x) = −λϕn(x) in �

admits a principal eigenpair (λn
p(dI ), ϕn(x)). There exists n1 > 0 large enough such that

λn
p(dI ) ≤ 1

2
λp(dI ) − ‖mn − m‖L∞(�) for all n ≥ n1.

Constructing Î (x) = δϕn(x) for some δ > 0 and taking a direct computation, we have

dI

∫
�

J (x − y)(Î (y) − Î (x)) dy + Î

(
N

|�|β − γ − dIβÎ

)

= −δλn
p(dI )ϕn(x) + δϕn(x)(m(x) − mn(x)) − dIβ(x)δ2ϕ2

n(x)

≥ −1

2
λp(dI )δϕn(x) − dIβ(x)δ2ϕ2

n(x)

≥ 0

provided δ small enough. Take δ > 0 sufficiently small such that Î ≤ În on �̄. Set ñ =
max{n0, n1}. The method of upper and lower solutions and the uniqueness of the positive so-
lution of (4.7) give that δϕn ≤ Î ≤ În on �̄ for each n ≥ ñ. Since

(dI − dSn)
β

|�|
1

dSn

∫
�

In dx → 0 as n → +∞,

for any ε > 0, there exists n∗ > ñ such that

0 < (dI − dSn)
β

|�|
1

dSn

∫
In dx < ε for all n ≥ n∗.
�
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We can see that În is a lower solution of

dI

∫
�

J (x − y)(Ĩ (y) − Ĩ (x)) dy + Ĩ

(
N

|�|β − γ + ε − dIβĨ

)
= 0, x ∈ �. (4.8)

Following the same discussion as in the proof of Theorem 2.2, we get that (4.8) admits a unique 
positive solution Ĩε ≥ În and Ĩε → Î as ε → 0. Combining δϕn ≤ Î ≤ În, we obtain În → Î in 
C(�̄) as n → +∞. But

(dI − dSn)
β

|�|
∫
�

In

dSn

dx → dI

β

|�|
∫
�

Î dx > 0,

a contradiction. Hence, the case 
‖In‖L∞(�)

dSn
→ 0 as n → +∞ is impossible to occur.

Next, we prove that if the case (b) or (c) holds, then In‖In‖L∞(�)
→ Ǐ in C(�̄) as n → +∞ with 

Ǐ being some positive function. Note that the first equation of (3.1) gives that

Sn(x) =
∫
�

J (x − y)Sn(y)dy + γ (x)
In(x)
dSn∫

�
J (x − y)dy + β(x)

In(x)
dSn

.

Substituting this Sn(x) into the second equation of (3.1) and then dividing both sides by 
‖In‖L∞(�) yield that

In

‖In‖L∞(�)

= −Gn(x) +√G2
n(x) + 4a(x)Hn(x)

2a(x)
, (4.9)

where

a(x) = dIβ(x)

∫
�

J (x − y)dy,

Hn(x) = dI

dSn

‖In‖L∞(�)

∫
�

J (x − y)dy

∫
�

J (x − y)
In(y)

‖In‖L∞(�)

dy,

Gn(x) = dSn

‖In‖L∞(�)

⎡
⎢⎣dI

⎛
⎝∫

�

J (x − y)dy

⎞
⎠

2

− β(x)

∫
�

J (x − y)Sn(y) dy

+γ (x)

∫
�

J (x − y)dy

⎤
⎦− dIβ(x)

∫
�

J (x − y)
In(y)

‖In‖L∞(�)

dy.

Since

‖Sn‖L∞(�) ≤ max¯
γ (x)

β(x)
and

∥∥∥∥ In

‖I ‖ ∞

∥∥∥∥ ∞
= 1,
x∈� n L (�) L (�)
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there exist nonnegative functions S∗ and Ǐ such that up to a subsequence,

Sn → S∗ and
In

‖In‖L∞(�)

→ Ǐ weakly in L2(�) as n → +∞.

If the case (b) or (c) holds, by (4.9), we obtain that

In

‖In‖L∞(�)

→ Ǐ in C(�̄) as n → +∞.

Since ‖Ǐ‖L∞(�) = 1, we have Ǐ ≥ 0 but Ǐ �≡ 0. We claim that Ǐ > 0 in �̄. In fact, if case (b) 
holds, it follows from (4.9) that Ǐ satisfies∫

�

J (x − y)dyǏ 2(x) − Ǐ (x)

∫
�

J (x − y)Ǐ (y) dy = 0. (4.10)

There exists some x1 ∈ �̄ such that Ǐ (x1) = max
x∈�̄

Ǐ (x) > 0. By virtue of (4.10), we obtain

∫
�

J (x1 − y)[Ǐ (y) − Ǐ (x1)]dy = 0.

Since J (0) > 0, we have Ǐ (y) = Ǐ (x1) in Bδ(x1) where Bδ(x1) is a ball with radius δ centered at 
x1. Now for any x2 ∈ Bδ

2
(x1),

∫
�

J (x2 − y)[Ǐ (y) − Ǐ (x2)]dy = 0.

Thus, we obtain

Ǐ (y) = Ǐ (x1), ∀y ∈
⋃

x∈B δ
2
(x2)

B 3δ
4
(x).

Repeating the above procedures yields Ǐ (y) = Ǐ (x1) for all y ∈ �̄. Since ‖Ǐ‖L∞(�) = 1, we have 
Ǐ ≡ 1. If case (c) holds, then we derive from (4.9) that Ǐ satisfies

dIβ(x)

∫
�

J (x − y)dyǏ 2(x) − dI

C0

∫
�

J (x − y)dy

∫
�

J (x − y)Ǐ (y) dy

+ Ǐ (x)

⎡
⎢⎣ dI

C0

⎛
⎝∫

�

J (x − y)dy

⎞
⎠

2

− dIβ(x)

∫
�

J (x − y)Ǐ (y) dy

−β(x)

C0

∫
J (x − y)S∗(y) dy + γ (x)

C0

∫
J (x − y)dy

⎤
⎦= 0,
� �
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from which we have 
∫
�

J (x0 − y)Ǐ (y) dy = 0 on the assumption that there exists some x0 ∈ �̄

such that Ǐ (x0) = 0. Hence, the same arguments as above give Ǐ ≡ 0, which is a contradiction. 
Thus, Ǐ > 0 in �̄.

At present, suppose that case (b) holds. By the above arguments, we know in this case,

In

‖In‖L∞(�)

→ 1 in C(�̄) as n → +∞.

By the first equation of (3.1), we have

Sn(x) =
dSn‖In‖L∞(�)

∫
�

J (x − y)Sn(y) dy + γ (x)
In(x)

‖In‖L∞(�)

dSn‖In‖L∞(�)

∫
�

J (x − y)dy + β(x)
In(x)

‖In‖L∞(�)

.

Letting n → +∞ in the above equality gives Sn(x) → γ (x)
β(x)

in C(�̄) as n → +∞. By (3.2), we 
have

In → N

|�| − 1

|�|
∫
�

γ (x)

β(x)
dx uniformly on �̄ as n → +∞.

If N − ∫
�

γ (x)
β(x)

dx �= 0, a contradiction occurs due to In → 0 uniformly on �̄ as n → +∞. If 

N − ∫
�

γ (x)
β(x)

dx = 0, we have

(Sn(x), In(x)) →
⎛
⎝γ (x)

β(x)
,

N

|�| − 1

|�|
∫
�

γ (x)

β(x)
dx

⎞
⎠ ,

which is the conclusion (i) of Theorem 2.3.
Finally, we assume the case (c) holds. As above, we know that Sn(x) → S∗(x) weakly in 

L2(�) as n → +∞. Dividing both sides of the first equation of (3.1) by dSn gives

∫
�

J (x − y)(Sn(y) − Sn(x)) dy − β(x)Sn(x)
In(x)

‖In‖L∞(�)

‖In‖L∞(�)

dSn

+ γ (x)
In(x)

‖In‖L∞(�)

‖In‖L∞(�)

dSn

= 0,

which implies that

Sn(x) =
∫
�

J (x − y)Sn(y) dy + γ (x)
In(x)

‖In‖L∞(�)

‖In‖L∞(�)

dSn∫
�

J (x − y)dy + β(x)
In(x)

‖In‖L∞(�)

‖In‖L∞(�)

dSn

.

Thus, Sn(x) → S∗(x) in C(�̄) as n → +∞. Note that
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In(x)

‖In‖L∞(�)

‖In‖L∞(�)

dSn

→ C0Ǐ in C(�̄) as n → +∞.

Then the conclusion (ii) of the theorem holds with ψ = C0Ǐ . The proof is completed. �
Proof of Theorem 2.4. At first, we assume that (i) holds. Dividing both sides of the first equa-
tion of (3.4) by I and integrating it on � yield that

dI

∫
�

∫
�

J (x − y)

(
I (y)

I (x)
− 1

)
dy dx + Nβ −

∫
�

γ (x)dx − β

∫
�

I (x) dx = 0.

Since J is symmetric, we have

∫
�

∫
�

J (x − y)

(
I (y)

I (x)
− 1

)
dy dx = 1

2

∫
�

∫
�

J (x − y)

(√
I (y)

I (x)
−
√

I (x)

I (y)

)2

dy dx ≥ 0.

Then ∫
�

I (x) dx ≥ N −
∫
�

γ (x)

β
dx. (4.11)

By Theorem 2.3, there exists a sequence {dSn} with dSn → 0 as n → +∞ such that the corre-
sponding endemic steady state satisfies In → I ∗ in C(�̄) as n → +∞, where I ∗ is a nonnegative 
constant. It follows from (4.11) that

I ∗ ≥ N

|�| − 1

|�|
∫
�

γ (x)

β
dx > 0.

As a result, the first conclusion of Theorem 2.3 holds.
Next, as for assumptions (ii) and (iii), suppose on the contrary that the second conclusion of 

Theorem 2.3 holds. Set wn = In

dSn
. By the proof of Theorem 2.3, we derive

In

‖In‖L∞(�)

→ Ǐ and
‖In‖L∞(�)

dSn

→ C0 as n → +∞.

Thus,

wn = In

‖In‖L∞(�)

‖In‖L∞(�)

dSn

→ C0Ǐ := ŵ as n → +∞.

In view of the positivity of C0 and Ǐ , which is stated in the proof of Theorem 2.3, we have ŵ > 0. 
In addition, ŵ satisfies

dI

∫
J (x − y)(ŵ(y) − ŵ(x)) dy + ŵ

⎛
⎝ N

|�|β − γ + dIβ

|�|
∫

ŵ dx − dIβŵ

⎞
⎠= 0. (4.12)
� �
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Dividing both sides of the equation (4.12) by βŵ and integrating it on � give that

−dI

∫
�

∫
�

J (x − y)

β(x)ŵ(x)

(
ŵ(y) − ŵ(x)

)
dy dx =

∫
�

(
N

|�| − γ (x)

β(x)

)
dx.

A direct computation yields that

− dI

∫
�

∫
�

J (x − y)

β(x)ŵ(x)

(
ŵ(y) − ŵ(x)

)
dy dx

= −1

2
dI

∫
�

∫
�

J (x − y)

⎛
⎝
√

ŵ(y)

β(x)ŵ(x)
−
√

ŵ(x)

β(y)ŵ(y)

⎞
⎠

2

dy dx

− dI

∫
�

∫
�

J (x − y)
1√

β(x)β(y)
dy dx + dI

∫
�

∫
�

J (x − y)
1

β(x)
dy dx

= −1

2
dI

∫
�

∫
�

J (x − y)

⎛
⎝
√

ŵ(y)

β(x)ŵ(x)
−
√

ŵ(x)

β(y)ŵ(y)

⎞
⎠

2

dy dx

+ 1

2
dI

∫
�

∫
�

J (x − y)

(√
1

β(y)
−
√

1

β(x)

)2

dy dx

≤ 1

2
dI

∫
�

∫
�

J (x − y)

(√
1

β(y)
−
√

1

β(x)

)2

dy dx,

which contradicts the assumption (ii).

On the other hand, when b = min
�̄

{
N
|�| − γ (x)

β(x)

}
> 0, ŵ is an upper solution of

dI

∫
�

J (x − y)(u(y) − u(x)) dy + βu

⎛
⎝b + dI

|�|
∫
�

udx − dIu

⎞
⎠= 0. (4.13)

Choose a sufficiently small constant ε such that 0 < ε ≤ min

{
min
�̄

ŵ, b
dI

}
. Then ε is a lower 

solution of (4.13). Using the same arguments as in the proof of [46, Theorem A], it can be verified 
that the method of upper and lower solutions implies that (4.13) admits a positive solution u
satisfying ε ≤ u ≤ ŵ on �̄. Set

G(x) = −dI

∫
J (x − y)dy + β(x)

⎛
⎝b + dI

|�|
∫

u(x)dx

⎞
⎠ ,
� �
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H(x) = dI

∫
�

J (x − y)u(y) dy.

Note that

u(x) = −G(x) −√G2(x) + 4dIβ(x)H(x)

−2dIβ(x)
.

We know that u is continuous on �̄. Then there exist x0, x1 ∈ �̄ such that u(x0) = min
�̄

u(x) and 

u(x1) = max
�̄

u(x). By (4.13), we get

b

dI

+ 1

|�|
∫
�

u(x)dx ≤ u(x0) ≤ u(x) for all x ∈ �̄,

b

dI

+ 1

|�|
∫
�

u(x)dx ≥ u(x1) ≥ u(x) for all x ∈ �̄,

which imply that u ≡ b
dI

+ 1
|�|
∫
�

u(x) dx. Substituting this u into (4.13) yields b = 0, which 
implies a contradiction due to b > 0. Thus, we exclude the second conclusion in Theorem 2.3. 
The proof is completed. �
Proof of Theorem 2.5. Since N >

∫
�

γ
β

dx, Lemma 3.7 gives R0 > 1 for all small dI . Fix such 

a dI . By Lemma 3.13, equation (3.12) admits a unique positive solution 0 < ul < 1
dI

for every 

l > N
|�| . Define

dSl
:= N − l

∫
�
(1 − dIul) dx

l
∫
�

ul dx
.

In view of (3.13) and the assumption N >
∫
�

γ
β

dx, there exists l0 � 1 such that dSl
> 0 for 

l > l0. Set

Sl = l(1 − dIul) and Il =
⎛
⎝N −

∫
�

Sl dx

⎞
⎠ ul∫

�
ul dx

for every l > l0.

Direct verification yields that (Sl, Il) is an endemic steady state of (1.1) for every l > l0. More-
over,

(Sl, Il) →
⎛
⎝γ

β
,

N

|�| − 1

|�|
∫
�

γ

β
dx

⎞
⎠ uniformly on �̄ as l → +∞.

And dS → 0 as l → +∞. The proof is completed. �

l
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Proof of Theorem 2.6. Since �+ is nonempty, Lemma 3.7 implies that R0 > 1 for all small dI . 
Then by Theorem 2.1, the endemic steady state (S, I ) exists for small dI . Since 

∫
�

I dx ≤ N , 
there exists some sequence {dIn} with dIn → 0 as n → +∞ such that the corresponding solution 
(Sn, In) of (3.1) satisfies 

∫
�

In dx → k as n → +∞ for some nonnegative constant k.
Since dIn → 0 as n → +∞, we can assume that dIn ≤ dS for all n. Set

κn = dSSn + dInIn, S̃n = Sn

κn

and Ĩn = In

κn

.

We derive from (3.10) that

κn = dSN∫
�
(1 − dIn Ĩn + dSĨn) dx

= dSN

|�| + (dS − dIn)
∫
�

Ĩn dx
≤ dSN

|�| for all n.

Combining with (4.3) yields

dS min
x∈�̄

γ (x)

β(x)
≤ κn ≤ dSN

|�| for all n. (4.14)

We claim that lim
n→+∞κn = dS min

x∈�̄

γ (x)
β(x)

. Assume on the contrary that this is false. Then there 

exists a subsequence {dInl
} of {dIn} such that

dS min
x∈�̄

γ (x)

β(x)
< ϑ := lim

l→+∞κnl
≤ dSN

|�| . (4.15)

Set wl = dInl
Ĩnl

. Then wl satisfies

dInl

∫
�

J (x − y)[wl(y) − wl(x)]dy +
[
βκnl

dS

(1 − wl) − γ

]
wl, x ∈ �. (4.16)

Note that 0 ≤ wl < 1 by the second inequality of (3.11). Let

gl(x) = β(x)κnl

dS

− γ (x) − dInl

∫
�

J (x − y)dy.

We derive from (4.16) that

wl(x) =
gl(x) +

√
g2

l (x) + 4β(x)κnl

dS
dInl

∫
�

J (x − y)wl(y) dy

2
β(x)κnl

dS

, (4.17)

which implies that wl →
(

1 − dSγ
)+

in C(�̄) as l → +∞. On the other hand,

ϑβ
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∫
�

wl dx = dInl

κnl

∫
�

Inl
dx ≤ dInl

N

κnl

≤ dInl

N

dS min
x∈�̄

γ (x)
β(x)

→ 0 as l → +∞.

As a result, we have 
(

1 − dSγ (x)
ϑβ(x)

)+ = 0 for all x ∈ � implying that ϑ ≤ dS min
x∈�̄

γ (x)
β(x)

. This con-

tradicts (4.15). Hence, lim
n→+∞κn = dS min

x∈�̄

γ (x)
β(x)

. Recalling (4.3) yields

min
x∈�̄

γ (x)

β(x)
≤ Sn(x) ≤ κn

dS

→ min
x∈�̄

γ (x)

β(x)
as n → +∞,

which implies that Sn → min
x∈�̄

γ (x)
β(x)

in C(�̄) as n → +∞. As a result, k = N − |�| min
x∈�̄

γ (x)
β(x)

. 

If k = 0, then γ (x)
β(x)

≥ min
x∈�̄

γ (x)
β(x)

= N
|�| for all x ∈ �̄, contradicting the assumption that �+ is 

nonempty. Hence, k > 0.
Now we aim to prove (i). Since 

∫
�

In dx ≤ N , passing to a subsequence if necessary, we have 
In → μ weakly as n → +∞ in the sense of

∫
�

In(x)ζ(x) dx →
∫
�

ζ(x)μ(dx) for all ζ(x) ∈ C(�̄), (4.18)

where μ is a Radon measure. Using the same argument in the proof of [48, Theorem 4.5], we 
can prove that the support of μ is contained in S . Now, assuming μ(�̄) = 0 and letting ζ ≡ 1 in 
(4.18) yield that

lim
n→+∞

∫
�

In dx =
∫
�

μ(dx) = μ(�̄) = 0,

which is a contradiction due to lim
n→+∞

∫
�

In dx = k > 0. Hence, μ(�̄) > 0. Since β(x)Sn(x) −
γ (x) → β(x)θmin−γ (x) uniformly on �̄ as n → +∞ and β(x)θmin−γ (x) < 0 for x ∈ �̄\{x0}, 
there exists n∗ > 0 large enough such that β(x)Sn(x) −γ (x) < 0 for x ∈ �̄ \ {x0} and all n ≥ n∗. 
We derive from the first equation of (3.1) that

In(x) = dS

∫
�

J (x − y)[Sn(y) − Sn(x)]dy

β(x)Sn(x) − γ (x)
,

which implies that In(x) → 0 locally uniformly on �̄ \ {x0} as n → +∞. Note that

lim
ε→0

lim
n→+∞

∫
Bε(x0)

In(x) dx = N − lim
n→+∞

∫
�

Sn(x) dx − lim
ε→0

lim
n→+∞

∫
�\Bε(x0)

In(x) dx

= N − |�|θmin.

(4.19)

Given ζ ∈ C(�̄), for any small ε > 0, it is obvious to see that
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∫
�

In(x)ζ(x) dx =
∫

�\Bε(x0)

In(x)ζ(x) dx +
∫

Bε(x0)

In(x)ζ(x) dx

=
∫

�\Bε(x0)

In(x)ζ(x) dx + ζ(xε)

∫
Bε(x0)

In(x) dx,

(4.20)

where Bε(x0) is a ball centered at x0 with radius ε and xε ∈ Bε(x0). Taking n → +∞ first and 
ε → 0 second in equality (4.20) and combining (4.19), we derive∫

�

In(x)ζ(x) dx → (N − |�|θmin)ζ(x0) as n → +∞.

Thus, In(x) → (N − |�|θmin)δ(x0) weakly as n → +∞ in the sense of (4.18).
Finally, we focus on the proof of (ii). By the same discussion as in the proof of (i), we have 

In(x) → 0 uniformly on � \ K as n → +∞. In view of the first equation of (3.4), we have∫
�

J (x − y)(In(y) − In(x)) dy

+ β(x)In

dS

[
dS

dIn

(
N

|�| − γ (x)

β(x)

)
−
(

dS

dIn

− 1

) ∫
�

In dx

|�| − In

]
= 0.

(4.21)

Obviously, γ (x)
β(x)

= θmin for all x ∈ K . Set

αn = dS

dIn

(
N

|�| − θmin

)
−
(

dS

dIn

− 1

) ∫
�

In dx

|�| .

In view of (3.2) and (4.3), we obtain αn > 0 for all n. Since 
∫
�

J (x − y)In(y) dy > 0 for all 
x ∈ �, by (4.21), we have

− dS

β(x)

∫
�

J (x − y)dy + αn − In(x) ≤ 0 for all x ∈ K,

which implies that

αn ≤ dS

|K|
∫
K

1

β(x)

∫
�

J (x − y)dy dx + 1

|K|
∫
K

In(x) dx

≤ dS

min
x∈�̄

β(x)
+ N

|K| .
(4.22)

As a result, {αn} is a bounded sequence and then {αn} owns a convergent subsequence, still 
denoted by itself.

Since In(x) → 0 uniformly on � \ K as n → +∞, we have 
∫
�\K̊ J (x − y)In(y) dy → 0

uniformly on �̄ as n → +∞. Then there exists some constant M∗ > 0 such that
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∥∥∥∥∥∥∥
∫

�\K̊
J (x − y)In(y) dy

∥∥∥∥∥∥∥
L∞(�)

≤ M∗ for all n. (4.23)

For all x ∈ K , rewrite (4.21) as

∫
K̊

J (x − y)(In(y) − In(x)) dy +
∫

�\K̊
J (x − y)In(y) dy

+ β(x)In

dS

⎡
⎢⎣− dS

β(x)

∫
�\K̊

J (x − y)dy + αn − In

⎤
⎥⎦= 0.

(4.24)

There exists x∗
n ∈ K such that In(x

∗
n) = max

x∈K
In(x). By (4.24), we have

β(x∗
n)I 2

n (x∗
n)

dS

−
⎡
⎢⎣− dS

β(x∗
n)

∫
�\K̊

J (x∗
n − y)dy + αn

⎤
⎥⎦ β(x∗

n)In(x
∗
n)

dS

−
∫

�\K̊
J (x∗

n − y)In(y) dy ≤ 0.

Hence, combining (4.22) with (4.23), there exists some constant M∗ > 0 such that In(x
∗
n) ≤ M∗. 

That is, ‖In‖L∞(K) ≤ M∗. Then there exists a subsequence of {In}, still denoted by itself, and a 
nonnegative function Ǐ such that In → Ǐ weakly in L2(K) as n → +∞. It is well-known that

∫
K̊

J (x − y)In(y) dy →
∫
K̊

J (x − y)Ǐ (y) dy uniformly on �̄ as n → +∞.

Thus,

∫
�

J (x − y)In(y) dy →
∫
K̊

J (x − y)Ǐ (y) dy uniformly on �̄ as n → +∞.

Set

Gn(x) = −
∫
�

J (x − y)dy + β(x)

dS

αn.

By virtue of (4.21), we have

In(x) =
−Gn(x) −

√
G2

n(x) + 4β(x)
dS

∫
�

J (x − y)In(y) dy

−2β(x)
dS

, x ∈ K.

We can see that In(x) → Ǐ (x) uniformly on K as n → +∞. In addition, Ǐ (x) satisfies
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∫
K̊

J (x − y)(Ǐ (y) − Ǐ (x)) dy + β(x)

dS

Ǐ (x)

⎡
⎢⎣α − dS

β(x)

∫
�\K̊

J (x − y)dy − Ǐ (x)

⎤
⎥⎦= 0, (4.25)

where α is the limit of αn as n → +∞. If there exists some x2 ∈ K such that 0 = Ǐ (x2) =
min
x∈K

Ǐ (x), then we derive from (4.25) that 
∫
K̊

J (x2 −y)Ǐ (y) dy = 0. Thus, Ǐ (x) = 0 for all x ∈ K , 

contradicting 
∫
K̊

Ǐ dx = k > 0. Hence, Ǐ (x) > 0 for all x ∈ K . The uniqueness of the positive so-
lution of (4.25) can be obtained by the Implicit Function Theorem as in the proof of Theorem 2.1. 
Now denote the nonnegative solution of (4.25) by Ǐα . By Lemma 3.10, there exists a maximal 
value α∗ ≥ 0 such that Ǐα∗(x) = 0 for all x ∈ K . The positivity of Ǐα gives α > α∗. And (4.22)
gives α ≤ α∗ := dS

min
x∈�̄

β(x)
+ N

|K| . By using the same arguments as in the proof of Lemma 3.11, we 

derive that Ǐα is strictly increasing and continuous on α ∈ (α∗, α∗). In view of (4.25), it is easy 
to get

Ǐα∗ ≥ min
x∈K

Ǐα∗(x) ≥ N

|K| in K.

Thus, 
∫
K̊

Ǐα∗ dx < k and 
∫
K̊

Ǐα∗ dx > k. Then there exists a unique α such that 
∫
K̊

Ǐα dx = k. As 
a result, the limit of I is independent of any chosen subsequence. The proof is completed. �

Next, we are devoted to the case dS → 0 and dI → 0. To this end, we first state the following 
lemma from Wu and Zou [47].

Lemma 4.2. Assume that �+ is nonempty and d is a positive constant. Then the following equa-
tion

⎛
⎝ N

|�|β − γ − (1 − d)β

|�|
∫
�

I ∗ dx

⎞
⎠

+
− dβI ∗ = 0, x ∈ �̄ (4.26)

has a unique nonnegative solution.

Proof of Theorem 2.8. Since �+ is nonempty, Lemma 3.7 implies that R0 > 1 for all small dI . 
Then by Theorem 2.1, the endemic steady state (S, I ) exists for small dI .

(i) By (3.2), there exist two sequences {dIn} and 
{

dIn

dSn

}
with dIn → 0 and dIn

dSn
→ d as n → +∞

such that 
∫
�

In dx → k ∈ [0, N ]. In the following, we prove that

∫
�

In dx →
∫
�

I ∗ dx as n → +∞,

where I ∗ is the unique nonnegative solution of (4.26). Since In is continuous on �̄, there exists 
some xn ∈ �̄ such that In(xn) = max In(x). We derive from the first equation of (3.4) that
x∈�̄
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N

|�|β(xn) − γ (xn) −
(

1 − dIn

dSn

)
β(xn)

|�|
∫
�

In dx − dInβ(xn)

dSn

In(xn) ≥ 0. (4.27)

Since dIn

dSn
→ d as n → +∞, some n0 ∈ N exists such that d2 <

dIn

dSn
≤ d + 1 for all n > n0. Then, 

by (4.27), we have

In(xn) ≤ dSn

dInβ(xn)

⎡
⎣ N

|�|β(xn) − γ (xn) −
(

1 − dIn

dSn

)
β(xn)

|�|
∫
�

In dx

⎤
⎦

≤ N

|�|
(

2

d
+ 1

)
,

which implies that ‖In‖L∞(�) ≤ N
|�|
( 2

d
+ 1

)
for all n > n0. Thus, there is some subsequence 

of {In}, still denoted by itself, converges weakly to some nonnegative function in L2(�) as 
n → +∞. In view of the first equation of (3.4), we have

In(x) = −Gn(x) −√G2
n(x) − 4an(x)Hn(x)

2an(x)
, (4.28)

in which

an(x) = −dInβ(x)

dSn

, Hn(x) = dIn

∫
�

J (x − y)In(y) dy,

Gn(x) = −dIn

∫
�

J (x − y)dy + N

|�|β(x) − γ (x) −
(

1 − dIn

dSn

)
β(x)

|�|
∫
�

In(x) dx.

Letting n → +∞ in (4.28) yields that

lim
n→+∞ In(x) =

(
N
|�|β(x) − γ (x) − (1 − d)

β(x)
|�| k

dβ(x)

)+
uniformly on �̄.

Furthermore,

k = lim
n→+∞

∫
�

In dx =
∫
�

1

d

(
N

|�| − γ

β
− (1 − d)

k

|�|
)+

dx.

In view of Lemma 4.2, we have k = ∫
�

I ∗ dx. Setting k = ∫
�

I ∗ dx in the previous arguments 
yields

lim
n→+∞ In =

(
N
|�|β − γ − (1 − d)

β
|�|
∫
�

I ∗ dx

dβ

)+
= I ∗.
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By the second equation of (3.4), we have

Sn → N

|�| − (1 − d)

|�|
∫
�

I ∗ dx − dI ∗ uniformly on �̄ as n → +∞.

(ii) Note that

min
x∈�̄

γ (x)

β(x)
≤ κ

dS

= N∫
�
(1 − dI Ĩ ) + dSĨ dx

≤ N

|�| for all 0 < dI < dS. (4.29)

By the same arguments as in the proof of Theorem 2.6, we can obtain κ
dS

→ min
x∈�̄

γ (x)
β(x)

and S →
min
x∈�̄

γ (x)
β(x)

uniformly on �̄ as dS → 0 and dI

dS
→ 0. Then, 

∫
�

I dx → k with k = N −|�| min
x∈�̄

γ (x)
β(x)

. 

If k = 0, then γ (x)
β(x)

≥ min
x∈�̄

γ (x)
β(x)

= N
|�| for all x ∈ �̄, contradicting the assumption that �+ is 

nonempty. Hence, k > 0. By the same proof of Theorem 2.6 (i), we obtain (a).
Next we prove (b). Following the same proof of Theorem 2.6 (i), we have I (x) → 0 uniformly 

on � \ K as dS → 0 and dI

dS
→ 0. Set

κ = dSS + dI I, S̃ = S

κ
, Ĩ = I

κ
and Î = dSĨ .

Then,

dS

∫
�\K̊

J (x − y)Î (y) dy = dS

dS

κ

∫
�\K̊

J (x − y)I (y) dy → 0 uniformly on �̄

as dS → 0 and dI

dS
→ 0. Then there exist two positive constants d∗ and M∗ such that

∥∥∥∥∥∥∥dS

∫
�\K̊

J (x − y)Î (y) dy

∥∥∥∥∥∥∥
L∞(�)

≤ M∗ for all 0 < dS,
dI

dS

< d∗. (4.30)

By (3.11), we have Î satisfies

dS

∫
�

J (x − y)[Î (y) − Î (x)]dy +
[ κβ

dS
− γ

dI

dS

− κβ

dS

Î

]
Î = 0 in �. (4.31)

Clearly, γ (x)
β(x)

= θmin for all x ∈ K . Since 
∫
�

J (x − y)Î (y) dy > 0 for all x ∈ �, we derive from 
(4.31) that

−dS

∫
J (x − y)dy + β(x)

κ
dS

− θmin

dI

d

− κβ(x)

dS

Î (x) ≤ 0 for all x ∈ K,
� S
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which implies that

0 ≤
κ
dS

− θmin

dI

dS

≤ dS

|K|
∫
K

1

β(x)

∫
�

J (x − y)dy dx + 1

|K|
κ

dS

∫
K

Î (x) dx

≤ d∗
1

min
x∈�̄

β(x)
+ N2

|K||�| for all 0 < dS,
dI

dS

< d∗.
(4.32)

Thus, 
κ
dS

−θmin

dI
dS

has a convergent subsequence still denoted by itself, and denote the limit of it by 

ν. For all x ∈ K , rewrite (4.31) as

dS

∫
K̊

J (x − y)[Î (y) − Î (x)]dy + dS

∫
�\K̊

J (x − y)Î (y) dy

+
⎡
⎢⎣−dS

∫
�\K̊

J (x − y)dy + β

κ
dS

− θmin

dI

dS

− κβ

dS

Î

⎤
⎥⎦ Î = 0.

(4.33)

There exists x∗ ∈ K such that Î (x∗) = max
x∈K

Î (x). We derive from (4.33) that

κβ(x∗)Î 2(x∗)
dS

−
⎡
⎢⎣−dS

∫
�\K̊

J (x∗ − y)dy + β(x∗)
κ
dS

− θmin

dI

dS

⎤
⎥⎦ Î (x∗)

− dS

∫
�\K̊

J (x∗ − y)Î (y) dy ≤ 0.

So, combining (4.29) with (4.30) and (4.32) gives that some constant M∗ > 0 exists such that 
Î (x∗) ≤ M∗. That is, ‖Î‖L∞(K) ≤ M∗ for all 0 < dS, dI

dS
< d∗. Thus,

dS

∫
�

J (x −y)Î (y) dy = dS

∫
�\K̊

J (x −y)Î (y) dy +dS

∫
K̊

J (x −y)Î (y) dy → 0 uniformly on �̄

as dS → 0 and dI

dS
→ 0. Set

g(x) = −dS

∫
�

J (x − y)dy + β(x)

κ
dS

− θmin

dI

dS

.

We derive from (4.33) that
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Î (x) =
g(x) +

√
g2(x) + 4 κβ(x)

dS
dS

∫
�

J (x − y)Î (y) dy

2 κβ(x)
dS

,

which implies that Î (x) → ν
θmin

uniformly on K as dS → 0 and dI

dS
→ 0. Then, I = κ

dS
Î → ν uni-

formly on K as dS → 0 and dI

dS
→ 0. Therefore, 

∫
K

ν dx = N − |�|θmin. That is, ν = N−|�|θmin|K| . 
Now we have ν is uniquely determined by this. As a result, the limit of I is independent of any 
chosen subsequence.

The proofs of (iii) and (iv) are inspired by Castellano and Salako [9].
(iii) Set

κ = dSS + dI I, S̃ = S

κ
and Ĩ = I

κ
.

We first claim that

ϑ0 := lim inf
max

{
dI ,

dS
dI

}
→0

∫
�

(
1 − dI Ĩ

)
dx > 0. (4.34)

Otherwise, there exist two sequences 
{
dIn

}
and 

{
dSn

dIn

}
with dIn → 0 and dSn

dIn
→ 0 as n → +∞

such that

lim
n→+∞

∫
�

(
1 − dIn Ĩn

)
dx = 0.

Combining with dIn Ĩn < 1 yields that

lim
n→∞

κn

dSn

= lim
n→+∞

N∫
�

(
1 − dIn Ĩn

)
dx + dSn

dIn

∫
�

dIn Ĩn dx
= +∞. (4.35)

Recalling Sn = κn

dSn

(
1 − dIn Ĩn

)
and (4.3), we have

dSn

κn

min
x∈�̄

γ (x)

β(x)
≤
(

1 − dIn Ĩn

)
≤ dSn

κn

max
x∈�̄

γ (x)

β(x)
for all n,

which implies dIn Ĩn → 1 uniformly on �̄ as n → +∞ due to (4.35). Note that Sn satisfies

dIn

dSn

κn

∫
�

J (x − y)[Sn(y) − Sn(x)]dy + (−βSn + γ )
(
dIn Ĩn

)
= 0 in �,

from which we get

Sn(x) = dIn

dSn

κn

∫
�

J (x − y)Sn(y) dy + γ (x)dIn Ĩn(x)

d
dSn
∫

J (x − y)dy + β(x)d Ĩ (x)
.

In κn � In n
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Therefore, Sn → γ
β

uniformly on �̄ as n → +∞ and then

N ≥ lim
n→+∞

∫
�

Sn dx =
∫
�

γ

β
dx as n → +∞,

contradicting the assumption that N <
∫
�

γ
β

dx. Thus, (4.34) holds.
Note that

lim sup
max

{
dI ,

dS
dI

}
→0

κ

dS

= lim sup
max

{
dI ,

dS
dI

}
→0

N∫
�

(
1 − dI Ĩ

)
dx + dS

∫
�

Ĩ dx
≤ N

ϑ0
.

Then there exist constants 0 < d0 � 1 and C∗ > 0 such that κ
dS

≤ C∗ for all 0 < dI , dS

dI
< d0. 

Hence,

0 ≤ I = κĨ = κ

dI

dI Ĩ ≤ κ

dI

≤ C∗
dS

dI

for all x ∈ �̄ and 0 < dI ,
dS

dI

< d0, (4.36)

which implies that I → 0 uniformly on �̄ as dI → 0 and dS

dI
→ 0.

Next we prove (2.4). Claim that ϑ1 := lim inf
max

{
dI ,

dS
dI

}
→0

‖dI Ĩ‖L∞(�) > 0. Assume on the contrary 

that it is false. Then there exist two sequences 
{
dIm

}
and 

{
dSm

dIm

}
with dIm → 0 and dSm

dIm
→ 0 as 

m → +∞ such that dImĨm → 0 as m → +∞. Observe that

min
x∈�̄

γ (x)

β(x)
≤ Sm ≤ Sm + dIm

dSm

Im = κm

dSm

≤ C∗. (4.37)

Up to a subsequence, we have κm

dSm
→ ϑ2 as m → +∞ for some ϑ2 ∈

[
min
x∈�̄

γ (x)
β(x)

,C∗
]

. Note that 

dIm Ĩm satisfies (4.16). By the same arguments as in the proof of Theorem 2.6, we can prove that 

dIm Ĩm →
(

1 − γ
ϑ2β

)+
as m → +∞. Combining with dImĨm → 0 as m → +∞, we conclude 

that 
(

1 − γ
ϑ2β

)+ ≡ 0; that is, ϑ2 ≤ min
x∈�̄

γ (x)
β(x)

. This together with (4.37) yields

Sm → min
x∈�̄

γ (x)

β(x)
uniformly on �̄ and

∫
�

Im dx → N − |�|min
x∈�̄

γ (x)

β(x)
as m → +∞.

In view of (4.36), we have Im → 0 uniformly on �̄ as m → +∞. Therefore, N
|�| = min

x∈�̄

γ (x)
β(x)

, 

which contradicts the assumption that �+ is nonempty. As a result, the claim ϑ1 > 0 holds, 
which implies that there exists a constant C∗ > 0 such that ‖dI Ĩ‖L∞(�) ≥ C∗ for all 0 < dI , 
dS

dI
< d0. Thus,

‖I‖L∞(�) = ‖κĨ‖L∞(�) = κ ‖dI Ĩ‖L∞(�) ≥ C∗ κ dS ≥ C∗ dS min
γ (x)
dI dS dI dI x∈�̄ β(x)
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for all 0 < dI , dS

dI
< d0. This together with (4.36) gives (2.4).

In fact, we obtain from the above arguments that up to a subsequence κ
dS

→ ϑ ∈
[

min
x∈�̄

γ
β
,C∗

]
, 

and up to a further subsequence, dI Ĩ →
(

1 − γ
ϑβ

)+
uniformly on �̄ as dI → 0 and dS

dI
→ 0. In 

addition, 

∥∥∥∥(1 − γ
ϑβ

)+∥∥∥∥
L∞(�)

> 0 due to ϑ1 > 0. This gives ϑ > min
x∈�̄

γ (x)
β(x)

. Note that up to a 

subsequence,

S = κ

dS

(1−dI Ĩ ) → ϑ

[
1 −

(
1 − γ

ϑβ

)+]
uniformly on �̄ as dI → 0 and

dS

dI

→ 0. (4.38)

If ϑ ≥ max
x∈�̄

γ (x)
β(x)

, that is, 
(

1 − γ
ϑβ

)+ = 1 − γ
ϑβ

on �̄, then we get that up to a subsequence 

S → γ
β

as dI → 0 and dS

dI
→ 0. Since I → 0 uniformly on �̄ as dI → 0 and dS

dI
→ 0, we have 

N − ∫
�

γ
β

dx = 0, contradicting the assumption N <
∫
�

γ
β

dx. Hence, ϑ < max
x∈�̄

γ (x)
β(x)

holds. In 

view of 
∫
�

S + I dx = N , we obtain

N =
∫
�

ϑ

[
1 −

(
1 − γ

ϑβ

)+]
dx =

∫
�

min

{
ϑ,

γ

β

}
dx. (4.39)

Observe that 
∫
�

min
{
ϑ,

γ
β

}
dx is strictly decreasing with respect to ϑ ∈

(
min
x∈�̄

γ (x)
β(x)

,max
x∈�̄

γ (x)
β(x)

)
. 

Then ϑ is uniquely determined by the equation N = ∫
�

min
{
ϑ,

γ
β

}
dx, which implies that the 

limit of S in (4.38) is independent of any chosen subsequence. In the end, by virtue of (4.39) and 
min
x∈�̄

γ (x)
β(x)

< ϑ < max
x∈�̄

γ (x)
β(x)

, we conclude that N < ϑ |�|.
(iv) Since N >

∫
�

γ
β

dx, by Lemma 3.7, there exists 0 < d0 � 1 such that R0 > 1 and 1
dI

> N
|�|

for every 0 < dI ≤ d0. For every 0 < dI ≤ d0, with lI = 1
dI

, we derive from Lemma 3.13 that 

(3.12) admits a unique positive solution 0 < uI < 1
dI

. Note that wI = lI (1 − dIuI ) satisfies

1

lI

∫
�

J (x − y)[wI (y) − wI (x)]dy + (γ − βwI )uI = 0 in �. (4.40)

There exist x1, x2 ∈ �̄ such that wI (x1) = min
x∈�̄

wI (x) and wI (x2) = max
x∈�̄

wI (x). By (4.40), 

γ (x1) − β(x1)wI (x1) ≤ 0 and γ (x2) − β(x2)wI (x2) ≥ 0. Then we have

min
x∈�̄

γ (x)

β(x)
≤ wI ≤ max

x∈�̄

γ (x)

β(x)
for all 0 < dI < d0 (4.41)

and
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dI min
x∈�̄

γ (x)

β(x)
= 1

lI
min
x∈�̄

γ (x)

β(x)
≤ 1 − dIuI ≤ 1

lI
max
x∈�̄

γ (x)

β(x)
= dI max

x∈�̄

γ (x)

β(x)
for all 0 < dI < d0,

from which we get dIuI → 1 uniformly on �̄ as dI → 0. Multiplying (4.40) by dI yields

dI

lI

∫
�

J (x − y)[wI (y) − wI (x)]dy + (γ − βwI )dI uI = 0 in �, (4.42)

and (4.42) gives that

wI (x) =
dI

lI

∫
�

J (x − y)wI (y) dy + γ (x)dI uI (x)

dI

lI

∫
�

J (x − y)dy + β(x)dI uI (x)
.

Recalling (4.41) and dIuI → 1 as dI → 0, we conclude that wI → γ
β

uniformly on �̄ as dI → 0
and

N −
∫
�

wI dx → N −
∫
�

γ

β
dx > 0 as dI → 0.

Hence, there exists 0 < d1 � d0 such that N − ∫
�

wI dx > 0 for every 0 < dI < d1. Define

dS,I := N − ∫
�

wI dx

lI
∫
�

uI dx
for every 0 < dI < d1.

Then, dS,I > 0 for every 0 < dI < d1 and

dS,I

dI

= N − ∫
�

wI dx

lI
∫
�

dIuI dx
= dI

(
N − ∫

�
wI dx

)∫
�

dIuI dx
→ 0 as dI → 0.

Now define

SI := wI and II :=
⎛
⎝N −

∫
�

wI dx

⎞
⎠ dIuI∫

�
dIuI dx

for every 0 < dI < d1.

It is easily verified that (SI , II ) is an endemic steady state of (1.1) with dS = dS,I . In addition, 
recalling dIuI → 1 and wI → γ

β
uniformly on �̄ as dI → 0 gives

SI → γ

β
and II → N

|�| − 1

|�|
∫
�

γ

β
dx uniformly on �̄ as dI → 0.

The proof is completed. �
Now, we are in a position to investigate the asymptotic profile of the endemic steady state for 

large diffusion rates.
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Proof of Theorem 2.10. In view of Lemma 3.7 and Theorem 2.1, there exists a unique endemic 
steady state (S, I ). We first give the proof of (i). Choose sequences {dSn} and {dIn} such that 
dSn → +∞ and dIn → +∞ as n → +∞. Denote (Sn, In) the corresponding positive solution of 
(3.1). Up to a subsequence if needed, one of the following three statements must hold:

(A1) dIn

dSn
→ 0;

(A2) dIn

dSn
→ +∞;

(A3) dIn

dSn
→ C with C being a positive constant.

Since In is continuous, there exists some xn ∈ �̄ such that In(xn) = max
x∈�̄

In(x). By the first 

equation of (3.4), we have

In(xn) ≤ dSn

dIn

N

|�| + 1

|�|
∫
�

In dx.

If case (A2) or (A3) holds, then ‖In‖L∞(�) ≤ M with M being some positive constant. Recall 
‖Sn‖L∞(�) ≤ max

x∈�̄

γ (x)
β(x)

. Then by the same arguments as in the proof of [51, Theorem 4.1], the 

proof of (i) can be obtained.
If case (A1) holds, without loss of generality, we assume dSn > dIn for all n. Set

κn = dSnSn + dInIn, S̃n = Sn

κn

and Ĩn = In

κn

.

The second inequality of (3.11) gives Ĩn → 0 uniformly on �̄ due to dIn → +∞. Recalling 
‖Sn‖L∞(�) ≥ min

x∈�̄

γ (x)
β(x)

, (3.10) and (3.7) yields

min
x∈�̄

γ (x)

β(x)
≤ κn

dSn

= N∫
�

[(
1 − dIn Ĩn

)
+ dSn Ĩn

]
dx

≤ N

|�| .

Since ‖Sn‖L∞(�) is bounded, there exists a subsequence of {Sn} still denoted by {Sn}, such that 
Sn → S∗ weakly in L2(�) as n → +∞ for some nonnegative function S∗. By the first equation 
of (3.1), we have

∫
�

J (x − y)[Sn(y) − Sn(x)]dy + κn

dSn

[−β(x)Sn(x) + γ (x)]Ĩn(x) = 0. (4.43)

This gives that

Sn(x) =
∫
�

J (x − y)Sn(y) dy + κn

dSn
[−β(x)Sn(x) + γ (x)]Ĩn(x)∫

�
J (x − y)dy

,

implying that Sn → S∗ in C(�̄) as n → +∞. And letting n → +∞ in (4.43) leads to
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∫
�

J (x − y)[S∗(y) − S∗(x)]dy = 0.

Then S∗ is a constant.
On the other hand, up to a subsequence if needed, one of the following three statements must 

hold:

(B1) κn‖Ĩn‖L∞(�) → 0;
(B2) κn‖Ĩn‖L∞(�) → +∞;
(B3) κn‖Ĩn‖L∞(�) → Ĉ with Ĉ being a positive constant.

Note that Ĩn

‖Ĩn‖L∞(�)

satisfies

dIn

∫
�

J (x − y)

[
Ĩn(y)

‖Ĩn‖L∞(�)

− Ĩn(x)

‖Ĩn‖L∞(�)

]
dy +

[
κnβ

dSn

(1 − dIn Ĩn) − γ

]
Ĩn

‖Ĩn‖L∞(�)

= 0

and 

∥∥∥∥[ κnβ
dSn

(1 − dIn Ĩn) − γ
]

Ĩn

‖Ĩn‖L∞(�)

∥∥∥∥
L∞(�)

≤ C̃ for some positive constant C̃. Then the same 

arguments as in the proof of [51, Theorem 4.1] give that Ĩn

‖Ĩn‖L∞(�)

→ C∗ in C(�̄) as n → +∞

for some nonnegative constant C∗. Observing that 

∥∥∥∥ Ĩn

‖Ĩn‖L∞(�)

∥∥∥∥
L∞(�)

= 1, we have C∗ = 1. If 

case (B2) holds, then

∫
�

In dx = κn‖Ĩn‖L∞(�)

∫
�

Ĩn

‖Ĩn‖L∞(�)

dx → +∞ as n → +∞,

which is a contradiction. If case (B1) or (B3) holds, then

In = κn‖Ĩn‖L∞(�)

Ĩn

‖Ĩn‖L∞(�)

→ C1 as n → +∞,

where C1 is a nonnegative constant. The remaining proof is the same as in the proof of [51, 
Theorem 4.1]. So we omit it.

Now we are devoted to the proof of (ii). Recalling (4.3) gives that there exist a sequence 
{dIn} with dIn → +∞ as n → +∞ and some nonnegative function S∗ such that Sn(x) → S∗(x)

weakly in L2(�) as n → +∞. Since dIn → +∞ as n → +∞, we can assume that dIn > 1 for 
all n. In view of the second equation of (3.4), we have

In(x) = dS

dIn

⎡
⎣ N

|�| −
(

1 − dIn

dS

)
1

|�|
∫
�

In dx − Sn(x)

⎤
⎦

≤ dS

dIn

N

|�| + 1

|�|
∫

In dx ≤ N

|�| (1 + dS),
�
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implying that ‖In‖L∞(�) ≤ N
|�| (1 + dS) for all n. Recalling (4.3) and using a similar argument 

as in the proof of [51, Theorem 4.1], up to a subsequence, we know that In → I ∗ as n → +∞, 
where I ∗ is a nonnegative constant. Note that

∫
�

J (x − y)Sn(y) dy →
∫
�

J (x − y)S∗(y) dy as n → +∞.

By the first equation of (3.1), we obtain

Sn(x) = dS

∫
�

J (x − y)Sn(y) dy + γ (x)In(x)

dS

∫
�

J (x − y)dy + β(x)In(x)
,

which implies that Sn(x) → S∗(x) in C(�̄) as n → +∞. The same argument as in the proof of 
[51, Theorem 4.1] gives that S∗(x) > 0 and I ∗ > 0. Obviously, (S∗(x), I ∗) satisfies (2.5).

There exists a sequence {dSn} with dSn → 0 as n → +∞ such that the corresponding solution 
(S∗

n, I ∗
n ) of (2.5) satisfies one of the following three cases:

(D1) dSn

I∗
n

→ 0 as n → +∞;

(D2) dSn

I∗
n

→ +∞ as n → +∞;

(D3) dSn

I∗
n

→ C∗ with C∗ being some positive constant as n → +∞.

If (D1) holds, dividing both sides of the first equation of (2.5) by I ∗
n and letting n → +∞

yield that (S∗
n, I ∗

n ) → (S̃∗, Ĩ ∗) in C(�̄) as n → +∞, where (S̃∗, Ĩ ∗) satisfies the conclusion (i) 
of Theorem 2.3. If (D2) holds, the same discussion in the proof of [51, Theorem 4.1] yields 

(S∗
n, I ∗

n ) →
(

N
|�| ,0

)
in C(�̄) as n → +∞. Integrating the first equation of (2.5) gives

∫
�

(−β(x)S∗
n(x) + γ (x)

)
dx = 0.

Letting n → +∞ yields

∫
�

(
− N

|�|β(x) + γ (x)

)
dx = 0,

which is a contradiction. For the case (D3), noting that

S∗
n =

dSn

I∗
n

∫
�

J (x − y)S∗
n(y) dy + γ (x)

β(x) + dSn

I∗
n

∫
�

J (x − y)dy
,

we have (S∗
n, I ∗

n ) → (S̃∗, Ĩ ∗) in C(�̄) as n → +∞, where (S̃∗, Ĩ ∗) satisfies the conclusion (ii) 
of Theorem 2.3. The proof of (ii) is completed.
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Finally we prove (iii). Since 
∫
�

I dx ≤ N , there exists some sequence {dSn} with dSn → +∞
as n → +∞ such that the corresponding endemic steady state (Sn, In) satisfies 

∫
�

In dx → k for 
some constant k ≥ 0 as n → +∞.

Set

κn = dSnSn + dI In, S̃n = Sn

κn

and Ĩn = In

κn

.

By the second inequality of (3.11), up to a subsequence, we derive that there exist some constant 
k̃ ≥ 0 and a nonnegative function Ĩ∗ such that 

∫
�

Ĩn dx → k̃ and Ĩn → Ĩ∗ weakly in L2(�) as 
n → +∞. If k̃ > 0, (3.10) gives that

κn

dSn

= N∫
�

[(
1 − dI Ĩn

)
+ dSn Ĩn

]
dx

→ 0 as n → +∞.

Note that ∫
�

J (x − y)Ĩn(y) dy →
∫
�

J (x − y)Ĩ∗(y) dy in C(�̄) as n → +∞. (4.44)

We derive from the first equation of (3.11) that

Ĩn(x) = dI

∫
�

J (x − y)Ĩn(y) dy

dI

∫
�

J (x − y)dy −
[

κnβ(x)
dSn

(1 − dI Ĩn) − γ (x)
] ,

which implies that Ĩn → Ĩ∗ in C(�̄) as n → +∞. In addition, 0 ≤ Ĩ∗ ≤ 1
dI

satisfies

dI

∫
�

J (x − y)[Ĩ∗(y) − Ĩ∗(x)]dy − γ (x)Ĩ∗(x) = 0. (4.45)

There exists x1 ∈ �̄ such that Ĩ∗(x1) = max
x∈�̄

Ĩ∗(x). Then, Ĩ∗(x1) ≤ 0 due to (4.45). Hence, 

Ĩ∗(x) = 0 for all x ∈ �̄, contradicting k̃ > 0. As a result, k̃ = 0. (3.8) and (3.10) give that

κn

dSn

= N − ∫
�

In dx∫
�
(1 − dI Ĩn) dx

→ N − k

|�| as n → +∞. (4.46)

Observe that N − k = lim
n→+∞

∫
�

Sn dx ≥ |�| min
x∈�̄

γ (x)
β(x)

> 0. Set

gn(x) = κnβ(x)

dSn

− γ (x) − dI

∫
�

J (x − y)dy.

We obtain from the first equation of (3.11) that
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Ĩn(x) =
gn(x) +

√
g2

n(x) + 4d2
I κnβ(x)

dSn

∫
�

J (x − y)Ĩn(y) dy

2dI κnβ(x)
dSn

,

which combined with (4.44) implies that Ĩn → Ĩ∗ in C(�̄) as n → +∞. Then, Ĩ∗ ≡ 0 due to 
k̃ = 0. Now we have In

dSn
= Ĩn

κn

dSn
→ 0 in C(�̄) as n → +∞. In view of the second equation of 

(3.4), Sn → N−k
|�| in C(�̄) as n → +∞.

We claim that k > 0. Set

An(x) := N

|�|β(x) − γ (x) −
(

1 − dI

dSn

)
β(x)

|�|
∫
�

In(x) dx − dI

dSn

β(x)In(x).

Since In satisfies the first equation of (3.4), the positivity of In implies that 0 is the principal 
eigenvalue of the following eigenvalue problem

dI

∫
�

J (x − y)[ϕn(y) − ϕn(x)]dy + An(x)ϕn(x) = −λϕn(x) in �. (4.47)

It is well-known that if λn is the principal eigenvalue of (4.47), then λn = λ∗
n, where λ∗

n is defined 
by

λ∗
n := inf

ϕ∈L2(�)
ϕ �=0

{
dI

2

∫
�

∫
�

J (x − y)(ϕ(y) − ϕ(x))2 dy dx − ∫
�

An(x)ϕ2(x) dx∫
�

ϕ2(x) dx

}
.

Thus, λ∗
n = 0. If k = 0, combining with In

dSn
→ 0 in C(�̄) as n → +∞ and letting n → +∞ in 

the equality λ∗
n = 0 yield λp(dI ) = 0. This contradicts λp(dI ) < 0 due to R0 > 1.

Set wn = Ĩn

‖Ĩn‖L∞(�)

. Then wn satisfies

dI

∫
�

J (x − y) [wn(y) − wn(x)] dy +
[
κnβ

dSn

(1 − dI Ĩn) − γ

]
wn = 0 in �. (4.48)

We claim that

dI

∫
�

J (x − y)dy − N − k

|�| β(x) + γ (x) > 0 for all x ∈ �. (4.49)

If there exists x∗ ∈ � such that

dI

∫
�

J (x∗ − y)dy − N − k

|�| β(x∗) + γ (x∗) = 0,

then (4.48) gives
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dI

∫
�

J (x∗ − y)wn(y) dy + β(x∗)
[
−N − k

|�| + κn

dSn

(1 − dI Ĩn(x∗))
]

wn(x∗) = 0. (4.50)

Note that ‖wn‖L∞(�) = 1. There exist a subsequence of {wn}, still denoted by itself, and a non-
negative function w∗ such that wn → w∗ weakly in L2(�) as n → +∞. Combining (4.46) and 
Ĩn → 0 as n → +∞, we conclude from (4.50) that 

∫
�

J (x∗ −y)w∗(y) dy = 0. By the same argu-
ments as in the proof of Theorem 2.3, we get w∗(y) = 0 almost everywhere in �, contradicting 
the fact that ‖w∗‖L∞(�) = 1. Hence, (4.49) holds. We derive from (4.48) that

wn(x) = dI

∫
�

J (x − y)wn(y) dy

dI

∫
�

J (x − y)dy − κnβ(x)
dSn

(1 − dI Ĩn(x)) + γ (x)
,

which gives that wn → w∗ in C(�̄) as n → +∞. In addition, w∗ satisfies

dI

∫
�

J (x − y)[w∗(y) − w∗(x)]dy +
[
N − k

|�| β(x) − γ (x)

]
w∗(x) = 0. (4.51)

On the other hand, up to a subsequence if needed, one of the following three statements must 
hold:

(E1) κn‖Ĩn‖L∞(�) → 0;
(E2) κn‖Ĩn‖L∞(�) → +∞;
(E3) κn‖Ĩn‖L∞(�) → C2 with C2 being a positive constant.

If case (E1) holds, then

In = κn‖Ĩn‖L∞(�)

Ĩn

‖Ĩn‖L∞(�)

→ 0 in C(�̄) as n → +∞,

contradicting k > 0. If case (E2) holds, then

∫
�

In dx = κn‖Ĩn‖L∞(�)

∫
�

Ĩn

‖Ĩn‖L∞(�)

dx → +∞ as n → +∞,

which is a contradiction. If case (E3) holds, then

In = κn‖Ĩn‖L∞(�)

Ĩn

‖Ĩn‖L∞(�)

→ C2w∗ in C(�̄) as n → +∞.

By (4.51), I ∗ := C2w∗ satisfies

dI

∫
J (x − y)[I ∗(y) − I ∗(x)]dy +

⎛
⎝Nβ

|�| − γ − β

|�|
∫

I ∗ dx

⎞
⎠ I ∗ = 0. (4.52)
� �
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Finally we prove the uniqueness of the positive solution of (2.6). Suppose that I1 and I2 are 
two positive solutions of (2.6). Since J is symmetric, we have

∫
�

∫
�

J (x − y)(I1(y) − I1(x))I2(x) dy dx =
∫
�

∫
�

J (x − y)(I2(y) − I2(x))I1(x) dy dx.

Then a simple computation yields that

⎛
⎝∫

�

I1(x) dx −
∫
�

I2(x) dx

⎞
⎠∫

�

β(x)

|�| I1(x)I2(x) dx = 0,

which implies that

∫
�

I1(x) dx =
∫
�

I2(x) dx. (4.53)

The positivity of I1 yields that 0 is the principal eigenvalue of the following eigenvalue problem

dI

∫
�

J (x − y)(ψ(y) − ψ(x)) dy + ψ

⎛
⎝Nβ

|�| − γ − β

|�|
∫
�

I1 dx

⎞
⎠= −λψ.

Let ψ be an eigenfunction corresponding to the principal eigenvalue of the above eigenvalue 
problem. Then, we have

ψ(x) = c1I1(x) = c2I2(x), x ∈ �,

in which ci (i = 1, 2) are some constants. Following (4.53), one can get that

c1 = c2 =
∫
�

ψ(x)dx∫
�

I1(x)dx
=
∫
�

ψ(x)dx∫
�

I2(x)dx
,

which implies that I1(x) = I2(x) for all x ∈ �. As a consequence, the positive solution of (2.6)
is unique. The proof is completed. �
5. Discussion

Taking nonlocal dispersal and heterogeneity into account, in this paper we proposed a nonlocal 
(convolution) dispersal SIS epidemic model. On the basis of the existence and uniqueness of the 
endemic steady state, we focused on the impact of small and large diffusion rates of susceptible 
or infectious individuals on the disease transmission. In the following, we give some biological 
implications of our analytical results and provide some strategies for disease control.
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Theorem 2.3 tells us that limiting the movements of susceptible individuals cannot help 
to eliminate the infectious disease modeled by (1.1) unless the total population satisfies N <∫
�

γ (x)
β(x)

dx. Theorem 2.6 presents a particular phenomenon that the infectious individuals con-
centrate on the site

S =
{
x∗ ∈ �̄ : γ (x∗)

β(x∗)
= min

x∈�̄

γ (x)

β(x)

}

by limiting the movement of infectious individuals. Theorem 2.8 indicates that limiting the move-
ment of susceptible individuals sufficiently smaller than that of infectious individuals can help 
to eliminate the infectious disease modeled by (1.1) if N <

∫
�

γ (x)
β(x)

dx. As a result, when the 
total population N is large, limiting the movement of susceptible or infectious individuals does 
not work effectively, which reveals that the infectious disease outbreak in an area with relatively 
small total population size is easier to be controlled, and looking for other strategies to control the 
disease is crucial when N is large. But if no other measures are taken effect, limiting the move-
ment of infectious individuals can prevent the infectious disease from spreading throughout the 
whole region. Theorem 2.10 demonstrates that enlarging infinitely the movement of susceptible 
individuals makes the density of susceptible individuals positive and spatially homogeneous, and 
the density of infectious individuals positive and spatially heterogeneous. Enlarging infinitely the 
movement of infectious individuals yields analogous conclusions. So, large diffusion rate of sus-
ceptible or infectious individuals is inadvisable. In practice, when an infectious disease such as 
COVID-19 breaks out in a region, people are required to reduce their activities in order to prevent 
spreading the disease to other areas.

It is also interesting to consider the asymptotic profile of the endemic steady state of the SIS 
epidemic model taking into account the constant recruitment of the susceptible individuals with 
nonlocal dispersal, as the diffusion rate of infectious individuals tends to zero. However, we find 
that the analytical process will be rather difficult and complicated. Particularly, different dispersal 
kernel functions describing the dispersal strategies for susceptible and infectious individuals are 
more realistic and worth consideration. In this case, (1.1) may not be reduced to a single equation 
to get the existence of positive stationary solutions by the method of lower and upper solutions. 
We look forward to finding a new method to prove the existence of stationary solutions of systems 
with nonlocal dispersal and leave this for further study.
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