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ABSTRACT
Over the past decades, the Multi-Task Learning (MTL) problem has attracted much attention in the artificial
intelligenceandmachine learning communities. However,mostpublishedwork in this area focusesonpoint
estimation; that is, estimating model parameters and/or making predictions. This article studies another
important aspect of the MTL problem: uncertainty quantification for model choices and predictions. To be
more specific, this article approaches the MTL problem with multivariate regression and develops a novel
method for deriving a probability density function on the space of all potential regression models. With
this density function, point estimates, as well as confidence and prediction ellipsoids, can be obtained for
quantities of interest, such as future observations. The proposed method, termed GMTask, is based on the
generalized fiducial inference (GFI) framework and is shown to enjoy desirable theoretical properties. Its
promising empirical properties are illustrated via a sequence of numerical experiments and applications to
two real datasets. Supplementary materials for this article are available online.
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1. Introduction

Multi-task learning (MTL) (e.g., Caruana 1997), a subfield of
machine learning, aims to jointly learn multiple related tasks
with the hope to improve the learning for each individual task.
In the past two decades, many approaches have been developed
to exploit the common structure shared amongst the tasks.
One popular approach is to model the problem with multivari-
ate regression and estimate the parameters through regulariza-
tion. For example, a novel method called calibrated multivariate
regression was proposed by Liu, Wang, and Zhao (2014). The
LASSOmethod of Tibshirani (1996) was extended to the multi-
task L1/L2 LASSO by Obozinski, Taskar, and Jordan (2006).
In addition, low rank modeling has also been used; for exam-
ple, see Yuan et al. (2007). Finally, methods that use differ-
ent norms (e.g., L0, L1 and/or L2) for regularization have also
been investigated; for example, see Evgeniou and Pontil (2007)
and Seneviratne and Solo (2012). Notice that these methods
allow the high-dimensional setting, and hence regularization
is required. For the low-dimensional setting, regularization is
not necessary.

Another approach is to use deep neural networks, where
the goal is to learn feature representations by using linear or
nonlinear transformations of the original features. For example,
the method of Zhang et al. (2014) learns common feature rep-
resentations among different tasks by sharing the first multiple
layers, and followed by several task specific layers. The authors of
Misra et al. (2016) start out with two separate identical network
architectures for two tasks, then use what they refer to as a
cross-stitch operation to learn related feature representation
for different tasks. In contrast to the multivariate regression
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approach, where the same data are shared by all the tasks, in
deep learning the features of different tasks could come from
different datasets.

This article follows the multivariate regression framework.
Let m be the number of tasks, p be the number of features
(or predictors), and n be the number of observations. The ith
observation is written as (xi,Y i), where xi is a feature vector of
length p and Y i is a response vector of length m. Multivariate
regression adopts the following model:

Yn×m = Xn×pBp×m + En×m, (1)

where Yn×m = (Y(1), . . . ,Y(m)) = (Y1, . . . ,Yn)T is the
response matrix, Xn×p = (x1, . . . , xn)T is the design matrix,
Bp×m = (β(1), . . . ,β(m)) = (βij) is the regression coef-
ficient parameter matrix, and En×m = (ε(1), . . . , ε(m)) =
(ε1, . . . , εn)T is the noise matrix. It is assumed that εi is iid
from Nm(0,�) with unknown covariance matrix �, and that E
and x1, . . . , xn are independent. This article will study the case
when p � n, the so-called high-dimensional scenario. Under
this situation, it often assumes that all the regression tasks share
a common sparsity pattern; that is, many rows of B are zero
vectors.

Up-to-date, most existing work for the MTL problem using
multivariate regression focuses on the issues of selecting a
model, estimating parameters of the selectedmodel, andmaking
predictions from the selected model. In other words, the major
focus has been on point estimation. This article looks at the
MTL problem from a different angle: it examines the issue
of uncertainty quantification. More specifically, this article
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applies the generalized fiducial inference (GFI) methodology of
Hannig et al. (2016) to perform statistical inference for theMTL
problem. In addition to providing point estimates for quantities
of interest, the new method also offers various uncertainty
measures, such as prediction ellipsoids for future observations.
To the best of our knowledge, this article is one of the earliest
that systematically addresses uncertainty quantification for the
MTL problem when p � n.

Equation (1) can be represented as an ensemble of univariate
linear regression model

Y(t) = Xβ(t) + ε(t), t = 1, . . . ,m.

It is also called the single-task learning problem, which trains
a regression model for each task separately. However, it does
not use the information that the responses are related amongst
different tasks. Therefore, compared with multi-task learning,
multiple univariate tasks perform poorly for uncertainty quan-
tification when the correlation between tasks or the number of
tasksm are relatively large.

A closely related work is Koner and Williams (2021), where
GFI is also applied to the multivariate regression problem.
More precisely, the authors apply the epsilon admissible
subsets (EAS) approach to perform group variable selection
for high-dimensional multivariate regression. In general, the
EAS approach can be seen as a way to approximate the so-
called generalized fiducial distribution (more below). The
focus of Koner and Williams (2021) is to perform variable
selection, which is somehow different from the goal of the
current article—uncertainty quantification. Nevertheless, the
EAS method of Koner and Williams (2021) can be extended
to quantify uncertainties, and is shown to be consistent under
some mild regularity conditions. Note that the EAS approach
was first proposed by Williams and Hannig (2019) to solve the
high-dimensional univariate regression problem, and later was
applied to the vector autoregressive processes by Williams, Xie,
and Hannig (2019).

Before proceeding, it is useful to highlight a major difference
between MTL and transfer learning: transfer learning aims to
improve the performance of one task (the target task) by bor-
rowing knowledge from other learned tasks (the source tasks),
while in multi-task learning the target and the source tasks
are learned simultaneously by borrowing knowledge from each
other.

The rest of this article is organized as follows. Section 2 pro-
vides background on the GFI methodology. Then in Section 3
this methodology is applied to the MTL problem to develop
the proposedmethod for uncertainty quantification. The result-
ing method is termed GMTask, short for Generalized fiducial
inference forMulti-Task, and Section 4 examines the theoretical
properties of GMTask. Empirical performance of GMTask is
illustrated via numerical experiments and applications to two
real data examples in Sections 5 and 6, respectively. Finally,
concluding remarks are offered in Section 7 and technical details
are delayed to the supplementary materials.

2. Background of Generalized Fiducial Inference

The original fiducial inference idea was first introduced by
Fisher in 1930s (Fisher 1930) with the goal to assign an appro-

priate statistical distribution on the parameter space when there
is no prior information and hence the classical Bayes’ theorem
is not applicable. For readers interested in the history of fiducial
inference, please refer to Hannig et al. (2016) and Hannig and
Lee (2009).

In the recent two decades, there have been lots of efforts
devoted to reformulating the fiducial concepts. Some mod-
ern modifications include Dempster-Shafer’s theory (Dempster
2008) and its related work inferential models (Martin and Liu
2015), confidence distributions (Xie and Singh 2013; Schweder
and Hjort 2016), and generalized inference (Weerahandi 1995).
In particular, theGFI framework is one of the successfulmodern
formulations of Fisher’s fiducial inference idea. This framework
has been successfully applied to various statistical learning prob-
lems, including wavelet regression (Hannig and Lee 2009) and
ultrahigh-dimensional regression (Lai, Hannig, and Lee 2015).

In the GFI framework, the relationship between the data Y
and the parameters θ can be expressed as

Y = G(θ ,U),
where G(·, ·) is a deterministic function,U is a random compo-
nent whose distribution is completely known (e.g., iid N(0, 1))
and independent with θ .

The essential idea behind the philosophy of GFI is the so-
called switch principle, which is also the idea behind maximum
likelihood estimation: assume y is the observed data of Y , then
the likelihood is a function of θ , so y is treated as fixed while θ

is random. With this in mind, for any given y if we assume the
inverse mapping of G always exists, we can define the following
set:

Qy(u) = {θ : y = G(θ , u)}, (2)
whereu is a realization ofU . There are two scenarios that inverse
mapping may not exist: no θ or more than one θ in the set of
{θ : y = G(θ , u)}. For the first case, we can remove those values
of u for which there is no solution and re-normalized the density
function of u. For the second case, it was suggested by Hannig
(2009) that any one of the solutions will give satisfactory results,
so we can randomly select one. These two strategies guarantee
the existence of the inverse mapping.

Thus, since the distribution of U is known, one can always
generate a random sample ũ1, ũ2, . . ., and then obtain a sample
of θ by (2):

θ̃1 = Qy(ũ1), θ̃2 = Qy(ũ2), . . .

We call {θ̃1, θ̃2, . . .} a fiducial sample of θ . Its function is similar
to Bayesian posterior samples, and we can use it to perform
statistical inference like constructing the confidence interval
for θ .

The procedure above implicitly defines a density function
for θ , which is termed generalized fiducial density (GFD).
Indeed, the GFD can be formally defined as the following limit:

lim
ε→0

[
argmin

θ

||y − G(θ , u)||
∣∣∣∣min

θ
||y − G(θ , u)|| ≤ ε

]
.

It was shown by Hannig et al. (2016) that, under some rea-
sonable smoothness assumptions, the GFD denoted as r(θ |y) is
absolutely continuous and is given by

r(θ |y) = f (y, θ)J(y, θ)∫
� f (y, θ ′)J(y, θ ′)dθ ′ , (3)
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where f (y, θ) is the likelihood function, and

J(y, θ) = D

(
d
dθ

G(θ , u)

∣∣∣∣
u=G−1(y,θ)

)
, (4)

where D(A) = det(ATA)
1
2 and u = G−1(y, θ) is the value of u

such that y = G(θ , u).
Equations (3) and (4) show the interesting connection

between GFI and Bayesian methodology: r(θ |y) in (3) behaves
like a Bayesian posterior with J(y, θ) as the “prior.” However, as
J(y, θ) depends on y, technically it is not a prior density. Note
that J(y, θ) is very similar to the Jeffreys’ prior.

Sometimes it is not possible to calculate the r(θ |y) in (3) ana-
lytically and r(θ |y) is only known up to a normalizing constant.
In this case, onemay resort to use theMCMCmethods to gener-
ate a fiducial sample from r(θ |y), which is often computationally
demanding.

When the model dimension is unknown, Equation (3) is
not applicable, which is the situation for the current problem.
To solve this problem, a method was proposed by Hannig and
Lee (2009) to introduce a penalty in the GFI framework. In
particular, it can be shown that the fiducial probability of any
modelM is proportional to

r(M) ∝ e−q(M)

∫
�

fM(y, θ)JM(y, θ)dθ , (5)

where fM(y, θ) is the likelihood, JM(y, θ) is the Jacobian (4),
and q(M) is the penalty term associated with the model M.
We will use the minimum description length (MDL) principle
(Rissanen 1989, 2007) to derive the penalty term q(M), which
shows excellent theoretical and empirical properties.

3. GMTask: GFI for Multi-Task Learning

This section applies the above GFI framework to the multi-
task learning problem using model (1). We will first calculate
JM(y, θ) in (4), then fM(y, θ), and finally r(M) in (5). We will
then develop a practical algorithm for simulating fiducial sam-
ples from the resulting r(M).

3.1. Derivation of r(M)

For this multi-task learning problem, θ contains three compo-
nents: {M,BM ,�M}, where M denotes a candidate model that
collects a group of predictors, BM is the parameter matrix of the
significant predictors coefficients, and� is the noise covariance
matrix. The data generating function is now

Y = G(M,BM ,�,U) = XMBM + U�
1
2 , M ∈ M, (6)

where XM is the design matrix for M, and M is a collection of
candidate models. We denotes

B̂M = (XT
MXM)−1XT

My

as the least square estimates of BM , and

SM = (y − XMB̂M)T(y − XMB̂M).

Using the vectorization of BM and Y to reformat (6), we obtain

JM(y, θ) = |det(XT
MXM)|m2 tr(SM�−1)

1
2 , (7)

wherem is the number of tasks, and tr(·) is the trace function of
the matrix.

Next, direct calculations show that the likelihood function is

fM(y, θ) (8)

∝ |�|− n
2 exp

{
tr

[
− 1
2

(
SM + (BM− B̂M)TXT

MXM(BM − B̂M)

)
�−1

]}
.

For the penalty term q(M) in (5), we use the MDL principle
to derive its expression, which gives

q(M) = |M|m
2

log n + |M| log p
= |M|

(m
2
log n + log p

)
, (9)

where |M| is the number of significant predictors in modelM.
To have a stabler performance, we approximate tr(SM�−1)

by its expectation. Then substituting (7), (8), and (9) into (5),
we obtain the following generalized fiducial probability for any
candidate modelM

r(M) ∝ R(M)

= �m(
n − |M| − m

2
) × |πSM|− n−|M|−m

2

×[(n − |M|)m] 12 × (n−m
2 p−1)|M|, (10)

where �m(·) is multivariate gamma function.

3.2. Practical Generation of Fiducial Sample

In this section, we propose a procedure to practically generate
fiducial sample of {M,B,�} for themulti-task learning problem.
The main idea is to first generate a M from (10), then a �M
from (12), and lastly a BM from (14).

Generation of M: Notice that the total number of possible
candidate models is huge (2p and p � n) and that, under
a sparsity assumption, many of these models have negligible
values of r(M). Therefore, a logical way to reduce the computa-
tional burden is to only consider a small subset of the candidate
models that have nonnegligible values of r(M). In the sequel,
we denote this collection of candidate models as M∗. As to be
shown below, by doing so the loss in statistical efficiency is, if
any, minimal.

Now we propose a two-stage method to obtain M∗. In the
first stage a fast screening procedure is applied to remove a
large number of insignificant predictors, so that the number of
predictors is reduced from p to p′, where p′ < n. Our screening
procedure is inspired by the sure independence screening (SIS)
procedure in Fan and Lv (2008), which ranks the predictors
according to their absolute values of marginal correlations with
the response. For the current problem where we have multivari-
ate responses, we suggest calculating the sum of marginal corre-
lation across different tasks for each predictor; this is reasonable
when we assume different tasks share the same sparsity pattern.
We call this procedure Multi-task SIS, and in practice we set
p′ = n − 1. Notice that Multi-task SIS can be skipped when
p = O(n), and but it saves a huge amount of computational time
when p � n.
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To further reduce the candidate model space, where the total
number of models is 2p′ , in the second stage we apply the multi-
task L1/L2 Lasso of Obozinski, Taskar, and Jordan (2006) to the
remaining p′ predictors that survivedMulti-task SIS. The L1/L2
block-regularization is commonly referred to as the groupLasso,
and the objective function to minimize is

1
2n

||Y − XB||2F + λ

p∑
i=1

√√√√ m∑
j=1

β2
ij ,

where || · ||F is the Frobenius norm. Therefore, one can perform
row selection by solving the optimization problem above. We
take the sequence of nested models that lies on the regulariza-
tion path or so-called solution path to form M∗. Note that the
multi-task L1/L2 Lasso solution path can be derived quickly by
the coordinate descent method (Friedman, Hastie, and Tibshi-
rani 2010). For the purpose not tomissing any candidatemodels
with nonnegligible values of r(M), we repeat the L1/L2 Lasso
procedure on the randomly selected subset of the data multiple
times, and take all the models that lie on the different resulting
solution paths to form M∗. By using this two-stage method, it
is reasonable to expect that

∑
M∈M∗ r(M) is very close to 1 and

the size ofM∗ is substantially smaller than 2p.
OnceM∗ is obtained, for eachM ∈ M∗, we compute

R(M) = �m(
n−|M|−m

2 ) × |πSM|− n−|M|−m
2

×[(n − |M|)m] 12 × (n−m
2 p−1)|M|.

Then, for each M ∈ M∗, the generalized fiducial probability
r(M) can be well approximated by

r̂(M) = R(M)∑
M′∈M∗ R(M′)

, (11)

and we can generate aM from it.
Generation of �M: For any givenM, it can be shown that the

generalized fiducial distribution of �M conditional onM is, for
example, Triantafyllopoulos (2011)

�M ∼ W−1
m (n − |M|, SM), (12)

whereW−1
m (·, ·) is the inverseWishart distribution with the first

parameter as the degrees of freedom and second one as the scale
matrix. Therefore, �M can be generated from (12) once M is
given.

Generation of BM: Finally, it is straightforward to show that
the generalized fiducial distribution ofBM conditional onM and
�M is

vec(BM) ∼ N
(
vec(B̂M),�M ⊗ (XT

MXM)−1), (13)

where vec(·) is vectorization of the matrix, B̂M is the maximum
likelihood estimates of BM , and ⊗ is the Kronecker product.
Equation (13) has a equivalent form in matrix normal distribu-
tion which leads to a more efficient sampling algorithm:

BM ∼ MN
(
B̂M , (XT

MXM)−1,�M
)
, (14)

where MN(·, ·, ·) is the matrix normal distribution with the
first parameter as the mean, the second one as the among-
row covariance matrix, and the last one as the among-column
covariance matrix.

To sum up, we can generate a fiducial sample {M̃,BM̃ ,�M̃}
by the following steps:

1. Draw a model M̃ ∈ M∗ from (11).
2. Generate �M̃ from (12) given M̃.
3. Sample BM̃ from (14) given M̃ and �M̃ .

Notice that in carrying out the above three steps, no MCMC
methods are required, and hence the generation of a fiducial
sample is fast.

3.3. Point Estimates, Confidence Ellipsoids, and Prediction
Ellipsoids

Repeating the above procedure multiple times, one can obtain
multiple copies of the fiducial sample {M̃, B̃, �̃}, which is sim-
ilar to Bayesian posterior sample and can be used for infer-
ence. We remark that the multiple copies of {M̃, B̃, �̃} do not
necessary share the same candidate model, as they are drawn
from (11).

For any xi, making inference on the conditional mean μxi =
E(Y i|xi) = BTxi can be achieved by using the fiducial sample
μ̃xi = B̃Txi. Denote the sample mean of these μ̃xi ’s as μ̂xi and
their sample covariance matrix as Ŝxi . Then one can naturally
use μ̂xi as a point estimate forμxi , while for a 100(1−α)% con-
fidence ellipsoid for μxi , one can use the following set (Johnson
and Wichern 2002)

{μ :
(
μ − μ̂xi

)T Ŝ−1
xi

(
μ − μ̂xi

) ≤ χ2
m(α)}, (15)

where χ2
m(α) is the upper (100α)th percentile of a χ2-

distribution withm degrees of freedom.
One can use a similar approach to obtain a point estimate

and a prediction ellipsoid for any new (or future) observation
Y i at xi. When comparing to its conditional expectation μxi =
E(Y i|xi) = BTxi, the new observation Y i has a higher vari-
ability, which can be accounted for by suitably adding a noise
term to the fiducial sample. More specifically, instead of using
μ̃xi = B̃Txi, we use μ̃∗

xi = μ̃xi + �̃
1
2Z, where Z ∼ N(0, Im).

Let the sample mean of these μ̃∗
xi ’s be μ̂

∗
xi and their sample

covariance matrix be Ŝ∗
xi . Then, as before, one can use μ̂

∗
xi as

a point estimate for Y i and the following set as a 100(1 − α)%
prediction ellipsoid for Y i (Johnson and Wichern 2002):

{μ :
(
μ − μ̂

∗
xi
)T Ŝ∗−1

xi
(
μ − μ̂

∗
xi
) ≤ χ2

m(α)}. (16)

4. Theoretical Properties

This section presents some asymptotic properties of the above
generalized fiducial based method. We assume that p is diverg-
ing and the size of the true model is either fixed or diverging.
Before presenting our theorem, we first provide the following
necessary notations and assumptions, which are standard in
related work, for example, Hannig et al. (2016) and Yanagihara
et al. (2015).

4.1. Preliminaries and Notations

Let M be any model and M0 be the true model, while |M| and
|M0| be the number of predictors inM andM0, respectively. To
reduce the candidate model space, we only consider M ∈ M
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whereM = {M : |M| ≤ c|M0|} for a fixed finite constant c > 1;
that is, the model whose size is comparable to the true model.

DenoteM+ = {M : M0 ⊂ M},M− = {M : M0 � M} and
M = M− ∪ {M0} ∪ M+. Define

SM = YT(In − HM)Y , �̂M = 1
n
SM ,

where HM = XM(XT
MXM)−1XT

M is the projection matrix to
the subspace spanned by the columns of XM . For simplicity, we
write XM0 as X0, same for B and�. We assume that the data are
generated from the following true model:

Y ∼ Nn×m(X0B0,�0 ⊗ In).

In order to prove the consistency of our method, we need to
describe the noncentrality matrix. For a model M ∈ M, let a
m × m noncentrality matrix denoted by

	(M) = �
− 1

2
0 BT

0XT
0 (In − HM)X0B0�

− 1
2

0 .

4.2. Assumptions

We need the following assumptions.

(A1) The true model M0 ∈ M, where M = {M : |M| ≤
c|M0|} for a fixed finite constant c > 1.

(A2) lim
n→∞

1
nX

T
MXM exists and is positive definite for all M ∈

M, and lim
n→∞

1
n	(M) = �M exists and is not the zero

matrix for allM ∈ M−.
(A3) When p is too large, a variable screening procedure can be

used to reduce the size of M in practice. That screening
procedure should result in a class of candidatemodelsM∗
that satisfies:

P(M0 ∈ M∗) → 1 and log(|M∗
j |) = o(j log n),

(17)
whereM∗

j denotes the set of all submodels inM∗ of size
j. The first condition in (17) ensures that the true model
is contained in M∗, while the second condition in (17)
implies that the size of model spaceM∗ is not too large.

4.3. Main Result

We establish the following theorem and its proof can be found
in the Appendix.

Theorem 1. Assume A1–A2 hold. As n → ∞, p → ∞, log p =
o(n) and |M0| + m = o(log n), we have

max
M �=M0,M∈M

r(M)

r(M0)

P−→ 0. (18)

Moreover, if A3 also holds, we have

r(M0)∑
M∈M∗ r(M)

P−→ 1. (19)

Theorem 1 shows that the true model M0 has the highest
generalized fiducial probability among all the candidate models
in M. However, Equation (18) does not imply (19) in general

since the model candidate space can be very large as p goes
to infinity. If we can constrain the candidate models in a class
that satisfies (17), then the true model will be selected with
probability tending to 1.

In practice, we use the multi-task L1/L2 Lasso to generate
the candidate models as discussed in Section 3.2. The resulting
model space satisfies (17), as the multi-task Lasso is selec-
tion consistent for some λ as shown in Obozinski, Wainwright,
and Jordan (2008). With Theorems 2 and 3 of Hannig et al.
(2016), Theorem 1 also implies that the confidence ellipsoids
andprediction ellipsoids constructed using the generalized fidu-
cial density (10) will have correct asymptotic coverage rates,
and the generalized fiducial distribution and the derived point
estimates are consistent.

5. Simulation Experiments

A sequence of simulation experiments has been performed to
evaluate the practical performance of GMTask, and its relative
merits when compared to other approaches.

5.1. Uncertainty Quantification

Inspired by the setting in Fan, Guo, andHao (2012) and Bedrick
and Tsai (1994), we consider the following data-generating
model

Y i = b(X1 + · · · + Xk)1m + εi,

where εi is iid as Nm(0,�), 1m is a m × 1 vector of ones, k is
the number of significant predictors with nonzero coefficients,
and b is the coefficient value that controls the signal-to-noise
ratio. The covariates Xi’s are generated from standard normal
distribution with cor(Xi,Xj) = ρ

|i−j|
X . We set the covariance

matrix� = (1−ρ�)Im+ρ�Jm, where Jm is am×mmatrix of
ones. Two combinations of (n, p,m, k) were used: (200, 2000, 2,
3) and (200, 2000, 3, 3). For each combination setting, we used
three different b, two different ρX and three different ρ� : b =
(1/

√
k, 2/

√
k, 3/

√
k), ρX = (0, 0.5) and ρ� = (0.3, 0.6, 0.8).

Therefore, a total of 2 × 3 × 2 × 3 = 36 experimental settings
were considered. The number of repetitions for each setting was
1000.

For each simulated dataset, we applied fivemethods to obtain
various estimates B̂ and �̂ for the coefficient matrix B and the
covariance matrix �, respectively. Then, we constructed the
prediction ellipsoids for new Y i’s and the confidence ellipsoids
for the conditional mean E(Y i|xi) for 50 randomly selected new
designed points xi’s. The five methods were

• GMTask: the proposed GFI based method with 10,000 fidu-
cial samples of {M,B,�};

• V-L0LS-CD: the method of Seneviratne and Solo (2012);
• AICc: the method of Bedrick and Tsai (1994);
• BIC: similar to AICc but uses BIC to select the final model;

and
• Oracle: the method that uses the true model.

Of course, the last method, Oracle, is not applicable in practice,
but it is used as a benchmark comparison here. For the last four
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methods, we first applied them to perform model selection in
M∗, then used the classical multivariate linear model theory
(Johnson andWichern 2002) to the final selectedmodel to build
the ellipsoids. For GMTask, we used (15) and (16) to construct
the ellipsoids.

For all five methods, we constructed 90%, 95%, and 99%
prediction ellipsoids and confidence ellipsoids for all 1000 simu-
lated datasets from each simulation setting. To evaluate the rela-
tive performances, we calculated the average empirical coverage
rates for these prediction ellipsoids and confidence ellipsoids.
Those results that correspond to ρ� = 0.6 are summarized in
Tables 1–2. The remaining results are similar and can be found
in a separate supplementary materials. It can be seen that the
proposed GMTask was nearly as good as the oracle method,
and it outperformed other non-oracle methods significantly
especially for the confidence ellipsoids of the conditional mean
function E(Y i|xi).

5.2. Point Estimates

Furthermore, we also calculatedMean Squared Prediction Error
(MSPE) and Mean Squared Mahalanobis Distance (MSMD) to
compare the performances of predicting a new observation Y i
at xi, defined, respectively, as

MSPE(Y , Ŷ) = 1
n

n∑
i=1

(Y i − Ŷ i)
T(Y i − Ŷ i)

and

MSMD(Y , Ŷ) = 1
n

n∑
i=1

(Y i − Ŷ i)
TD−1

i (Y i − Ŷ i).

Here, Ŷ i, a m × 1 vector, is a generic notation that denotes
the prediction of Y i by any one of the five methods. And Di
is cov(Y i − Ŷ i,oracle) = (1 + xTi0(XT

0X0)
−1xi0)�0, where xi0 is

the true model M0 subset of xi and Ŷ i,oracle = B̂T
oraclexi0 is the

oracle prediction forY i. Note that whenDi is an identitymatrix,
MSMD reduces to MSPE.

Similarly, tomeasure the performance of predicting themean
function E(Y i|xi) at xi, we used Mean Squared Error (MSE)
and Mean Squared Mahalanobis Distance (MSMD), defined,
respectively, as

MSE
(
E(Y), Ŷ

) = 1
n

n∑
i=1

(
E(Y i) − Ŷ i

)T(
E(Y i) − Ŷ i

)
and

MSMD
(
E(Y), Ŷ

) = 1
n

n∑
i=1

(
E(Y i) − Ŷ i

)TD̃i
−1(E(Y i) − Ŷ i

)
,

where E(Y i) = BT
0 xi0 and D̃i = cov(Ŷ i,oracle) = xTi0(XT

0X0)
−1

xi0�0. Again, MSMD reduces to MSE when D̃i is an identity
matrix.

The results for ρ� = 0.6 are summarized in Tables 3
and 4, while the remaining results are given in the supple-
ment. From these tables, one can see that the MSE, MSPE and
MSMD of the GMTask estimates are usually not much larger
than those from Oracle. For the conditional mean E(Y i|xi), the
GMTask estimates outperformed the other non-oracle estimates
significantly.

5.3. MisspecifiedModels

In all the previous experiments we only consider the situation
that the true predictors are amongst the p predictors that are
available to themethods. Nowwe consider the case that some of
the true predictors are not available. In other words, model (1) is
incorrect, asE(Y) cannot be represented as a linear combination
of the p predictors Xi’s.

The following four models were used to generate the noisy
data:

1: Y i = b(X1 + X2 + X2001)1m + εi, where X2001 is not one of
the p = 2000 available predictors Xi’s;

2: Y i = b(X1 + X2 + X1999X2000)1m + εi, where X1999X2000 is
an interaction term;

3: Y i = b(X1 +X2 +X2
2000)1m +εi, where X2

2000 is the squared
term of X2000;

4: Y i = b(X1 +X2 +X2
1)1m +εi, where X2

1 is the squared term
of X1.

Except for the model formulations, the remaining experi-
mental parameters were identical to Section 5.1. The average
empirical coverage rates of the prediction ellipsoids for predict-
ing Y i with ρ� = 0.6 are reported in Tables 5–8. Results for
the other values of ρ� are given in the supplementary materials.
When compared with other methods, GMTask provided more
reliable results.

6. Real Data Application: Polymerase Chain Reaction
Data

An experiment was conducted by Lan et al. (2006) to examine
the genetics of two inbred mouse populations: B6 and BTBR.
The expression levels of 22,575 genes of 60 mice were mea-
sured. Some physiological phenotypes, including the numbers
of stearoyl-CoA desaturase 1 (SCD1) and phosphoenopyruvate
carboxykinase (PEPCK), were also measured by quantitative
real-time polymerase chain reaction. Since n = 60, p = 22575
andm = 2, it is a high dimensional multi-task learning problem
as p � n. A so-called credible approach was used by Bondell
and Reich (2012) to predict each of these two phenotypes inde-
pendently based on the gene expression data, and therefore it
was a single task method.

The following procedure was conducted to evaluate the
empirical coverage rates produced by the four methods
compared before: GMTask AICc, BIC and V-L0LS-CD. First,
we left out the first observation as the test point. Then we
applied GMTask and the other methods to the remaining 59
observations to construct the 90%, 95%, and 99% prediction
ellipsoids for this first observation. We repeated this leave-
one-out process with the remaining 59 observations and the
resulting empirical coverages of these prediction ellipsoids are
summarized in Table 9. It can be seen that GMTask is the
preferred method as its coverage rates of the 90%, 95%, and
99%prediction ellipsoids are all close to the nominal levels. Also
notice that the volume of the 90% GMTask prediction ellipsoid
is smaller than that of the 99% AICc prediction ellipsoid, while
their empirical coverage rates are both 0.900. Overall, in terms
ofmaking predictions, GMTask ismore accurate for quantifying
the uncertainties for this dataset.
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Table 1. Empirical coverage rates of the prediction ellipsoids for Y i when ρ� = 0.6.

90% 95% 99%

m = 2 b = 1/
√
3 ρX = 0 GMTask 0.898(11.822) 0.949(15.381) 0.990(23.644)

AICc 0.871(11.306) 0.930(14.762) 0.984(22.884)
BIC 0.880(11.454) 0.936(14.956) 0.985(23.183)

V-L0LS-CD 0.801(10.314) 0.873(13.469) 0.950(20.883)
Oracle 0.899(11.843) 0.950(15.462) 0.991(23.967)

b = 2/
√
3 ρX = 0 GMTask 0.897(11.787) 0.947(15.335) 0.989(23.573)

AICc 0.872(11.308) 0.929(14.765) 0.983(22.888)
BIC 0.882(11.482) 0.937(14.992) 0.986(23.238)

V-L0LS-CD 0.864(11.258) 0.924(14.700) 0.980(22.787)
Oracle 0.897(11.807) 0.949(15.417) 0.990(23.896)

b = 3/
√
3 ρX = 0 GMTask 0.898(11.843) 0.949(15.408) 0.989(23.686)

AICc 0.873(11.415) 0.931(14.905) 0.984(23.105)
BIC 0.885(11.615) 0.941(15.166) 0.986(23.507)

V-L0LS-CD 0.880(11.545) 0.935(15.074) 0.984(23.367)
Oracle 0.898(11.862) 0.949(15.488) 0.990(24.007)

b = 1/
√
3 ρX = 0.5 GMTask 0.898(11.854) 0.948(15.422) 0.990(23.707)

AICc 0.870(11.285) 0.930(14.735) 0.983(22.842)
BIC 0.879(11.428) 0.935(14.921) 0.985(23.129)

V-L0LS-CD 0.844(10.935) 0.907(14.279) 0.971(22.136)
Oracle 0.898(11.847) 0.949(15.468) 0.990(23.976)

b = 2/
√
3 ρX = 0.5 GMTask 0.902(11.800) 0.950(15.353) 0.989(23.601)

AICc 0.877(11.350) 0.933(14.821) 0.984(22.975)
BIC 0.888(11.539) 0.941(15.066) 0.987(23.353)

V-L0LS-CD 0.883(11.487) 0.937(14.999) 0.985(23.250)
Oracle 0.903(11.819) 0.950(15.432) 0.989(23.919)

b = 3/
√
3 ρX = 0.5 GMTask 0.897(11.804) 0.947(15.358) 0.989(23.609)

AICc 0.873(11.407) 0.932(14.895) 0.984(23.090)
BIC 0.885(11.618) 0.940(15.169) 0.987(23.512)

V-L0LS-CD 0.885(11.616) 0.940(15.167) 0.986(23.510)
Oracle 0.897(11.823) 0.948(15.437) 0.989(23.927)

m = 3 b = 1/
√
3 ρX = 0 GMTask 0.898(40.284) 0.947(56.304) 0.988(98.485)

AICc 0.876(38.891) 0.934(54.691) 0.984(96.996)
BIC 0.893(39.987) 0.945(56.228) 0.988(99.706)

V-L0LS-CD 0.891(39.902) 0.943(56.108) 0.987(99.495)
Oracle 0.899(40.477) 0.949(56.917) 0.989(100.925)

b = 2/
√
3 ρX = 0 GMTask 0.900(40.328) 0.949(56.365) 0.989(98.592)

AICc 0.881(39.080) 0.936(54.957) 0.985(97.468)
BIC 0.897(40.210) 0.947(56.541) 0.989(100.260)

V-L0LS-CD 0.897(40.250) 0.948(56.597) 0.989(100.361)
Oracle 0.901(40.530) 0.951(56.991) 0.990(101.057)

b = 3/
√
3 ρX = 0 GMTask 0.898(40.207) 0.948(56.196) 0.988(98.295)

AICc 0.878(39.070) 0.936(54.942) 0.985(97.441)
BIC 0.895(40.091) 0.947(56.374) 0.989(99.965)

V-L0LS-CD 0.895(40.145) 0.947(56.449) 0.989(100.098)
Oracle 0.899(40.404) 0.949(56.814) 0.989(100.744)

b = 1/
√
3 ρX = 0.5 GMTask 0.899(40.393) 0.949(56.456) 0.989(98.750)

AICc 0.875(38.790) 0.934(54.549) 0.985(96.745)
BIC 0.895(39.961) 0.946(56.192) 0.989(99.643)

V-L0LS-CD 0.894(40.019) 0.946(56.273) 0.988(99.786)
Oracle 0.900(40.451) 0.951(56.879) 0.990(100.859)

b = 2/
√
3 ρX = 0.5 GMTask 0.899(40.195) 0.948(56.180) 0.989(98.268)

AICc 0.880(39.038) 0.935(54.898) 0.986(97.363)
BIC 0.895(40.074) 0.947(56.350) 0.989(99.923)

V-L0LS-CD 0.896(40.162) 0.947(56.474) 0.989(100.141)
Oracle 0.899(40.392) 0.949(56.797) 0.990(100.713)

b = 3/
√
3 ρX = 0.5 GMTask 0.898(40.256) 0.947(56.265) 0.989(98.415)

AICc 0.879(39.246) 0.937(55.190) 0.986(97.881)
BIC 0.896(40.228) 0.946(56.567) 0.989(100.307)

V-L0LS-CD 0.896(40.291) 0.947(56.654) 0.989(100.461)
Oracle 0.898(40.449) 0.948(56.877) 0.989(100.855)

NOTE: Numbers in parentheses are averaged volumes of the ellipsoids. This table is for the casewhen (n, p, k) = (200, 2000, 3). Best results are bolded (other thanOracle’s).

7. Conclusion

In this article, we studied the problem of uncertainty quan-
tification in multi-task learning under the “large p small n”

scenario. We adopted the GFI framework to perform statistical
inference for this problem. In particular, we developedGMTask,
a method for generating fiducial samples that can be used
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Table 2. Empirical coverage rates of the confidence ellipsoids for E(Y i|xi)when ρ� = 0.6.

90% 95% 99%

m = 2 b = 1/
√
3 ρX = 0 GMTask 0.916(0.190) 0.961(0.247) 0.993(0.380)

AICc 0.529(0.317) 0.619(0.414) 0.763(0.641)
BIC 0.603(0.251) 0.683(0.327) 0.812(0.507)

V-L0LS-CD 0.454(0.515) 0.529(0.672) 0.657(1.043)
Oracle 0.906(0.179) 0.954(0.234) 0.992(0.362)

b = 2/
√
3 ρX = 0 GMTask 0.901(0.188) 0.948(0.244) 0.990(0.375)

AICc 0.527(0.319) 0.618(0.417) 0.770(0.646)
BIC 0.628(0.241) 0.709(0.315) 0.834(0.488)

V-L0LS-CD 0.601(0.304) 0.676(0.396) 0.796(0.614)
Oracle 0.894(0.179) 0.945(0.234) 0.990(0.363)

b = 3/
√
3 ρX = 0 GMTask 0.905(0.187) 0.952(0.244) 0.991(0.374)

AICc 0.545(0.327) 0.639(0.427) 0.789(0.662)
BIC 0.675(0.231) 0.752(0.302) 0.867(0.467)

V-L0LS-CD 0.690(0.253) 0.763(0.331) 0.863(0.512)
Oracle 0.899(0.180) 0.948(0.235) 0.990(0.365)

b = 1/
√
3 ρX = 0.5 GMTask 0.911(0.200) 0.952(0.260) 0.986(0.399)

AICc 0.522(0.320) 0.610(0.418) 0.758(0.647)
BIC 0.577(0.256) 0.661(0.334) 0.798(0.517)

V-L0LS-CD 0.531(0.384) 0.608(0.501) 0.734(0.777)
Oracle 0.900(0.180) 0.947(0.234) 0.988(0.363)

b = 2/
√
3 ρX = 0.5 GMTask 0.907(0.187) 0.955(0.243) 0.990(0.373)

AICc 0.546(0.324) 0.638(0.423) 0.788(0.656)
BIC 0.656(0.235) 0.735(0.306) 0.854(0.475)

V-L0LS-CD 0.685(0.256) 0.758(0.334) 0.856(0.518)
Oracle 0.901(0.179) 0.951(0.234) 0.990(0.363)

b = 3/
√
3 ρX = 0.5 GMTask 0.902(0.183) 0.950(0.238) 0.988(0.366)

AICc 0.553(0.325) 0.648(0.424) 0.799(0.657)
BIC 0.700(0.221) 0.776(0.289) 0.884(0.448)

V-L0LS-CD 0.742(0.228) 0.810(0.298) 0.897(0.461)
Oracle 0.896(0.178) 0.946(0.233) 0.988(0.361)

m = 3 b = 1/
√
3 ρX = 0 GMTask 0.901(0.094) 0.950(0.132) 0.989(0.230)

AICc 0.554(0.202) 0.648(0.284) 0.798(0.505)
BIC 0.784(0.109) 0.846(0.153) 0.921(0.271)

V-L0LS-CD 0.808(0.116) 0.866(0.163) 0.928(0.289)
Oracle 0.899(0.093) 0.950(0.130) 0.990(0.231)

b = 2/
√
3 ρX = 0 GMTask 0.902(0.095) 0.951(0.132) 0.990(0.232)

AICc 0.560(0.206) 0.657(0.290) 0.808(0.514)
BIC 0.818(0.104) 0.878(0.146) 0.943(0.259)

V-L0LS-CD 0.842(0.104) 0.898(0.147) 0.954(0.260)
Oracle 0.898(0.093) 0.949(0.131) 0.990(0.233)

b = 3/
√
3 ρX = 0 GMTask 0.898(0.095) 0.951(0.133) 0.992(0.233)

AICc 0.570(0.205) 0.667(0.288) 0.817(0.510)
BIC 0.814(0.104) 0.876(0.146) 0.944(0.259)

V-L0LS-CD 0.836(0.103) 0.895(0.145) 0.954(0.258)
Oracle 0.895(0.094) 0.950(0.132) 0.991(0.234)

b = 1/
√
3 ρX = 0.5 GMTask 0.896(0.099) 0.942(0.138) 0.981(0.242)

AICc 0.547(0.205) 0.640(0.288) 0.788(0.510)
BIC 0.778(0.109) 0.842(0.153) 0.919(0.271)

V-L0LS-CD 0.817(0.111) 0.874(0.156) 0.935(0.276)
Oracle 0.898(0.093) 0.949(0.131) 0.990(0.232)

b = 2/
√
3 ρX = 0.5 GMTask 0.893(0.094) 0.945(0.131) 0.988(0.230)

AICc 0.563(0.207) 0.658(0.292) 0.814(0.517)
BIC 0.809(0.104) 0.869(0.146) 0.941(0.259)

V-L0LS-CD 0.839(0.103) 0.896(0.145) 0.956(0.257)
Oracle 0.890(0.093) 0.944(0.131) 0.988(0.232)

b = 3/
√
3 ρX = 0.5 GMTask 0.887(0.094) 0.942(0.132) 0.989(0.230)

AICc 0.572(0.207) 0.671(0.291) 0.826(0.516)
BIC 0.828(0.101) 0.890(0.142) 0.955(0.253)

V-L0LS-CD 0.846(0.101) 0.905(0.141) 0.966(0.251)
Oracle 0.886(0.094) 0.941(0.132) 0.989(0.233)

NOTE: Numbers in parentheses are averaged volumes of the ellipsoids. This table is for the casewhen (n, p, k) = (200, 2000, 3).Best results are bolded (other than Oracle’s).

to construct various point estimates, confidence ellipsoids
and prediction ellipsoids. Our theoretical results show that,
under some mild regularity conditions, the estimates obtained

by GMTask are consistent, while the confidence ellipsoids
and prediction ellipsoids enjoy correct asymptotic frequentist
properties. Numerical results from simulation experiments
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Table 3. Bias of the estimates of Y i when ρ� = 0.6.

m = 2 m = 3

MSPE MSMD MSPE MSMD

b = 1/
√
3 ρX = 0 GMTask 2.036(0.075) 1.999(0.063) 3.048(0.103) 3.008(0.078)

AICc 2.225(0.083) 2.129(0.067) 3.309(0.114) 3.156(0.082)
BIC 2.163(0.080) 2.085(0.065) 3.109(0.106) 3.044(0.079)

V-L0LS-CD 2.595(0.101) 2.393(0.077) 3.122(0.107) 3.048(0.079)
Oracle 2.035(0.075) 1.997(0.063) 3.045(0.103) 3.007(0.078)

b = 2/
√
3 ρX = 0 GMTask 2.037(0.075) 2.008(0.063) 3.021(0.103) 2.984(0.077)

AICc 2.223(0.082) 2.140(0.067) 3.261(0.112) 3.124(0.081)
BIC 2.142(0.079) 2.082(0.066) 3.060(0.104) 3.008(0.078)

V-L0LS-CD 2.249(0.085) 2.154(0.068) 3.057(0.104) 3.005(0.078)
Oracle 2.036(0.075) 2.007(0.063) 3.020(0.103) 2.983(0.077)

b = 3/
√
3 ρX = 0 GMTask 2.028(0.075) 2.003(0.064) 3.056(0.104) 3.011(0.078)

AICc 2.202(0.082) 2.126(0.068) 3.286(0.114) 3.145(0.082)
BIC 2.110(0.078) 2.061(0.066) 3.091(0.106) 3.032(0.078)

V-L0LS-CD 2.150(0.080) 2.088(0.067) 3.089(0.106) 3.029(0.078)
Oracle 2.028(0.075) 2.002(0.064) 3.056(0.104) 3.011(0.078)

b = 1/
√
3 ρX = 0.5 GMTask 2.051(0.076) 2.010(0.063) 3.065(0.104) 2.995(0.077)

AICc 2.229(0.084) 2.135(0.067) 3.309(0.114) 3.138(0.081)
BIC 2.173(0.082) 2.095(0.066) 3.110(0.106) 3.025(0.078)

V-L0LS-CD 2.393(0.093) 2.247(0.072) 3.110(0.106) 3.024(0.078)
Oracle 2.041(0.076) 2.004(0.063) 3.046(0.103) 2.987(0.077)

b = 2/
√
3 ρX = 0.5 GMTask 2.011(0.075) 1.983(0.063) 3.026(0.102) 2.981(0.077)

AICc 2.188(0.082) 2.109(0.067) 3.267(0.112) 3.119(0.081)
BIC 2.108(0.079) 2.052(0.065) 3.069(0.104) 3.005(0.078)

V-L0LS-CD 2.136(0.080) 2.070(0.066) 3.063(0.104) 3.001(0.078)
Oracle 2.010(0.075) 1.982(0.063) 3.026(0.102) 2.980(0.077)

b = 3/
√
3 ρX = 0.5 GMTask 2.035(0.075) 2.009(0.064) 3.047(0.103) 3.012(0.078)

AICc 2.206(0.082) 2.131(0.068) 3.262(0.112) 3.143(0.081)
BIC 2.105(0.078) 2.059(0.065) 3.077(0.104) 3.030(0.078)

V-L0LS-CD 2.122(0.079) 2.069(0.066) 3.072(0.104) 3.026(0.078)
Oracle 2.035(0.075) 2.008(0.064) 3.046(0.103) 3.012(0.078)

NOTE: Numbers in parentheses are standard errors. This table is for the case when (n, p, k) = (200, 2000, 3). Smallest values are bolded (other than Oracle’s).

Table 4. Bias of the estimates of E(Y i|xi)when ρ� = 0.6.

m = 2 m = 3

MSPE MSMD MSPE MSMD

b = 1/
√
3 ρX = 0 GMTask 0.031(0.002) 2.124(0.181) 0.047(0.003) 3.109(0.106)

AICc 0.218(0.010) 57.641(218.803) 0.296(0.013) 28.919(3.624)
BIC 0.154(0.008) 48.798(218.743) 0.106(0.007) 9.334(1.809)

V-L0LS-CD 0.584(0.032) 87.937(108.601) 0.124(0.011) 10.576(2.510)
Oracle 0.030(0.002) 1.939(0.061) 0.045(0.002) 3.011(0.078)

b = 2/
√
3 ρX = 0 GMTask 0.032(0.002) 2.156(0.115) 0.047(0.002) 3.087(0.120)

AICc 0.216(0.010) 26.482(3.876) 0.291(0.013) 29.436(3.963)
BIC 0.138(0.008) 16.148(2.722) 0.085(0.006) 7.158(1.123)

V-L0LS-CD 0.245(0.017) 29.253(5.422) 0.084(0.007) 7.023(1.585)
Oracle 0.031(0.002) 2.026(0.064) 0.046(0.002) 3.018(0.078)

b = 3/
√
3 ρX = 0 GMTask 0.031(0.002) 2.161(0.269) 0.048(0.002) 3.075(0.108)

AICc 0.207(0.009) 25.380(4.637) 0.281(0.013) 27.724(4.629)
BIC 0.114(0.007) 13.813(3.518) 0.085(0.006) 7.062(1.159)

V-L0LS-CD 0.153(0.012) 19.688(9.590) 0.083(0.006) 6.422(1.118)
Oracle 0.030(0.002) 2.001(0.063) 0.048(0.002) 3.016(0.077)

b = 1/
√
3 ρX = 0.5 GMTask 0.040(0.003) 2.477(0.140) 0.065(0.006) 3.533(0.139)

AICc 0.224(0.010) 29.566(14.757) 0.308(0.014) 32.441(6.882)
BIC 0.165(0.009) 20.749(7.038) 0.107(0.007) 9.355(1.648)

V-L0LS-CD 0.378(0.024) 51.046(20.985) 0.111(0.010) 9.449(2.323)
Oracle 0.031(0.002) 2.006(0.065) 0.046(0.002) 2.993(0.078)

b = 2/
√
3 ρX = 0.5 GMTask 0.031(0.002) 2.080(0.141) 0.047(0.002) 3.064(0.081)

AICc 0.209(0.009) 26.972(11.373) 0.285(0.013) 30.611(9.020)
BIC 0.125(0.007) 14.780(3.026) 0.086(0.006) 8.094(4.864)

V-L0LS-CD 0.159(0.011) 18.284(3.797) 0.081(0.006) 6.845(1.665)
Oracle 0.030(0.002) 1.982(0.064) 0.047(0.002) 3.046(0.079)

b = 3/
√
3 ρX = 0.5 GMTask 0.031(0.002) 2.054(0.069) 0.048(0.002) 3.111(0.082)

AICc 0.202(0.009) 24.395(4.294) 0.272(0.013) 28.593(5.347)
BIC 0.101(0.006) 12.278(3.367) 0.074(0.005) 6.106(0.904)

V-L0LS-CD 0.112(0.009) 13.905(4.509) 0.070(0.005) 5.381(0.814)
Oracle 0.031(0.002) 2.027(0.065) 0.047(0.002) 3.096(0.079)

NOTE: Numbers in parentheses are standard errors. This table is for the case when (n, p, k) = (200, 2000, 3). Smallest values are bolded (other than Oracle’s).
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Table 5. Empirical coverage rates of the prediction ellipsoids for Yi when ρ� = 0.6.

90% 95% 99%

m = 2 b = 1/
√
3 ρX = 0 GMTask 0.897(13.970) 0.948(18.176) 0.989(27.941)

AICc 0.862(13.144) 0.923(17.162) 0.980(26.604)
BIC 0.875(13.381) 0.932(17.472) 0.983(27.083)

V-L0LS-CD 0.768(11.603) 0.846(15.152) 0.933(23.495)
Oracle 0.897(11.790) 0.949(15.394) 0.990(23.860)

b = 2/
√
3 ρX = 0 GMTask 0.898(19.144) 0.949(24.907) 0.990(38.289)

AICc 0.862(18.063) 0.923(23.585) 0.981(36.560)
BIC 0.876(18.408) 0.932(24.035) 0.984(37.256)

V-L0LS-CD 0.814(17.022) 0.885(22.226) 0.959(34.459)
Oracle 0.898(11.801) 0.948(15.408) 0.990(23.883)

b = 3/
√
3 ρX = 0 GMTask 0.900(25.661) 0.950(33.385) 0.988(51.321)

AICc 0.866(24.232) 0.925(31.640) 0.980(49.048)
BIC 0.877(24.681) 0.933(32.225) 0.983(49.950)

V-L0LS-CD 0.834(23.306) 0.899(30.433) 0.965(47.178)
Oracle 0.902(11.867) 0.951(15.494) 0.990(24.016)

b = 1/
√
3 ρX = 0.5 GMTask 0.896(13.918) 0.947(18.108) 0.989(27.837)

AICc 0.866(12.932) 0.926(16.886) 0.981(26.177)
BIC 0.875(13.121) 0.933(17.132) 0.984(26.556)

V-L0LS-CD 0.808(11.967) 0.879(15.627) 0.954(24.228)
Oracle 0.900(11.848) 0.949(15.470) 0.990(23.978)

b = 2/
√
3 ρX = 0.5 GMTask 0.897(17.911) 0.948(23.303) 0.990(35.823)

AICc 0.869(17.041) 0.929(22.250) 0.983(34.492)
BIC 0.878(17.281) 0.936(22.564) 0.986(34.976)

V-L0LS-CD 0.852(16.695) 0.915(21.799) 0.975(33.793)
Oracle 0.898(11.828) 0.949(15.443) 0.990(23.936)

b = 3/
√
3 ρX = 0.5 GMTask 0.898(23.091) 0.948(30.043) 0.989(46.183)

AICc 0.872(22.094) 0.931(28.849) 0.983(44.720)
BIC 0.881(22.425) 0.937(29.280) 0.986(45.386)

V-L0LS-CD 0.861(21.853) 0.921(28.534) 0.979(44.233)
Oracle 0.901(11.806) 0.949(15.415) 0.990(23.893)

m = 3 b = 1/
√
3 ρX = 0 GMTask 0.896(48.319) 0.947(67.534) 0.989(118.128)

AICc 0.867(45.922) 0.928(64.578) 0.983(114.530)
BIC 0.890(47.755) 0.943(67.148) 0.988(119.064)

V-L0LS-CD 0.886(47.465) 0.941(66.741) 0.987(118.344)
Oracle 0.898(40.453) 0.949(56.883) 0.990(100.866)

b = 2/
√
3 ρX = 0 GMTask 0.897(66.940) 0.948(93.560) 0.988(163.651)

AICc 0.868(63.875) 0.929(89.824) 0.983(159.303)
BIC 0.892(66.388) 0.945(93.349) 0.988(165.521)

V-L0LS-CD 0.891(66.277) 0.943(93.192) 0.987(165.244)
Oracle 0.898(40.433) 0.949(56.854) 0.990(100.815)

b = 3/
√
3 ρX = 0 GMTask 0.893(89.786) 0.945(125.492) 0.988(219.505)

AICc 0.866(85.691) 0.926(120.502) 0.982(213.711)
BIC 0.889(89.092) 0.942(125.273) 0.987(222.125)

V-L0LS-CD 0.887(88.857) 0.941(124.943) 0.987(221.543)
Oracle 0.897(40.243) 0.947(56.587) 0.989(100.340)

b = 1/
√
3 ρX = 0.5 GMTask 0.897(48.044) 0.946(67.150) 0.988(117.456)

AICc 0.871(44.791) 0.930(62.987) 0.983(111.710)
BIC 0.890(46.395) 0.943(65.237) 0.987(115.679)

V-L0LS-CD 0.887(46.115) 0.940(64.844) 0.986(114.984)
Oracle 0.897(40.249) 0.948(56.595) 0.990(100.355)

b = 2/
√
3 ρX = 0.5 GMTask 0.899(62.619) 0.948(87.521) 0.989(153.089)

AICc 0.877(59.949) 0.934(84.304) 0.985(149.515)
BIC 0.894(61.722) 0.946(86.791) 0.989(153.902)

V-L0LS-CD 0.894(61.767) 0.946(86.853) 0.989(154.012)
Oracle 0.898(40.540) 0.950(57.005) 0.990(101.083)

b = 3/
√
3 ρX = 0.5 GMTask 0.900(81.677) 0.950(114.158) 0.989(199.680)

AICc 0.879(78.769) 0.935(110.769) 0.985(196.453)
BIC 0.895(81.045) 0.948(113.961) 0.989(202.081)

V-L0LS-CD 0.896(81.134) 0.948(114.086) 0.989(202.302)
Oracle 0.900(40.419) 0.949(56.835) 0.990(100.780)

NOTE: Numbers in parentheses are averaged volumes of the ellipsoids. This table is for the case when X2001 was in the true model. Best results are bolded (other than
Oracle’s).

confirmed these theoretical findings. To the best of our
knowledge, this article is one of the first that provides a systemic

solution for quantifying uncertainties in the multi-task learning
problem.
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Table 6. Empirical coverage rates of the prediction ellipsoids for Yi when ρ� = 0.6.

90% 95% 99%

m = 2 b = 1/
√
3 ρX = 0 GMTask 0.899(14.002) 0.945(18.218) 0.986(28.005)

AICc 0.866(13.194) 0.924(17.228) 0.979(26.706)
BIC 0.877(13.425) 0.931(17.528) 0.981(27.170)

V-L0LS-CD 0.767(11.556) 0.842(15.091) 0.931(23.400)
Oracle 0.899(11.841) 0.949(15.460) 0.990(23.963)

b = 2/
√
3 ρX = 0 GMTask 0.897(19.206) 0.941(24.987) 0.979(38.411)

AICc 0.869(18.139) 0.922(23.685) 0.972(36.716)
BIC 0.879(18.480) 0.928(24.129) 0.974(37.402)

V-L0LS-CD 0.827(17.132) 0.889(22.371) 0.954(34.682)
Oracle 0.898(11.817) 0.949(15.428) 0.990(23.914)

b = 3/
√
3 ρX = 0 GMTask 0.896(25.534) 0.936(33.221) 0.976(51.068)

AICc 0.872(24.114) 0.919(31.486) 0.967(48.809)
BIC 0.880(24.566) 0.925(32.075) 0.970(49.717)

V-L0LS-CD 0.844(23.185) 0.900(30.273) 0.956(46.932)
Oracle 0.902(11.846) 0.950(15.467) 0.989(23.974)

b = 1/
√
3 ρX = 0.5 GMTask 0.893(14.645) 0.943(19.054) 0.983(29.291)

AICc 0.861(13.647) 0.921(17.820) 0.973(27.623)
BIC 0.873(13.891) 0.928(18.138) 0.977(28.114)

V-L0LS-CD 0.804(12.666) 0.874(16.540) 0.949(25.643)
Oracle 0.899(11.843) 0.950(15.463) 0.990(23.967)

b = 2/
√
3 ρX = 0.5 GMTask 0.888(20.560) 0.930(26.749) 0.970(41.120)

AICc 0.862(19.375) 0.913(25.298) 0.961(39.216)
BIC 0.872(19.726) 0.919(25.756) 0.964(39.923)

V-L0LS-CD 0.838(18.720) 0.895(24.444) 0.951(37.894)
Oracle 0.898(11.843) 0.949(15.463) 0.990(23.967)

b = 3/
√
3 ρX = 0.5 GMTask 0.887(27.890) 0.928(36.285) 0.968(55.779)

AICc 0.866(26.324) 0.913(34.371) 0.960(53.281)
BIC 0.873(26.825) 0.918(35.025) 0.963(54.291)

V-L0LS-CD 0.852(25.870) 0.904(33.779) 0.954(52.363)
Oracle 0.901(11.831) 0.951(15.447) 0.990(23.943)

m = 3 b = 1/
√
3 ρX = 0 GMTask 0.897(48.363) 0.945(67.596) 0.986(118.236)

AICc 0.868(45.959) 0.927(64.630) 0.980(114.622)
BIC 0.891(47.810) 0.941(67.226) 0.986(119.201)

V-L0LS-CD 0.887(47.519) 0.939(66.818) 0.985(118.479)
Oracle 0.900(40.568) 0.950(57.043) 0.990(101.150)

b = 2/
√
3 ρX = 0 GMTask 0.891(66.677) 0.938(93.192) 0.981(163.008)

AICc 0.869(63.635) 0.923(89.486) 0.974(158.705)
BIC 0.887(66.166) 0.935(93.037) 0.980(164.967)

V-L0LS-CD 0.886(66.120) 0.936(92.972) 0.980(164.852)
Oracle 0.898(40.204) 0.948(56.532) 0.990(100.243)

b = 3/
√
3 ρX = 0 GMTask 0.891(89.973) 0.935(125.753) 0.977(219.961)

AICc 0.870(85.825) 0.921(120.691) 0.971(214.046)
BIC 0.886(89.167) 0.933(125.379) 0.977(222.315)

V-L0LS-CD 0.885(88.698) 0.932(124.721) 0.976(221.152)
Oracle 0.897(40.521) 0.948(56.978) 0.990(101.034)

b = 1/
√
3 ρX = 0.5 GMTask 0.892(50.567) 0.940(70.677) 0.982(123.624)

AICc 0.864(47.431) 0.921(66.699) 0.975(118.292)
BIC 0.886(49.327) 0.936(69.360) 0.981(122.985)

V-L0LS-CD 0.882(49.044) 0.933(68.963) 0.980(122.283)
Oracle 0.899(40.432) 0.949(56.853) 0.990(100.813)

b = 2/
√
3 ρX = 0.5 GMTask 0.886(71.996) 0.930(100.626) 0.972(176.011)

AICc 0.863(68.598) 0.916(96.465) 0.965(171.082)
BIC 0.882(71.292) 0.928(100.245) 0.972(177.749)

V-L0LS-CD 0.881(71.255) 0.927(100.192) 0.971(177.656)
Oracle 0.897(40.432) 0.948(56.853) 0.989(100.812)

b = 3/
√
3 ρX = 0.5 GMTask 0.882(98.359) 0.926(137.473) 0.968(240.462)

AICc 0.864(93.865) 0.914(131.997) 0.962(234.098)
BIC 0.879(97.522) 0.924(137.128) 0.968(243.147)

V-L0LS-CD 0.873(95.709) 0.920(134.581) 0.966(238.650)
Oracle 0.898(40.459) 0.949(56.891) 0.990(100.879)

NOTE: Numbers in parentheses are averaged volumes of the ellipsoids. This table is for the case when X1999X2000 was in the truemodel. Best results are bolded (other than
Oracle’s).
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Table 7. Empirical coverage rates of the prediction ellipsoids for Yi when ρ� = 0.6.

90% 95% 99%

m = 2 b = 1/
√
3 ρX = 0 GMTask 0.877(15.907) 0.926(20.695) 0.972(31.813)

AICc 0.848(14.913) 0.904(19.473) 0.962(30.186)
BIC 0.857(15.175) 0.911(19.814) 0.965(30.712)

V-L0LS-CD 0.738(12.817) 0.814(16.738) 0.904(25.956)
Oracle 0.896(11.799) 0.948(15.406) 0.989(23.879)

b = 2/
√
3 ρX = 0 GMTask 0.869(24.338) 0.912(31.664) 0.958(48.675)

AICc 0.846(22.962) 0.895(29.982) 0.949(46.477)
BIC 0.853(23.372) 0.901(30.517) 0.951(47.302)

V-L0LS-CD 0.787(20.996) 0.848(27.417) 0.920(42.508)
Oracle 0.899(11.888) 0.949(15.522) 0.989(24.059)

b = 3/
√
3 ρX = 0 GMTask 0.864(34.132) 0.906(44.407) 0.952(68.264)

AICc 0.842(32.205) 0.889(42.051) 0.942(65.186)
BIC 0.848(32.782) 0.895(42.802) 0.946(66.346)

V-L0LS-CD 0.794(29.721) 0.851(38.811) 0.919(60.173)
Oracle 0.895(11.825) 0.946(15.439) 0.989(23.931)

b = 1/
√
3 ρX = 0.5 GMTask 0.880(16.179) 0.928(21.049) 0.972(32.358)

AICc 0.848(14.970) 0.905(19.547) 0.962(30.301)
BIC 0.858(15.228) 0.913(19.883) 0.965(30.820)

V-L0LS-CD 0.784(13.692) 0.852(17.879) 0.931(27.721)
Oracle 0.899(11.868) 0.948(15.496) 0.990(24.018)

b = 2/
√
3 ρX = 0.5 GMTask 0.870(24.345) 0.914(31.674) 0.958(48.690)

AICc 0.844(22.901) 0.895(29.903) 0.949(46.354)
BIC 0.853(23.334) 0.901(30.467) 0.952(47.225)

V-L0LS-CD 0.811(21.786) 0.868(28.447) 0.933(44.102)
Oracle 0.898(11.870) 0.949(15.498) 0.989(24.022)

b = 3/
√
3 ρX = 0.5 GMTask 0.867(34.193) 0.909(44.486) 0.954(68.386)

AICc 0.844(32.230) 0.893(42.083) 0.945(65.235)
BIC 0.851(32.819) 0.898(42.851) 0.948(66.421)

V-L0LS-CD 0.819(30.951) 0.872(40.415) 0.933(62.655)
Oracle 0.898(11.842) 0.949(15.462) 0.990(23.966)

m = 3 b = 1/
√
3 ρX = 0 GMTask 0.878(55.940) 0.926(78.186) 0.973(136.759)

AICc 0.852(52.748) 0.908(74.177) 0.965(131.553)
BIC 0.872(54.857) 0.923(77.135) 0.972(136.771)

V-L0LS-CD 0.869(54.585) 0.920(76.753) 0.970(136.096)
Oracle 0.896(40.527) 0.948(56.987) 0.989(101.050)

b = 2/
√
3 ρX = 0 GMTask 0.867(85.347) 0.915(119.287) 0.963(208.652)

AICc 0.846(81.355) 0.899(114.405) 0.954(202.898)
BIC 0.863(84.513) 0.912(118.835) 0.962(210.711)

V-L0LS-CD 0.859(83.770) 0.910(117.792) 0.960(208.868)
Oracle 0.897(40.463) 0.949(56.897) 0.989(100.890)

b = 3/
√
3 ρX = 0 GMTask 0.864(120.068) 0.909(167.817) 0.957(293.537)

AICc 0.845(114.340) 0.894(160.789) 0.948(285.162)
BIC 0.860(118.867) 0.906(167.141) 0.955(296.365)

V-L0LS-CD 0.823(109.145) 0.878(153.495) 0.938(272.270)
Oracle 0.896(40.262) 0.947(56.614) 0.989(100.388)

b = 1/
√
3 ρX = 0.5 GMTask 0.877(56.435) 0.926(78.878) 0.974(137.969)

AICc 0.852(52.493) 0.908(73.818) 0.964(130.917)
BIC 0.871(54.679) 0.923(76.884) 0.972(136.326)

V-L0LS-CD 0.867(54.482) 0.919(76.608) 0.971(135.839)
Oracle 0.897(40.614) 0.948(57.109) 0.990(101.267)

b = 2/
√
3 ρX = 0.5 GMTask 0.869(85.780) 0.915(119.892) 0.962(209.710)

AICc 0.847(81.396) 0.900(114.463) 0.953(203.002)
BIC 0.865(84.606) 0.912(118.966) 0.961(210.944)

V-L0LS-CD 0.863(84.212) 0.912(118.413) 0.960(209.968)
Oracle 0.898(40.498) 0.949(56.946) 0.990(100.978)

b = 3/
√
3 ρX = 0.5 GMTask 0.863(119.907) 0.910(167.591) 0.957(293.143)

AICc 0.842(114.088) 0.894(160.436) 0.948(284.535)
BIC 0.859(118.530) 0.907(166.667) 0.956(295.525)

V-L0LS-CD 0.828(110.637) 0.885(155.591) 0.942(275.973)
Oracle 0.897(40.443) 0.948(56.868) 0.990(100.839)

NOTE: Numbers in parentheses are averaged volumes of the ellipsoids. This table is for the case when X22000 was in the true model. Best results are bolded (other than
Oracle’s).
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Table 8. Empirical coverage rates of the prediction ellipsoids for Yi when ρ� = 0.6.

90% 95% 99%

m = 2 b = 1/
√
3 ρX = 0 GMTask 0.877(15.980) 0.926(20.791) 0.971(31.960)

AICc 0.845(14.961) 0.904(19.535) 0.962(30.282)
BIC 0.856(15.241) 0.911(19.900) 0.965(30.845)

V-L0LS-CD 0.744(12.951) 0.817(16.913) 0.908(26.226)
Oracle 0.899(11.837) 0.949(15.455) 0.990(23.955)

b = 2/
√
3 ρX = 0 GMTask 0.871(24.263) 0.915(31.567) 0.959(48.526)

AICc 0.845(22.859) 0.895(29.847) 0.949(46.268)
BIC 0.854(23.284) 0.902(30.402) 0.952(47.124)

V-L0LS-CD 0.785(20.895) 0.848(27.285) 0.919(42.304)
Oracle 0.899(11.849) 0.949(15.471) 0.990(23.981)

b = 3/
√
3 ρX = 0 GMTask 0.866(33.970) 0.908(44.196) 0.954(67.939)

AICc 0.844(32.071) 0.891(41.876) 0.944(64.914)
BIC 0.851(32.693) 0.897(42.687) 0.948(66.166)

V-L0LS-CD 0.792(29.422) 0.850(38.420) 0.918(59.569)
Oracle 0.900(11.864) 0.950(15.491) 0.989(24.011)

b = 1/
√
3 ρX = 0.5 GMTask 0.878(16.057) 0.927(20.891) 0.973(32.115)

AICc 0.846(14.870) 0.903(19.416) 0.962(30.098)
BIC 0.855(15.138) 0.911(19.766) 0.966(30.638)

V-L0LS-CD 0.780(13.580) 0.850(17.733) 0.930(27.494)
Oracle 0.896(11.827) 0.948(15.442) 0.990(23.935)

b = 2/
√
3 ρX = 0.5 GMTask 0.866(24.129) 0.911(31.393) 0.957(48.258)

AICc 0.841(22.656) 0.893(29.583) 0.947(45.858)
BIC 0.849(23.072) 0.899(30.125) 0.951(46.695)

V-L0LS-CD 0.814(21.722) 0.871(28.363) 0.934(43.971)
Oracle 0.897(11.843) 0.948(15.462) 0.989(23.967)

b = 3/
√
3 ρX = 0.5 GMTask 0.867(34.029) 0.909(44.273) 0.953(68.059)

AICc 0.843(32.010) 0.892(41.796) 0.944(64.790)
BIC 0.851(32.595) 0.898(42.558) 0.947(65.967)

V-L0LS-CD 0.824(30.880) 0.876(40.321) 0.933(62.509)
Oracle 0.897(11.825) 0.947(15.440) 0.989(23.931)

m = 3 b = 1/
√
3 ρX = 0 GMTask 0.876(55.576) 0.926(77.678) 0.973(135.870)

AICc 0.851(52.457) 0.908(73.767) 0.965(130.827)
BIC 0.871(54.536) 0.923(76.684) 0.972(135.971)

V-L0LS-CD 0.868(54.342) 0.922(76.411) 0.971(135.488)
Oracle 0.897(40.370) 0.948(56.766) 0.990(100.658)

b = 2/
√
3 ρX = 0 GMTask 0.867(85.171) 0.913(119.042) 0.960(208.223)

AICc 0.846(81.072) 0.898(114.006) 0.952(202.192)
BIC 0.863(84.335) 0.911(118.584) 0.959(210.266)

V-L0LS-CD 0.861(83.831) 0.909(117.877) 0.959(209.017)
Oracle 0.899(40.410) 0.950(56.822) 0.991(100.758)

b = 3/
√
3 ρX = 0 GMTask 0.865(120.515) 0.911(168.441) 0.958(294.629)

AICc 0.846(114.814) 0.896(161.456) 0.949(286.345)
BIC 0.861(119.453) 0.909(167.965) 0.957(297.824)

V-L0LS-CD 0.824(109.771) 0.880(154.375) 0.941(273.828)
Oracle 0.897(40.525) 0.949(56.984) 0.990(101.044)

b = 1/
√
3 ρX = 0.5 GMTask 0.875(55.923) 0.925(78.162) 0.972(136.718)

AICc 0.849(52.076) 0.906(73.232) 0.963(129.878)
BIC 0.868(54.216) 0.921(76.233) 0.971(135.172)

V-L0LS-CD 0.864(54.093) 0.917(76.061) 0.969(134.868)
Oracle 0.895(40.331) 0.947(56.712) 0.989(100.562)

b = 2/
√
3 ρX = 0.5 GMTask 0.868(85.594) 0.915(119.633) 0.962(209.256)

AICc 0.846(81.065) 0.900(113.997) 0.953(202.176)
BIC 0.864(84.385) 0.913(118.654) 0.961(210.391)

V-L0LS-CD 0.862(84.065) 0.911(118.205) 0.960(209.598)
Oracle 0.898(40.284) 0.949(56.645) 0.990(100.444)

b = 3/
√
3 ρX = 0.5 GMTask 0.866(119.389) 0.911(166.867) 0.958(291.876)

AICc 0.845(113.461) 0.896(159.554) 0.949(282.971)
BIC 0.861(117.913) 0.908(165.799) 0.957(293.986)

V-L0LS-CD 0.832(115.545) 0.886(165.584) 0.943(318.020)
Oracle 0.899(40.427) 0.949(56.845) 0.990(100.799)

NOTE: Numbers in parentheses are averaged volumes of the ellipsoids. This table is for the casewhen X21 was in the truemodel. Best results are bolded (other than Oracle’s).
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Table 9. Empirical coverage rates of the prediction ellipsoids for the polymerase
chain reaction dataset. Numbers in parentheses are averaged volumes of the ellip-
soids.

90% 95% 99%

GMTask 0.900(8.087) 0.950(10.521) 0.983(16.174)
AICc 0.800(4.894) 0.850(6.462) 0.900(10.281)
BIC 0.817(5.109) 0.833(6.740) 0.933(10.704)
V-L0LS-CD 0.683(4.545) 0.783(6.023) 0.833(9.670)

Appendix A. Proof of Theorem 1

Proof. Since

r(M) ∝ �m(
n−|M|−m

2 )|πSM|− n−|M|−m
2 [(n − |M|)m] 12 × q|M|,

where q = n−m
2 p−1 is derived by using the MDL principle. Let k =

|M| and k0 = |M0| for simplicity, thus, we have

r(M)

r(M0)
= exp {−T1 − T2},

where

T1 = n − k − m
2

log

(
|�̂M|
|�̂M0 |

)

and

T2 = k0−k
2 log (|πSM0 |) + log

{
�m(

n−k0−m
2 )/�m(n−k−m

2 )
}

+(k0 − k) log(q) + 1
2 log

n−k0
n−k .

As n → ∞, we can see that �̂M0
P−→ �0 when M �∈ M−

and �̂M
P−→ �

1
2
0 �M�

1
2
0 + �0 when M ∈ M−, where �M =

limn→∞ 1
n	(M). By our assumption, �M is a positive semidefinite

matrix.

Case 1: ∀M ∈ M−.
We have

T1
n

P−→ 1
2
log |�

1
2
0 �M�

1
2
0 + �0| − 1

2
log |�0|

= 1
2
log |�M + Im| > 0. (20)

Since SM0 is distributed asWm(n − k0,�0), we can derive the log-
expectation and log-variance as

E
[
log |SM0 |

] = ψm(
n − k0

2
) + m log 2 + log |�0|

and

var
[
log |SM0 |

] =
m∑
i=1

ψ1

(
n − k0 + 1 − i

2

)
,

where ψm is the multivariate digamma function; that is, the derivative
of the log of the multivariate gamma function, and ψ1 is the trigamma
function. Then we have

log |SM0 | = m log(n − k0)(1 + op(1)) = m log n(1 + op(1)).

By the definition of multivariate gamma function �p, we have

�p(a) = π
p(p−1)

4

p∏
j=1

�

(
a + 1 − j

2

)
.

According to Stirling’s approximation,

log
{
�m(

n−k0−m
2 )/�m(n−k−m

2 )
}

= m(k−k0)
2 log n(1 + o(1)).

Therefore, we have

T2 = m(k − k0)
2

{
log n(op(1)) − logπ − log(q2)

m

}
+ 1

2
log

n − k0
n − k

(21)
and

lim
n→∞

T2
n

= 0. (22)

By (20) and (22), for case 1, we have

min
M∈M−

T1 + T2 → ∞.

Case 2: ∀M ∈ M+.
Let V and ZM be them × m and the k × mmatrices defined by

V = 1√
n
(
UTU − nIm

)
,ZM = (XT

MXM)− 1
2XT

MU ,

where

U = (Y − X0B0)�
− 1

2
0 .

We know that V has an asymptotic normality as n → ∞ and ZM ∼
Nk×m(0k×m, Ikm).

Furthermore, since

�
− 1

2
0 �̂M�

− 1
2

0 = 1
nU

T(In − HM)U = 1
n (UTU − ZTMZM),

we have

�
− 1

2
0 �̂M�

− 1
2

0 = Im + 1√
n
V − 1

n
ZTMZM . (23)

By using (23), n log |�̂M| can be expanded as

n log |�̂M| = n log |�0| + √
ntr(V)

−
(
1
2
tr(V2) + tr(ZTMZM)

)
+ Op(n− 1

2 ).

Then, we derive

T1 = −n−k−m
2n

(
tr(ZTMZM) − tr(ZTM0

ZM0) + Op(n− 1
2 )

)
.

By (21), for allM ∈ M+, limn→∞ T2 = ∞. Then for case 2, we have

min
M∈M+

T1 + T2 → ∞.

Combing case 1 and case 2, we can show that

max
M �=M0,M∈M

r(M)

r(M0)
→ 0.

Moreover, if condition (A3) holds andM �= M0, we have

∑
M∈M∗

r(M)

r(M0)
≤

ck0∑
j=1

∑
M∗

j

r(M)

r(M0)
≤

ck0∑
j=1

|M∗
j | max

M∈M∗
j

r(M)

r(M0)
→ 0.

This completes the proof for Theorem 1.

Supplementary Materials

The supplementary materials provide additional numerical results. Com-
puting code implementing the proposed method can be obtained from the
journal’s website.
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